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Abstract. Deep Learning has recently been introduced as a new alternative to perform
Side-Channel analysis [MPP16]. Until now, studies have been focused on applying
Deep Learning techniques to perform Profiled Side-Channel attacks where an attacker
has a full control of a profiling device and is able to collect a large amount of traces
for different key values in order to characterize the device leakage prior to the attack.
In this paper we introduce a new method to apply Deep Learning techniques in a
Non-Profiled context, where an attacker can only collect a limited number of side-
channel traces for a fixed unknown key value from a closed device. We show that by
combining key guesses with observations of Deep Learning metrics, it is possible to
recover information about the secret key. The main interest of this method is that it
is possible to use the power of Deep Learning and Neural Networks in a Non-Profiled
scenario. We show that it is possible to exploit the translation-invariance property of
Convolutional Neural Networks [CDP17] against de-synchronized traces also during
Non-Profiled side-channel attacks. In this case, we show that this method can
outperform classic Non-Profiled attacks such as Correlation Power Analysis. We also
highlight that it is possible to break masked implementations in black-box, without
leakages combination pre-preprocessing and with no assumptions nor knowledge
about the masking implementation. To carry the attack, we introduce metrics based
on Sensitivity Analysis that can reveal both the secret key value as well as points
of interest, such as leakages and masks locations in the traces. The results of our
experiments demonstrate the interests of this new method and show that this attack
can be performed in practice.

Keywords: side-channel attacks · deep learning · machine learning · non-profiled
attacks · profiled attacks · sensitivity analysis

1 Introduction
Side-Channel attacks, introduced in 1996 by P. Kocher [Koc96], exploit side-channel
leakages such as power consumption from a device to extract secret information. Side-
Channel attacks can be classified into two classes:

• Profiled Attacks such as Template Attacks [CRR03], Stochastic attacks [SLP05] or
Machine-Learning-based attacks [HGDM+11, LPB+15, LBM15].

• Non-Profiled Attacks such as Differential Power Analysis (DPA) [KJJ99], Correlation
Power Analysis (CPA) [BCO04], or Mutual Information Analysis (MIA) [GBTP08].

To mount a Profiled Side-Channel attack, an attacker needs to have access to a pair of
identical devices called the target device and the profiling device. The attacker has a
limited control over the target device which is running a cryptographic operation with a
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fixed unknown key value k∗ ∈ K, where K is the set of possible key values. On the other
hand, the attacker has a full control and knowledge of the inputs and keys of the profiling
device. In such a context, a Profiled Attack is performed in two steps:

1. A profiling phase, while the leakage of the targeted cryptographic operation is profiled
for all possible key values k ∈ K using side-channel traces collected from the profiling
device.

2. An attack phase, where traces collected from the target device are classified based
on the leakage profiling in order to recover the secret key value k∗.

Profiled attacks are considered as the most powerful form of side-channel attacks as the
attacker is able to characterize the side-channel leakage of the device prior to the attack.
However, the profiling phase requires to have access to a profiling device, which is a
strong assumption that cannot be always met in practice. Indeed, for closed products
(for example smart cards running banking applications) an attacker does not have control
of the keys and is usually limited by a transaction counter which caps the number of
side-channel traces that can be collected. In such a context, Profiled attacks cannot be
performed. However, Non-Profiled attacks such as DPA, CPA, or MIA can still threaten
the device. The only assumption for Non-Profiled attacks is that the attacker is able
to collect several side-channel traces of a cryptographic operation with a fixed unknown
key value k∗ ∈ K and known random inputs (or outputs) from the targeted device. The
attacker then combines key hypotheses with the use of statistical distinguishers such as
Pearson’s Correlation or Mutual Information to infer information about the secret k∗ from
the side-channel traces.

1.1 Motivation
Recently, Deep Learning has been introduced as an interesting alternative to perform
Side-Channel attacks [MPP16, CDP17]. However, so far, the studies have only focused
on applying Deep Learning to perform Profiled Side-Channel attacks. As mentioned
previously, mounting a Profiled attack requires to have access to a profiling device, which
is a strong assumption and limits the usage of Deep Learning techniques. The motivation
of this research is to study how Deep Learning and deep neural networks can be used to
perform Non-Profiled attacks.

1.2 Our contribution
In this paper we introduce a new side-channel attack method to apply Deep Learning
techniques in Non-Profiled scenarios. The method that we present is a type of partition-
based side-channel attack [SGV09] which uses Deep Learning trainings to reveal the correct
key value. We show that using this method it is possible to use the power of Deep
Learning for Non-Profiled attacks. We show that as in the Profiled context [CDP17] it
is possible to use the translation-invariance property of Convolutional Neural Networks
against de-synchronized traces also in a Non-Profiled attack setting. This leads to results
showing that in some cases, this attack method can outperform other Non-Profiled attacks
as CPA. Additionally, we show that this attack method can be used to break masked
implementations with a reasonable number of traces, without leakages combination pre-
processing and without knowledge nor assumptions about the implemented protections.
To perform the attack, we propose to exploit a set of techniques from the literature called
Sensitivity Analysis to reveal the secret key as well as points of interest such as leakage
and masks locations in the traces. In this paper, we focus on the application of Sensitivity
Analysis in a Non-Profiled context, even though the same technique can be used in a
Profiled context to reveal points of interest as well. All these points are supported by
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experiments performed on simulated data and traces from the ASCAD database and
collected from the ChipWhisperer-Lite board [CW].

1.3 Related work
The attack presented in this paper can be related to previous works on Non-Profiled
partition-based DPA attacks [SGV09]. Partition-based DPA attacks follow a strategy in
two steps. First, for each key guess, the set of traces is partitioned according to guessed
intermediate values. Then, a statistical distinguisher is used to measure the consistency
of each partition and reveal the correct key. Many statistical metrics for partition-based
DPA were proposed in the literature. Some examples are the Difference of Means [KJJ99],
the Mutual Information [GBTP08], the Variance-Ratio [SGV09] and clustering techniques
[BGLR09]. Our work can be seen as a partition based DPA attack which uses Deep
Learning trainings to evaluate the consistency of the partitions and reveal the correct key
value. Additionally, we advise readers to refer to [DPRS11] which presents how Profiled
Linear Regression Analysis presented in [SLP05] can be turned into a Non-Profiled attack.
[DDP13] presents a similar process but in the context of High-Order attacks. Both papers
can provide interesting perspectives on the topic as the present work follows a similar
approach in the context of Deep Learning instead of Linear Regression.

1.4 Outline
The paper is organized as follows: In Section 2, Deep Learning and Deep Learning-based
Side-Channel attacks are described. In Section 3, we present our method to apply Deep
Learning techniques in a Non-Profiled scenario with illustrations and examples. In Section
4, we give more detailed results from experiments performed on simulated data and traces
collected from the ChipWhisperer-Lite board and from the ASCAD database. Finally, in
Section 5 we conclude and summarize the interests of this new attack.

2 Preliminaries
2.1 Deep Learning
Deep Learning (DL) is a branch of Machine Learning which uses deep neural networks
and which has been successfully applied to many fields such as image classification, speech
recognition or genomics [Bis06, LBH15, DLw]. In this section, we give a brief description
of DL for data classification. In such a case, the objective is to classify some data x ∈ RD

based on their labels z(x) ∈ Z, where D is the dimension of the data to classify and Z is
the set of classification labels. For simplicity’s sake, we can consider Z = {0, 1, . . . , U − 1}
with U is the number of classification labels. We define the so-called one-hot encoding of
the labels as C : RD −→ R|Z| with:

C(x)[i] =
{

1 if i = z(x)
0 otherwise

which can be seen as a vector representation of the label z(x).

A Neural Network is a function Net : RD −→ R|Z| which takes as input a data to
classify x ∈ RD, and outputs a score vector y = Net(x) ∈ R|Z|. A neural network is
internally composed of a set of trainable parameters θ which can be tuned during a training
phase in order to improve the efficiency of the network. At the beginning of the training,
the trainable parameters θ are usually initialized as small random values chosen in a given
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interval. To quantify the efficiency of the network for a given input x, one can define an
error function E : RD −→ R for instance as the Euclidean distance1 between the output
of the Neural Network and the one-hot encoding of the label:

E(x) =
( |Z|∑

i=1
(C(x)[i]− Net(x)[i])2

) 1
2

.

The error function quantifies how far the network output is from the expected output. To
quantify the error of the network over a whole set of training data X = (xi)1≤i≤M , one
can define a so-called loss function as the average error over all training inputs:

LX = 1
M

M∑
i=1

E(xi).

This loss function can be seen as a function LX(θ) which depends on the trainable
parameters θ. Formalized like this, a DL training can be seen as a classic numerical
optimization problem, where the goal is to find the optimal parameters θbest minimizing
the loss function LX . The preferred approach in DL is to use the Gradient Descent
technique to optimize the loss function and train the network. During a series of iterations,
the gradient ∇LX(θ) of the loss with regards to the trainable parameters θ is computed
and the trainable paramaters are updated by following the invert direction of the gradient:

θ(t+1) = θ(t) − α∇LX(θ(t))

where α is called the learning rate, and is a parameter controlling the amplitude of the
parameters update. This is repeated until the minimum of the loss function is found.
Deep neural networks are usually composed of different layers. In order to compute
the gradients of the trainable parameters for the different layers, one usually uses the
backpropagation technique which is based on the derivative chain rule. The gradients are
computed backward, layer by layer, starting from the last layer of the network. Once
the gradients are computed, one can update the trainable parameters of each layer with
the corresponding gradients. In practice, computing the gradient of the loss over the
whole training set X is too expensive and the Stochastic Gradient Descent [GBC16]
(SGD) technique is used: instead of computing the gradient over the whole training set X,
the gradient is computed over small subsets of X. When all the training samples have
been used, the training samples are shuffled and the process is repeated. One iteration
over all the training samples is called an epoch. SGD is repeated multiple epochs until
the loss converges and reaches its minimum. For the rest of the paper we denote by
DL(Net, X, Y, ne), a deep learning training of the network Net over ne epochs with X the
training data and Y the corresponding training labels.

Once the network parameters are optimized, the network can be used to classify
data. To classify a data x whose corresponding label is unknown, one computes ` =
argmax

j∈Z
Net(x)[j]. The classification of x is successful if ` = z(x).

2.1.1 Multi Layer Perceptron

AMulti Layer Perceptron (MLP) is a type of Neural Network composed of several perceptron
units [Bis95]. A perceptron P : Rn −→ R takes as input a vector x ∈ Rn and outputs a
weighted sum evaluated through an activation function denoted A as follows:

P(x) = A
(
b+

n∑
i=1

wixi

)
.

1The error and loss functions presented here are given only as examples. There exist actually many
different error/loss functions which can be used in Deep Learning.



Benjamin Timon 111

(wi)i are called the weights and b the bias of the perceptron unit. Common activation
functions are for instance the Rectified Linear function (relu) or the Hyperbolic Tangent
function (tanh). A Multi Layer Perceptron is a Neural Network which is a combination of
many perceptron units organized in layers as shown in Fig. 1. Each perceptron output of
one layer is connected to each perceptron of the next layer. A MLP is composed of an
input layer, and output layer and a series of intermediate layers called hidden layers. Each
layer is composed of one or several perceptron units. The weights and biases of the MLP
are the trainable parameters which are updated during SGD.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a family of deep neural networks composed of
two types of layers called Convolutional layers and Pooling layers and which has shown
good results specially in the field of image recognition [LB95, ON15]. Convolutional layers
apply convolution operations to the input by sliding a set of filters along the traces. The
pooling layers are non-linear layers which slide a window over the input data and output
a local summary such as the mean or maximum of the input in the window. Fig. 2
shows an example of a convolution operation with 3 filters of size 3 and an example of
maximum pooling operation performed using a window of size 2×2. The CNN architecture
has a natural translation-invariance property due to the use of pooling operations and
shared weights applied across space during the convolution operations. Therefore, CNN is
particularly interesting when dealing with de-synchronized side-channel traces as it is able
to learn and detect features even if the traces are not perfectly aligned [CDP17].
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2.1.3 Loss and Accuracy

During a Deep Learning training, it is possible to monitor the loss and accuracy of the
training. As introduced previously, the loss quantifies the average classification error of
the network. The accuracy at a given epoch can be defined for instance as the proportion
of training samples that are correctly classified by the Neural Network. Both metrics give
information about the evolution of the training. A decreasing loss and increasing accuracy
usually indicate that the network is properly learning, except in case of overfitting where
the Neural Network actually memorizes the data instead of learning the targeted features.

2.1.4 Sensitivity analysis

The Sensitivity Analysis (SA) of a mathematical model is the analysis of the model
output sensitivity with regards to some of the model parameters [SRA+08]. SA can, for
instance, provide a better understanding about the relationship between input and output
parameters of a model. Many methods are known to study the sensitivity of a model,
such as variance-based methods [Sob01] or methods based on partial derivatives. In this
paper we will focus on SA based on partial derivatives. In Deep Learning, SA can be
used for example to determine which pixels of a picture contributed the most to an image
classification [SVZ13]. It can also be used to observe which neurons of a neural network
contribute the most to the classification. To analyze the sensitivity of a network with
regards to a given parameter x, a classic approach is to observe the partial derivative of
the network output with regards to the parameter x. In Section 3 we show how Sensitivity
Analysis for Deep Learning can be used as a metric to reveal secrets such as the key value
and leakage locations during Non-Profiled attacks.

2.2 Profiled Deep Learning Side-Channel attacks
In this section, we remind how Deep Learning can be applied to perform Profiled Side-
Channel attacks [MPP16, CDP17, PSB+18]. We consider that the attacker has access
to a pair of identical devices: a target device running a cryptographic operation with
a fixed unknown key k∗ ∈ K and a profiling device with knowledge and control of the
keys and inputs. We consider that a divide-and-conquer strategy is applied and that
K = {0, 1, . . . , 255}. The goal of the attack is to recover the secret key byte k∗. The method
proposed in [MPP16] is to perform a Profiled attack similar to a Template Attack [CRR03],
but using Deep Learning training as a profiling method instead of using Multivariate
gaussian profiling as in Template Attacks.

Profiling phase For the profiling phase, a set of N traces Pk = {T (k)
i | i = 1, . . . , N} is

collected from the profiling device for each key k ∈ K leading to a set X of (N × 256)
training traces:

X =
255⋃
k=0
Pk .

The set of training labels Y is defined as the set of keys z(T (k)
i ) = k corresponding to

the training traces. To profile the leakage, a Deep Learning training DL(Net, X, Y, ne)
is performed using the Side-Channel traces as training data in order to build a Neural
Network Net able to classify the side-channel traces based on their corresponding key
values.

Attack phase To recover the secret key value k∗ ∈ K using M side-channel traces
(Ti)1≤i≤M collected from the target device, one first evaluates each trace Ti using the
trained Neural Network to get M score vectors yi = Net(Ti) ∈ R|K|. One can then select
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the key k leading to the highest summed score: k = argmaxj∈K
(∑M

i=1 yi

)
[j] . The attack

is successful if k = k∗.

Interests Previous publications studied the interests of using Deep Learning to perform
Profiled Side-Channel attacks. In [MPP16], Maghrebi et al. showed that Deep Learning
can outperform other Profiled attacks such as Template Attacks in some cases. In [CDP17],
the authors showed that the translation-invariance property of CNNs can be used against
de-synchronized traces to improve the attacks results. However, all these studies focused
only on applying Deep Learning to perform Profiled attacks.

3 Non-Profiled Deep Learning Side-Channel attacks
In this section we present a new attack method to apply Deep Learning techniques in
a Non-Profiled context. In Section 3.1, we describe the principle of the attack. In the
next subsections, we further discuss about some specific points of the attack and provide
illustrations. More advanced experiments of the attack are presented in Section 4.

3.1 Differential Deep Learning Analysis
For the rest of the paper, we consider a Non-Profiled Side-Channel attack scenario. In
such a context, an attacker collects N side-channel traces (Ti)1≤i≤N corresponding to the
manipulation of a sensitive value F (di,k

∗) where (di)1≤i≤N are known random values
and k∗ ∈ K is the fixed secret value. Usually such an attack is performed following a
divide-an-conquer strategy, and one has for instance |K| = 256 with di and k∗ 8-bit values.
For the rest of the paper we focus on the AES algorithm even though the attack method
is not tied to this algorithm. In this case, the target function F can be chosen as the AES
Sbox function, meaning that F (di,k

∗) = Sbox(di ⊕ k∗).

To perform a partition-based DPA attack, one first needs to define a partition function
h. For example, for a classic DPA attack, h can be defined as the Most Significant (MSB) or
Least Significant Bit (LSB) of F (di,k

∗). Then, for each key hypothesis k ∈ K the attacker
computes a series of hypothetical intermediate values (Vi,k)1≤i≤N with Vi,k = F (di, k)
and then partitions the traces based on the values (Hi,k)1≤i≤N with Hi,k = h(Vi,k). The
attacker then uses a statistical distinguisher to evaluate the consistency of each partition
and reveal the secret key. For DPA one for example uses the Difference of Means. For the
correct key value k∗, the partition of the traces will be consistent, and one should observe
a high difference of means. For all the other key candidates, the partition is basically a
random partition of the traces, leading to a difference of means close to 0.

To apply DL in a Non-Profiled context, our idea is to partition the traces as for a
partition-based attack and use DL trainings to evaluate the consistency of the partitions.
For each key hypothesis k ∈ K the attacker computes the series (Vi,k)1≤i≤N and partition
the traces based on the values Hi,k = h(Vi,k). He then performs a DL training using
the traces (Ti)1≤i≤N as training data, and the series (Hi,k)1≤i≤N as the corresponding
classification labels. When the correct key guess k∗ is used, the series of intermediate
values will be correctly guessed, and therefore the partition and the labels used for the
DL training will be consistent with the corresponding traces. On the other hand, for
all the other key guesses, the labels used for the trainings will be inconsistent with the
traces. Therefore, if the network architecture is well-suited to target the set of traces, one
should be able to observe a more efficient training for the correct key value than for the
other guesses. The attacker can then discriminate the correct key value from the other
candidates by selecting the key leading to the best training metrics. A description of
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different Deep Learning metrics which can be used is given in Section 3.2. To ensure each
guess is treated independently, it is important to re-initialize the trainable parameters of
the network after each training. We use the name Differential Deep Learning Analysis
(DDLA) for this new attack method. Algorithm 1 summarizes the DDLA procedure to
perform a Non-Profiled attack using Deep Learning:

Algorithm 1 Differential Deep Learning Analysis (DDLA)
Inputs: N traces (Ti)1≤i≤N and corresponding plaintexts (di)1≤i≤N . A network Net
and number of epochs ne.

1: Set training data as X = (Ti)1≤i≤N .
2: for k ∈ K do
3: Re-initialize trainable parameters of Net.
4: Compute the series of hypothetical values (Hi,k)1≤i≤N .
5: Set training labels as Yk = (Hi,k)1≤i≤N .
6: Perform Deep Learning training: DL(Net, X, Yk, ne).
7: end for
8: return key k which leads to the best DL training metrics

Network architecture It is important to note that the DDLA attack method is not
limited to a specific type of Neural Network. In the next section, we introduce metrics
which can be used to perform DDLA with any type of Neural Networks. This provides
many possibilities when performing the attacks as the attacker can adapt the architecture
based on the targeted implementation and device. In this paper, we focus on two variants
of DDLA, using MLP and CNN architectures. In this paper, we usually used MLP when
traces were synchronized as this architecture was sufficient to obtain good results in this
case. We used CNN mainly when targeting de-synchronized traces. For the rest of the
paper, MLP-DDLA will refer to a DDLA attack using a MLP architecture and CNN-DDLA
will refer to a DDLA attack using CNN. For the results presented in Section 3.2 we used
two architectures MLPsim and CNNsim where MLPsim is composed of two hidden layers
of 70 and 50 neurons and CNNsim is composed of two convolution layers of respectively 8
filters of size 8 and 4 filters of size 4. For each result presented in this paper, the details of
the networks architectures and other training parameters (learning rate, batch size, loss
function etc) are always given in Appendix A.

3.2 Metrics
In this section we introduce different metrics that can be used to reveal the correct key
value during a DDLA attack. The two first metrics are based on sensitivity analysis and
can also reveal points of interest such as the leaking samples in the trace. For masked
implementation, it can also reveal masks locations, as we show in Section 4. To illustrate
how the metrics can reveal the key and points of interest, we present some results obtained
from a simulation data set. We generated N = 5, 000 simulated traces as follows:

• n = 50 samples per trace.

• Sbox leakage set at time sample t = 25 and defined as Sbox(di ⊕ k∗) +N (0, 1) with
di a known randomized byte and k∗ a fixed key byte. N (0, 1) corresponds to a
Gaussian noise of mean µ = 0 and standard deviation σ = 1.

• All other points on the traces are chosen as random values in [0; 255].

The purpose of this simulation is only to illustrate how some Deep Learning metrics can
be used to discriminate the correct key from the other candidates. Results obtained with
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non-simulated traces are presented in Section 4. Using this simulation data, we performed
the attack as defined in Algorithm 1 and observed the following metrics.

3.2.1 Sensitivity analysis based on MLP first layer weights

In this section we introduce a metric which can be used to reveal the correct key candidate
when performing a DDLA attack with a Multi Layer Perceptron architecture. A noteworthy
advantage of this metric is that it can also be used to reveal points of interest, such as the
leakages or masks locations in the trace. The technique is based on the sensitivity analysis
of the network with regards to the first layer weights during the DDLA trainings. For a
trace of size n, the neural network takes as input the n samples of the trace. When using
a MLP architecture, each time sample t of the trace is paired with R trainable weights
(Wt,j)1≤j≤R where R is the number of neurons in the first hidden layer. Therefore, the
first hidden layer weights can be seen as a (n × R) matrix W where Wi,j is the weight
between the ith sample of the trace and the jth neuron of the first hidden layer. During
backpropagation, the gradient of the first layer weights is computed and can also be seen
as a matrix ∇W of size (n×R) where

∇Wi,j = ∂L
∂Wi,j

,

corresponds to the derivative of the loss with regards to the weight Wi,j . The absolute
value of the derivative |∇Wi,j | measures the sensitivity of the loss with regards to the
corresponding weight. The higher the absolute value of the derivative is, the more the
corresponding weight contributes to the loss minimization. To measure the sensitivity
related to each time sample t, one can sum the absolute values of the derivatives for the
weights linked to this time sample as follows:

Sweights[t] =
R∑

j=1
|∇Wt,j | . (1)

With our simulated dataset and the MLPsim network, we compared the sensitivity
values obtained with equation (1) for the good key guess and for a wrong key guess over
250 SGD iterations. The results are presented in Fig. 3

For the good key guess: We can observe that the derivatives linked to the leakage
sample (t = 25) are in average much higher than the derivatives linked to the other time
samples, especially during the first epochs of the training while the loss converges towards
its minimum. As we mentioned, the absolute value of the derivative indicates how much the
corresponding parameter contributes to the loss minimization. On one hand, the weights
of the leakage sample has a direct impact on the loss, as it is the sample which carries the
information useful for the classification. On the other hand, updating the weights of the
non-leakage samples has usually a much smaller impact on the loss minimization, as these
samples basically only carry noise and no information for the classification. Therefore, it
is normal to observe that the derivatives of the weights linked to the leakage sample are
significantly bigger than the derivatives corresponding to the non-leakage samples. As
we observe, this is especially true during the first epochs of the training, while the loss
converges towards its minimum. During this phase the derivatives related to the leakage
sample are high and the corresponding weights are updated and converge towards their
optimal values. When the loss reaches almost its minimum, the derivatives values decrease
as only small adjustments are needed as the loss is already almost optimal.

For the wrong key guess: when using a wrong key candidate, the guessed intermediate
values are wrong, and therefore the labels used for the DL training are not correct. We
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can observe that in this case, all the derivatives are in average small, and that none
of the sample leads to bigger derivatives values. This is normal as it is not possible to
find some weights that have a significant impact on the loss minimization due to the
inconsistent partition of the traces. Indeed, we can observe that in this case, the loss
decreases significantly less over the epochs than for the good key value.
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Figure 3: Sum of absolute derivatives and loss over SGD iterations. Top Left: sum of
absolute derivatives for good key. Top right: loss for good key. Bottom left: sum of
absolute derivatives for bad key. Bottom right: loss for bad key

One can sum the values Sweights[t] over the SGD iterations, and compare the accumu-
lated sums of derivatives at the end of the training for every key guess as presented in Fig.
4. We can observe that as expected, the correct key guess clearly leads to a higher value
at precisely t = 25 which corresponds to the location of the Sbox leakage. On the other
hand, all the wrong key guesses leads to low sensitivity values.
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Figure 4: Sum of absolute derivatives accumulated over 250 iterations of SGD (50 epochs)

Therefore, using such a metric allows to reveal both the correct key guess and the
leakage location at the same time. However, observing the first layer derivatives only
makes sense for architectures like MLP. It is not directly applicable to other architectures
like CNN. In the next section we introduce a second metric based on sensitivity analysis
which can be used with any architecture.
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3.2.2 Sensitivity analysis based on network inputs

A generic approach to measure the sensitivity of a network with regards to its inputs is
to directly study the partial derivatives of the loss with regards to the network inputs
[SVZ13]. The interest of this method is that it is applicable with any network architecture.
For a set of training traces T = (Ti)1≤i≤N composed of n time samples, let’s denote as

∇Ti,j = ∂LTi

∂xj
, for i ∈ {1, ..., N} and j ∈ {1, ..., n},

the partial derivative of the loss with regards to the jth sample variable, for the ith trace
of the training set. To measure the sensitivity of the network with regards to its inputs, we
start to compute the derivatives ∇Ti,j for each trace of the training set and each sample of
the trace. Then, for each time sample t we can add up the absolute value of the derivatives
over the N training traces as follows:

Sinput[t] =
N∑

i=1
|∇Ti,t| , for t ∈ {1, ..., n}.

This gives a measure of the sensitivity of the loss with regards to each time sample t. We
can perform this operation at the end of each epoch, and accumulate the sensitivity values
over the epochs. Similar arguments as in the previous section can be applied here. For
the good key guess, the derivative(s) of the loss with regards to the leakage sample(s) will
in average be higher than for the other samples. For the wrong key guess, all derivatives
should be in average small due to wrong predictions and labels. Therefore, observing
this metric should also allow to reveal both the leakage position and the correct key
value. In [SGSK16], authors show that instead of considering the absolute value of the
derivatives, another approach is to multiply the raw derivatives with the corresponding
inputs. Therefore, one can also consider the following sensitivity measure:

Sinput[t] =
N∑

i=1
(∇Ti,t × Ti,t), (2)

where Ti,t corresponds to the value of the ith traces at the time sample t. During our
tests we observed that this approach usually leads to better results. Therefore, it is the
sensitivity measure that we will use for the rest of the paper. We applied this method to
our simulated data set. To illustrate that this method is applicable to any architecture,
we applied it using both MLPsim and CNNsim architectures. In Fig. 5 we present the
results obtained after accumulating the sensitivity values computed with equation (2) over
50 epochs (the results of accumulation are presented in absolute value). We observe similar
results as previously. The good key guess leads to a much higher sensitivity value at t = 25,
which means this metric can also be used to reveal both the key and the points of interest.
As the inputs-based sensitivity metric can be used with any architecture, we chose to focus
on this one rather than on the weights-based sensitivity for the rest of the paper.

3.2.3 Loss and accuracy metrics

As we can observe on Fig. 3, when the correct key guess is used, the SGD algorithm is
more efficient at decreasing the loss. Therefore, it is possible to observe the impact of
the key guess directly on the training loss. The same phenomenon can be observed on
the training accuracy. In Fig. 6 we present the losses and accuracies obtained for all key
guesses when performing a DDLA attack using our simulation data set with MLPsim and
with ne = 50 epochs per guess. The figure clearly shows that the training using the correct
key value leads to a higher accuracy and lower loss compared to the trainings for the other
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candidates. These metrics can therefore be used to reveal the correct key by selecting the
guess leading to the highest accuracy or lowest loss values.
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Figure 5: Inputs-based sensitivity accumulated over 50 epochs for all key guesses. Left:
with MLPsim network. Right: with CNNsim network.
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Figure 6: Loss (left) and accuracy (right) over the training epochs for all the key guesses
when applying MLP-DDLA.

3.2.4 Summary

In this section we presented different metrics which can be used to reveal the correct key
value when performing DDLA. The two metrics based on Sensitivity Analysis can also
reveal points of interest such as the leakage location in the traces. We show in Section 4
that it can also reveal masks locations when attacking masked implementations. Moreover,
it is important to note that using Sensitivity Analysis to reveal points of interest is not
limited to the Non-Profiled context. All the arguments developed in this section related to
derivatives are applicable to Profiled trainings as well. For the rest of the paper we will
use the accuracy metric and the inputs-based sensitivity metric to evaluate the attacks. In
the rest of the paper, each time we refer to the inputs-based sensitivity, it will correspond
to the sensitivity measured with equation (2) accumulated over the epochs of the trainings.
Each time we will present the absolute values obtained after accumulation over the epochs.
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3.3 Labels
As mentioned for example in [SGV09][WOS14], for injective target functions like the AES
Sbox, using the trivial partitioning where each intermediate value is a distinct class is
not possible. Such partitioning will always fail to reveal the correct key value for any
partition-based DPA attack. Indeed, if one uses the identity labeling Hi,k = Sbox(di ⊕ k),
the partition of the attack traces derived from this labeling method will be equivalent for all
the key guesses. In other words, the partition of the traces Pk = {E(k)

u | u ∈ {0, . . . , 255}}
defined by the sets E(k)

u = {Ti ∈ (Ti)1≤i≤N | Sbox(di ⊕ k) = u} is the same for all key
guesses k. This means that from one key guess to another, there is no difference in the
partition of the attack traces, and that only the labels are permuted which does not impact
the training metrics. It means that using the identity labeling Hi,k = Sbox(di ⊕ k) will
naturally lead to similar Deep Learning metrics for all the key candidates, making it
impossible to discriminate the correct key value. For this reason, it is necessary to apply a
non-injective function to the Sbox output to compute the labels so that the partition of the
attack traces is different from one guess to another. We propose hereafter two methods:

Hamming Weight labeling One solution is to use labels based on the Hamming Weight
of the guessed value as follows: Hi,k = HW (Vi,k).

Binary labeling The MSB or LSB of the guessed values Vi,k can also be used to partition
the traces.

To illustrate the importance of the labeling method, we performed the same attack as
in Section 3.2 but using the identity labeling (Hi,k = Sbox(di⊕ k)). The comparison of ac-
curacies obtained when using the identity labeling and binary labeling is presented in Fig. 7.
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Figure 7: MLP-DDLA accuracies using two different labeling methods. Left: Identity
labeling. Right: Binary labeling (MSB).

As expected, the left graph shows that all key guesses lead to similar accuracies when
using the identity labeling. All accuracies are not perfectly identical even when using the
identity labeling as the Deep Learning training is not a deterministic process. Indeed,
the training always depends on the weights initialization as well as the shuffling of the
input data during the different epochs, which explains the slight differences between the
accuracies even though the identity labeling is used. However, using the identity labeling
will always lead to similar accuracies making it impossible to distinguish the correct key
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value. That is why it is necessary to use other labeling methods, such as the Hamming
Weight or binary labeling methods. During our experiments, the binary labeling usually
provided better results than using Hamming Weight labels. For the rest of the paper, all
the results presented were obtained using the MSB and LSB labeling methods.

3.4 CNN-DDLA and de-synchronized traces
In [CDP17], Cagli et al. highlighted that due to its translation-invariance property, the
CNN architecture is naturally efficient to extract information even from de-synchronized
traces. We show in Section 4 that this property of CNNs can also be exploited when
performing DDLA attacks in a Non-Profiled context. Using this property, we show
that DDLA can outperform classic Non-Profiled attacks like CPA when attacking de-
synchronized traces and is therefore an interesting alternative when the traces cannot be
perfectly re-synchronized.

3.5 High-Order DDLA
A common countermeasure to protect cryptographic implementations against Profiled and
Non-Profiled attacks is to conceal the sensitive intermediate values with masks. In the
following, we focus on Boolean masking, which is commonly used to protect symmetric
algorithms like AES [AG01]. In the case of Boolean masking, a sensitive intermediate
value, for instance the AES Sbox output, is never manipulated in plain, but instead, is
represented as a XOR of s + 1 shares: S = Sbox(d ⊕ k) ⊕m1 ⊕ · · · ⊕ms. The values
m1, . . . ,ms are called the masks and S is called the masked value. Each mask mi is
generated as a random value for each execution of the algorithm, making the leakages
uncorrelated to the sensitive values. However, High-Order attacks such as High-Order CPA
have been developed to target such implementations [Mes00, JPS05, WW04, PRB09]. A
High-Order attack is usually composed of two steps:
• A pre-processing phase: the leakages of the masks are combined with the leakage
of the masked value using combination functions such as the absolute difference or
centered product [PRB09].

• The attack phase: a statistical distinguisher, for instance the Pearson’s Correlation
is used to extract information from the combined leakages traces.

A high-order attack targeting a value protected with one mask is called a second order
attack, and a third order attack corresponds to a high-order attack targeting a value
protected with 2 masks. For a second order attack, one needs to combine the leakage of
the mask m1 with the leakage of the masked Sbox value Sbox(d⊕ k)⊕m1. If the locations
of the mask and masked value are known, one only needs to combine these two leakage
locations together. If the locations of the mask and masked value leakages are unknown, a
solution is to combine all the possible couples of points in the trace together. If the traces
are of size n, such processing will lead to combined traces of size n×(n−1)

2 . Therefore, for
large traces, such processing can become too complex and not practical.

In [MPP16] and [PSB+18], the authors successfully attacked first order protected AES
implementations, showing that it is possible to break 1-mask protected implementations
using CNN and MLP networks in a Profiled attack context. We show in Section 4.2 that it
is possible to break implementations protected with 1 and 2 masks using Deep Learning in
a Non-Profiled context with a reasonable number of traces. In comparison with High-Order
CPA, DDLA does not require to combine the leakages prior to the attack. Moreover,
it is not even required to know or guess the details of the implementation, such as the
masking technique or the number of masks. Finally, combined with the sensitivity metric,
it actually can reveal masks positions in the traces.
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4 Experiments
In this section we perform experiments to study some interests of DDLA. In a first section
we study how CNNs can be used in a Non-Profiled context against de-synchronized traces
and compare it with CPA. In a second section we show how DDLA can break masked
implementations in black-box and reveal masks locations in the trace. We perform these
experiments using simulated traces and traces collected with the ChipWhisperer-Lite
(CW) platform [CW] and from the public database ASCAD [PSB+18]. With the CW, we
collected power traces of implementations running on an Atmel XMEGA128 chip. The
traces of ASCAD were collected from an 8-bit ATMega8515 board. To attack traces from
CW and ASCAD, we used the architectures MLPexp and CNNexp. CNNexp is composed
of two convolution layers of respectively 4 filters of size 32 and 4 filters of size 16. MLPexp

is composed of two hidden layers of 20 and 10 neurons. Again, a complete description
of the networks architectures and trainings parameters (learning rate, batch size, loss
function, labeling method etc) is given in Appendix A.

4.1 CNN-DDLA against de-synchronized traces: comparison with CPA
In this section we show how CNNs can be used in a Non-Profiled context against de-
synchronized traces and we compare its efficiency with CPA. We implemented an unpro-
tected AES Sbox operation and loaded it in the ChipWhisperer-Lite board. We collected
N = 3, 000 traces of n = 500 samples containing the copy of Sbox(d⊕ k∗) in memory.

4.1.1 Reference attack against synchronized traces

By default, the traces collected from the CW are well synchronized. First, we attacked
the synchronized traces in order to get reference results. We performed a first order CPA
and a DDLA attack using the network MLPexp. The results are presented in Fig. 8. As
expected, the CPA attack is successful as the targeted implementation is unprotected and
the traces are synchronized. We can observe that the MLP-DDLA attack is also successful
with only 3, 000 traces and the sensitivity metric reveals the same leakage location as the
CPA. In this example we can notice that the CPA reveals two leakage areas, while the
sensitivity analysis of the MLP only reveals one main leakage area. This is due to the
univariate nature of CPA where each sample is attacked independently, which explains
why we can observe two leakage areas. On the other hand, the inputs-based sensitivity
analysis of the network reveals points of interest based on how the network uses the input
samples to classify the data. In this case, it seems that the network only uses the first
leakage area to classify the data, which explains why only the first area is highlighted by
the sensitivity analysis.

4.1.2 CNN-DDLA against de-synchronized traces

To study the efficiency of CNN-DDLA against de-synchronized traces we applied a software
de-synchronization to the set of traces by shifting each trace left or right by a random
number chosen in [−25; 25]. We then applied a DDLA attack against the N = 3, 000
de-synchronized traces using the CNNexp network. For comparison, we also performed
the attack with the same network MLPexp as previously and also performed a CPA attack.
The results presented in Fig. 9 show that both the CPA and the MLP-DDLA fail to recover
the key due to the de-synchronization of traces. On the other hand, the CNN-DDLA is
successful and reveals the key. This confirms that the translation-invariance property of
CNNs can be used against de-synchronized traces during Non-Profiled attacks. Moreover,
the sensitivity metric also reveals the leakage area which corresponds to the same area as
before but spread along multiple samples due to the de-synchronization of the leakage.
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Figure 8: Attack on CW unprotected implementation without de-synchronization. Left:
MLP-DDLA accuracies. Center: MLP-DDLA inputs-based sensitivity Right: CPA.
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Figure 9: Attack on CW unprotected implementation with de-synchronization. Top-left:
CNN-DDLA accuracies. Top-right: CNN-DDLA inputs-based sensitivity. Bottom-left:
MLP-DDLA accuracies. Bottom-right: CPA.

4.1.3 Conclusions on CNN-DDLA

In this section we showed that the translation invariance property of CNNs can be
succesfully used during Non-Profiled attacks against de-synchronized traces. In these
conditions, DDLA clearly outperform CPA. We can conclude that CNN-DDLA could be
an interesting alternative to other Non-Profiled attacks, specially when traces cannot be
perfectly re-synchronized before the attack.

4.2 High-Order DDLA
In this section we study how DDLA can be used to break masked implementations in
black-box and reveal masks and leakages locations.

4.2.1 High-Order DDLA simulations

In this section we study the efficiency of MLP-DDLA when targeting a simulated AES
Sbox operation protected with 1 and 2 random masks. A similar procedure as in Section
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3.2 was used to generate simulated traces. The only difference is that for this experiment,
random masks values are added to the simulation traces. To simulate a 1-mask protected
Sbox, we generated traces as follows:

• n = 50 samples per trace.

• Masked Sbox leakage set at t = 25 and defined as Sbox(di⊕k∗)⊕m1 +N (0, 1) with
di and m1 randomized bytes and k∗ a fixed key byte. Mask leakage set at t = 5 and
defined as m1 +N (0, 1).

• All other points on the traces are chosen as random values in [0; 255].

To simulate the protection with 2 masks, we followed the same procedure except that a
second mask m2 was used and the corresponding leakage set at t = 45. In this case the
Sbox leakage was defined as Sbox(di ⊕ k∗)⊕m1 ⊕m2 +N (0, 1). We applied DDLA as in
Algorithm 1 with N = 5, 000 traces for 1 mask and N = 10, 000 traces for 2 masks. For
this experiment we used the same architecture MLPsim as in Section 3.2. In Fig. 10 we
present the accuracy and sensitivity metrics values obtained for all the key guesses.

0 5 10 15 20 25 30 35 40 45 50
Time samples

0.0

0.2

0.4

0.6

0.8

In
pu

ts
-b

as
ed

 se
ns

iti
vi

ty m1 sbox m1

0 10 20 30 40 50
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 5 10 15 20 25 30 35 40 45 50
Time samples

0.0

0.1

0.2

0.3

0.4

In
pu

ts
-b

as
ed

 se
ns

iti
vi

ty m1 sbox m1 m2 m2

0 10 20 30 40 50
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Good key guess
Wrong key guesses

Figure 10: MLP-DDLA applied to 1 and 2 masks protected Sboxes. Top-left: sensitivity
for 1 mask. Top-right: accuracies for 1 mask. Bottom left: sensitivity for 2 masks. Bottom
right: accuracies for 2 masks

For 1 and 2 masks, the attacks are successful with both the sensitivity and the accuracy
metrics. We can observe in both cases that the sensitivity metric reveals the exact locations
of the masks and masked Sbox.

It is important to note that these results were obtained without any leakages combination
pre-processing nor any assumptions about the masking method. Compared with CPA,
one does not need to adapt the DDLA attack to the masking scheme. The DDLA attack
procedure presented in Algorithm 1 can be applied to both unprotected and masked
implementations similarly. It is the neural network which adapts itself to each situation.
DDLA is therefore particularly interesting when targeting implementations in black-
box, as it does not require to make assumptions about the implementation or masking
scheme. Combined with sensitivity analysis, it can even reveal information about the
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implementation, such as the number of masks and their locations in the traces. In the
next sections we validate these observations with traces from the ASCAD database and
with traces collected from the ChipWhisperer.

4.2.2 Second order DDLA on ASCAD

To experiment a second order DDLA attack on non-simulated traces, we decided to use the
ASCAD database. ASCAD is a public database introduced by Prouff et al. in [PSB+18]
to provide a common set of side-channel traces for research on Deep Learning-based
Side-Channel attacks. The targeted implementation is a first order protected Software AES
implementation running on an 8-bit ATMega8515 board. The main database ASCAD.h5
is composed of two sets of traces: a profiling set of 50, 000 traces to train Deep Learning
architectures and an attack set of 10, 000 traces to test the efficiency of the trained Neural
Networks. Each trace of the database is composed of 700 samples focusing on the pro-
cessing of the third byte of the masked state Sbox(p[3]⊕ k[3])⊕ r[3] where p, k and r are
respectively the plaintext, the key and the mask values. In [PSB+18] Prouff et al. focused
on providing reference results for Profiled Deep Learning attacks using the profiling and
attack sets of the ASCAD database.

For both the profiling set and the attack set of ASCAD.h5, the same 16-byte fixed key is
used while the plaintexts and masks are randomized. Therefore, as the key is always fixed,
both the attack set and profiling set can be considered as traces obtained from a closed
device to perform a Non-Profiled attack. We decided to use the profiling set to perform
our experiment as it contains more traces than the attack set. We applied a DDLA attack
with MLPexp on the first 20, 000 traces of the profiling set of ASCAD.h5 with ne = 50
epochs per guess. We observed both the accuracy and inputs-based sensitivity metrics.
Moreover, to validate our results, we used the knowledge of the key and of the masks to
perform a reverse engineering CPA to highlight the locations of the masks and masked
Sbox. The results presented in Fig. 11 show a clear success of the DDLA attack after only
a few epochs. Moreover, we can observe that the sensitivity analysis values reveal two main
areas, which match with the areas of the mask and masked Sbox obtained through reverse
engineering CPA. It is important to note that the locations highlighted by the DDLA are
obtained without any knowledge of the mask or key values. These results validate our
observations made on simulation traces in the previous section.

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Good key guess
Wrong key guesses

0 100 200 300 400 500 600 700
Time samples

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

In
pu

ts
-b

as
ed

 se
ns

iti
vi

ty

Good key guess
Wrong key guesses

0 100 200 300 400 500 600 700
Time samples

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

r[3]
sbox r[3]

Figure 11: MLP-DDLA attack on ASCAD. Left: Accuracy. Center: Inputs-based sensitiv-
ity. Right: CPA reverse engineering.

4.2.3 Third order DDLA on ChipWhisperer

We implemented an Sbox operation protected by 2 masks using the re-computed Sbox
method described in [AG01]. We collected N = 50, 000 traces from the ChipWhisperer-Lite
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and selected n = 150 samples containing the copies in memory of the first mask m1, the
second mask m2 and the masked Sbox value Sbox(d ⊕ k∗) ⊕m1 ⊕m2. We performed
a first order CPA and a second order CPA attack on the traces to confirm that the
implementation did not have first or second order leakages. We performed the DDLA
attack using the MLPexp network with ne = 100 epochs per guess. As previously, we
also used the knowledge of the key and of the masks to perform a CPA-based reverse
engineering in order to reveal the locations of the masks and masked Sbox in the traces
for comparison with the sensitivity metric. The results of this experiment are presented in
Fig. 12.

We can observe that the MLP-DDLA attack reveals the correct key value after around
20 epochs per guess. As the implementation does not have first or second order leakages,
this shows that the MLP-DDLA method is able to combine the leakages of 3 different
shares to reveal the secret key, even on non-simulated data, with a reasonable number of
traces and without traces pre-processing. Moreover, we can observe that the sensitivity
metric clearly reveals the locations of the masks and masked Sbox which match with the
locations revealed by the CPA reverse engineering. Again, it is important to highlight that
the DDLA reveals these locations without knowledge of the key or masks values.
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Figure 12: DDLA on CW 2-masks protected implementation. Left: Accuracy. Center:
Inputs-based sensitivity. Right: CPA-based reverse engineering.

4.2.4 Conclusions on High-Order DDLA attacks

In this section we showed that it is possible to use DDLA to break masked AES implemen-
tations without any leakages combination pre-processing nor any assumptions about the
masking method. We showed that the attack procedure introduced in Algorithm 1 can be
applied to both unprotected and masked implementations without distinction as it is the
neural network which adapts itself to the context. We showed that using the sensitivity
metric it can even reveal masks locations in the traces. Therefore, it makes DDLA an
interesting alternative to perform High-Order side-channel attacks specially in black-box
when the masking technique and masks locations are unknown.

4.3 Complexity
One drawback of DDLA is that it is necessary to perform a Deep Learning training for
each key guess. When using 8-bit key guesses, it means that 256 trainings are necessary.
The execution times of different DDLA attacks to recover 1 key byte are summarized in
Table. 1. We recorded these values when running the experiments in Python using the
PyTorch framework [PyT], on our personal computer with 64 GB of RAM, a GeForce
GTX 1080Ti GPU and two Intel Xeon E5-2620 v4 @2.1GHz CPUs.



126 Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis

Table 1: Execution times comparison for 1 key byte attacks.

Target Architecture Nb traces Nb samples Nb epochs Time
CW no mask MLPexp 3,000 500 100 4min20s
CW no mask CNNexp 3,000 500 100 33min17s
CW 2-masks MLPexp 50,000 150 100 1h03min16s

ASCAD MLPexp 20,000 700 50 14min12s
ASCAD MLPexp 20,000 700 5 1min54s

The table shows that even though multiple trainings are needed, DDLA attacks can be
performed in reasonable time and are therefore practical. All experiments were performed
using many epochs per guess, but it can be observed that most of the time, only a few
epochs were needed to reveal the correct key value. It means that these attacks can be
performed faster by reducing the number of epochs per guess. For example, if we limit
our attack on ASCAD to only 5 epochs per guess, the attack only requires less than 2
minutes on our setup and is still successful. As the number of epochs needed to recover
the key is usually unknown, it may also be interesting to optimize the DDLA execution
by using an incremental procedure. Indeed, instead of performing a full Deep Learning
training for each key guess and checking the metrics at the end, one can perform a series
of partial trainings, and check the metrics every few epochs. If the key is not recovered
at one step, one continues the Deep Learning trainings and check the metrics again after
a few epochs. This approach allows to control the total number of epochs used for the
attack and therefore could be used to reduce the complexity.

As a remark, the neural networks used for the experiments in this paper were purposely
kept small to limit the complexity of the attacks. The architectures used are surely not
optimal and more complex networks might lead to better results. As in the case of Profiled
Deep Learning attacks, attacking more difficult targets may require the usage of more
complex neural networks to succeed a Non-Profiled Deep Learning attack. In such a case,
the main consequence will be a higher time complexity due to longer trainings.

5 Conclusion
In this paper we introduced Differential Deep Learning Analysis (DDLA) a new side-
channel attack method to apply Deep Learning techniques in a Non-Profiled context. The
attack presented is a type of partition-based side-channel attack which uses Deep Learning
trainings to reveal the secret key value. The main interest of this method is that it is
possible to use the power of Deep Learning and deep neural networks in a Non-Profiled
context. We showed that even in a Non-Profiled context, the translation-invariance
property of Convolutional Neural Networks can be exploited against de-synchronized
traces. Using this property, we showed that DDLA can outperform CPA and could be an
interesting alternative to other Non-Profiled attacks when the traces cannot be perfectly re-
synchronized. This new attack method can also be used to break masked implementations
in black-box, without any leakages combination pre-processing nor assumptions about
the implemented protections. We showed that the same attack procedure can be applied
to both unprotected and masked implementations as neural networks have the ability to
adapt to the different situations. To perform the attack, we introduced metrics based
on Sensitivity Analysis which can reveal both the secret key and points of interest such
as leakages and masks locations in the traces. Finally, the complexity snapshot that we
provide shows that although this method requires multiple Deep Learning trainings, the
attack can still be performed in practice.
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A Networks and training parameters
In this appendix we provide all the details needed for reproducibility of the attacks such
as the networks architectures as well as general training parameters.

A.1 Trainings parameters and details
A.1.1 Loss function

We used the Mean Squared Error (MSE) loss function for all experiments.

https://eprint.iacr.org/2018/053
https://pytorch.org
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A.1.2 Accuracy

The accuracy was computed as the proportion of samples correctly classified.

A.1.3 Batch size

A batch size of 1000 was used for all experiments.

A.1.4 Learning rate

For all experiements we used a learning rate of 0.001.

A.1.5 Optimizer

We used the Adam optimizer with default configuration (β1 = 0.9, β2 = 0.999, ε = 1e− 08,
no learning rate decay).

A.1.6 Input normalization

We normalize the input traces by removing the mean of the traces and scaling the traces
between −1 and 1.

A.1.7 Labeling

• For all simulations (first and high-order), we used the MSB labeling.

• For attacks on the unprotected CW and on ASCAD, we used the LSB labeling.

• For the attack on the CW with 2 masks, we used the MSB labeling.

A.1.8 Deep Learning Framework

We used PyTorch 0.4.1.

A.2 Networks architectures
A.2.1 MLPsim

• Dense hidden layer of 70 neurons with relu activation

• Dense hidden layer of 50 neurons with relu activation

• Dense output layer of 2 neurons with softmax activation

A.2.2 CNNsim

• Convolution layer with 8 filters of size 8 (stride of 1, no padding) with relu activation.

• Max pooling layer with pooling size of 2.

• Convolution layer with 4 filters of size 4 (stride of 1, no padding) with relu activation.

• Max pooling layer with pooling size of 2.

• Dense output layer of 2 neurons with softmax activation
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A.2.3 MLPexp

• Dense hidden layer of 20 neurons with relu activation

• Dense hidden layer of 10 neurons with relu activation

• Dense output layer of 2 neurons with softmax activation

A.2.4 CNNexp

• Convolution layer with 4 filters of size 32 (stride of 1, no padding) with relu activation.

• Average pooling layer with pooling size of 2.

• Batch normalization layer

• Convolution layer with 4 filters of size 16 (stride of 1, no padding) with relu activation.

• Average pooling layer with pooling size of 4.

• Batch normalization layer

• Dense output layer of 2 neurons with softmax activation
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