Error Amplification in Code-based Cryptography

Alexander Nilsson^{1,2} Thomas Johansson¹ Paul Stankovski Wagner¹ August 27, 2019

¹Dept. of Electrical and Information Technology, Lund University, Sweden

²Advenica AB, Malmö, Sweden

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e₀

Results

Amplification effect

Wrapping it up

 One of the major branches of cryptographic post-quantum research.

- One of the major branches of cryptographic post-quantum research.
- Security based on hardness of decoding random linear codes.

- One of the major branches of cryptographic post-quantum research.
- Security based on hardness of decoding random linear codes.
- The McElice cryptosystem from 1978, using binary Goppa codes, is still secure today.

- One of the major branches of cryptographic post-quantum research.
- Security based on hardness of decoding random linear codes.
- The McElice cryptosystem from 1978, using binary Goppa codes, is still secure today.
- · Large keys!

QC-MDPC (1/5)

 More compact keys by using cyclic structures in the key-matrices.

- More compact keys by using cyclic structures in the key-matrices.
- Encryption simply: $c \leftarrow mG + e$

- More compact keys by using cyclic structures in the key-matrices.
- Encryption simply: $c \leftarrow mG + e$
- Uses iterative bitflipping decoding in the decryption stage

- More compact keys by using cyclic structures in the key-matrices.
- Encryption simply: $c \leftarrow mG + e$
- Uses iterative bitflipping decoding in the decryption stage
- Decryption Failure Rate (DFR), is non-zero.

QC-MDPC (2/5)

A (n,r,w)-QC-MDPC code, is a linear code with an error correcting capability t, length n, codimension r and with a row weight w in the parity check matrix H. Additionally we have that $n = n_0 r$.

A (n,r,w)-QC-MDPC code, is a linear code with an error correcting capability t, length n, codimension r and with a row weight w in the parity check matrix H. Additionally we have that $n=n_0r$.

Suggested parameters for 80-bit security:

$$n_0 = 2, n = 9602, r = 4801, w = 90, t = 84$$

A (n,r,w)-QC-MDPC code, is a linear code with an error correcting capability t, length n, codimension r and with a row weight w in the parity check matrix H. Additionally we have that $n=n_0r$.

Suggested parameters for 80-bit security:

$$n_0 = 2, n = 9602, r = 4801, w = 90, t = 84$$

Sparse! \approx 99 bits out of 100 are zero in *H*.

QC-MDPC (3/5)

The secret key $H \in \mathbb{F}_2^{r \times n}$ is constructed as

$$H = [H_0|H_1|\dots|H_{n_0-1}],$$

where H_i is a circulant $r \times r$ matrix.

The secret key $H \in \mathbb{F}_2^{r \times n}$ is constructed as

$$H = [H_0|H_1|\dots|H_{n_0-1}],$$

where H_i is a circulant $r \times r$ matrix.

For $n_0 = 2$, we get

$$H = \begin{bmatrix} \begin{pmatrix} h_{0,0} & h_{0,1} & \cdots & h_{0,r-1} \\ h_{0,r-1} & h_{0,0} & \cdots & h_{0,r-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{0,1} & h_{0,2} & \cdots & h_{0,0} \end{pmatrix} \quad \begin{pmatrix} h_{1,0} & h_{1,1} & \cdots & h_{1,r-1} \\ h_{1,r-1} & h_{1,0} & \cdots & h_{1,r-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{1,1} & h_{1,2} & \cdots & h_{1,0} \end{pmatrix} \end{bmatrix}$$

The secret key $H \in \mathbb{F}_2^{r \times n}$ is constructed as

$$H = [H_0|H_1|\dots|H_{n_0-1}],$$

where H_i is a circulant $r \times r$ matrix.

For $n_0 = 2$, we get

$$H = \begin{bmatrix} \begin{pmatrix} h_{0,0} & h_{0,1} & \cdots & h_{0,r-1} \\ h_{0,r-1} & h_{0,0} & \cdots & h_{0,r-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{0,1} & h_{0,2} & \cdots & h_{0,0} \end{pmatrix} & \begin{pmatrix} h_{1,0} & h_{1,1} & \cdots & h_{1,r-1} \\ h_{1,r-1} & h_{1,0} & \cdots & h_{1,r-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{1,1} & h_{1,2} & \cdots & h_{1,0} \end{pmatrix} \end{bmatrix}$$

Knowledge of h_0 (the first row of H_0) is sufficient for complete key recovery.

Public key $G \in \mathbb{F}_2^{(n-r) \times n}$ is constructed as follows:

Public key $G \in \mathbb{F}_2^{(n-r)\times n}$ is constructed as follows:

Encryption of plaintext $m \in \mathbb{F}_2^{n-r}$ into $c \in \mathbb{F}_2^n$ is given by:

Public key $G \in \mathbb{F}_2^{(n-r) \times n}$ is constructed as follows:

Encryption of plaintext $m \in \mathbb{F}_2^{n-r}$ into $c \in \mathbb{F}_2^n$ is given by:

1. Generating random $e \in \mathbb{F}_2^n$ with Hamming weight, wt(e), less than t.

Public key $G \in \mathbb{F}_2^{(n-r) \times n}$ is constructed as follows:

Encryption of plaintext $m \in \mathbb{F}_2^{n-r}$ into $c \in \mathbb{F}_2^n$ is given by:

- 1. Generating random $e \in \mathbb{F}_2^n$ with Hamming weight, wt(e), less than t.
- 2. Computing $c \leftarrow mG + e$.

QC-MDPC (5/5)

To decrypt $c \in \mathbb{F}_2^n$ into $m \in \mathbb{F}_2^{n-r}$ we need a decoding algorithm, Ψ_H , with knowledge of H.

To decrypt $c \in \mathbb{F}_2^n$ into $m \in \mathbb{F}_2^{n-r}$ we need a decoding algorithm, Ψ_H , with knowledge of H.

1. Decode $mG \leftarrow \Psi_H(mG + e)$

To decrypt $c \in \mathbb{F}_2^n$ into $m \in \mathbb{F}_2^{n-r}$ we need a decoding algorithm, Ψ_H , with knowledge of H.

- 1. Decode $mG \leftarrow \Psi_H(mG + e)$
- 2. Plaintext m is first (n r) positions of mG.

To decrypt $c \in \mathbb{F}_2^n$ into $m \in \mathbb{F}_2^{n-r}$ we need a decoding algorithm, Ψ_H , with knowledge of H.

- 1. Decode $mG \leftarrow \Psi_H(mG + e)$
- 2. Plaintext m is first (n r) positions of mG.

The decoding algorithms (Ψ_H) are based on variants of the original Gallager's bitflipping algorithm.

• QC-MPDC was previosly shown vulnerable in [GJS16]¹.

¹Qian Guo, Thomas Johansson and Paul Stankovski. "A Key Recovery Attack on MDPC with CCA security Using Decoding Errors". In: ASIACRYPT 2016

- QC-MPDC was previosly shown vulnerable in [GJS16]¹.
- Key recovery is possible with 250-300 M ciphertexts for 80-bit security parameters.

¹Qian Guo, Thomas Johansson and Paul Stankovski. "A Key Recovery Attack on MDPC with CCA security Using Decoding Errors". In: ASIACRYPT 2016

- QC-MPDC was previosly shown vulnerable in [GJS16]¹.
- Key recovery is possible with 250-300 M ciphertexts for 80-bit security parameters.
- Attack against CCA secure QC-MDPC.

¹Qian Guo, Thomas Johansson and Paul Stankovski. "A Key Recovery Attack on MDPC with CCA security Using Decoding Errors". In: ASIACRYPT 2016

- QC-MPDC was previosly shown vulnerable in [GJS16]¹.
- Key recovery is possible with 250-300 M ciphertexts for 80-bit security parameters.
- · Attack against CCA secure QC-MDPC.
- The authors discovered a correlation between the distance spectrums of the secret key and of non-decodeable error patterns.

¹Qian Guo, Thomas Johansson and Paul Stankovski. "A Key Recovery Attack on MDPC with CCA security Using Decoding Errors". In: ASIACRYPT 2016

Distance spectrum (D(...)): wrapping distances between two non-zero bits. The number in each counter counts the occurrence of a specific distance, or its multiplicity.

Distance spectrum (D(...)): wrapping distances between two non-zero bits. The number in each counter counts the occurrence of a specific distance, or its multiplicity.

We want to find $D(h_0)$, the distance spectrum of the first row of H_0 , the first part of the secret key H.

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize $i \leftarrow 0$.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.

Previous attack

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).

Previous attack

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: Save $D(e_i)$.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: Save $D(e_i)$.
- 7. Attacker: Repeat from step 1.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: Save $D(e_i)$.
- 7. Attacker: Repeat from step 1.

By combining all $D(e_i)$ vectors we see a non-uniform probability distribution of individual distances that directly correlates to $D(h_0)$.

- 0. Attacker: Initialize $i \leftarrow 0$.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is a random vector.
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: Save $D(e_i)$.
- 7. Attacker: Repeat from step 1.

By combining all $D(e_i)$ vectors we see a non-uniform probability distribution of individual distances that directly correlates to $D(h_0)$. We need many samples to correctly determine $D(h_0)$.

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e_0

Results

Amplification effect

Wrapping it up

- 0. Attacker: Initialize $i \leftarrow 0$,
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected:

- 0. Attacker: Initialize $i \leftarrow 0, j \leftarrow 0$,
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected:

- 0. Attacker: Initialize $i \leftarrow 0$, $j \leftarrow 0$, e_0 any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected:

- 0. Attacker: Initialize $i \leftarrow 0$, $j \leftarrow 0$, e_0 any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected:

- 0. Attacker: Initialize $i \leftarrow 0$, $j \leftarrow 0$, e_0 any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_i \leftarrow e_i$,

- 0. Attacker: Initialize $i \leftarrow 0$, $j \leftarrow 0$, e_0 any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_i \leftarrow e_i$, $j \leftarrow j + 1$,

- 0. Attacker: Initialize $i \leftarrow 0$, $j \leftarrow 0$, e_0 any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_i \leftarrow e_i$, $j \leftarrow j + 1$, $i \leftarrow 0$.

- 0. Attacker: Initialize $i \leftarrow 0, j \leftarrow 0, e_0$ any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_j \leftarrow e_i$, $j \leftarrow j + 1$, $i \leftarrow 0$. Save $D(e_i)$ regardless.
- 7. Attacker: Repeat from step 1.

- 0. Attacker: Initialize $i \leftarrow 0, j \leftarrow 0, e_0$ any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_j \leftarrow e_i$, $j \leftarrow j + 1$, $i \leftarrow 0$. Save $D(e_i)$ regardless.
 - if Ψ_H not constant time: save time measurment of steps 3-5.
- 7. Attacker: Repeat from step 1.

- 0. Attacker: Initialize $i \leftarrow 0, j \leftarrow 0, e_0$ any non-decodable pattern.
- 1. Attacker: $i \leftarrow i + 1$.
- 2. Attacker: Encrypts $c_i \leftarrow Gm + e_i$, where e_i is derrived from e_i .
- 3. Attacker: Sends c_i to the victim.
- 4. Victim: Decrypts c_i (using Ψ_H).
- 5. Victim: Sends response back to attacker
- 6. Attacker: If decoding failure detected: $e_j \leftarrow e_i$, $j \leftarrow j + 1$, $i \leftarrow 0$. Save $D(e_i)$ regardless.
 - if Ψ_H not constant time: save time measurment of steps 3-5.
- 7. Attacker: Repeat from step 1.

We call deriving e_i from e_j the chaining method, by which we significantly amplify the DFR.

The Chaining method

Error Amplification is gained by generating a chain of related non-decodable error patterns:

The Chaining method

Error Amplification is gained by generating a chain of related non-decodable error patterns:

• From e_0 we can find another error pattern by randomly swapping a '1' and a '0' in the bit pattern (MUTATE).

The Chaining method

Error Amplification is gained by generating a chain of related non-decodable error patterns:

- From e_0 we can find another error pattern by randomly swapping a '1' and a '0' in the bit pattern (MUTATE).
- Decoding success: $e_j^{i_j} \Rightarrow \Delta D_j^{i_j} \leftarrow D(e_j) D(e_j^{i_j})$

Error Amplification is gained by generating a chain of related non-decodable error patterns:

- From e_0 we can find another error pattern by randomly swapping a '1' and a '0' in the bit pattern (MUTATE).
- Decoding success: $e_j^{i_j} \Rightarrow \Delta D_j^{i_j} \leftarrow D(e_j) D(e_j^{i_j})$ Decoding failure: $e_{j+1} \Rightarrow \Delta D_j \leftarrow D(e_j) D(e_{j+1})$ vectors!

We use the chaining method to find harder and harder patterns e'_0 .

We use the chaining method to find harder and harder patterns e'_0 .

 e'₀ is replaced each time a more difficult pattern is encountered!

We use the chaining method to find harder and harder patterns e'_0 .

- e'₀ is replaced each time a more difficult pattern is encountered!
- Keep going until a decryption failure e_0 is found.

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e₀

Results

Amplification effect

Wrapping it up

We see that the vector

$$\Delta D = \frac{\sum_{k=0}^{j} \Delta D_k}{j}$$

settle into multiplicity layers for large *j* (long chains).

We see that the vector

$$\Delta D = \frac{\sum_{k=0}^{j} \Delta D_k}{j}$$

settle into multiplicity layers for large *j* (long chains).

Also using the successfull decodings $(\Delta D_k^{i_k})$, inverted, improves the results.

We see that the vector

$$\Delta D = \frac{\sum_{k=0}^{j} \Delta D_k}{j}$$

settle into multiplicity layers for large *j* (long chains).

Also using the successfull decodings $(\Delta D_k^{i_k})$, inverted, improves the results.

We can reconstruct the secret key using [GJS16]!

Amplification effect

Random samples

Chaining method

DFR indicated by horizontal lines.

Note the logarithmic scale on the y-axis!

Amplification effect

Random samples

Chaining method

DFR indicated by horizontal lines.

Note the logarithmic scale on the y-axis!

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e_0

Results

Amplification effect

Wrapping it up

 Improvement over the original (CPA-version) attack with a factor 20-30.

- Improvement over the original (CPA-version) attack with a factor 20-30.
- Low DFR's as a protective measure might not be enough if we have side-channels.

- Improvement over the original (CPA-version) attack with a factor 20-30.
- Low DFR's as a protective measure might not be enough if we have side-channels.
- Attacker selection of error patterns makes attacks possible and efficient.

- Improvement over the original (CPA-version) attack with a factor 20-30.
- Low DFR's as a protective measure might not be enough if we have side-channels.
- Attacker selection of error patterns makes attacks possible and efficient.
 - Knowledge of a single non-decodable error pattern can be used as leverage for generating more.

- Improvement over the original (CPA-version) attack with a factor 20-30.
- Low DFR's as a protective measure might not be enough if we have side-channels.
- Attacker selection of error patterns makes attacks possible and efficient.
 - Knowledge of a single non-decodable error pattern can be used as leverage for generating more.
 - IND-CCA secure schemes are not vulnerable to the chaining method.

Thank you!

(Questions?)

- [GIS16] Qian Guo, Thomas Johansson, and Paul Stankovski. "A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors". In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer,
- Heidelberg, Dec. 2016, pp. 789-815. DOI: 10.1007/978-3-662-53887-6 29. [Mis+12] Rafael Misoczki et al. MDPC-McEliece: New McEliece Variants from Moderate
- Density Parity-Check Codes, Cryptology ePrint Archive, Report 2012/409. http://eprint.iacr.org/2012/409.2012. [NIW18] Alexander Nilsson, Thomas Johansson, and Paul Stankovski Wagner. "Error

https:

Amplification in Code-based Cryptography". In: IACR TCHES 2019.1 (2018).

//tches.iacr.org/index.php/TCHES/article/view/7340, pp. 238-258. ISSN: 2569-2925. DOI: 10.13154/tches.v2019.i1.238-258.