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Labels

typically: intermediate states computed from plaintext and
keys

Hamming weight (distance) leakage model commonly
used

problem: introduces imbalanced data

for example, occurrences of Hamming weights for all
possible 8-bit values:

HW value 0 1 2 3 4 H 6 7 8
Occurrences 1 8 28 56 70 5H6 28 8 1




Why do we use HW?

e often does not reflect realistic leakage model
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Why do we use HW?

often does not reflect realistic leakage model
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Why do we use HW?

e reduces the complexity of learning

e works (sufficiently good) in many scenarios for attacking
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Why do we care about
iImbalanced data?

e most machine learning techniques rely on loss functions
that are “designed” to maximise accuracy

e |n case of high noise: predicting only HW class 4 gives
accuracy of 27%

e but is not related to secret key value and therefore does
not give any information for SCA



What to do?

e |n this paper: transform dataset to achieve balancedness?
e how?
e throw away data

e add data

e (or choose data before ciphering)



Random under sampling

e only keep # of samples equal
to the least populated class

e binomial distribution: many
unused samples
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Random oversampling with
replacement

e randomly selecting samples
from the original dataset until
amount is equal to largest
populated

e simple method, in other
context comparable to other
methods
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e synthetic minority
oversampling technique

e generating synthetic minority
class instances

e nearest neighbours are added T
(corresponding to Euclidean Class 1 Class 2

distance
) 7 samples 13 samples
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SMOTE+ENN

Synthetic Minority
Oversampling Technique with
Edited Nearest Neighbor

SMOTE + data cleaning

oversampling + undersampling
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SMOTE+ENN

Synthetic Minority
Oversampling Technique with
Edited Nearest Neighbor

SMOTE + data cleaning

oversampling + undersampling
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Experiments

iIn most experiments SMOTE most effective

data argumentation without any specific knowledge about
the implementation / dataset / distribution to balance
datasets

varying number of training samples in the profiling phase

e |mbalanced: 1k, 10k, 50k

e SMOTE: (approx) 5k, 24k, 120k



Dataset 1

low noise dataset - DPA contest v4 (publicly available)

Atmel ATMega-163 smart card connected to a SASEBO-
W board

120

e W O
s HW 1
s {W 2
AES-256 RSM 1001 Eﬁg
. . HW 6
(Rotating SBox Masking) ) w7
_ _ 2 60
in this talk: S \
mask assumed known o1
. JIN
AN
R TR Y TR Y a— 0.02 004 006

Leakage at time A


http://dpacontest.org

Data sampling techniques

e dataset 1: low noise unprotected
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Dataset 2

e high noise dataset

e AES-128 on Xilinx
Virtex-5 FPGA of a
SASEBO Gl
evaluation board.

e publicly available on
github:
https://github.com/
AESHD/AES HD
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Data sampling techniques

e dataset 2: high noise unprotected
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Dataset 3

e AES-128: Random
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Data sampling techniques

e dataset 3: high noise with random delay
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Further results

e additionally we tested SMOTE for CNN, MLP, TA:
e also beneficial for CNN and MLP
e not for TA (in this settings):
e is not “tuned” regarding accuracy

e may still benefit if #measurements is too low to build
stable profiles (lower #measurements for profiling)

e |n case available: perfectly “natural”/chosen balanced
dataset leads to better performance

* ... more details in the paper
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Evaluation metrics

SR: average estimated e ACC: average estimated
probability of success probability (percentage)

of correct classification
GE: average estimated

secret key rank * average is computed
over number of

depends on the number experiments

of traces used in the
attacking phase

average is computed
over number of
experiments
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SR/GE vs acc

Global acc vs class acc

e relevant for non-bijective
function between class and

key (e.g. class involved the
HW)

e the importance to correctly
classify more unlikely values
In the class may be more
significant than others

* accuracy is averaged over
all class values

Label vs fixed key prediction

e relevant if attacking with more
than 1 trace

e accuracy: each label is
considered independently (along
#measurements)

» SR/GE: computed regarding
fixed key, accumulated over
#measurements

e |ow accuracy may not indicate
low SR/GE

more details, formulas, explanations in the paper...



Take away

e HW (HD) + ML is very likely to go wrong in noisy data!
e data sampling techniques help to increase performances

 more effective to collect less real sample + balancing
techniques than collect more imbalanced samples

* ML metrics (accuracy) do not give a precise SCA
evaluation!

* global vs class accuracy

* label vs fixed key prediction



