
3-Share Threshold Implementation of AES S-box
without Fresh Randomness

Takeshi Sugawara

The University of Electro-Communications, Tokyo

Abstract. Threshold implementation is studied as a countermeasure against side-
channel attack. There had been no threshold implementation for the AES and
Keccak S-boxes that satisfies an important property called uniformity. In the con-
ventional implementations, intermediate values are remasked to compensate for the
lack of uniformity. The remasking consumes thousands of fresh random bits and
its implementation cost is a serious concern. Daemen recently proposed a 3-share
uniform threshold implementation of the Keccak S-box. This is enabled by a new
technique called the changing of the guards which can be applied to any invertible
functions. Subsequently, Wegener et al. proposed a 4-share threshold implementation
of the AES S-box based on the changing of the guards technique. However, a 3-share
threshold implementation of AES S-box remains open. The difficulty stays in 2-input
multiplication, used in decomposed S-box representations, which is non-invertible
because of different input and output sizes. In this study, this problem is addressed
by introducing a certain generalization of the changing of the guards technique. The
proposed method provides a generic way to construct a uniform sharing for a target
function having different input and output sizes. The key idea is to transform a target
function into an invertible one by adding additional inputs and outputs. Based on
the proposed technique, the first 3-share threshold implementation of AES S-box
without fresh randomness is presented. Performance evaluation and simulation-based
leakage assessment of the implementation are also presented.
Keywords: Threshold Implementation, AES, Side-channel Attack, Changing of the
Guards, Differential Power Analysis

1 Introduction
Cryptography can be used in a hostile environment in which an attacker has physical
access to a computational device. In such an environment, the attacker can obtain infor-
mation leakage via physical side-channels such as execution time, power consumption, and
electromagnetic radiation. Side-channel attack (SCA) introduced by Kocher et al. [KJJ99]
exploits such information leakage to break cryptography. Subsequently, new attacks and
countermeasures have been studied for more than two decades.

SCA is a serious threat in the real world, and thus, countermeasures are indispensable
in applications such as smartcards. The need for countermeasures against SCA is increasing
because embedded devices are increasingly used in hostile environments for the Internet of
things [RSWO18].

Correlation between side-channel leakage and secret data being processed should be re-
moved to counteract SCA. Accordingly, countermeasures based on multi-party computation
(MPC) are intensively studied as a promising approach [ISW03]. In the countermeasures,
a target variable is split into a set of variables called a share in such a way that a proper
subset will not leak information of the original variable. Subsequently, cryptographic
computation is performed by using the shares without reconstructing the original value.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 1, pp. 123–145
DOI:10.13154/tches.v2019.i1.123-145

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i1.123-145

124 3-Share Threshold Implementation of AES S-box without Fresh Randomness

Table 1: Performance evaluation of the proposed AES implementations and comparison
with the performance of conventional designs with 1st order security. The entries with †
are based on [WM18].

Design Latency S-box AES Rand. AL-product Standard-cell
[cycles] [kGE] [kGE] [bits/S-box] [cycles ·kGE] library

[MPL+11] 266 4.2 11.1 44 2952.6 UMC 180-nm
[BGN+15]† 246 2.2 7.2 16 1771.2 UMC 180-nm
[GMK17]† 246 2.6 6.0 18 1476.0 UMC 90-nm
[CRB+16]† 276 1.9 6.3 54 1738.8 NanGate 45-nm
[UHA17]† 219 1.4 6.3 64 1379.7 TSMC 65-nm

[WM18]† 2,804 4.2 7.6 0 21310.0 UMC 180-nm
This work 266 3.5 17.1 0 4548.6 NanGate 45-nm

Nikova et al. proposed an MPC-based countermeasure called threshold implementation
(TI) [NRR06]. Owing to its efficiency, it is considered a promising countermeasure against
SCA. Since the number of shares has a significant impact to the implementation cost,
constructing a target function with a minimum number of shares is a critical challenge
in TI. It is known that, for an S-box with an algebraic degree of d, d + 1 shares are
sufficient [NRS11]. As d ≥ 2 for non-linear functions, realizing 3-share TI has been an
important research challenge. To reduce the number of shares, an S-box with a high
algebraic degree (e.g., d = 7 for the AES S-box) is decomposed into sub-functions with
lower algebraic degrees [MPL+11, BGN+15, GMK17, CRB+16, UHA17, WM18].

Unfortunately, a 3-share realization is not always available because of uniformity—a
property regarding uniform distribution of shares. In particular, there have been no 3-share
TIs for the NIST-standardized algorithms Keccak and AES. Therefore, fresh randomness is
added during the execution to compensate for the lack of uniformity [MPL+11, BGN+15,
UHA17]. The treatment is called remasking. Accordingly, 16 to 64 fresh random bits are
required for a single S-box lookup as summarized in Table 1.

The cost of the fresh random bits is a serious concern. We refer the paper by Papa-
giannopoulos [Pap18] for a good survey on the cost of randomness in software platforms.
Generating random numbers is a challenging task in hardware platforms, too. The con-
ventional implementations in Table 1 consume dozens of random bits for each cycle. One
possible way to generate random numbers at such a high rate is to use a low-latency
cryptography. De Cnudde used an unrolled PRINCE implementation as a pseudo-random
number generator [CRB+16]1. An unrolled PRINCE implementation by the algorithm
designers uses 8.2 [kGE] and 556 pJ/cycle (8.3 mW @ 67 ns) [BCG+12]. On the other
hand, the proposed AES circuit which will appear in this paper use 9.9 pJ/cycle. That
means the random number generator consumes 50 times more energy per cycle than the
main AES circuit. That can be a serious problem in chips with limited energy or power
budgets such as near-field communication (NFC) and battery-powered devices. Another
way is to generate all the random bits in advance. However, the implementations in
Table 1 consume 2,560–10,240 random bits for each encryption. To store these random bits,
17.9–71.7 [kGE] of registers are needed. That is more expensive than the main AES circuit
again. Consequently, randomness optimization is considered as an important research
challenge [BBP+16, FPS17, Pap18].

Recently, Daemen addressed the problem for Keccak by introducing a new technique
called the changing of the guards [Dae17]. The idea behind the changing of the guards
technique is to construct a TI of a layer of S-boxes instead of a distinct S-box. The
technique enables uniform TI for a layer of any invertible S-boxes. Consequently, a 3-share

1Note that De Cnudde et al. used a round-reduced PRINCE, but the number of rounds was not given.

Takeshi Sugawara 125

uniform TI is successfully constructed for the Keccak S-box. However, there is an obstacle
to applying the method to the AES S-box. As discussed previously, the AES S-box should
be decomposed to reduce the number of shares. Such a decomposed S-box involves 2-input
multiplication that is non-invertible, and thus the changing of the guards technique cannot
be applied.

More recently, Wegener et al. decomposed the AES S-box into stages having an
algebraic degree of 3 in such a way that the changing of the guards technique is applicable.
That enabled the first 4-share uniform sharing for the AES S-box [WM18]. However,
implementing a 4-share TI is expensive: a straightforward implementation required more
than 20 [kGE] for a single S-box. Wegener et al. tackled the problem by proposing a
sophisticated circuit architecture that can be realized with only 4.2 [kGE]. However, the
area reduction is achieved at the cost of long latency as shown in Table 1. Therefore, a
3-share uniform TI of the AES S-box is still an important challenge.

Contributions In this study, we address the problem by introducing a certain generaliza-
tion of the changing of the guards technique, which provides a generic way to construct a
uniform sharing for any function. The proposed method is based on transforming a target
function into an invertible one while maintaining its essential functionality unchanged.
Subsequently, a TI of the transformed function is constructed. We propose the first 3-share
uniform TI of the AES S-box based on the proposed technique. Subsequently, we design
and evaluate a concrete 3-share AES implementation with the proposed S-box technique.
Owing to the smaller number of shares, the cost of the proposed design is smaller than
1/4 that of the conventional design by Wegener et al. [WM18] in terms of the area–latency
product as shown in Table 1. The security of the proposed method is evaluated through
theoretical analysis and a simulation-based leakage assessment.

Organization The rest of this paper is organized as follows. In Sect. 2, we briefly review
the conventional works: TI, the changing of the guards technique, and the Canright’s S-box
implementation [Can05]. Subsequently, the proposed method is described in Sect. 3.1. Its
relation to the changing of the guards technique is discussed in Sect. 3.2. The proposed
method is applied to the Canright’s AES S-box implementation in Sect. 4.1 and 4.2.
The overall design and analysis of the proposed AES S-box implementation are shown
in Sect. 4.3. Sect. 4.4 shows an AES circuit with the proposed S-box implementation.
Sect. 4.4 also provides the performance and security evaluation of the AES circuit. All the
proofs are given in the Appendix.

2 Preliminary
2.1 Notation
In this paper, we discuss shares with three elements unless otherwise stated. Given a
variable x, its share is represented as

x = [xa, xb, xc] s.t. x = xa + xb + xc.

Some proper subsets of x are denoted by

x̃a = [xb, xc], x̃b = [xa, xc], x̃c = [xa, xb].

The terms “function” and “mapping” are used interchangeably. Sharing of a mapping
ψ is given by a set of component mappings {ψa, ψb, ψc}. The inputs and outputs of a
mapping are denoted by small and large letters, respectively. A mapping from x to X can
be expressed as either X = ψ(x) or x ψ7−→ X. We denote addition over GF (2) by +.

126 3-Share Threshold Implementation of AES S-box without Fresh Randomness

2.2 Threshold Implementation

A mapping from x to X namely X = ψ(x) is considered. In TI, a variable x is represented
as a share x = [xa, xb, xc] s.t. x = xa + xb + xc. The overall cryptographic algorithm is
implemented by using shares without reconstructing the original values. To ensure the
requirement, ψ is split into three component functions namely

Xa = ψa(x̃a), Xb = ψb(x̃b), Xc = ψc(x̃c), (1)

where [Xa, Xb, Xc] is an output share. In TI, there are three important properties namely
correctness, non-completeness, and uniformity.

Correctness The sharing {ψa, ψb, ψc} is said to be correct if the output share represents
the output of the original function ψ, i.e.,

ψ(x) = X = Xa +Xb +Xc = ψa(x̃a) + ψb(x̃b) + ψc(x̃c).

Non-Completeness The sharing {ψa, ψb, ψc} is said to be non-complete if each of
{ψa, ψb, ψc} uses only a proper subset of the input share [xa, xb, xc]. The component
functions shown in Eq. (1) are non-complete because the component functions ψa, ψb, and
ψc are independent of xa, xb, and xc, respectively.

Uniformity The probabilistic distributions of the original and shared inputs are denoted
by PI(x) and P I(x), respectively. The input share is said to be uniform if and only if, for
any x, its shares occur at the same probability

P I(x) = PI(x)
α

= PI(xa + xb + xc)
α

(2)

where α is a constant. Let PO(X) be the distribution of the original output, and let
PO(X) be the distribution of output shares, given uniform input shares. The sharing
{ψa, ψb, ψc} is said to be uniform if and only if, for any output X, its shares occur at the
same probability

PO(X) = PO(X)
α

= PO(Xa +Xb +Xc)
α

. (3)

Security of (1st order) TI is proved based on the single probing model [NRS11] in
which an attacker is allowed to probe an arbitrary wire in a target. Non-completeness
guarantees that leakage from either ψa, ψb, or ψc is independent of x. This is because each
component function has only a proper subset of the input share. More specifically, there is
no information leakage about the original input if the input share is uniform. Uniformity
ensures that shares are distributed uniformly even after component functions are applied.

For a mapping having an algebraic degree of d, correct and non-complete sharing can
be constructed with d+ 1 shares [NRS11]. The number of shares is a significant concern
because the implementation cost increases exponentially to d [Dae17]. Therefore, an
original function is usually decomposed into sub-functions having lower algebraic degrees
to reduce the number of shares [MPL+11, BGN+15, CRB+16, UHA17]. As d ≥ 2 for
non-linear functions, TI with three shares has been an important research challenge. There
is a recent study on a countermeasure with a smaller number of shares [CRB+16]. However,
three is still the minimum number of shares that can satisfy uniformity.

Takeshi Sugawara 127

x1
a

x1
b

x1
c

X1
a

X1
b

X1
c

x2
a

x2
b

x2
c

X2
a

X2
b

X2
c

x3
a

x3
b

x3
c

X3
a

X3
b

X3
c

x0
c

x0
b X0

b

X0
c

S
b

S
a

S
c

S
b

S
a

S
c

S
b

S
a

S
c

Figure 1: Changing of the Guards sharing

2.3 Changing of the Guards

Recently, Daemen introduced a technique called the changing of the guards that enables a
3-share uniform TI for the Keccak S-box [Dae17]. The technique can be applied to any
invertible S-box. Let S be an invertible S-box. Assume S has a correct and non-complete
(but non-uniform) sharing given by

x̃a
Sa7−→ Xa, x̃b

Sb7−→ Xb, x̃c
Sc7−→ Xc.

A layer comprising L-parallel S-boxes is considered. The layer maps from [x1, . . . , xL] to
[X1, . . . , XL] where Xi = S(xi) i.e., xi and Xi are input and output of the i-th S-box,
respectively. The changing of the guards sharing of the S layer is defined as follows:

Definition 1 (Changing of the guards [Dae17]). The changing of the guards sharing of the
S-box layer mapping from [[x1

a, x
1
b , x

1
c], . . . , [xLa , xLb , xLc]] to [[X1

a , X
1
b , X

1
c], . . . , [XL

a , X
L
b , X

L
c]]

is given by

Xi
a = Sa(x̃ia) + xi−1

b + xi−1
c , Xi

b = Sb(x̃ib) + xi−1
c , Xi

c = Sc(x̃ic) + xi−1
b

for i > 0 and X0
b = xLb , X0

c = xLc .

Fig. 1 shows a diagram of the changing of the guards sharing for L = 3. The idea
behind the changing of the guards is to obtain a correct, non-complete, and uniform TI of a
layer of S-boxes instead of a distinct S-box. An essential part is to remask the outputs from
the component functions by using a neighboring share. More specifically, the non-uniform
output share [Sa(x̃ia), Sb(x̃ib), Sc(x̃ic)] is remasked by adding a share [xi−1

b +xi−1
c , xi−1

c , xi−1
b]

that represents 0 and is generated by the neighboring input share.
Although the AES S-box is invertible, a straightforward application of the changing

of the guards is very inefficient [Dae17]. This is because the AES S-box has an algebraic
degree of 7 and thus, 8 shares are required. Conventionally, the AES S-box is decomposed
into sub-functions having lower algebraic degrees. However, the changing of the guards
technique cannot be applied to such a decomposed AES S-box. The difficulty stays in
2-input multiplication, used in the decomposed S-boxes, which is non-invertible because
of different input and output sizes. Therefore, efficient application of the changing of the
guards technique to the AES S-box remains open [Dae17].

More recently, Wegener et al. proposed the decomposition of the AES S-box into
invertible sub-functions having an algebraic degree of 3 [WM18]. By applying the changing
of the guards technique to the decomposed S-box, the first 4-share uniform TI for the AES
S-box is proposed. However, 3-share uniform TI for the AES S-box remains open.

128 3-Share Threshold Implementation of AES S-box without Fresh Randomness

Table 2: Irreducible polynomials and normal bases for the tower field representation

Extension Irreducible polynomial Normal basis
GF (28)/GF (24) r(y) = y2 + y + µ [Y, Y 16]
GF (24)/GF (22) s(z) = z2 + z +N [Z,Z4]
GF (22)/GF (2) t(w) = w2 + w + 1 [W,W 2]

GF(24)

GF(24)

GF(24)

GF(24)

GF(22)

GF(22)

GF(22)

GF(22)

GF(22)
Sq. Sc.

Mult.

Sq. Sc.

Mult.

Inv.

Mult.

Mult.

Mult.

Mult.

2nd Stage 3rd Stage 4th Stage

4 4

4

4

2

2

4

4

2

2

2 4

2

2

4

4

8

4

4

Linear
Map

Inv.

8
Linear

Map 8

1st Stage

Figure 2: Inversion over GF (28) in four stages

2.4 Canright’s AES S-box Implementation
The AES S-box is defined based on inversion over GF (28). Efficient implementations
exploiting its algebraic property have been studied so far. Notably, Canright proposed a
compact implementation based on tower field representation with normal bases [Can05].
Table 2 summarizes the field extensions and bases used in the Canright’s S-box implemen-
tation.

The inverse of x ∈ GF (28) is considered. There exist unique α, β ∈ GF (24) such that
x = αY + βY 16. x−1 is obtained as

x−1 = (αY + βY 16)−1 = (θ−1β)Y + (θ−1α)Y 16 (4)
where θ = αβ + (α+ β)2µ ∈ GF (24). (5)

The inverse of θ ∈ GF (24) is obtained similarly. There exist unique a, b ∈ GF (22) such
that θ = aZ + bZ4. θ−1 is obtained as

θ−1 = (aZ + bZ4)−1 = (ζ−1b)Z + (ζ−1a)Z4, (6)
where ζ = ab+ (a+ b)2N ∈ GF (22). (7)

There exist s, t ∈ GF (2) such that ζ = sW + tW 2. Here, the inverse is easily obtained as

(sW + tW 2)−1 = (sW + tW 2)2 = tW + sW 2. (8)

Fig. 2 shows a circuit diagram for the inversion over GF (28) as described above. Note
that the operations for (a+ b)2N and (α+ β)2µ are called squaring and scaling and are
indicated by Sq.Sc. in Fig. 2.

In this study, we consider the 4-stage partitioning as shown in Fig. 2. The partitioning
is based on the design by De Cnudde et al. [CRB+16] because its symmetry is appropriate
for our design. However, the number of stages is changed from 6 to 4 by merging the linear
maps to the neighboring stages to reduce latency. The 1st and 2nd stages are devoted
to calculating Eq. (5) and Eq. (7), respectively. The 3rd and 4th stages correspond to
Eq. (6) and Eq. (4), respectively. The linear maps for the affine transformation and field
isomorphism are placed in the 1st and 4th stages.

Takeshi Sugawara 129

F F F

n n n n n m nn-m nm n-m

(a) Toffoli gate (b) Feistel network (c) Unbalanced
Feistel network #1

(d) Unbalanced
Feistel network #2

Figure 3: Construction of invertible functions from functions

3 Proposed Technique
3.1 Extension and Restriction
Uniformity is closely related to invertibility. On the one hand, a sharing is uniform if it
is invertible. On the other hand, the changing of the guards technique can be used if a
target function is invertible. The basic idea behind the proposed method is to extend a
target function into an invertible one. Invertibility ensures uniform sharing of the extended
function.

Obtaining an invertible function from a non-invertible function is the main topic of
reversible computing in which computers composed of invertible (i.e., reversible) primitives
are studied for quantum and energy-efficient computing [Tah16]. A common strategy for
obtaining a reversible circuit is to add additional input and output to carry sufficient
information required for inversion. An important example is a reversible 2-input AND
gate known as Toffoli gate, shown in Fig. 3-(a). The Toffoli gate has one additional input
and two additional outputs for the sake of invertibility.

Fig 3-(b) shows the Feistel network, which is also a technique to obtain an invertible
function (i.e., permutation) from a non-invertible F -function. The original Feistel network
requires an F -function having the same input and output sizes. Fig 3-(c) and -(d) shows
a generalization called the unbalanced Feistel network [SK96]. The unbalanced Feistel
network enables the construction of an invertible function from an F -function having
different input and output sizes.

Let ψ : {0, 1}n → {0, 1}m be a target function having a 3-share correct and non-
complete sharing. ψ is extended to an invertible mapping in the same manner as the
Toffoli gate and Feistel network

Definition 2 (Extended mapping). Let x,X ∈ {0, 1}n and y, Y ∈ {0, 1}m. The extended
mapping [x, y] ψE

7−→ [X,Y] is defined by

X = x, Y = ψ(x) + y.

Fig. 4-(left) shows a diagram for ψE . We further define a sharing of ψE denoted by
{ψEa , ψEb , ψEc }.

Definition 3 (Sharing of the extended mapping). A sharing {ψEa , ψEb , ψEc } such that

[x̃a, ya] ψE
a7−→ [Xa, Ya], [x̃b, yb]

ψE
b7−→ [Xb, Yb], [x̃c, yc]

ψE
c7−→ [Xc, Yc]

is given by

Xa = xb, Ya = ψa(x̃a) + ya,

Xb = xc, Yb = ψb(x̃b) + yb,

Xc = xa, Yc = ψc(x̃c) + yc. (9)

130 3-Share Threshold Implementation of AES S-box without Fresh Randomness

x x
a
x
b
x
c

E

R

a

b

c

y y
a
y
b
y
c

X X
a
X
b
X
cY Y

a
Y
b
Y
c

a

b

c

E

E

E a

b

c

R

R

R

a

b

c

Figure 4: Extension and restriction of a mapping (left) and the corresponding sharing
(right)

Fig. 4-(right) shows a diagram for {ψEa , ψEb , ψEc }. Fig. 4-(right) shows that the invertible
structure is preserved in sharing. Therefore, {ψEa , ψEb , ψEc } is invertible and thus uniform.
Lemma 1. {ψEa , ψEb , ψEc } is a correct, non-complete, and uniform sharing of ψE.

As discussed previously, the input shares should be uniform for security. If the condition
is satisfied, it implies that the input shares x and y in Definition 3 are independent. It
is interesting to remark that, the discussion on the uniformity of the generalized Feistel
Network by Faust et al. [FGP+18], found independently in the context of high-order
masking, closely relates to this Lemma.

So far, ψ is extended to ψE by adding m-bit additional input and n-bit additional
output. ψE provides an expected output only when the additional input satisfies y = 0.
Similarly, its sharing {ψEa , ψEb , ψEc } requires an input share satisfying ya + yb + yc = 0 to
provide a correct output. Here, we consider the method to obtain such an additional input
share. The idea is to convert the unnecessary additional output [Xa, Xb, Xc] to a share
representing zero in the same way as the original changing of the guards technique.

We first consider the following map ψ⊥:

Definition 4. Let x,X ∈ {0, 1}n and y, Y ∈ {0, 1}m. A mapping [x, y] ψ⊥

7−→ [X,Y] is
given by

X = 0 Y = y.

A diagram for ψ⊥ is shown in Fig. 4-(left) in which ⊥ represents a zero function such
that ⊥ (x) = 0 for all x. Subsequently, its sharing is considered.
Definition 5. A sharing {ψ⊥a , ψ⊥b , ψ⊥c } such that

[x̃c, ya] ψ⊥
a7−→ [Xa, Ya], [x̃a, yb]

ψ⊥
b7−→ [Xb, Yb], [x̃b, yc]

ψ⊥
c7−→ [Xc, Yc]

is given by

Xa = xa + xb, Xb = xb, Xc = xa, Ya = ya, Yb = yb, Yc = yc.

In the sharing form, the zero function ⊥ is realized by [Xa, Xb, Xc] = [xa + xb, xb, xa]
in the same way as the original changing of the guards. The probability of observing an
output share [Xa, Xb, Xc] is constant because

PO(Xa, Xb, Xc) =
∑
t

P I(Xc, Xb, t) =
∑
t

PI(Xc +Xb + t)
α

= constant. (10)

Therefore, the sharing is uniform.

Takeshi Sugawara 131

Lemma 2. {ψ⊥a , ψ⊥b , ψ⊥c } is a correct, non-complete, and uniform sharing of ψ⊥.

Finally, we define a restricted mapping composed of ψE and ψ⊥.

Definition 6 (Restricted mapping). A restricted mapping ψR is defined as ψR = ψ⊥ ◦ψE.

Fig. 4-(left) shows a diagram for ψR. A sharing of the restricted mapping is considered.

Definition 7 (A sharing of the restricted mapping). A sharing {ψRa , ψRb , ψRc } s.t.

[x̃a, ya] ψR
a7−→ [Xa, Ya], [x̃b, yb]

ψR
b7−→ [Xb, Yb], [x̃c, yc]

ψR
c7−→ [Xc, Yc]

is defined as ψRa = ψ⊥a ◦ ψEa , ψRb = ψ⊥b ◦ ψEb , and ψRc = ψ⊥c ◦ ψEc , or equivalently

Xa = xb + xc, Ya = ψa(x̃a) + ya,

Xb = xc, Yb = ψb(x̃b) + yb,

Xc = xb, Yc = ψc(x̃c) + yc.

{ψRa , ψRb , ψRc } is uniform because it is composed of the uniform sharings {ψEa , ψEb , ψEc }
and {ψ⊥a , ψ⊥b , ψ⊥c } as shown in Fig. 4-(right).

Theorem 1. {ψRa , ψRb , ψRc } is a correct, non-complete, and uniform sharing of ψR.

Consequently, a uniform sharing with an additional output share [Xa, Xb, Xc] satisfying
Xa +Xb +Xc = 0 is obtained. The additional output is used as an additional input to
the next sharing. Thus, ψR can be calculated without using fresh randomness. The above
discussion provides a generic way of constructing a uniform sharing for any function.

Security Claim The proposed method is about constructing a uniform sharing. Therefore,
the constructed sharings are secure up to the 1st-order probing model with glitches similarly
to the original TI and the original changing of the guards. This is because uniformity
is not enough for resistance against high-order attacks. Its extension to either 2-share
schemes or high-order schemes are non-trivial and opened for future research.

Related works There are conventional works on recycling randomness in high-order
masking schemes [FPS17, Pap18]. The original changing of the guards technique, as well
as the proposed generalization, are different from these works on the point they focus on
constructing uniform sharing. In other words, in the original and generalized changing of
the guards techniques, randomness is treated similarly to other inputs and recycling is a
part of a uniform sharing.

3.2 The Changing of the Guards Revisited
The proposed method is a generalization of the changing of the guards technique. Assume
that a target mapping ψ has the same input and output size i.e., n = m. We consider
connecting the restricted mapping ψR in cascade as shown in Fig 5-(left). The mapping is
written as

[0, x1, x2, x3] 7−→ [X1, X2, X3, 0] s.t. Xi = ψ(xi).

Recall that ψR has a uniform sharing {ψRa , ψRb , ψRc } according to Theorem 1. By
substituting ψR with {ψRa , ψRb , ψRc }, we obtain a sharing as shown in Fig. 5-(right). By
construction, the sharing in Fig 5-(right) is uniform. Note that a glitch should be considered
when non-linear layers are connected. However, this is not a problem for the connection

132 3-Share Threshold Implementation of AES S-box without Fresh Randomness

x1 x2 x30

X1 X2 X3 0

x1 x1 x1 x2 x2 x2 x3 x3 x3

X1 X1 X1 X2 X2 X2 X3 X3 X3

a b c a b c a b c

a b c a b c a b c

Additional input

Additional output

a

b

c

a

b

c

a

b

c

Figure 5: Cascaded ψR (left) and its sharing (right)

shown in Fig 5-(right) because there is only XOR after the component functions ψa, ψb,
and ψc.

Notice that the sharing in Fig 5-(right) and the changing of the guards sharing in
Fig. 1 are identical. In other words, the above discussion provides yet another proof of
the uniformity of the changing of the guards sharing. However, it implies more because ψ
is not necessarily invertible in the new proof. Furthermore, the proposed method can be
used for a target mapping ψ having different input and output sizes. Its concrete example
is given in Sect. 4.2.

4 Application to Canright’s S-box Implementation
A 3-share threshold implementation of the Canright’s S-box implementation, discussed
in Sect. 2.4, is designed based on the proposed technique. As we are interested in the
non-linear functions, we ignore the linear mappings in the following discussion.

4.1 1st and 2nd Stages
The 2nd stage shown in Fig. 2 is considered. The same discussion applies to the 1st stage
for GF (24). The stage can be expressed as

[x, y] 7−→ [x, y, f(x, y)] s.t. f(x, y) = xy + (x+ y)2N.

Note that f is a mapping for obtaining ζ in Eq. (7). x and y are preserved for a later stage.
There is no uniform sharing for a mapping having an output larger than an input [WM18].
Now, we consider an extended mapping of f given by

[x, y, z] fE

7−→ [x, y, f(x, y) + z]. (11)

As f has an algebraic degree of 2, there is a 3-share correct and non-complete sharing
{fa, fb, fc}. Based on Theorem 1, a uniform sharing of fE can be constructed.

Takeshi Sugawara 133

Definition 8 (Sharing of fE). A sharing {fEa , fEb , fEc } s.t.

[x̃a, ỹa, za] fE
a7−→ [Xa, Ya, Za], [x̃b, ỹb, zb]

fE
b7−→ [Xb, Yb, Zb], [x̃c, ỹc, zc]

fE
c7−→ [Xc, Yc, Zc]

is given by

Xa = xb, Ya = yb, Za = fa(x̃a, ỹa) + za,

Xb = xc, Yb = yc, Zb = fb(x̃b, ỹb) + zb,

Xc = xa, Yc = ya, Zc = fc(x̃c, ỹc) + zc. (12)

Corollary 1. {fEa , fEb , fEc } is a correct, non-complete, and uniform sharing of fE.

Note that there is no additional output because both [Xa, Xb, Xc] and [Ya, Yb, Yc]
should be preserved for later use. Therefore, an additional input [za, zb, zc] satisfying
za + zb + zc = 0 should be supplied from outside so that the stage works correctly. As
discussed in the next section, there are additional outputs obtained in the 3rd and 4th
stages. By using them as additional inputs, the 1st and 2nd stages can be executed without
using fresh randomness.

4.2 3rd and 4th Stages
The 3rd stage shown in Fig. 2 is considered. The same discussion applies to the 4th stage
for GF (24). In this stage, ζ−1b and ζ−1a are obtained given a, b, and ζ (see Eq. (6)).
Transforming from ζ to ζ−1 is linear and thus easy to implement, as discussed in Eq. (8).
Therefore, we consider the remaining part.

The stage is represented by a mapping h given by

[x, y, z] h7−→ [g(x, z), g(y, z)] s.t. g(x, y) = xy. (13)

As g has an algebraic degree of 2, there is a correct and non-complete sharing {ga, gb, gc}.
However, {ga, gb, gc} cannot be uniform because it is 2-input multiplication overGF (22) [NRS11].
Therefore, the technique discussed in Sect. 3.2 is considered. Note that this is an example
of the generalized changing of the guards for a target function having different input and
output sizes (n > m). The extended and restricted mappings of h are given by

[x, y, z, v, w] hE

7−→ [g(x, z) + v, g(y, z) + w, x, y, z],

[x, y, z, v, w] hR

7−→ [g(x, z) + v, g(y, z) + w, 0, 0, 0].

hR has a uniform sharing namely {hRa , hRb , hRc } according to Theorem 1.

Definition 9. A sharing {hRa , hRb , hRc } s.t.

[x̃a, ỹa, z̃a, va, wa] hR
a7−→ [Xa, Ya, Za, Va,Wa],

[x̃b, ỹb, z̃b, vb, wb]
hR

b7−→ [Xb, Yb, Zb, Vb,Wb],

[x̃c, ỹc, z̃c, vc, wc]
hR

c7−→ [Xc, Yc, Zc, Vc,Wc]

is given by

Va = ga(x̃a, z̃a) + va, Wa = ga(ỹa, z̃a) + wa, Xa = xb + xc, Ya = yb + yc, Za = zb + zc,

Vb = gb(x̃b, z̃b) + vb, Wb = gb(ỹb, z̃b) + wb, Xb = xc, Yb = yc, Zb = zc,

Vc = gc(x̃c, z̃c) + vc, Wc = gc(ỹc, z̃c) + wc, Xc = xb, Yc = yb, Zc = zb.

134 3-Share Threshold Implementation of AES S-box without Fresh Randomness

x10 y1z1 x2 y2z2 x3 y3z3

X1 Y1

g

g

0

0 0

Additional inputs for

Additional outputs

g

g

g

g

the Changing of the Guards

X2 Y2 X3 Y3

Z1 Z2 Z3

x10 y1z1 x2 y2z2 x3 y3z30

0 0X1 Y1 X2 Y2 X3 Y3

Z1 Z2 Z3

g
a

g
b

g
c

g
a

g
b

g
c

g
a

g
b

g
c

g
a

g
b

g
c

g
a

g
b

g
c

g
a

g
b

g
c

Figure 6: Cascaded hR (left) and its sharing (right)

Subsequently, we consider connecting the multiple hR in cascade as shown in Fig 6-(left).
By substituting hR with {hRa , hRb , hRc } in Fig. 6-(left), we obtain the one in Fig. 6-(right).

Definition 10 (The generalized changing of the guards sharing of hR). The generalized
changing of the guards sharing of the hR mapping from {[x1, y1, z1], . . . , [xL, yL, zL]} to
{[X1

, Y
1
, Z

1], . . . , [XL
, Y

L
, Z

L]} is given by

Xi
a = ga(x̃ia, z̃ia) + xi−1

b + xi−1
c , Y ia = ga(ỹia, z̃ia) + yi−1

b + yi−1
c , Zia = zib + zic

Xi
b = gb(x̃ib, z̃ib) + xi−1

c , Y ib = gb(ỹib, z̃ib) + yi−1
c , Zib = zic

Xi
c = gc(x̃ic, z̃ic) + xi−1

b Y ic = gc(ỹic, z̃ic) + yi−1
b Zic = zib

for i ∈ [1, L] and X0
b = xLb , Y 0

b = yLb , X0
c = xLc , Y 0

c = yLc .

Fig. 7 shows a detailed diagram of the sharing in Definition 10. The sharing in
Definition 10 is uniform through construction as discussed in Sect. 3.2. It can also be
understood in comparison with the original changing of the guards. The upper half of
Fig. 7 is a straightforward application of the changing of the guards except that there is no
guard for Zia, Zib, and Zic. Therefore, we can show that the upper half is invertible in the
same manner as the original work [Dae17]. The lower half is {ψ⊥a , ψ⊥b , ψ⊥c } in Definition 5
and thus preserves uniformity.

Corollary 2. Definition 10 is a correct, non-complete, and uniform TI of the following
mapping:

[[x1, y1, z1], . . . , [xL, yL, zL]] 7−→ [[X1, Y 1, Z1], . . . , [XL, Y L, ZL]]
s.t. Xi = g(xi, zi), Y i = g(yi, zi), Zi = 0.

Notably, the unbalance between input and output sizes results in additional outputs
[Zia, Zib, Zic] satisfying Zia + Zib + Zic = 0. They can be used in the 1st and 2nd stages as
additional inputs.

Takeshi Sugawara 135

x
a

x
b

x
c

y
a

y
b

y
c z

a
z
b
z
c

g
a

g
b

g
c

g
a

g
b

g
c

X
a

X
b

X
c

Y
a

Y
b

Y
c

Z
a
Z
b
Z
c

i i i i i i i i i

i i i i i i i i i

x
c

x
b

i-1

i-1

y
c

y
b

i-1

i-1

Figure 7: Changing of the guards sharing of hR (Definition 10)

4.3 Putting it Together
Fig. 8 shows the threshold implementation of the AES S-box based on the proposed method.
The datapath width is 42 bits: 3× 8 = 24 bits for a 3-share 8-bit AES state, 3× 4 bits for
an additional input in GF (24), and 3× 2 bits for an additional input in GF (22). At the
final stage, a share representing an S-box output is obtained along with 3× (4 + 2) = 18-bit
additional outputs. As discussed previously, the additional output is forwarded to the next
S-box calculation as an additional input. Therefore, fresh randomness is required only for
the first additional input and is not required during execution.

Note that there are two ways of remasking in the 3rd and 4th stages. One way is
[xi−1
b + xi−1

c , xi−1
c , xi−1

b] and [yi−1
b + yi−1

c , yi−1
c , yi−1

b] in Definition 10. They are forwarded
from a previous cycle using the temporary registers in between the 2nd/3rd and 3rd/4th
stages. Another way is the additional output [Zia, Zib, Zic] in Definition 10. They are carried
to the end of the pipeline and then used in another S-box calculation in the next AES
round.

Here, we show that the proposed S-box implementation satisfies non-completeness. Ta-
ble 3 shows the relationship between the intermediate values and the inputs. The rows repre-
sent the intermediate values: (i) the stage input/output shares {Xi

a, X
i
b, X

i
c}, {Y ia , Y ib , Y ic },

and {Zia, Zib, Zic}, and (ii) the outputs from the non-linear functions {tia, tib, tic}. The
columns represent the input shares to the S-box implementation: {xa, xb, xc}, {ya, yb, yc},
{za, zb, zc}, {va, vb, vc}, and {wa, wb, wc}. Note that {va, vb, vc} and {wa, wb, wc} are the
masks for the changing of the guards. The intermediate values and inputs are also indicated
in Fig. 8. ♦ or ♠ in the table shows that the intermediate value depends on the input. In
particular, ♠ shows that the intermediate value is either (i) masked by the input share or
(ii) the input itself.

In the proposed design, the outputs from the non-linear functions are immediately
refreshed by adding some of the input shares. More specifically, for any i, the stage
input/output shares {Xi

a, X
i
b, X

i
c}, {Y ia , Y ib , Y ic }, and {Zia, Zib, Zic} have distinct masks i.e.,

having ♠ on different columns on Table 3. Therefore, in each stage, there is no information
leakage unless all the three elements of an input share of the stage are combined. However,
the condition is never satisfied because each stage satisfies non-completeness. Consequently,
the proposed S-box implementation satisfies non-completeness. The non-completeness
ensures the security of the proposed implementation in the presence of glitches.

136 3-Share Threshold Implementation of AES S-box without Fresh Randomness

222222

Split

444 222

888 222

888

S-box input Additional input for GF(24) Additional input for GF(22)

2nd
Stage

3rd
Stage

Linear Map

1st
Stage

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(22)
mult

GF(24)
mult,

sq. & sc.

GF(24)
mult,

sq. & sc.

GF(24)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

GF(22)
mult,

sq. & sc.

888 444 222

444444

222

S-box output Additional output for GF(24) Additional output for GF(22)

4th
Stage

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

GF(24)
mult

888 444 222

Inv. Linear Map

888

Split

Concatenate

444

8 bits

16 bits

GF(22) Inv.

888

x
a

x
b

x
c

y
a

y
b

y
c

z
a

z
b

z
c

X
a

1 X
b

1 X
c

1 Y
a

1 Y
b

1 Y
c

1 Z
a

1 Z
b

1 Z
c

1

t
a

1

t
b

1

t
c

1

X
a

2 X
b

2 X
c

2 Y
a

2 Y
b

2 Y
c

2 Z
a

2 Z
b

2 Z
c

2

t
a

2

t
b

2

t
c

2

t
a

3 t
b

3 t
c

3

X
a

4 X
b

4 X
c

4 Y
a

4 Y
b

4 Y
c

4 Z
a

4 Z
b

4 Z
c

4

t
a

4 t
b

4 t
c

4

v
a

v
b

v
c

w
a

w
b

w
c

Concatenate

X
a

3 X
b

3 X
c

3 Y
a

3 Y
b

3 Y
c

3 Z
a

3 Z
b

3 Z
c

3

444

Figure 8: Proposed 3-share TI of the AES S-box. Edges are colored based on Table 3.

Takeshi Sugawara 137

Table 3: Data propagation in the proposed S-box implementation. Row: intermediate
values, column: inputs. The names of intermediate values and inputs follow Fig. 8. ♦/♠
is placed if the intermediate result depends on the input. ♠ is placed if the intermediate
result is masked by the input.

xa xb xc ya yb yc za zb zc va vb vc wa wb wc

t1
a — ♦ ♦ — — — — — — — — — — — —

t1
b ♦ — ♦ — — — — — — — — — — — —

t1
c ♦ ♦ — — — — — — — — — — — — —

X1
a — ♠ — — — — — — — — — — — — —

X1
b — — ♠ — — — — — — — — — — — —

X1
c ♠ — — — — — — — — — — — — — —

Y 1
a — ♦ ♦ ♠ — — — — — — — — — — —

Y 1
b ♦ — ♦ — ♠ — — — — — — — — — —

Y 1
c ♦ ♦ — — — ♠ — — — — — — — — —

Z1
a — — — — — — ♠ — — — — — — — —

Z1
b — — — — — — — ♠ — — — — — — —

Z1
c — — — — — — — — ♠ — — — — — —

t2
a ♦ ♦ ♦ — ♦ ♦ — — — — — — — — —

t2
b ♦ ♦ ♦ ♦ — ♦ — — — — — — — — —

t2
c ♦ ♦ ♦ ♦ ♦ — — — — — — — — — —

X2
a — ♠ — — — — — — — — — — — — —

X2
b — — ♠ — — — — — — — — — — — —

X2
c ♠ — — — — — — — — — — — — — —

Y 2
a ♦ — ♦ — ♠ — — — — — — — — — —

Y 2
b ♦ ♦ — — — ♠ — — — — — — — — —

Y 2
c — ♦ ♦ ♠ — — — — — — — — — — —

Z2
a ♦ ♦ ♦ — ♦ ♦ ♠ — — — — — — — —

Z2
b ♦ ♦ ♦ ♦ — ♦ — ♠ — — — — — — —

Z2
c ♦ ♦ ♦ ♦ ♦ — — — ♠ — — — — — —

t3
a ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ — — — — — —

t3
b ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ — — — — — —

t3
c ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — — — — — —

X3
a — ♠ — — — — — — — — — — — — —

X3
b — — ♠ — — — — — — — — — — — —

X3
c ♠ — — — — — — — — — — — — — —

Y 3
a ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ ♠ — — — — —

Y 3
b ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ — — ♠ — — —

Y 3
c ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — ♠ — — — —

Z3
a — — — — — — ♠ — — — — — — — —

Z3
b — — — — — — — — ♠ — — — — — —

Z3
c — — — — — — — ♠ — — — — — — —

t4
a ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ — — —

t4
b ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — — —

t4
c ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ — — —

X4
a ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ ♦ ♠ — —

X4
b ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — — — ♠

X4
c ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ — ♦ — ♠ —

Y 4
a — — — — — — — — — ♠ — — — — —

Y 4
c — — — — — — — — — — ♠ — — — —

Y 4
b — — — — — — — — — — — ♠ — — —

Z4
a — — — — — — ♠ — — — — — — — —

Z4
b — — — — — — — — ♠ — — — — — —

Z4
c — — — — — — — ♠ — — — — — —

138 3-Share Threshold Implementation of AES S-box without Fresh Randomness

S-box

Key
array

x3

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

R
c

o
n

State array w/ MixColumns Key array

State array
w/ MixColumns

x3

MixColumns

14

14

14 14

14 14

42=3x1442=3x14

42=3x14

data input key input

data output

42

Figure 9: AES circuit using the proposed S-box implementation

Table 3 is visualized by coloring the edges in Fig. 8. In the figure, we colored the edges
corresponding to the intermediate value marked with ♠ in Table 3. More specifically, the
same color is assigned to the intermediate values having the same mask. Using Fig. 8, we
can verify that all the stage inputs/outputs have distinct masks.

4.4 Implementation and Evaluation
4.4.1 Circuit Architecture

Fig. 9 shows the circuit for AES encryption based on the proposed S-box implementation.
The design is based on the one by Moradi et al. [MPL+11] that uses the state and key
arrays as basic construction blocks. Three arrays are used to store 3-share representations
of the AES state and key. Note that three key arrays are used to protect key scheduling as
well. As previously discussed, the additional output is forwarded to the next AES round.
To carry the additional outputs, the data width of the state and key arrays is extended
from 8 to 14 bits. Accordingly, each array has 14× 16 = 224 bits. Thus, 224× 6 = 1, 344
bits of registers are needed in total for storing the shared representations of the state and
key. The AES circuit works similarly to the original design [MPL+11]. An exception is
MixColumns in which only the state elements are processed while the additional inputs
are unchanged.

To convert a message into its 3-share representation, we need 128× 2 + 6× 16× 2 = 448
bits of randomness. To convert a key into its 3-share representation, on the other hand, we
need 128× 2 + 6× 4× 2 = 304 bits of randomness because there are only four S-boxes in
key scheduling. Also, 24-bit random number is needed to initialize the temporary registers
in between the 2nd/3rd and 3rd/4th stages. As a result, 776 initial random bits are needed
for single AES processing.

The key and plaintext are fed to the circuit in the 3-share representation with additional
inputs added. The I/O ports have 42-bit width similar to the datapath. Therefore, feeding
the key and plaintext requires 16 cycles. The AES round is executed in 25 cycles: 16 cycles
for S-boxes, four cycles for MixColumns, one cycle for ShiftRows, and four additional
cycles for pipeline latency. Single AES encryption requires 266 cycles in total.

4.4.2 Performance Evaluation and Comparison

Takeshi Sugawara 139

Table 4: Circuit-area breakdown of the proposed AES circuit

Module Unit area [kGE] # units Total area [kGE]
Key array 2.1 3 6.2
State array w/ MixColumns 2.3 3 6.8
S-box (including pipeline registers) 3.5 1 3.5
Others — — 0.6
Total — — 17.1

The design is implemented in HDL and synthesized using the NanGate 45-nm standard
cell library [Nan] with Synopsys Design Compiler. Table 1 shows the performance evalua-
tion. Note that the implementations in Table 1 are evaluated using different standard cell
libraries. We should consider the difference of the libraries in comparing results.

The proposed S-box circuit uses 3.5 [kGE], which is comparable to that of conventional
works. However, the size of the AES circuit is 17.1 [kGE], which is much larger than that
of conventional designs. This is explained by a large number of registers. As shown in the
circuit-area breakdown in Table 4, the state and key arrays occupy 76% (13.0 [kGE]) of the
total circuit area. As discussed earlier, in the proposed design, the data are stored in the 3-
share form along with the additional inputs. Consequently, 1, 344-bit registers are required
in the state and key arrays. In comparison, the designs [BGN+15, GMK17, CRB+16]
store only two shares and thus, 8× 16× 2× 2 = 512 bits are required. Furthermore, the
designs [BGN+15, CRB+16, WM18] use unprotected key scheduling, and thus, only 384
bits are required.

Despite the large circuit area, the proposed design has an advantage over the con-
ventional design by Wegener et al. [WM18]. The latency of the proposed design is 266
cycles, which is smaller than 1/10 that of the conventional design. As Wegener et al. used
area–latency trade-off for a compact circuit area, it would be fair to compare these designs
in terms of the area–latency product. As shown in Table 1, the cost of the proposed design
is smaller than 1/4 that of the conventional design even if the designs are compared in
terms of the area–latency product.

The design has a room for further improvement. Since there are only four S-boxes in
key scheduling, in the key arrays, (16−4)×6×3 = 216 bits of the registers are wasted. The
waste comes from the restriction to make the design as close as the original one [MPL+11].
By redesigning the key array, we have a room for saving 216 bits or 1.5 [kGE]. Moreover,
some of the conventional works use unprotected key scheduling [UHA17, WM18]. Under
such a design policy, we can save roughly 5.0 [kGE] by removing the two key arrays and
some additional inputs.

4.4.3 Simulation-based Leakage Assessment

The security of the AES circuit is evaluated using a simulation-based leakage assessment.
The post-synthesis simulation with back annotation is performed using the Cadence NC-
Verilog logic simulator at a precision of 1 ps. The circuit is operated with a clock interval
longer than a critical path delay. During the simulation, the number of 0 → 1 output
transitions in all the standard cells is measured for each cycle. The measured data are
used as an approximation of the dynamic current consumption measured at VDD [TV05].
Thus, they are used as a simulated power trace. As switching in each standard cell is
considered, the simulation captures glitches.

The test vector leakage assessment (TVLA) [BCD+13] is conducted using the simulated
power traces. For each of the fixed and variable test vectors, 100, 000 simulated power
traces are obtained. Subsequently, the two sets of traces are compared with T-statistic.

140 3-Share Threshold Implementation of AES S-box without Fresh Randomness

50 100 150 200 250

Cycle

-5

0

5

T
 s

ta
ti

s
ti

c
(i) Fully functional

50 100 150 200 250

Cycle

-500

0

500

1000

T
 s

ta
ti

s
ti

c

(ii) Randomness and

 the Changing of the Guards are disabled

Figure 10: Results of the simulation-based leakage assessment. Horizontal: T-statistics,
vertical: cycle. Subgraphs (i) and (ii) correspond to two different operating conditions.

For comparison, the target is operated under two different conditions: (i) fully functional
and (ii) randomness is disabled. For the second case, the random numbers for creating a
share and additional inputs are all zero. In addition, the two mask registers in the 3rd
and 4th stages are set to zero.

Fig. 10 (i) and (ii) show the traces of T-statistics. The horizontal and vertical axes
represent the cycle and T-statistics, respectively. In the fully functional case in Fig. 10-(i),
the obtained T-statistics fit within the range [−4.5, 4.5]. In Fig. 10-(ii), the T-statistics are
far above and beyond the borders. The results show that the target AES circuit passes
the leakage assessment if it is fully functional.

5 Conclusion
In this paper, we discussed how to construct a uniform sharing of a target mapping having
different input and output sizes. We introduced two techniques namely extension and
restriction. In extension, a target mapping is transformed in such a way that the extended
mapping has a uniform sharing. However, it requires an additional input representing zero
i.e., xa + xb + xc = 0. In restriction, the additional output obtained as a side effect of
extension is transformed into a share representing 0. Subsequently, the zero share is reused
as the additional input in the next sharing. By combining extension and restriction, sharing
is realized without remasking. The proposed method is a generalization of the changing
of the guards technique [Dae17]. By applying the above methods to the Canright’s AES
S-box implementation, the first 3-share TI of the AES S-box without using remasking is
obtained.

As shown in Table 1, the proposed AES design was larger than the conventional designs.
Optimizing its performance is an important future research direction. As discussed in
Sect. 4.4.2, the presented design has a room for further optimization. Moreover, there is a
possibility of sharing the additional inputs between consecutive S-box calculations, but
the security under such optimizations remains open. Also, evaluating the proposed design
with real measurement is an important future research direction.

Acknowledgements
I thank the anonymous reviewers and the shepherd for their valuable comments. I
appreciate Rei Ueno for inspiring discussions that motivated this study. A part of the
study is supported by JSPS KAKENHI Grant Number 17H06681 and JP18H05289. The

Takeshi Sugawara 141

CAD tools used in the paper are supported by VLSI Design and Education Center
(VDEC), the University of Tokyo with the collaboration with CADENCE Corporation
and SYNOPSYS Corporation.

References
[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian

Thillard, and Damien Vergnaud. Randomness complexity of private circuits for
multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 616–648. Springer, 2016.

[BCD+13] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab. Test
vector leakage assessment (TVLA) methodology in practice. In International
Cryptographic Module Conference, 2013.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-offs for threshold implementations illustrated on AES. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(7):1188–1200, 2015.

[Can05] David Canright. A very compact S-Box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005,
7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science, pages 441–455.
Springer, 2005.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 194–212. Springer, 2016.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 137–
153. Springer, 2017.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence

142 3-Share Threshold Implementation of AES S-box without Fresh Randomness

of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):89–120, 2018.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing random-
ness complexity in private circuits. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science, pages 781–810. Springer, 2017.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Helena
Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA, USA, February 14-17,
2017, Proceedings, volume 10159 of Lecture Notes in Computer Science, pages
95–112. Springer, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[Nan] NanGate. NanGate FreePDK45 open cell library. http://www.nangate.com.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of Lecture Notes in Computer Science, pages
529–545. Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware imple-
mentation of nonlinear functions in the presence of glitches. J. Cryptology,
24(2):292–321, 2011.

[Pap18] Kostas Papagiannopoulos. Low randomness masking and shuffling: An evalua-
tion using mutual information. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):524–546, 2018.

[RSWO18] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT goes
nuclear: Creating a Zigbee chain reaction. IEEE Security & Privacy, 16(1):54–
62, 2018.

http://www.nangate.com

Takeshi Sugawara 143

[SK96] Bruce Schneier and John Kelsey. Unbalanced feistel networks and block
cipher design. In Dieter Gollmann, editor, Fast Software Encryption, Third
International Workshop, Cambridge, UK, February 21-23, 1996, Proceedings,
volume 1039 of Lecture Notes in Computer Science, pages 121–144. Springer,
1996.

[Tah16] Saleem Mohammed Ridha Taha. Fundamentals of Reversible Logic, pages 7–16.
Springer International Publishing, Cham, 2016.

[TV05] Kris Tiri and Ingrid Verbauwhede. Simulation models for side-channel infor-
mation leaks. In William H. Joyner Jr., Grant Martin, and Andrew B. Kahng,
editors, Proceedings of the 42nd Design Automation Conference, DAC 2005,
San Diego, CA, USA, June 13-17, 2005, pages 228–233. ACM, 2005.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient dpa-
resistant AES hardware architecture based on threshold implementation. In
Sylvain Guilley, editor, Constructive Side-Channel Analysis and Secure Design
- 8th International Workshop, COSADE 2017, Paris, France, April 13-14,
2017, Revised Selected Papers, volume 10348 of Lecture Notes in Computer
Science, pages 50–64. Springer, 2017.

[WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh
randomness. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture Notes
in Computer Science, pages 245–262. Springer, 2018.

Appendix
Proof of Lemma 1
Proof. The sharing {ψEa , ψEb , ψEc } is correct because

Xa +Xb +Xc = x, Ya + Yb + Yc = ψ(x) + y.

The sharing is non-complete because ψEa , ψEb , and ψEc are independent of [xa, ỹa], [xb, ỹb],
and [xc, ỹc], respectively. The sharing is invertible because

xa = Xc, ya = ψa(X̃c) + Ya,

xb = Xa, yb = ψb(X̃a) + Yb,

xc = Xb, yc = ψc(X̃b) + Yc,

and thus, it is uniform.

Proof of Lemma 2
Proof. The sharing {ψ⊥a , ψ⊥b , ψ⊥c } is correct because

Xa +Xb +Xc = 0, Ya + Yb + Yc = y.

The sharing is non-complete because ψ⊥a , ψ⊥b , and ψ⊥c are independent of [xc, ỹa], [xa, ỹb],
and [xb, ỹc], respectively.

For uniformity, distributions of input and output shares are considered. Let PI(x, y) and
PO(X,Y) be the probabilistic distributions of the original inputs and outputs, respectively.

144 3-Share Threshold Implementation of AES S-box without Fresh Randomness

Similarly, the distributions of the shared inputs and outputs are denoted as PI(x, y) and
PO(X,Y), respectively. As the input is distributed uniformly, we have

PI(x, y) = PI(x, y)
α

= PI(xa + xb + xc, ya + yb + yc)
α

. ∵ Eq. (2) (14)

First, we consider the case X 6= 0 i.e., Xa +Xb +Xc 6= 0. These outputs are prohibited
by construction and thus,

PO(X,Y) = PO(X,Y) = 0 (15)

The remaining case X = 0 i.e., Xa +Xb +Xc = 0 is considered. In this case,

PO(X,Y) =
∑
t∈X

PI(t, Y). (16)

where X is a set of possible values that X can take. The probability of observing an output
share [Xa, Xb, Xc] is solely determined by [xa, xb] = [Xc, Xb]. Therefore, we observe that

PO(X,Y) = PO([Xa, Xb, Xc], Y) =
∑
t∈X

PI([Xc, Xb, t], Y). ∵ Definition(6) (17)

Therefore,

PO(X,Y) =
∑
t∈X

PI([Xc, Xb, t], Y) ∵ Eq. (17)

= 1
α

∑
t∈X

PI(Xc +Xb + t, Y) ∵ Eq. (14)

= 1
α

∑
t∈X

PI(t, Y)

= 1
α
PO(X,Y). ∵ Eq. (16) (18)

From Eq. (15) and (18), we obtain PO(X,Y) = PO(X,Y)
α for all the cases. Therefore,

the sharing is uniform according to Eq. (3).

Proof of Theorem 1
Proof. The sharing {ψRa , ψRb , ψRc } is correct because

Xa +Xb +Xc = 0, Ya + Yb + Yc = ψ(x) + y.

The sharing is non-complete because ψRa , ψRb , and ψRc are independent of [xa, ỹa],
[xb, ỹb], and [xc, ỹc], respectively. {ψEa , ψEb , ψEc } and {ψ⊥a , ψ⊥b , ψ⊥c } are uniform accord-
ing to Lemma 1 and 2, respectively. Therefore, {ψRa , ψRb , ψRc } being a composition of
{ψEa , ψEb , ψEc }, and {ψ⊥a , ψ⊥b , ψ⊥c } is uniform.

Proof of Corollary 1
Proof. As the sharing {fEa , fEb , fEc } is a sharing as specified in Definition 3, it is a correct,
non-complete, and uniform sharing according to Lemma 1.

Takeshi Sugawara 145

Proof of Corollary 2
Proof. The sharing is correct because

Xi
a +Xi

b +Xi
c = g(xi, zi), Y ia + Y ib + Y ic = g(yi, zi), Zia + Zib + Zic = 0

for i ∈ [1, L]. The sharing is non-complete because, for any i, j ∈ [1, L], {Xi
a, Y

i
a , Z

i
a},

{Xi
b, Y

i
b , Z

i
b}, and {Xi

c, Y
i
c , Z

i
c} are independent of {xja, yja, zja}, {x

j
b, y

j
b , z

j
b}, and {xjc, yjc , zjc},

respectively. The sharing is uniform through construction.

	Introduction
	Preliminary
	Notation
	Threshold Implementation
	Changing of the Guards
	Canright's AES S-box Implementation

	Proposed Technique
	Extension and Restriction
	The Changing of the Guards Revisited

	Application to Canright's S-box Implementation
	1st and 2nd Stages
	3rd and 4th Stages
	Putting it Together
	Implementation and Evaluation

	Conclusion

