
Error Amplification in Code-based
Cryptography

Alexander Nilsson1,2 Thomas Johansson1 Paul Stankovski Wagner1

August 27, 2019
1Dept. of Electrical and Information Technology, Lund University, Sweden
2Advenica AB, Malmö, Sweden

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e0

Results

Amplification effect

Wrapping it up

Code-based Cryptography

• One of the major branches of cryptographic post-quantum
research.

• Security based on hardness of decoding random linear
codes.

• The McElice cryptosystem from 1978, using binary Goppa
codes, is still secure today.

• Large keys!

1

Code-based Cryptography

• One of the major branches of cryptographic post-quantum
research.

• Security based on hardness of decoding random linear
codes.

• The McElice cryptosystem from 1978, using binary Goppa
codes, is still secure today.

• Large keys!

1

Code-based Cryptography

• One of the major branches of cryptographic post-quantum
research.

• Security based on hardness of decoding random linear
codes.

• The McElice cryptosystem from 1978, using binary Goppa
codes, is still secure today.

• Large keys!

1

Code-based Cryptography

• One of the major branches of cryptographic post-quantum
research.

• Security based on hardness of decoding random linear
codes.

• The McElice cryptosystem from 1978, using binary Goppa
codes, is still secure today.

• Large keys!

1

QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e
• Uses iterative bitflipping decoding in the decryption stage
• Decryption Failure Rate (DFR), is non-zero.

2

QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e
• Uses iterative bitflipping decoding in the decryption stage
• Decryption Failure Rate (DFR), is non-zero.

2

QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e

• Uses iterative bitflipping decoding in the decryption stage
• Decryption Failure Rate (DFR), is non-zero.

2

QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e
• Uses iterative bitflipping decoding in the decryption stage

• Decryption Failure Rate (DFR), is non-zero.

2

QC-MDPC (1/5)

Quasi-Cyclic Medium Density Parity Check is a variant of the
McEliece cryptosystem [Mis+12]:

• More compact keys by using cyclic structures in the
key-matrices.

• Encryption simply: c← mG+ e
• Uses iterative bitflipping decoding in the decryption stage
• Decryption Failure Rate (DFR), is non-zero.

2

QC-MDPC (2/5)

A (n,r,w)-QC-MDPC code, is a linear code with an error
correcting capability t, length n, codimension r and with a row
weight w in the parity check matrix H. Additionally we have
that n = n0r.

Suggested parameters for 80-bit security:

n0 = 2,n = 9602, r = 4801,w = 90, t = 84

Sparse! ≈ 99 bits out of 100 are zero in H.

3

QC-MDPC (2/5)

A (n,r,w)-QC-MDPC code, is a linear code with an error
correcting capability t, length n, codimension r and with a row
weight w in the parity check matrix H. Additionally we have
that n = n0r.

Suggested parameters for 80-bit security:

n0 = 2,n = 9602, r = 4801,w = 90, t = 84

Sparse! ≈ 99 bits out of 100 are zero in H.

3

QC-MDPC (2/5)

A (n,r,w)-QC-MDPC code, is a linear code with an error
correcting capability t, length n, codimension r and with a row
weight w in the parity check matrix H. Additionally we have
that n = n0r.

Suggested parameters for 80-bit security:

n0 = 2,n = 9602, r = 4801,w = 90, t = 84

Sparse! ≈ 99 bits out of 100 are zero in H.

3

QC-MDPC (3/5)

The secret key H ∈ Fr×n
2 is constructed as

H = [H0|H1| . . . |Hn0−1],

where Hi is a circulant r× r matrix.

For n0 = 2, we get

H =




h0,0 h0,1 · · · h0,r−1
h0,r−1 h0,0 · · · h0,r−2

...
...

h0,1 h0,2 · · · h0,0




h1,0 h1,1 · · · h1,r−1
h1,r−1 h1,0 · · · h1,r−2

...
...

h1,1 h1,2 · · · h1,0




Knowledge of h0 (the first row of H0) is sufficient for complete
key recovery.

4

QC-MDPC (3/5)

The secret key H ∈ Fr×n
2 is constructed as

H = [H0|H1| . . . |Hn0−1],

where Hi is a circulant r× r matrix.

For n0 = 2, we get

H =




h0,0 h0,1 · · · h0,r−1
h0,r−1 h0,0 · · · h0,r−2

...
...

h0,1 h0,2 · · · h0,0




h1,0 h1,1 · · · h1,r−1
h1,r−1 h1,0 · · · h1,r−2

...
...

h1,1 h1,2 · · · h1,0




Knowledge of h0 (the first row of H0) is sufficient for complete
key recovery.

4

QC-MDPC (3/5)

The secret key H ∈ Fr×n
2 is constructed as

H = [H0|H1| . . . |Hn0−1],

where Hi is a circulant r× r matrix.

For n0 = 2, we get

H =




h0,0 h0,1 · · · h0,r−1
h0,r−1 h0,0 · · · h0,r−2

...
...

h0,1 h0,2 · · · h0,0




h1,0 h1,1 · · · h1,r−1
h1,r−1 h1,0 · · · h1,r−2

...
...

h1,1 h1,2 · · · h1,0




Knowledge of h0 (the first row of H0) is sufficient for complete
key recovery.

4

QC-MDPC (4/5)

Public key G ∈ F(n−r)×n
2 is constructed as follows:

G =

 I


(H−1

n0−1 · H0)T

(H−1
n0−1 · H1)T

...
(H−1

n0−1 · Hn0−2)T





Encryption of plaintext m ∈ Fn−r
2 into c ∈ Fn

2 is given by:

1. Generating random e ∈ Fn
2 with Hamming weight, wt(e),

less than t.
2. Computing c← mG+ e.

5

QC-MDPC (4/5)

Public key G ∈ F(n−r)×n
2 is constructed as follows:

G =

 I


(H−1

n0−1 · H0)T

(H−1
n0−1 · H1)T

...
(H−1

n0−1 · Hn0−2)T




Encryption of plaintext m ∈ Fn−r

2 into c ∈ Fn
2 is given by:

1. Generating random e ∈ Fn
2 with Hamming weight, wt(e),

less than t.
2. Computing c← mG+ e.

5

QC-MDPC (4/5)

Public key G ∈ F(n−r)×n
2 is constructed as follows:

G =

 I


(H−1

n0−1 · H0)T

(H−1
n0−1 · H1)T

...
(H−1

n0−1 · Hn0−2)T




Encryption of plaintext m ∈ Fn−r

2 into c ∈ Fn
2 is given by:

1. Generating random e ∈ Fn
2 with Hamming weight, wt(e),

less than t.

2. Computing c← mG+ e.

5

QC-MDPC (4/5)

Public key G ∈ F(n−r)×n
2 is constructed as follows:

G =

 I


(H−1

n0−1 · H0)T

(H−1
n0−1 · H1)T

...
(H−1

n0−1 · Hn0−2)T




Encryption of plaintext m ∈ Fn−r

2 into c ∈ Fn
2 is given by:

1. Generating random e ∈ Fn
2 with Hamming weight, wt(e),

less than t.
2. Computing c← mG+ e.

5

QC-MDPC (5/5)

To decrypt c ∈ Fn
2 into m ∈ Fn−r

2 we need a decoding algorithm,
ΨH, with knowledge of H.

1. Decode mG← ΨH(mG+ e)
2. Plaintext m is first (n− r) positions of mG.

The decoding algorithms (ΨH) are based on variants of the
original Gallager’s bitflipping algorithm.

6

QC-MDPC (5/5)

To decrypt c ∈ Fn
2 into m ∈ Fn−r

2 we need a decoding algorithm,
ΨH, with knowledge of H.

1. Decode mG← ΨH(mG+ e)

2. Plaintext m is first (n− r) positions of mG.

The decoding algorithms (ΨH) are based on variants of the
original Gallager’s bitflipping algorithm.

6

QC-MDPC (5/5)

To decrypt c ∈ Fn
2 into m ∈ Fn−r

2 we need a decoding algorithm,
ΨH, with knowledge of H.

1. Decode mG← ΨH(mG+ e)
2. Plaintext m is first (n− r) positions of mG.

The decoding algorithms (ΨH) are based on variants of the
original Gallager’s bitflipping algorithm.

6

QC-MDPC (5/5)

To decrypt c ∈ Fn
2 into m ∈ Fn−r

2 we need a decoding algorithm,
ΨH, with knowledge of H.

1. Decode mG← ΨH(mG+ e)
2. Plaintext m is first (n− r) positions of mG.

The decoding algorithms (ΨH) are based on variants of the
original Gallager’s bitflipping algorithm.

6

Previous Work

• QC-MPDC was previosly shown vulnerable in [GJS16]1.

• Key recovery is possible with 250-300 M ciphertexts for
80-bit security parameters.

• Attack against CCA secure QC-MDPC.
• The authors discovered a correlation between the
distance spectrums of the secret key and of
non-decodeable error patterns.

1Qian Guo, Thomas Johansson and Paul Stankovski. ”A Key Recovery Attack
on MDPC with CCA security Using Decoding Errors”. In: ASIACRYPT 2016

7

Previous Work

• QC-MPDC was previosly shown vulnerable in [GJS16]1.
• Key recovery is possible with 250-300 M ciphertexts for
80-bit security parameters.

• Attack against CCA secure QC-MDPC.
• The authors discovered a correlation between the
distance spectrums of the secret key and of
non-decodeable error patterns.

1Qian Guo, Thomas Johansson and Paul Stankovski. ”A Key Recovery Attack
on MDPC with CCA security Using Decoding Errors”. In: ASIACRYPT 2016

7

Previous Work

• QC-MPDC was previosly shown vulnerable in [GJS16]1.
• Key recovery is possible with 250-300 M ciphertexts for
80-bit security parameters.

• Attack against CCA secure QC-MDPC.

• The authors discovered a correlation between the
distance spectrums of the secret key and of
non-decodeable error patterns.

1Qian Guo, Thomas Johansson and Paul Stankovski. ”A Key Recovery Attack
on MDPC with CCA security Using Decoding Errors”. In: ASIACRYPT 2016

7

Previous Work

• QC-MPDC was previosly shown vulnerable in [GJS16]1.
• Key recovery is possible with 250-300 M ciphertexts for
80-bit security parameters.

• Attack against CCA secure QC-MDPC.
• The authors discovered a correlation between the
distance spectrums of the secret key and of
non-decodeable error patterns.

1Qian Guo, Thomas Johansson and Paul Stankovski. ”A Key Recovery Attack
on MDPC with CCA security Using Decoding Errors”. In: ASIACRYPT 2016

7

Distance Spectrums

1 0 0 0 1 0 0 1 0 1 ← bitserror pattern, e:

4

3 1

3 5 2

1 1 2 1 1
1 2 3 4 5

← countersdistance spectrum, D(e):

Distance spectrum (D(. . .)): wrapping distances between two
non-zero bits. The number in each counter counts the
occurence of a specific distance, or its multiplicity.

We want to find D(h0), the distance spectrum of the first row of
H0, the first part of the secret key H.

8

Distance Spectrums

1 0 0 0 1 0 0 1 0 1 ← bitserror pattern, e:

4

3 1

3 5 2

1 1 2 1 1
1 2 3 4 5

← countersdistance spectrum, D(e):

Distance spectrum (D(. . .)): wrapping distances between two
non-zero bits. The number in each counter counts the
occurence of a specific distance, or its multiplicity.

We want to find D(h0), the distance spectrum of the first row of
H0, the first part of the secret key H.

8

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.

1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.

2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.

4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).

5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker

6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).

7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0).

We need many samples to correctly
determine D(h0).

9

Previous attack

A reaction attack against CCA secure QC-MDPC. [GJS16]

0. Attacker: Initialize i← 0.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is a random vector.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: Save D(ei).
7. Attacker: Repeat from step 1.

By combining all D(ei) vectors we see a non-uniform
probability distribution of individual distances that directly
correlates to D(h0). We need many samples to correctly
determine D(h0).

9

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e0

Results

Amplification effect

Wrapping it up

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0,

j← 0, e0 any non-decodable pattern.

1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is

derrived from ej.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0,

j← 0, e0 any non-decodable pattern.

1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is

derrived from ej.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0,

e0 any non-decodable pattern.

1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is

derrived from ej.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is

derrived from ej.

3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected:

ej ← ei, j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei,

j← j+ 1, i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei, j← j+ 1,

i← 0.
Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei, j← j+ 1, i← 0.

Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei, j← j+ 1, i← 0.

Save D(ei) regardless.

if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei, j← j+ 1, i← 0.

Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

New attack

An adaptive reaction and/or side-channel attack against CPA
secure QC-MDPC:

0. Attacker: Initialize i← 0, j← 0, e0 any non-decodable pattern.
1. Attacker: i← i+ 1.
2. Attacker: Encrypts ci ← Gm+ ei, where ei is derrived from ej.
3. Attacker: Sends ci to the victim.
4. Victim: Decrypts ci (using ΨH).
5. Victim: Sends response back to attacker
6. Attacker: If decoding failure detected: ej ← ei, j← j+ 1, i← 0.

Save D(ei) regardless.
if ΨH not constant time: save time measurment of steps 3-5.

7. Attacker: Repeat from step 1.

We call deriving ei from ej the chaining method, by which we significantly
amplify the DFR.

10

The Chaining method

e0

e00
...
ei00

e1

e01
...
ei11

e2 ej

e0j
...
eijj

e...MUTATE(ej−1)

Error Amplification is gained by generating a chain of related
non-decodable error patterns:

• From e0 we can find another error pattern by randomly
swapping a ’1’ and a ’0’ in the bit pattern (MUTATE).

• Decoding success: eijj ⇒ ∆Dij
j ← D(ej)− D(eijj)

• Decoding failure: ej+1 ⇒ ∆Dj ← D(ej)− D(ej+1)

}
vectors!

11

The Chaining method

e0

e00
...
ei00

e1

e01
...
ei11

e2 ej

e0j
...
eijj

e...MUTATE(ej−1)

Error Amplification is gained by generating a chain of related
non-decodable error patterns:

• From e0 we can find another error pattern by randomly
swapping a ’1’ and a ’0’ in the bit pattern (MUTATE).

• Decoding success: eijj ⇒ ∆Dij
j ← D(ej)− D(eijj)

• Decoding failure: ej+1 ⇒ ∆Dj ← D(ej)− D(ej+1)

}
vectors!

11

The Chaining method

e0

e00
...
ei00

e1

e01
...
ei11

e2 ej

e0j
...
eijj

e...MUTATE(ej−1)

Error Amplification is gained by generating a chain of related
non-decodable error patterns:

• From e0 we can find another error pattern by randomly
swapping a ’1’ and a ’0’ in the bit pattern (MUTATE).

• Decoding success: eijj ⇒ ∆Dij
j ← D(ej)− D(eijj)

• Decoding failure: ej+1 ⇒ ∆Dj ← D(ej)− D(ej+1)

}
vectors!

11

The Chaining method

e0

e00
...
ei00

e1

e01
...
ei11

e2 ej

e0j
...
eijj

e...MUTATE(ej−1)

Error Amplification is gained by generating a chain of related
non-decodable error patterns:

• From e0 we can find another error pattern by randomly
swapping a ’1’ and a ’0’ in the bit pattern (MUTATE).

• Decoding success: eijj ⇒ ∆Dij
j ← D(ej)− D(eijj)

• Decoding failure: ej+1 ⇒ ∆Dj ← D(ej)− D(ej+1)

}
vectors!

11

Generating e0

By using timing information we can distinguish the number of
iterations required.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

·107

number of iterations required for decoding

na
no

se
co

nd
s
re
qu

ire
d
fo
rd

ec
od

in
g

Decoder B
Decoder F
Decoder Q

We use the chaining method to
find harder and harder
patterns e′0.

• e′0 is replaced each time a
more difficult pattern is
encountered!

• Keep going until a
decryption failure e0 is
found.

12

Generating e0

By using timing information we can distinguish the number of
iterations required.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

·107

number of iterations required for decoding

na
no

se
co

nd
s
re
qu

ire
d
fo
rd

ec
od

in
g

Decoder B
Decoder F
Decoder Q

We use the chaining method to
find harder and harder
patterns e′0.

• e′0 is replaced each time a
more difficult pattern is
encountered!

• Keep going until a
decryption failure e0 is
found.

12

Generating e0

By using timing information we can distinguish the number of
iterations required.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

·107

number of iterations required for decoding

na
no

se
co

nd
s
re
qu

ire
d
fo
rd

ec
od

in
g

Decoder B
Decoder F
Decoder Q

We use the chaining method to
find harder and harder
patterns e′0.

• e′0 is replaced each time a
more difficult pattern is
encountered!

• Keep going until a
decryption failure e0 is
found.

12

Generating e0

By using timing information we can distinguish the number of
iterations required.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

·107

number of iterations required for decoding

na
no

se
co

nd
s
re
qu

ire
d
fo
rd

ec
od

in
g

Decoder B
Decoder F
Decoder Q

We use the chaining method to
find harder and harder
patterns e′0.

• e′0 is replaced each time a
more difficult pattern is
encountered!

• Keep going until a
decryption failure e0 is
found.

12

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e0

Results

Amplification effect

Wrapping it up

Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).

Also using the successfull
decodings (∆Dik

k), inverted,
improves the results.

0 500 1000 1500 2000
0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007
A * a / sum(a) + B * b / bsum + F * f / fsum + G * g / gsum

Multiplicity 0
Avg Multiplicity 0
Multiplicity 1
Avg Multiplicity 1
Multiplicity 2
Avg Multiplicity 2
Multiplicity 3
Avg Multiplicity 3
Multiplicity 4
Avg Multiplicity 4

We can reconstruct the secret key using [GJS16]!

13

Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).
Also using the successfull
decodings (∆Dik

k), inverted,
improves the results.

0 500 1000 1500 2000
0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007
A * a / sum(a) + B * b / bsum + F * f / fsum + G * g / gsum

Multiplicity 0
Avg Multiplicity 0
Multiplicity 1
Avg Multiplicity 1
Multiplicity 2
Avg Multiplicity 2
Multiplicity 3
Avg Multiplicity 3
Multiplicity 4
Avg Multiplicity 4

We can reconstruct the secret key using [GJS16]!

13

Results

We see that the vector

∆D =

∑j
k=0 ∆Dk

j

settle into multiplicity
layers for large j (long
chains).
Also using the successfull
decodings (∆Dik

k), inverted,
improves the results.

0 500 1000 1500 2000
0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007
A * a / sum(a) + B * b / bsum + F * f / fsum + G * g / gsum

Multiplicity 0
Avg Multiplicity 0
Multiplicity 1
Avg Multiplicity 1
Multiplicity 2
Avg Multiplicity 2
Multiplicity 3
Avg Multiplicity 3
Multiplicity 4
Avg Multiplicity 4

We can reconstruct the secret key using [GJS16]!

13

Amplification effect

2 4 6 8 10
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

5.05× 10−4

9.59× 10−6

1.08× 10−7

Number of iterations

Pr
ob

ab
ili
ty

Decoder B Decoder F Decoder Q

Random samples

2 4 6 8 10
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 2.16× 10−1

1.68× 10−2

8.83× 10−3

Number of iterations

Pr
ob

ab
ili
ty

Decoder B Decoder F Decoder Q

Chaining method

DFR indicated by horizontal lines.

Note the logarithmic scale on the y-axis!
14

Amplification effect

2 4 6 8 10
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

5.05× 10−4

9.59× 10−6

1.08× 10−7

Number of iterations

Pr
ob

ab
ili
ty

Decoder B Decoder F Decoder Q

Random samples

2 4 6 8 10
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 2.16× 10−1

1.68× 10−2

8.83× 10−3

Number of iterations

Pr
ob

ab
ili
ty

Decoder B Decoder F Decoder Q

Chaining method

DFR indicated by horizontal lines.

Note the logarithmic scale on the y-axis!
14

Background

Code-based Cryptography

Previous work

Attack Scenario

Contributions

The Chaining method

Generating e0

Results

Amplification effect

Wrapping it up

Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.

15

Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.

15

Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.

15

Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.

15

Conclusions

• Improvement over the original
(CPA-version) attack with a factor 20-30.

• Low DFR’s as a protective measure might
not be enough if we have side-channels.

• Attacker selection of error patterns makes
attacks possible and efficient.

• Knowledge of a single non-decodable error pattern can
be used as leverage for generating more.

• IND-CCA secure schemes are not vulnerable to the
chaining method.

15

Thank you!
(Questions?)

16

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. In: ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer,
Heidelberg, Dec. 2016, pp. 789–815. doi:
10.1007/978-3-662-53887-6_29.

[Mis+12] Rafael Misoczki et al. MDPC-McEliece: New McEliece Variants from Moderate
Density Parity-Check Codes. Cryptology ePrint Archive, Report 2012/409.
http://eprint.iacr.org/2012/409. 2012.

[NJW18] Alexander Nilsson, Thomas Johansson, and Paul Stankovski Wagner. “Error
Amplification in Code-based Cryptography”. In: IACR TCHES 2019.1 (2018).
https:
//tches.iacr.org/index.php/TCHES/article/view/7340,
pp. 238–258. issn: 2569-2925. doi: 10.13154/tches.v2019.i1.238-258.

https://doi.org/10.1007/978-3-662-53887-6_29
http://eprint.iacr.org/2012/409
https://tches.iacr.org/index.php/TCHES/article/view/7340
https://tches.iacr.org/index.php/TCHES/article/view/7340
https://doi.org/10.13154/tches.v2019.i1.238-258

	Background
	Code-based Cryptography
	Previous work
	Attack Scenario

	Contributions
	The Chaining method
	Generating e0

	Results
	Amplification effect

	Wrapping it up
	Appendix
	References

