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Design Flow

 High Cost of Manufacturing in ASIC Design has pushed most of needed 

fabrication offshore

 Some Fabs are untrusted

 Security threats for untrusted supply chain

 Trojan Insertion 

 Overproduction 

 Intellectual Property (IP) Theft

 Counterfeiting

 Reverse Engineering, etc. 
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Logic Locking
 Logic Locking: Adding Ambiguity to the Design

 Inserting Key Programmable Gates (KPGs)

 No Information on Key at Untrusted Entities
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SAT Attack: a Turning Point in Logic Locking

 SAT Attack Recipe:

1. Reverse-engineered netlist (CL)

2. A functionally activated chip (CO)

 SAT attack broke all logic obfuscation scheme prior to its debut!

 Random insertion (RLL) 

 Fault-analysis (FLL)

 Interference-based logic locking (SLL)
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SAT Attack

 SAT Attack
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Limitation of SAT Attack

 SAT-Resilient Logic Obfuscation Solutions
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Limitation of SAT Attack

 A SAT Attack works if Logic obfuscation is of Boolean nature

 Model Translation Flow:

 Boolean logic  Conjunctive Normal Form (CNF)

 CNF  Satisfiability assignment problem

 Defense solutions to trap the SAT solver? 

 Use non-logical properties for locking

 Can not be modeled if could 

not be translated to CNF
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Behavioral logical obfuscation

 Delay and Logic Locking (DLL) 

 Obfuscation control the setup and hold

 Incorrect key  Setup and Hold time violation

 Timing is not translatable to CNF

 SAT solver remains oblivious to the keys used for timing obfuscation

9

k1

k2

x
yTunable Delay

 key-gate 
(TDK)

yk1

x

k2

C

Tunable Delay 
Buffer (TDB)

k2



Solution
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Satisfiability Modulo Theory (SMT) Attack



SMT Solver

 A SMT is used to solve a decision problem

 Close integration of a SAT solver with Theory solver

 Uses first-order theories

 Equality

 Reasoning

 Arithmetic

 Graph-based deduction

 Modern SMT solvers provide the capability 

 Combining theory solvers

 Can support more powerful languages as its input 

11



Approaches to SMT Solver

 Two approaches for solving an SMT problem

 Eager approach

 Lazy approach
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SMT Eager Approach

 Eager approach

 Translating the problem into a Boolean SAT instances

 The existing Boolean SAT solvers are used as is

 The SMT solver has to work a lot harder

 e.g. for checking the equivalence of two 32-bit values

 By deploying a theory solver

 this could be achieved in no time
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SMT Lazy Approach

 Lazy approach

 Integrates the Boolean satisfiability solvers and theory solvers 

 Capabilities of the Theory solvers:

 Theory propagation

 for checking possible conflicts on partial assignments

 Clause learning  

 to speed-up pruning the decision tree.
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SMT Attack
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 Step 1

 Obfuscated cells equivalent Key Programmable Gates (KPG)

 A KPG

 performs the same function as the obfuscated cell

 allows building a key controlled representation
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SMT Attack
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 Step 2

 Before invoking a theory solver

 Input model  model which is understood by that theory solver

 Different translation step for each theory solver 
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SMT Attack
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 Invoking the SMT solver returns

 A satisfiable assignment 

 list of learned theory 

 conflict clauses
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Attack Modes
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 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Parallelized! 

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency 

 Uses BitVector Theory Solver



Attack Modes
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 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Parallelized! 

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency 

 Uses BitVector Theory Solver



Mode 1: SMT reduced to SAT Attack
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 SMT solver is a superset of SAT solver 

 Any attack formulated for SAT  can be formulated using SMT

 one-to-one translation of the original SAT attack



 The recently found Conflict Clauses (CC) are added to the set of

previously found Learned Clauses (LC).

 Note that this step is done implicitly if SMT is stateful.

Mode 1: SMT reduced to SAT Attack
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Attack Modes
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 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Parallelized! 

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency 

 Uses BitVector Theory Solver



Case Study
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 Case Study: Delay and Logic Locking (DLL) *1

*1 Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking against IC Counterfeiting and 
Overproduction,” In Proceedings of the 54th Annual Design Automation Conference (DAC’17), 2017.
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Case Study
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 Case Study: Delay and Logic Locking (DLL) *1

 K1 and K3

 No impact on the logical behavior of the circuit 

 Only changes its delay

 SAT attack results 

 Random assignment to K1 and K3

*1 Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking against IC Counterfeiting and 
Overproduction,” In Proceedings of the 54th Annual Design Automation Conference (DAC’17), 2017.
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Mode 2: Eager SMT Attack
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Mode 2: Eager SMT Attack
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Mode 2: Eager SMT Attack
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Mode 2: Eager SMT Attack
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Mode 2: Eager SMT Attack
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Limitation of Eager SMT Attack

 For some problems the Eager approach does not work!

 Why? Eager relies on reduction of a problem to a SAT problem

 SRCLock

 # of cycles is exponential w.r.t. the # of inserted feedbacks

 The run time of pre-processing is exponential 

 w.r.t. the # of inserted feedbacks

 Preventing us to ever reach the SAT attack
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Attack Modes
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 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Parallelized! 

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency 

 Uses BitVector Theory Solver



Mode 3: Lazy SMT Attack

 Lazy approach of SMT attack 

 Moves from pre-processing to co-processing
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Mode 3: Lazy SMT Attack
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The big difference between 

Eager and Lazy approach:

After model generation for 

Theory solver the SMT solve 

function is not called.

The theory model is defined 

but is not solved.



Mode 3: Lazy SMT Attack
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The SMT solve function is 

then called to find the 

assignment for keys which 

can satisfy both SAT solver 

and Theory solver(s).



Mode 3: Lazy SMT Attack
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The decision tree and search 

Space for the SMT solver is 

Significantly Reduced.



Attack Modes
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 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT 

 Theory solver(s) and SAT solver are Parallelized! 

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency 

 Uses BitVector Theory Solver
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 DIPs are Important

 Number of DIPs = Number of Iterations

 Categorizing DIPs based on their Pruning Power

 Stronger DIP rule outs more incorrect keys

 Based on the number of inconsistencies that could sensitize to the 

primary outputs

Mode 4: Accelerated SMT Attack

Clause added Clause added Clause added Clause added

Set of potential Correct Keys (SCK)

Set of Invalid Keys (SIK)
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 Depending of the pruning power of DIPs

 The size of the complete set of DIPs could be different

 Minimal complete set of DIPs

 The smallest set of DIPs that could de-obfuscate the circuit

 Minimum Number of Iterations

 The Fastest Solution for De-obfuscation

Mode 4: Accelerated SMT Attack

Clause added Clause added Clause added Clause added

Set of potential Correct Keys (SCK)

Set of Invalid Keys (SIK)
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 Lazy approach

 Reduce the size of complete set of DIPs

 Results in smaller number of iterations

 In SAT attack only a single difference in the output results in 

generation of a DIP

Mode 4: Accelerated SMT Attack

1 1 1 1 1 1 1 1
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Output for K1
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 Stronger requirement for the generation of DIPs

 DIPs with the largest Hamming Distance in their propagated 

value to the primary output

 Such a DIP has a much higher pruning capability

Mode 4: Accelerated SMT Attack

0 1 0 1 1 1 0 1
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 Assessing DIPs based on HD of the primary output

 Using a BitVector theory solver

 Allows us to perform integer-oriented arithmetic operations

 Addition

 Subtraction

 Multiplication

 The HD of output Y1 and Y2 is obtained using

Mode 4: Accelerated SMT Attack

Maximum Possible

(Constant)

Sweeping from Maximum 

to Minimum (Variable)
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 Applicable to SAT-hard Logic Locking

 e.g. Point functions such as SARLock

and Anti-SAT

 Point Function obfuscation properties:

 Small output corruption

 Each DIP eliminates a single key value

 The number of iterations are exponentially large

 To increase the corruption 

SAT hard obfuscation is 

usually combined with a 

high corruption obfuscation
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 Adding a termination strategy in Accelerated SMT

 Using BitVector (based on Hamming Distance)

 Find keys related to high corruption obfuscation

 Hamming Distance > 1

 Stop when we keep finding many keys with HD=1

 This is the sat-hard trap zone

 Return the Key as Approximate (with known HD)
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Calculate HD using BitVector

Mode 4: AccSMT
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Maximum HD = Output Width (Constant)

Minimum HD = Starts from Maximum

Minimum HD  Sweeping (Iteratively Decreasing)

Mode 4: AccSMT
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 Evaluation of SMT reduced to SAT Attack

 Purpose: to show SMT is superset of SAT

 We experimented using two obfuscation methods

 random XOR/XNOR insertion (RLL)

 obfuscation using nets with unbalanced probabilities IOLTS’14

 We used ISCAS-85 benchmarks with obfuscation overhead ranging

from 1% to 25%.

Experimental Results
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 Random XOR/XNOR insertion (RLL)

 Obfuscation using nets with unbalanced probabilities IOLTS'14
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 DLL as the case study

 cannot be modeled in a SAT attack.

 DLL + MUX/XOR-based logic locking

 Serial invocation of theory and SAT solver.
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 DLL as the case study

 cannot be modeled in a SAT attack.

 DLL + MUX/XOR-based logic locking

 Parallel invocation of theory and SAT solver
µ

Theory SAT Solver

SAT/UNSAT

Evaluation of Lazy SMT Attack
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 Ability to find stronger DIPs

 Pruning power of DIPs is higher!

 Higher rate in decreasing the number of remaining keys
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 SARLock + IOLTS'14

 Finds the correct keys for high-corruption

 detects the SAT-hard trap

 exits, and reports the approximate key

Enabling Approximate Attack
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 introduced the powerful SMT attacks

 Benefits from the expressive nature of theory solvers

 Proved that SMT attack is a superset of the SAT attack

 Explained the Eager and Lazy mode of SMT attack

 Using both Eager and Lazy approach

 We broke the DLL obfuscation That cannot be broken by a SAT attack

 Why? SMT attack's capabilities go beyond a SAT attack

 Presented the accelerated SMT attack (AccSMT)

 significant speed-up compare to pure SAT attack

 Presented a formulation for SMT approximate attack

 To find an approximate key for compound obfuscation schemes

Conclusion
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X
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Programmable 
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Y2
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K2

Key-Differentiating 
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2) 

KPC

KPC

X

DI Validation 
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation 
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Duplicating KPC
- Primary Inputs are in Common

- Keys are Different

- XORed

Observing CO for new DIP

Finding Discriminating 

Input Pattern (DIP)

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!
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Key-Differentiating 
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K2 KPC

XDI
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ORACLE eval

Y2

...

XDI
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K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation 
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Validating the found DIP
- DI validation Circuit confirms that two 

new keys produce the same correct 

output for a previously found DI

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!
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C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2) 

KPC

KPC

X

DI Validation 
Circuit (DIVC)
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SCK Validation 
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Iteratively, Finding and 

Validating new DIP
- ANDed to confirms all of the 

previously found DIPs 

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!
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×

Terminate Condition:
- SAT is not able to find a new DIP

- Finding Correct Key based on all 

previously found DIPs.

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!
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 By having K TDK cells

 2K in total

 SAT solver returns one logically correct key sequence among (2k) 

different set

 Only one of such key does not result in setup and hold time violations

 The correct attack should consider the delay and timing 

properties of the netlist

 In addition to its logical correctness!

yk1

x

k2

C

Tunable Delay 
Buffer (TDB)

TDK

i1

i2
i3

i4
K0 K1

g1 g2

g3

g4

y

K2 K3

TDK
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 The execution of SAT and SMT attack

 By just reducing the number of SAT iterations (N)

 We cannot guarantee a shorter execution time

 We limit the time allowance for finding a DIP in each iteration

 TO prevents the SMT solver from spending a long time for 

finding a DIP with large HD

t(i) is the execution time of the ith iteration

of an SMT attack
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 TO prevents the SMT solver from spending a long time for 

finding a DIP with large HD

 By adapting TO feature during SMT attack, the HD requirement 

is reduced

 The SMT solver returns UNSAT

 There is no such input 

 We encounter TO interrupt

 The HD constraints posed on BitVector theory solver is reduced by one

 The SMT solver is called

 Time interrupt is supported by MonoSAT used in this paper

 Our experiments illustrate that this usually results in considerably 

smaller execution time.
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Check Repetitive  avoid trapping   -----

-------------------------(Approximate Key)

Mode 4: AccSMT
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 Comparison of the execution time and the number of iterations

between the SAT solver and the AccSMT solver

 AccSMT attack is carried in a smaller number of iterations and

requires order(s) of magnitude smaller execution time

Evaluation of AccSMT
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 Eager vs. Lazy

 majority of cases:

 Lazy approach outperforms the Eager

 some cases (e.g. for Benchmark C1908 with 50% overhead):

 The Lazy approach is slower than Eager approach

 Lazy approach doesn't always result in the stronger attack

 There exist a set of problems that Eager is not even applicable

 leaving the Lazy approach as the only solution forward

Eager vs. Lazy
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 Standard flow for extracting the register setup time

 we are looking at 5% increase in tclk-q when we sweep the data-clock

arrival time difference from a large negative to a large positive

number.

Calculating Setup time and Hold time
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 A Conjunction of one or more Clauses

 each Clause is a Disjunction of Literals

 Similar to Product of Sum (PoS)

 C = not(A)

Conjunctive Normal Form (CNF)


