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Code-based Cryptography

• One of the major branches of cryptographic post-quantum
research.

• Security based on hardness of decoding random linear
codes.

• The McElice cryptosystem from 1978, using binary Goppa
codes, is still secure today.

• Large keys!
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QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e
• Uses iterative bitflipping decoding in the decryption stage
• Decryption Failure Rate (DFR), is non-zero.
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QC-MDPC (2/5)

A (n,r,w)-QC-MDPC code, is a linear code with an error
correcting capability t, length n, codimension r and with a row
weight w in the parity check matrix H. Additionally we have
that n = n0r.

Suggested parameters for 80-bit security:

n0 = 2,n = 9602, r = 4801,w = 90, t = 84

Sparse! ≈ 99 bits out of 100 are zero in H.
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QC-MDPC (3/5)

The secret key H ∈ Fr×n
2 is constructed as

H = [H0|H1| . . . |Hn0−1],

where Hi is a circulant r× r matrix.

For n0 = 2, we get

H =




h0,0 h0,1 · · · h0,r−1
h0,r−1 h0,0 · · · h0,r−2

...
... . . . ...

h0,1 h0,2 · · · h0,0




h1,0 h1,1 · · · h1,r−1
h1,r−1 h1,0 · · · h1,r−2

...
... . . . ...

h1,1 h1,2 · · · h1,0




Knowledge of h0 (the first row of H0) is sufficient for complete
key recovery.
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QC-MDPC (4/5)

Public key G ∈ F(n−r)×n
2 is constructed as follows:

G =

 I


(H−1

n0−1 · H0)T

(H−1
n0−1 · H1)T

...
(H−1

n0−1 · Hn0−2)T





Encryption of plaintext m ∈ Fn−r
2 into c ∈ Fn

2 is given by:

1. Generating random e ∈ Fn
2 with Hamming weight, wt(e),

less than t.
2. Computing c← mG+ e.

5
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QC-MDPC (5/5)

To decrypt c ∈ Fn
2 into m ∈ Fn−r

2 we need a decoding algorithm,
ΨH, with knowledge of H.

1. Decode mG← ΨH(mG+ e)
2. Plaintext m is first (n− r) positions of mG.

The decoding algorithms (ΨH) are based on variants of the
original Gallager’s bitflipping algorithm.
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Previous Work

• QC-MPDC was previosly shown vulnerable in [GJS16]1.

• Key recovery is possible with 250-300 M ciphertexts for
80-bit security parameters.

• Attack against CCA secure QC-MDPC.
• The authors discovered a correlation between the
distance spectrums of the secret key and of
non-decodeable error patterns.

1Qian Guo, Thomas Johansson and Paul Stankovski. ”A Key Recovery Attack
on MDPC with CCA security Using Decoding Errors”. In: ASIACRYPT 2016
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Distance Spectrums

1 0 0 0 1 0 0 1 0 1 ← bitserror pattern, e:

4

3 1

3 5 2

1 1 2 1 1
1 2 3 4 5

← countersdistance spectrum, D(e):

Distance spectrum (D(. . . )): wrapping distances between two
non-zero bits. The number in each counter counts the
occurence of a specific distance, or its multiplicity.

We want to find D(h0), the distance spectrum of the first row of
H0, the first part of the secret key H.

8



Distance Spectrums

1 0 0 0 1 0 0 1 0 1 ← bitserror pattern, e:

4

3 1

3 5 2

1 1 2 1 1
1 2 3 4 5

← countersdistance spectrum, D(e):

Distance spectrum (D(. . . )): wrapping distances between two
non-zero bits. The number in each counter counts the
occurence of a specific distance, or its multiplicity.

We want to find D(h0), the distance spectrum of the first row of
H0, the first part of the secret key H.

8



Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).
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New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0,

j← 0, e0 any non-decodable pattern.

1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is

derrived from ej.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.
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The Chaining method

e0

e00
...
ei00

e1

e01
...
ei11

e2 ej

e0j
...
eijj

e...MUTATE(ej−1)

Error Amplification is gained by generating a chain of related
non-decodable error patterns:

• From e0 we can find another error pattern by randomly
swapping a ’1’ and a ’0’ in the bit pattern (MUTATE).

• Decoding success: eijj ⇒ ∆Dij
j ← D(ej)− D(eijj )

• Decoding failure: ej+1 ⇒ ∆Dj ← D(ej)− D(ej+1)

}
vectors!
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Generating e0

By using timing information we can distinguish the number of
iterations required.
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We use the chaining method to
find harder and harder
patterns e′0.

• e′0 is replaced each time a
more difficult pattern is
encountered!

• Keep going until a
decryption failure e0 is
found.
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Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).

Also using the successfull
decodings (∆Dik

k ), inverted,
improves the results.
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We can reconstruct the secret key using [GJS16]!

13



Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).
Also using the successfull
decodings (∆Dik

k ), inverted,
improves the results.

0 500 1000 1500 2000
0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007
A * a / sum(a) + B * b / bsum + F * f / fsum + G * g / gsum

Multiplicity 0
Avg Multiplicity 0
Multiplicity 1
Avg Multiplicity 1
Multiplicity 2
Avg Multiplicity 2
Multiplicity 3
Avg Multiplicity 3
Multiplicity 4
Avg Multiplicity 4

We can reconstruct the secret key using [GJS16]!

13



Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).
Also using the successfull
decodings (∆Dik

k ), inverted,
improves the results.

0 500 1000 1500 2000
0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007
A * a / sum(a) + B * b / bsum + F * f / fsum + G * g / gsum

Multiplicity 0
Avg Multiplicity 0
Multiplicity 1
Avg Multiplicity 1
Multiplicity 2
Avg Multiplicity 2
Multiplicity 3
Avg Multiplicity 3
Multiplicity 4
Avg Multiplicity 4

We can reconstruct the secret key using [GJS16]!

13



Amplification effect
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Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.
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Thank you!
(Questions?)
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