#### CHES 2019

# **3-Share Threshold Implementation of AES S-box without Fresh Randomness**

Takeshi Sugawara

#### The University of Electro-Communications, Japan University of Michigan, US

This work is funded by JSPS KAKENHI Grant Number 17H06681 and JP18H05289

#### Overview

#### Implementation Methodology Threshold implementation Difficulty in realizing (Nicova et al., ICICS2006) 3-share + Uniform TI for AES and Keccak for 10+ years **Changing of the guards** 3-Share + Uniform Keccak S-box (Daemen, CHES2017) (Daemen, CHES2017) 4-Share + Uniform AES S-box (Wegener & Moradi, COSADE2018) Generalized **3-Share + Uniform AES S-box Changing of the guards** (This work) (This work)

## **TI: Threshold Implementation**

• Implement crypto while keeping shared representation of intermediate variables

Input share  $(x_a, x_b, x_c)$ :  $x_a \oplus x_b \oplus x_c = x$ 



Output share  $(X_a, X_b, X_c)$ :  $X_a \bigoplus X_b \bigoplus X_c = X$  Sharing  $\{\psi_a, \psi_b, \psi_c\}$ maps a share to another share

Correctness:  $\{\psi_a, \psi_b, \psi_c\}$  gives the correct result

Non-completeness: Each map uses only a proper subset

# Uniformity

#### Uniformity about shares

- For each (raw) value, all the possible shares should appear equally
- Necessary for security against statistical attack
- Uniformity about sharing
  - The sharing preserves the uniformity about shares:

Input share is uniform  $\Rightarrow$  output share is uniform

Example:

3-share of 1-bit variable

| Raw<br>value | Share   | Prob. |
|--------------|---------|-------|
| 0            | (0,0,0) | 1/16  |
| 0            | (0,1,1) | 1/16  |
| 0            | (1,0,1) | 1/16  |
| 0            | (1,1,0) | 1/16  |
| 1            | (0,0,1) | 3/16  |
| 1            | (0,1,0) | 3/16  |
| 1            | (1,0,0) | 3/16  |
| 1            | (1,1,1) | 3/16  |

# Uniformity is difficult to satisfy

- There had been no 3-share + uniform sharing for Keccak and AES S-boxes until 2017
- If no uniformity, we should add fresh randomness to make the output share uniform again
  - 1—10 Kbits/AES
  - 10-50 bits/cycle



## CotG: Changing of the Guards (Daemen, CHES2017)

- Using a neighboring input share for (pseudo) remasking
- Applicable to bijective mapping
  - Succeeded in making 3-share + uniform Keccak S-box



#### Why we can't use CotG for 3-share AES S-box

• We need to decompose S-box to reduce the number of shares, and we get **multiplications that are not bijective** 

#### Canright's S-box implementation



#### Basic idea toward generalization

• Transform the target mapping  $\psi$  into an equivalent mapping  $\psi^R$  that has a uniform sharing



#### Expansion

• Transforming the target  $\psi$  into a bijective mapping  $\psi^E$  using the (unbalanced) Feistel network



#### Expansion cont.

- $\psi^{E}$  always has a uniform sharing  $\{\psi^{E}_{a}, \psi^{E}_{a}, \psi^{E}_{a}\}$ 
  - : The sharing is bijective because the Feistel structure is preserved
  - :: A sharing is bijective  $\implies$  the sharing is uniform



#### Expansion is not enough

- Feeding  $\psi^{E}(x)$  to CotG does not make a lot of sense since it outputs  $\psi(x) \oplus y$  instead of  $\psi(x)$
- y should be 0 and we need to get it from somewhere



## Restriction

- Converting the unnecessary output to zero
- Feeding it to a neighboring mapping as a zero input



#### Restriction cont.

- The null mapping  $\perp$  has a uniform sharing
  - $\{x_a, x_b, x_c\} \mapsto \{x_b \oplus x_c, x_b, x_c, \}$

Converting unnecessary share to another one representing 0



# Chaining

- For a target map having the same input and output sizes (*m* = *n*), we can easily chain zero outputs and inputs
- The right figure shows 3-parallel mapping given by

$$(0, x^1, x^2, x^3)$$
  
 $\mapsto (\psi(x^1), \psi(x^2), \psi(x^3), 0)$ 



## Chaining cont.

• By substituting each  $\psi^R$  with its sharing, we get a uniform sharing of a layer of parallel  $\psi^R$ s



## Why it is a generalization of CotG

- This sharing is the same as Daemen's CotG
- Now we can also support non-bijective mapping



#### A map with different input/output sizes

- Input is larger: we get additional zero outputs that we can use later
- Output is larger: we need additional zero inputs



# Application to AES S-box

- 4-stage Canright's S-box is expanded to make all the stages uniform
  - + 6-bit additional input
  - + 6-bit additional output
- - 6 bits \* 3 shares \*16 S-boxes
    = 288 bits + some more



## Conclusion

- A generalization of the Changing of the Guards that supports non-bijective targets
- The first 3-share and uniform threshold implementation of the AES S-box