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Setup . . . . . . . . . . . remember CHES 2014 [HRG14]?
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Side-Channel Analysis Setup

secret key K "Encoder"
Y

Channel
X "Decoder"

D K̂

text T

noise N

T T

Crypto
Leakage

Side Channel

Attack

Figure: Side-channel leakage seen as a communication channel

The attacker makes q queries X = (X1, . . . ,Xq) which depend on
the secret K and on the text T through a sensitive variable Y, and
estimates the secret using a distinguisher K̂ = D(X,T).

any noisy measurement channel;
countermeasures can protect Y = random funct. of (K ,T).
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Test and evaluation tool (ISO/IEC 19790 & 15408)

20085-1
20085-2

17825

Catalyzr R©, Virtualyzr R©, Analyzr R© tools.
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Side-Channel Attacks on Hardware

Best attack (MAP, ML)
The best distinguisher maximizes likelihood for uniformly
distributed K [HRG14]:

K̂ = D(X,T) = argmax
k∈K

P(X|T, k) where X = noisy Y

This is a template attack which requires estimation of
unknown conditional distributions with a leakage model, e.g.,

Y(K ,T) = wH

(
Sbox(T⊕ K )

)
(unprotected)

Y(K ,T) =
[
wH

(
Sbox(T⊕ K )⊕M

)
,wH(M)

]
(masked)

Many practical attacks exist (CPA, MIA, KSA, M. Learning)
The attacker will eventually always succeed as q →∞.
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The Defender (Chip Designer)’s Viewpoint

Question
Assuming any possible attack, possibly with an omniscient attacker,
(which knows everything except K (Kerckhoffs principle), noise and
masks)
what is the least number of queries to achieve a given key recovery
success rate?

q(Ps) = min{q s.t. P(K̂ = K ) ≥ Ps}

Practical significance:
any attacker with budget < q(Ps) cannot recover the key with
probability > Ps ;
when q > q(Ps), there only might be an attack with success
Ps .
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Information Theoretic Background

Notations:

H is Shannon entropy, e.g., H(K ) = n bit
H2(p) = −p log p − (1− p) log(1− p) is the binary entropy
D(PA‖PB) is the Kullback-Leibler divergence
D2(pA‖pB) = pA log pA

pB
+ (1− pA) log

1−pA
1−pB binary divergence

I (A;B) = D(PA,B‖PA ⊗ PB) is mutual info btw A and B

I (A;B | C ) is mutual info btw A and B conditionned by C

DPI: Data Processing Inequality

A→ B → C → D : I (B;C ) ≥ I (A;D)

PA → QA and PB → QB for same processing:
D(PA‖PB) ≥ D(QA‖QB)
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Application of Data Processing Inequality

First, we notice that:

I (K ; K̂ ) = D(PK ,K̂‖PK ⊗ PK̂︸ ︷︷ ︸
K ⊥⊥ K̂

)

≥ D(P(K = K̂ )‖P′(K = K̂ )︸ ︷︷ ︸
K ⊥⊥ K̂

) // DPI for f : (K , K̂ ) 7→ 1K=K̂

= Ps log
Ps

1/2n
+ Pe log

Pe

1− 1/2n

= n − H2(Ps)− Pe log(2n − 1). // Fano’s inequality

Since K—Y—X—K̂ for a given T is a Markov chain:

I (K ; K̂ ) ≤ I (X;Y | T).
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Fundamental Lower Bound on I (X;Y | T)

Proposition
For any n-bit key K :

n − H2(Ps)− (1− Ps) log2(2
n − 1) ≤ I (X;Y | T).

I (X;Y | T) depends on q

When q = 0 (blind attacker) I (X;Y | T) = 0 and Ps = 1/2n.
In the context of cryptanalysis, Ps should be high enough
(divide and conquer approach, e.g., 16 bytes for AES [NIS01]).
In such regime, Fano’s inequality is fairly tight.
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First Upper Bound on I (X;Y | T)

Linear Bound
For q queries:

I (X,Y | T) ≤ q · I (X ;Y | T )

Proof.
Memoryless channel assumption.

However, the same K is used q times (huge repetition !)

Therefore, I (X,Y | T) ≤ H(Y|T) ≤ H(K ) = n should be
bounded by n bits as q → +∞.
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Second Upper Bound on I (X;Y | T)

Divergence Bound (novel non-trivial bound)

I (X;Y | T) ≤ −ETEK logEK ′ exp
[
−D(PX|K ,T || PX|K ′,T)

]
where K ′ is an independent copy of K .

Proof.
Apply the (equivalent) inequalities

−EY logEX [exp(f (X ,Y ))] ≤ − logEX [exp(EY f (X ,Y ))].

expEY logEX [g(X ,Y )] ≥ EX [exp(EY log g(X ,Y ))]

This upper bound is bounded by n bits as q →∞.
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Graphical Comparison

Figure: Mutual information I (X;Y |T = t), where t is a fixed balanced
vector. Comparison for n = 8, assuming Hamming weight leakage model
in AES, AWGN with σ = 4.
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Linear bound for AWGN 1/2

(Scalar) mutual info does not exceed Shannon channel’s capacity:

I (X ;Y | T ) ≤ 1
2
log2(1+ SNR).

Theorem (Lower bound for AWGN in terms of SNR)
To reach success Ps , q should be at least

q ≥ n + (Ps − 1) log2(2n − 1)− H2(Ps)
1
2 log2(1+ SNR)

. (1)
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Linear bound for AWGN 2/2

The number of traces q needed to recover the key reliably is
lower-bounded by:

lim
Ps→1

q ≥ n
1
2 log2(1+ SNR)

(2)

where SNR can be measured on the fly (for balanced text T):

SNR =
Var(E[X | T ])

Var(X )−Var(E[X | T ])
. (3)

No more leakage if SNR→ 0.
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Divergence bound for AWGN 1/2

In the AWGN model, PX|Ki ,T follows a multivariate normal
distribution N (y(Ki ,T), σ2Iq).

D(PX|K ,T‖PX|K ′,T) =
‖y(K ,T)− y(K ′,T)‖22

2σ2 .

Besides, for balanced T:

1
q

∥∥∥∥y(k , t)− y(k ′, t)
2

∥∥∥∥2

2
−−−→
q→∞

κ(k , k ′), // LLN

where

κ(k , k ′) =
1
2n

2n−1∑
t=0

(
y(k , t)− y(k ′, t)

2

)2

(confusion coefficient)
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Divergence bound for AWGN 2/2

Implicit bound:

H2(Ps)+ (1−Ps) log2(2
n− 1) ≥ nmin

2n
exp

(
−q

8
mink 6=k ′ κ(k, k ′)

σ2

)
.

where nmin is the number of ex aequo key pairs (k , k ′) such that
κ(k , k ′) is minimum.
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Comparison with Duc et al. [DFS15]
Making Masking Security Proofs Concrete (EC 2015, Duc, Faust, Standaert)

(Duc et al. use Pinsker’s inequality)
EUROPE | APAC | JAPAN | AMERICAS | www.secure-ic.com | contact@secure-ic.com

2017 All Rights Reserved | Confidential | Property of Secure-IC
18 / 25



Simulation for Monobit Leakage

Monobit leakage model: Y(T,K ) = LSB
(
Sbox(T⊕ K )

)
where Sbox = AES substitution box and LSB = least significant bit.
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Simulation for Hamming Weight Leakage

AES SubBytes based on bytes: Y(T,K ) = wH

(
Sbox(T⊕ K )

)
where Sbox = AES substitution box and wH is the Hamming weight.
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Conclusion

We obtained universal bounds to the success probability in
terms of mutual information, in the sense that they are
independent of the channel and leakage models;
Our results were presented within the specific framework of
“power-line attacks” (e.g., monobit leakage or Hamming
weight leakage);
The resulting bounds were found to be empirically tight.
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Announcements

Secure-IC recruits:

R&D team director, based in Paris (10 people in Paris, Rennes,
Singapour and Tokyo)
Tokyo “Security Science Factory” laboratory manager

TELECOM-Paris recruits (Palaiseau, France):

PhD candidate in IT-powered SCA
Researcher in embedded security, in Jean-Luc Danger’s team
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