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Post-quantum cryptography

[Sho97] introduces a fast1 order-finding quantum algorithm
that allows factoring and computing discrete logs in Abelian
groups.

Since then, there has been a growing effort to develop new
public-key primitives that can resist cryptanalysis using
large-scale general quantum computers.

Many of the schemes proposed to NIST for standardisation
are based on problems defined over polynomial rings, such as
the RLWE problem.

1Let’s not go there.
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Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers were required to
provide fast software implementations with a focus on modern
CPU architectures.

Furthermore, a lot of work has been done in the direction of
constrained (often embedded) environments such as
microcontrollers or smart cards.

2Other than being secure in some appropriate model!
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Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

Currently available smart-cards provide low-power 16-bit and
32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors (and DES!),

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In this smart-card context, what would be required to run
(ideal) lattice-based cryptography?



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

The most expensive operation in RLWE-based schemes is
computing MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is often computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for RLWE
co-processors have been proposed3.

Yet, new hardware design means having to implement, test,
certify, and deploy!

3E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]
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Our approach: we construct a flexible MULADD gadget by
reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with
competitive performance on the SLE 78 platform.

Throughout this work we refer to the original NIST PQC’s
first round design/parameters of Kyber.
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Kronecker Substitution

Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

It also works when evaluating a(x) mod f (x):

a = 3x2 + 10x + 8

f = x2 + 1

a mod f = 3x2 + 10x + 8

− 3(x2 + 1)

= 10x + 5

A= a(100) = 3 · 1002 + 10 · 100 + 8

F = f (100) = 1002 + 1

A mod F = 3 · 1002 + 10 · 100 + 8

− 3(1002 + 1)

= 1005 = 10 · 100 + 5



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker Substitution

By combining the two properties, and choosing fixed
representatives for coefficients in Zq, it is possible to compute

a(x) · b(x) + c(x) mod (q, f (x))

by
a(t) · b(t) + c(t) mod f (t)

where t ∈ Z is large enough.

Since these are all integers, we can use our RSA co-processor
to compute in Zf (t)!
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Kronecker Substitution

How should we chose t = 2` ∈ Z? In [AHH+18], we provide a
tight lower bound for correctness.

Let’s see, for Kyber768 (k = 3, n = 256, q = 7681, η = 4)

` > log2

(
kn
⌊q

2

⌋
η + η + 1

)
+ 1 ≈ 24.5 =⇒ ` = 25.

This means having log2 f (t) = log2 f (2`) > ` · n = 6400.

Problem: our RSA multiplier computes x · y mod z where
log x , log y , log z < 2200.
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Splitting rings

Splitting rings

KS alone won’t suffice. We can interpolate between full
polynomial multiplication and KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

The idea: a0 + a1 x + · · ·+ a4 x
4 + a5 x

5 =
(a0 + a2 y + a4 y

2) + (a1 + a3 y + a5 y
2) x mod (y − x2).

This technique enables us to compute the Kyber768
MULADD operation by combining Karatsuba-like
multiplication of, say, degree 4 in x with KS for polynomials
of degree 64 in y , using ` > 25 (we choose ` = 32).
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After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF,
SHAKE-256 as PRF, and SHA3 as hash function for the CCA
transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

A similar variant was introduced in NIST PQC’s second round
Kyber revision as “Kyber-90s”.
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Table: Comparison of our work with other PKE or KEM schemes on SLE 78.

Scheme Target Gen Enc Dec

Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367
Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000
RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000
Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 14,600,000 ≈ 5,400,000
NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000
a

CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2 on SLE 78 @ 50 MHz.
b

CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the SHA-256 co-processor to implement G
and H and KS2 on SLE 78 @ 50 MHz.

c
RSA-2048 encryption with short exponent and decryption without CRT and with countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

d
RSA-2048 decryption with short exponent and decryption with CRT and countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

e
Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation assuming usage of the AES co-processor
to implement PRF/XOF and a software implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

f
Reference implementation of constant time ephemeral NewHope key exchange (n = 1024) [ADPS16] modified to use the
AES co-processor as PRNG on SLE 78 @ 50 MHz.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Investigate other schemes:

ThreeBears [Ham17] (uses only integers, but they are too long
for the SLE 78 co-processor) or SABER [DKRV17] (similar
design, power-of-two q).

Try designing a scheme with parameters such that each
packed polynomial fits directly into a co-processor register
(prime cyclotomic? Kyber with smaller non-NTT-friendly q?).

Try implementing a signature scheme, e.g. Dilithium.
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Final idea:

LWE-based CPA schemes tolerate some small level of noise
added to the ciphertext.

Maybe we can choose ` smaller than what our correctness
lower bound requires.

We could introduce carry-over errors when computing

a · b + c mod f .

If we can bound the error norm, we may still get correct
decryption, with smaller packed polynomials.
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Thank you

You can find:

the paper @ https://ia.cr/2018/425

the code @
https://github.com/fvirdia/lwe-on-rsa-copro

me @ https://fundamental.domains

https://ia.cr/2018/425
https://github.com/fvirdia/lwe-on-rsa-copro
https://fundamental.domains
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Scheme Cycles

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF) 4,747,291
Kyber.CPA.Imp.Dec 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G ,H) 18,051,747
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G ,H) 19,702,139

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 6,632,704

Table: Performance of our work on the SLE 78 target device in clock
cycles.
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Post-quantum key exchange - A new hope.
In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
327–343. USENIX Association, August 2016.

Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppelmann,
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