Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis

Benjamin Timon

August 28, 2019

Python notebook presentation for CHES 2019

Introduction & Motivation

Profiled vs Non-Profiled attacks

Machine Learning trend

- Recently, many publications on Deep Learning for Side-Channel attacks
- Publications show clear interest of DL for SCA
- Most of time, DL outperforms other techniques
- Can adapt the network architecture to the challenge
 - For instance CNN for de-synchronized traces

This research

How can we use Deep Learning for Non-Profiled Side-Channel attacks?

Differential Deep Learning Analysis (DDLA)

Correlation Power Analysis

Select key guess leading to highest correlation

Follow similar strategy for DDLA

Select key guess leading to the better training

Demonstration: attack with accuracy and loss

Generate simulation traces

In [1]: from demo import gen_simu_data

```
# Generate simulation traces for demonstration
data_training = gen_simu_data()
```

Network

Observe loss and accuracy during training

```
In [2]: from demo import demo_ddla_acc_loss
    ddla = demo_ddla_acc_loss(data_training)
    ddla.run(n_epochs=30)
    ddla.fig
```

Out[2]:

Sensitivity Analysis

Study sensitivity of a model with regards to some of its parameters

Demonstration: Observe first layer gradient

In [3]: from plots import plot_weights_and_grad_3d

```
plot_weights_and_grad_3d(data_training)
```

Out[3]:

Observe first layer gradient during training

```
In [4]: from demo import demo_ddla_gradient
    ddla = demo_ddla_gradient(data_training)
    ddla.run(15)
    ddla.fig
Out[4]:
```


In [5]: from plots import plot_weights_2d

plot_weights_2d(ddla)

Out [5] :

Derivatives with regards to the inputs

Masked implementations

Generate masked simulation traces

In [6]: from demo import gen_simu_masked_data

Generate masked simulation traces for demonstration
data_training = gen_simu_masked_data()

Demonstration: high-order DDLA

In [7]: from demo import demo_ddla_high_order

ddla = demo_ddla_high_order(data_training)
ddla.run(20)
ddla.fig

Out[7]:

In [8]: from plots import plot_weights_2d

```
plot_weights_2d(ddla)
```

Out [8] :

Masked implementations

- Attack works on masked implementation
- Same attack process for first and high order attack
- No preprocessing needed
- Sensitivity analysis reveals Sbox and mask locations in the trace

 \rightarrow interesting alternative for attacks in black box for with no details about the implementation (number of masks etc)

Results on masked implementations

• ChipWhisperer: masked implementations with 1 and 2 masks

ASCAD masked implementation

Conclusion

Two contributions introduced in the paper:

- Use Deep Learning and Neural Networks to perform Non-Profiled Attacks
 - Leverage the power of DL and Neural Networks for Non-Profiled attacks
 - Same attack process to target non-protected and masked implementations
 - Works with CNN against de-synchronized traces
- Introducing Sensitivity Analysis for Side-Channel to locate leakage areas in the traces while using neural networks
 - Reveals intermediate values and masks leakage areas
 - Applicable to any neural network architecture
 - Applicable to Profiled DL training as well

Thank you

