
3-Share Threshold Implementation of 

AES S-box without Fresh Randomness

Takeshi Sugawara

The University of Electro-Communications, Japan
University of Michigan, US

This work is funded by JSPS KAKENHI Grant Number 17H06681 and JP18H05289

CHES 2019

1



Overview

Threshold implementation
(Nicova et al., ICICS2006)

Changing of the guards 
(Daemen, CHES2017)

Methodology Implementation

3-Share + Uniform Keccak S-box
(Daemen, CHES2017)

4-Share + Uniform  AES S-box
(Wegener & Moradi, COSADE2018)

Generalized
Changing of the guards 

(This work)
3-Share + Uniform AES S-box

(This work)

2

Difficulty in realizing
3-share + Uniform TI for

AES and Keccak for 10+ years



TI: Threshold Implementation

• Implement crypto while keeping shared representation of 
intermediate variables

xa xb xc

ψa ψb ψc

Xa Xb Xc

Input share ("#, "%, "&) :
"# ⊕ "% ⊕ "& = " Sharing *#,*%,*&

maps a share to another 
share 

Correctness:
*#,*%,*& gives 

the correct result

Non-completeness:
Each map uses only a 
proper subset

ψ

X

x

Output share (+#, +%, +&) :
+# ⊕+% ⊕+& = +

3

*# *% *&*

"# "% "&

+# +% +&

"

+



Uniformity

• Uniformity about shares
• For each (raw) value, all the 

possible shares should appear 
equally

• Necessary for security against 
statistical attack

• Uniformity about sharing
• The sharing preserves the 

uniformity about shares:

Input share is uniform
⟹ output share is uniform

Example:
3-share of 1-bit variable

Raw 
value

Share Prob. 

0 (0,0,0) 1/16
0 (0,1,1) 1/16
0 (1,0,1) 1/16
0 (1,1,0) 1/16
1 (0,0,1) 3/16
1 (0,1,0) 3/16
1 (1,0,0) 3/16
1 (1,1,1) 3/16

4



Uniformity is difficult to satisfy
xa xb xc

ψa ψb ψc

Xa Xb Xc

xa xb xc

ψa ψb ψc

Xa Xb Xc

Remasking

• There had been no 3-share + 
uniform sharing for Keccak and 
AES S-boxes until 2017

• If no uniformity, 
we should add fresh 
randomness to make the 
output share uniform again
• 1—10 Kbits/AES
• 10—50 bits/cycle

Fresh
randomness

5

!" !# !$

!" !# !$



CotG: Changing of the Guards 
(Daemen, CHES2017)

• Using a neighboring input share for (pseudo) remasking

• Applicable to bijective mapping
• Succeeded in making 3-share + uniform Keccak S-box

x1a x1b x1c

X1a X1b X1c

x2a x2b x2c

X2a X2b X2c X3a X3b X3c

x0c

x0b

SbSa Sc SbSa Sc SbSa Sc

x2a x2b x2c

X0b

X0c

6



Why we can’t use CotG for 3-share AES S-box

• We need to decompose S-box to reduce the number of 
shares, and we get multiplications that are not bijective

GF(24)

GF(24)

GF(24)

GF(24)

GF(22)

GF(22)

GF(22)

GF(22)

GF(22)
Sq. Sc.

Mult.

Sq. Sc.

Mult.

Inv.

Mult.

Mult.

Mult.

Mult.

2nd Stage 3rd Stage 4th Stage

4 4

4

4

2

2

4

4

2

2

2 4

2

2

4

4

8

4

4

Linear
Map

Inv.
8

Linear
Map 8

1st Stage

Canright’s S-box implementation

7



Basic idea toward generalization

• Transform the target mapping ! into an equivalent
mapping !" that has a uniform sharing

!#,!%,!&!

!" !#",!%
",!&"

Transform

8

Uniform



Expansion
• Transforming the target ! into a bijective mapping 
!" using the (unbalanced) Feistel network

x

E
ψ

ψ

y

nm

nm

9

!
!"

! # ⊕ % #

% #



Expansion cont.
• !" always has a uniform sharing !#",!#",!#"

• ∵ The sharing is bijective because the Feistel structure is preserved

• ∵ A sharing is bijective ⟹ the sharing is uniform

x

E
ψ

ψ

y xa xb xc

a

b

c

ψ
ψ
ψ

ya yb yc

a

b

c

ψ
ψ
ψ

E

E

E

10

!
!"

!#
!'
!(

!#"

!'
"

!("

! ) ⊕ +

+ )

) {!#,!',!(} is a non-uniform sharing of !



Expansion is not enough
• Feeding !" # to CotG does not make a lot of 

sense since it outputs ! # ⊕ % instead of ! #
• % should be 0 and we need to get it from 

somewhere

11

x

E
ψ

ψ

y

!
!"

! # ⊕ %

% #

#



Restriction
• Converting the unnecessary output to zero
• Feeding it to a neighboring mapping as a zero input

x

E

R

ψ
ψ

ψ

y

XY

⊥
⊥ψ

Null mapping ⊥:
maps anything to 0

""#

"$

"%

" &

&'

'

x

E

R

ψ
ψ

ψ

y

XY

⊥
⊥ψ

"()

($

(*

" &′

&’'

'



Restriction cont.
• The null mapping ⊥	has a uniform sharing

• #$, #&, #' ↦ {#& ⊕ #', #&, #', }

x

E

R

ψ
ψ

ψ

y

XY

⊥
⊥ψ

xa xb xc

a

b

c

ψ
ψ
ψ

ya yb yc

Xa Xb XcYa Yb Yc

a

b

c

ψ
ψ
ψ

E

E

E a

b

c

ψ
ψ
ψ

R

R

R

a

b

c

ψ
ψ
ψ

⊥

⊥

⊥

Converting unnecessary share 
to another one representing 0

13

,,-

,.

,/

,$
,&
,'

,$-

,&
-

,'-

,$.

,&
.

,'.

,$/

,&
/

,'/



Chaining
• For a target map having the same 

input and output sizes (! = #), 
we can easily chain zero outputs 
and inputs

• The right figure shows 3-parallel 
mapping given by

x1 x2 x30

X1 X2 X3 0

ψ

ψ

ψ

⊥

⊥

⊥

0

0

0

14

$

$

$
(&, (), (*, (+)
↦ ($(()),$((*),$((+), &)

nm



Chaining cont.
• By substituting each !" with its sharing, we get a uniform 

sharing of a layer of parallel !"s
x1 x2 x30

X1 X2 X3 0

ψ

ψ

ψ

⊥

⊥

⊥

x1 x1 x1 x2 x2 x2 x3 x3 x3

X1 X1 X1 X2 X2 X2 X3 X3 X3

a b c a b c a b c

a b c a b c a b c

Extra input

Extra output

a

b

c

ψ
ψ
ψ

a

b

c

ψ
ψ
ψ

a

b

c

ψ
ψ
ψ

15



Why it is a generalization of CotG
• This sharing is the same as Daemen’s CotG
• Now we can also support non-bijective mapping

x1 x1 x1 x2 x2 x2 x3 x3 x3

X1 X1 X1 X2 X2 X2 X3 X3 X3

a b c a b c a b c

a b c a b c a b c

Extra input

Extra output

a

b

c

ψ
ψ
ψ

a

b

c

ψ
ψ
ψ

a

b

c

ψ
ψ
ψ

=
x1a x1b x1c

X1a X1b X1c

x2a x2b x2c

X2a X2b X2c X3a X3b X3c

x0c

x0b

SbSa Sc SbSa Sc SbSa Sc

x2a x2b x2c

X0b

X0c

16



A map with different input/output sizes
• Input is larger: we get additional zero outputs that we can use later
• Output is larger: we need additional zero inputs

x10 y1z1 x2 y2z2 x3 y3z3

X1 Y1

g
g

0

0 0

Additional inputs for

Additional outputs

g
g

g
g

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥

the Changing of the Guards

X2 Y2 X3 Y3

Z1 Z2 Z3

x10 y1z1 x2 y2z2 x3 y3z30

0 0X1 Y1 X2 Y2 X3 Y3

Z1 Z2 Z3

gagbgc

gagbgc

gagbgc

gagbgc

gagbgc

gagbgc

17



Application 
to AES S-box

• 4-stage Canright’s S-box is 
expanded to make all the 
stages uniform
• + 6-bit additional input
• + 6-bit additional output

• Register overhead 
≒ Initial randomness:
• 6 bits * 3 shares *16 S-boxes 

= 288 bits + some more

18

222222

Split

444 222

888 222

888

S-box input Additional input for GF(24) Additional input for GF(22)

2nd
Stage

3rd
Stage

Linear Map

1st
Stage

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(24)
mult,

sq. & sc.

GF(24)
mult,

sq. & sc.

GF(24)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

888 444 222

444444

222

S-box output Additional output for GF(24) Additional output for GF(22)

4th
Stage

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

888 444 222

Inv. Linear Map

888

Split

Concatenate

444

8 bits

16 bits

GF(22) Inv.

888

xa xb xc ya yb yc za zb zc

Xa
1 Xb

1 Xc
1 Ya

1 Yb
1 Yc

1 Za
1 Zb

1 Zc
1

ta
1

tb
1

tc
1

Xa
2 Xb

2 Xc
2 Ya

2 Yb
2 Yc

2 Za
2 Zb

2 Zc
2

ta
2

tb
2

tc
2

ta
3 tb

3 tc
3

Xa
4 Xb

4 Xc
4 Ya

4 Yb
4 Yc

4 Za
4 Zb

4 Zc
4

ta
4 tb

4 tc
4

va vb
vc

wa wbwc

Concatenate

Xa
3 Xb

3 Xc
3 Ya

3 Yb
3 Yc

3 Za
3 Zb

3 Zc
3

444



Conclusion

• A generalization of the Changing of the Guards that 
supports non-bijective targets

• The first 3-share and uniform threshold 
implementation of the AES S-box

19


