
Implementing RLWE-based Schemes Using an
RSA Co-Processor

Martin R. Albrecht1, Christian Hanser2, Andrea Hoeller2,
Thomas Pöppelmann3, Fernando Virdia1, Andreas Wallner2

1Information Security Group, Royal Holloway, University of London, UK

2Infineon Technologies Austria AG

3Infineon Technologies AG, Germany

August 26, 2019
CHES 2019
Atlanta, GA



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Overview

Prelude
Post-quantum cryptography

Deploying cryptography

Deployment in general
Lattice-based cryptography

Ring arithmetic on RSA co-processors

Kronecker Substitution
Splitting rings

Implementation

Future directions



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Post-quantum cryptography

[Sho97] introduces a fast1 order-finding quantum algorithm
that allows factoring and computing discrete logs in Abelian
groups.

Since then, there has been a growing effort to develop new
public-key primitives that can resist cryptanalysis using
large-scale general quantum computers.

Many of the schemes proposed to NIST for standardisation
are based on problems defined over polynomial rings, such as
the RLWE problem.

1Let’s not go there.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers were required to
provide fast software implementations with a focus on modern
CPU architectures.

Furthermore, a lot of work has been done in the direction of
constrained (often embedded) environments such as
microcontrollers or smart cards.

2Other than being secure in some appropriate model!



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers were required to
provide fast software implementations with a focus on modern
CPU architectures.

Furthermore, a lot of work has been done in the direction of
constrained (often embedded) environments such as
microcontrollers or smart cards.

2Other than being secure in some appropriate model!



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

The most expensive operation in RLWE-based schemes is
computing MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is often computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for RLWE
co-processors have been proposed3.

Yet, new hardware design means having to implement, test,
certify, and deploy!

3E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

The most expensive operation in RLWE-based schemes is
computing MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is often computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for RLWE
co-processors have been proposed3.

Yet, new hardware design means having to implement, test,
certify, and deploy!

3E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Our approach: we construct a flexible MULADD gadget by
reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with
competitive performance on the SLE 78 platform.

Throughout this work we refer to the original NIST PQC’s
first round design/parameters of Kyber.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

It also works when evaluating a(x) mod f (x):

a = 3x2 + 10x + 8

f = x2 + 1

a mod f = 3x2 + 10x + 8

− 3(x2 + 1)

= 10x + 5

A= a(100) = 3 · 1002 + 10 · 100 + 8

F = f (100) = 1002 + 1

A mod F = 3 · 1002 + 10 · 100 + 8

− 3(1002 + 1)

= 1005 = 10 · 100 + 5



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

By combining the two properties, and choosing fixed
representatives for coefficients in Zq, it is possible to compute

a(x) · b(x) + c(x) mod (q, f (x))

by
a(t) · b(t) + c(t) mod f (t)

where t ∈ Z is large enough.

Since these are all integers, we can use our RSA co-processor
to compute in Zf (t)!



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

How should we chose t = 2` ∈ Z? In [AHH+18], we provide a
tight lower bound for correctness.

Let’s see, for Kyber768 (k = 3, n = 256, q = 7681, η = 4)

` > log2

(
kn
⌊q

2

⌋
η + η + 1

)
+ 1 ≈ 24.5 =⇒ ` = 25.

This means having log2 f (t) = log2 f (2`) > ` · n = 6400.

Problem: our RSA multiplier computes x · y mod z where
log x , log y , log z < 2200.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

How should we chose t = 2` ∈ Z? In [AHH+18], we provide a
tight lower bound for correctness.

Let’s see, for Kyber768 (k = 3, n = 256, q = 7681, η = 4)

` > log2

(
kn
⌊q

2

⌋
η + η + 1

)
+ 1 ≈ 24.5 =⇒ ` = 25.

This means having log2 f (t) = log2 f (2`) > ` · n = 6400.

Problem: our RSA multiplier computes x · y mod z where
log x , log y , log z < 2200.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice. We can interpolate between full
polynomial multiplication and KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

The idea: a0 + a1 x + · · ·+ a4 x
4 + a5 x

5 =
(a0 + a2 y + a4 y

2) + (a1 + a3 y + a5 y
2) x mod (y − x2).

This technique enables us to compute the Kyber768
MULADD operation by combining Karatsuba-like
multiplication of, say, degree 4 in x with KS for polynomials
of degree 64 in y , using ` > 25 (we choose ` = 32).



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice. We can interpolate between full
polynomial multiplication and KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

The idea: a0 + a1 x + · · ·+ a4 x
4 + a5 x

5 =
(a0 + a2 y + a4 y

2) + (a1 + a3 y + a5 y
2) x mod (y − x2).

This technique enables us to compute the Kyber768
MULADD operation by combining Karatsuba-like
multiplication of, say, degree 4 in x with KS for polynomials
of degree 64 in y , using ` > 25 (we choose ` = 32).



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF,
SHAKE-256 as PRF, and SHA3 as hash function for the CCA
transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

A similar variant was introduced in NIST PQC’s second round
Kyber revision as “Kyber-90s”.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF,
SHAKE-256 as PRF, and SHA3 as hash function for the CCA
transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

A similar variant was introduced in NIST PQC’s second round
Kyber revision as “Kyber-90s”.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF,
SHAKE-256 as PRF, and SHA3 as hash function for the CCA
transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

A similar variant was introduced in NIST PQC’s second round
Kyber revision as “Kyber-90s”.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Table: Comparison of our work with other PKE or KEM schemes on SLE 78.

Scheme Target Gen Enc Dec

Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367
Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000
RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000
Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 14,600,000 ≈ 5,400,000
NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000
a

CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2 on SLE 78 @ 50 MHz.
b

CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the SHA-256 co-processor to implement G
and H and KS2 on SLE 78 @ 50 MHz.

c
RSA-2048 encryption with short exponent and decryption without CRT and with countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

d
RSA-2048 decryption with short exponent and decryption with CRT and countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

e
Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation assuming usage of the AES co-processor
to implement PRF/XOF and a software implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

f
Reference implementation of constant time ephemeral NewHope key exchange (n = 1024) [ADPS16] modified to use the
AES co-processor as PRNG on SLE 78 @ 50 MHz.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Investigate other schemes:

ThreeBears [Ham17] (uses only integers, but they are too long
for the SLE 78 co-processor) or SABER [DKRV17] (similar
design, power-of-two q).

Try designing a scheme with parameters such that each
packed polynomial fits directly into a co-processor register
(prime cyclotomic? Kyber with smaller non-NTT-friendly q?).

Try implementing a signature scheme, e.g. Dilithium.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Final idea:

LWE-based CPA schemes tolerate some small level of noise
added to the ciphertext.

Maybe we can choose ` smaller than what our correctness
lower bound requires.

We could introduce carry-over errors when computing

a · b + c mod f .

If we can bound the error norm, we may still get correct
decryption, with smaller packed polynomials.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Thank you

You can find:

the paper @ https://ia.cr/2018/425

the code @
https://github.com/fvirdia/lwe-on-rsa-copro

me @ https://fundamental.domains

https://ia.cr/2018/425
https://github.com/fvirdia/lwe-on-rsa-copro
https://fundamental.domains


Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Scheme Cycles

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF) 4,747,291
Kyber.CPA.Imp.Dec 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G ,H) 18,051,747
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G ,H) 19,702,139

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 6,632,704

Table: Performance of our work on the SLE 78 target device in clock
cycles.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange - A new hope.
In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
327–343. USENIX Association, August 2016.

Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppelmann,
Fernando Virdia, and Andreas Wallner.
Implementing RLWE-based schemes using an RSA co-processor.
IACR TCHES, 2019(1):169–208, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7338.

Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos Santha.
Mersenne-756839.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

A. Aysu, C. Patterson, and P. Schaumont.
Low-cost and area-efficient fpga implementations of lattice-based cryptography.
In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 81–86, June 2013.

Lejla Batina and Matthew Robshaw, editors.
CHES 2014, volume 8731 of LNCS. Springer, Heidelberg, September 2014.

D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao,
and I. Verbauwhede.

https://tches.iacr.org/index.php/TCHES/article/view/7338
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

High-speed polynomial multiplication architecture for ring-lwe and she
cryptosystems.
IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1):157–166,
Jan 2015.

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren.
Saber.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin A. Huss.
On the design of hardware building blocks for modern lattice-based encryption
schemes.
In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 512–529. Springer, Heidelberg, September 2012.

Mike Hamburg.
Three bears.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

David Harvey.
Faster polynomial multiplication via multipoint kronecker substitution.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

J. Symb. Comput., 44(10):1502–1510, 2009.

Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy,
Tim Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
High-performance ideal lattice-based cryptography on 8-bit AVR
microcontrollers.
ACM Trans. Embedded Comput. Syst., 16(4):117:1–117:24, 2017.

H. Nussbaumer.
Fast polynomial transform algorithms for digital convolution.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(2):205–215,
Apr 1980.

Thomas Pöppelmann, Léo Ducas, and Tim Güneysu.
Enhanced lattice-based signatures on reconfigurable hardware.
In Batina and Robshaw [BR14], pages 353–370.

Thomas Pöppelmann and Tim Güneysu.
Towards efficient arithmetic for lattice-based cryptography on reconfigurable
hardware.
In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT 2012, volume
7533 of LNCS, pages 139–158. Springer, Heidelberg, October 2012.

Thomas Pöppelmann and Tim Güneysu.
Towards practical lattice-based public-key encryption on reconfigurable hardware.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume
8282 of LNCS, pages 68–85. Springer, Heidelberg, August 2014.

T. Pöppelmann and T. Güneysu.
Area optimization of lightweight lattice-based encryption on reconfigurable
hardware.
In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages
2796–2799, June 2014.

Thomas Pöppelmann, Tobias Oder, and Tim Güneysu.
High-performance ideal lattice-based cryptography on 8-bit ATxmega
microcontrollers.
In Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors,
LATINCRYPT 2015, volume 9230 of LNCS, pages 346–365. Springer,
Heidelberg, August 2015.

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation.
In Tim Güneysu and Helena Handschuh, editors, CHES 2015, volume 9293 of
LNCS, pages 683–702. Springer, Heidelberg, September 2015.

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede.
Compact ring-LWE cryptoprocessor.
In Batina and Robshaw [BR14], pages 371–391.

Arnold Schönhage.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Schnelle multiplikation von polynomen über körpern der charakteristik 2.
Acta Informatica, 7(4):395–398, Dec 1977.

Peter W. Shor.
Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer.
SIAM J. Comput., 26(5):1484–1509, October 1997.

Joachim Von Zur Gathen and Jürgen Gerhard.
Modern computer algebra.
Cambridge university press, 2013.


	Prelude
	Post-quantum cryptography

	Deploying cryptography
	Deployment in general
	Lattice-based cryptography

	Ring arithmetic on RSA co-processors
	Kronecker Substitution
	Splitting rings

	Implementation
	Future directions

