
SMT Attack: Next Generation Attack on

Obfuscated Circuits with Capabilities and

Performance Beyond the SAT Attacks

Conference on Cryptographic Hardware and Embedded Systems 2019 (CHES 2019)

Kimia Zamiri Azar, Hadi Mardani Kamali,

Houman Homayoun, and Avesta Sasan

Department of Electrical and Computer Engineering

George Mason University, USA.

Outline

 Intro to Hardware Security

 Intro to Logic Locking

 SAT Attack and its Limitations

 SMT attack

 SMT reduced to SAT Attack

 Eager SMT Attack

 Lazy SMT Attack

 Accelerated Lazy SMT Attack

 Experimental Results

 Conclusion

2

Design Flow

 High Cost of Manufacturing in ASIC Design has pushed most of needed

fabrication offshore

 Some Fabs are untrusted

 Security threats for untrusted supply chain

 Trojan Insertion

 Overproduction

 Intellectual Property (IP) Theft

 Counterfeiting

 Reverse Engineering, etc.

3

In-house

Design

Teams

Integration

Team

IP Vendor 1

IP Vendor 2

R
T

L

N
et

li
st

D
es

ig
n

In
te

g
ra

ti
o
n

R
T

L
 V

er
if

ic
at

io
n

L
o
g

ic
 S

yn
th

es
is

G
at

e-
L

ev
el

N
et

li
st

P
h

ys
ic

al
 S

yn
th

es
is

L
ay

o
u
t

V
er

if
ic

at
io

n

L
ay

o
u

t

(G
D

S
II

)

Design Synthesis & Verification Fabrication Testing Packing System Integration

W
af

er

T
es

t

S
ys

te
m

Recycle/Repackage

for Outdated

P
ac

k
ag

e
&

A
ss

em
b
ly

P
C

B
 A

ss
em

b
ly

SoC Design Flow System Design

Logic Locking
 Logic Locking: Adding Ambiguity to the Design

 Inserting Key Programmable Gates (KPGs)

 No Information on Key at Untrusted Entities

4

Circuit

x1

x2

x3

xn

Y = f(x1, x2, …, xn)

x4

EPIC (2008)

Random

Insertion

Policy

(RLL)

Original Netlist

Logic Locking

x1

x2

x3

xn

Yn = f(x1, x2, …, xn, k1, k2)

x4

k1

k2

SAT Attack: a Turning Point in Logic Locking

 SAT Attack Recipe:

1. Reverse-engineered netlist (CL)

2. A functionally activated chip (CO)

 SAT attack broke all logic obfuscation scheme prior to its debut!

 Random insertion (RLL)

 Fault-analysis (FLL)

 Interference-based logic locking (SLL)

5

g0

g1

g2

g3

g4

g5

g6

kg0

kg1

k0

k1

I0

I1

I2

I3
I4

I5

O0

O1

SAT Attack

 SAT Attack

6

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

Limitation of SAT Attack

 SAT-Resilient Logic Obfuscation Solutions

7

SAT-Resilient Locking Schemes

Before 2008 2008–2010 2010–2015 SAT

No Defense
Scheme
Against All
Threats

IP Piracy
Overproduction
Counterfeiting
Reverse
Engineering

2016 2018

Sensitization &
Justification2012 SAT

2017

SARLock2016

Anti-SAT2016

Removal2016

SPS2016

SFLL2017

CycSAT2017

SMT

Cyclic Locking2016

AppSAT2017

Double-DIP2017

Bypass2017

RLL2008
FLL2015

SLL2012

Attack

SRCLock2018

DLL2017

Logical Locking

Reconfig.
Barrier2010

LUT-Lock2018

2015 Attack

Limitation of SAT Attack

 A SAT Attack works if Logic obfuscation is of Boolean nature

 Model Translation Flow:

 Boolean logic Conjunctive Normal Form (CNF)

 CNF Satisfiability assignment problem

 Defense solutions to trap the SAT solver?

 Use non-logical properties for locking

 Can not be modeled if could

not be translated to CNF

8

SAT-Resilient Locking Schemes

SAT 2016 2018

SAT

2017

SARLock2016

Anti-SAT2016

Removal2016

SPS2016

SFLL2017

CycSAT2017

SMT

Cyclic Locking2016

AppSAT2017

Double-DIP2017

Bypass2017

Attack

SRCLock2018

DLL2017

Logical Locking

LUT-Lock2018

2015 Attack

Behavioral logical obfuscation

 Delay and Logic Locking (DLL)

 Obfuscation control the setup and hold

 Incorrect key Setup and Hold time violation

 Timing is not translatable to CNF

 SAT solver remains oblivious to the keys used for timing obfuscation

9

k1

k2

x
yTunable Delay

 key-gate
(TDK)

yk1

x

k2

C

Tunable Delay
Buffer (TDB)

k2

Solution

10

Satisfiability Modulo Theory (SMT) Attack

SMT Solver

 A SMT is used to solve a decision problem

 Close integration of a SAT solver with Theory solver

 Uses first-order theories

 Equality

 Reasoning

 Arithmetic

 Graph-based deduction

 Modern SMT solvers provide the capability

 Combining theory solvers

 Can support more powerful languages as its input

11

Approaches to SMT Solver

 Two approaches for solving an SMT problem

 Eager approach

 Lazy approach

12

µ

Theory

SAT Solver

µ*

SAT/UNSAT

µ

Theory SAT Solver

SAT/UNSAT

Eager approach Lazy approach

SMT Eager Approach

 Eager approach

 Translating the problem into a Boolean SAT instances

 The existing Boolean SAT solvers are used as is

 The SMT solver has to work a lot harder

 e.g. for checking the equivalence of two 32-bit values

 By deploying a theory solver

 this could be achieved in no time

13

µ

Theory

SAT Solver

µ*

SAT/UNSAT

SMT Lazy Approach

 Lazy approach

 Integrates the Boolean satisfiability solvers and theory solvers

 Capabilities of the Theory solvers:

 Theory propagation

 for checking possible conflicts on partial assignments

 Clause learning

 to speed-up pruning the decision tree.

14

µ

Theory SAT Solver

SAT/UNSAT

SMT Attack

15

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Obfuscated netlist Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

16

 Step 1

 Obfuscated cells equivalent Key Programmable Gates (KPG)

 A KPG

 performs the same function as the obfuscated cell

 allows building a key controlled representation

TDK

k0 k1

k1

k0

LUTn

i0 i1 i2 in-1
i0 i1 i2 in-1

k0

k1

k2

k2
n

-1

...

...

i0

i0

Key Gate Translated Gate

1. Tunable Delay Gate

2. Look-Up-Table

Key Gate Translated Gate

k1

i1

4. XOR Gate

k1

i1

i1

i2

3. Camouflaged Gate k1i1
i2

AND/XOR

k1
k1

5. MUX

i1
i1

i2
i2

k1

i1

6. XNOR Gate

k1

i1

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Obfuscated netlist Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

SMT Attack

SMT Attack

17

 Step 2

 Before invoking a theory solver

 Input model model which is understood by that theory solver

 Different translation step for each theory solver

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Obfuscated netlist Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

SMT Attack

18

 Invoking the SMT solver returns

 A satisfiable assignment

 list of learned theory

 conflict clauses

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Obfuscated netlist Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

Attack Modes

19

 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Parallelized!

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency

 Uses BitVector Theory Solver

Attack Modes

20

 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Parallelized!

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency

 Uses BitVector Theory Solver

Mode 1: SMT reduced to SAT Attack

21

 SMT solver is a superset of SAT solver

 Any attack formulated for SAT can be formulated using SMT

 one-to-one translation of the original SAT attack

 The recently found Conflict Clauses (CC) are added to the set of

previously found Learned Clauses (LC).

 Note that this step is done implicitly if SMT is stateful.

Mode 1: SMT reduced to SAT Attack

22

Attack Modes

23

 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Parallelized!

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency

 Uses BitVector Theory Solver

Case Study

24

 Case Study: Delay and Logic Locking (DLL) *1

*1 Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking against IC Counterfeiting and
Overproduction,” In Proceedings of the 54th Annual Design Automation Conference (DAC’17), 2017.

yk1

x

k2

C

Tunable Delay
Buffer (TDB)

TDK

i1

i2
i3

i4
K0 K1

g1 g2

g3

g4

y

K2 K3

TDK

i4

i2
i3

K0

K1 K3

i1 y

K2

i1

i2

i3

i4

yg1 g2K1 = 0

K1 = 1 g3 g4

Case Study

25

 Case Study: Delay and Logic Locking (DLL) *1

 K1 and K3

 No impact on the logical behavior of the circuit

 Only changes its delay

 SAT attack results

 Random assignment to K1 and K3

*1 Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking against IC Counterfeiting and
Overproduction,” In Proceedings of the 54th Annual Design Automation Conference (DAC’17), 2017.

i4

i2
i3

K0

K1 K3

i1 y

K2

i1

i2

i3

i4

yg1 g2K1 = 0

K1 = 1 g3 g4

Mode 2: Eager SMT Attack

26

µ

Theory

SAT Solver

µ*

SAT/UNSAT

Mode 2: Eager SMT Attack

27

 Calculating Hold Time and Setup Time

Common

Launch

Capture

Data

tcs-lr
tpd

t
setu

p

tcs-cr

tcq

Mode 2: Eager SMT Attack

28

 Calculating Hold Time and Setup Time

Common

Launch

Capture

Data

tcs-lr
tpd

t
setu

p

tcs-cr

tcq

Mode 2: Eager SMT Attack

29

Mode 2: Eager SMT Attack

30

Limitation of Eager SMT Attack

 For some problems the Eager approach does not work!

 Why? Eager relies on reduction of a problem to a SAT problem

 SRCLock

 # of cycles is exponential w.r.t. the # of inserted feedbacks

 The run time of pre-processing is exponential

 w.r.t. the # of inserted feedbacks

 Preventing us to ever reach the SAT attack

31

Attack Modes

32

 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Parallelized!

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency

 Uses BitVector Theory Solver

Mode 3: Lazy SMT Attack

 Lazy approach of SMT attack

 Moves from pre-processing to co-processing

33

µ

Theory SAT Solver

SAT/UNSAT

Mode 3: Lazy SMT Attack

34

The big difference between

Eager and Lazy approach:

After model generation for

Theory solver the SMT solve

function is not called.

The theory model is defined

but is not solved.

Mode 3: Lazy SMT Attack

35

The SMT solve function is

then called to find the

assignment for keys which

can satisfy both SAT solver

and Theory solver(s).

Mode 3: Lazy SMT Attack

36

The decision tree and search

Space for the SMT solver is

Significantly Reduced.

Attack Modes

37

 Mode 1: SMT reduced to SAT Attack

 To show SMT is a superset of SAT

 Mode 2: Eager SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Serialized!

 Mode 3: Lazy SMT Attack

 To show the Strength of SMT

 Theory solver(s) and SAT solver are Parallelized!

 Mode 4: Accelerated Lazy SMT Attack (AccSMT)

 To show more efficiency

 Uses BitVector Theory Solver

38

 DIPs are Important

 Number of DIPs = Number of Iterations

 Categorizing DIPs based on their Pruning Power

 Stronger DIP rule outs more incorrect keys

 Based on the number of inconsistencies that could sensitize to the

primary outputs

Mode 4: Accelerated SMT Attack

Clause added Clause added Clause added Clause added

Set of potential Correct Keys (SCK)

Set of Invalid Keys (SIK)

39

 Depending of the pruning power of DIPs

 The size of the complete set of DIPs could be different

 Minimal complete set of DIPs

 The smallest set of DIPs that could de-obfuscate the circuit

 Minimum Number of Iterations

 The Fastest Solution for De-obfuscation

Mode 4: Accelerated SMT Attack

Clause added Clause added Clause added Clause added

Set of potential Correct Keys (SCK)

Set of Invalid Keys (SIK)

40

 Lazy approach

 Reduce the size of complete set of DIPs

 Results in smaller number of iterations

 In SAT attack only a single difference in the output results in

generation of a DIP

Mode 4: Accelerated SMT Attack

1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1

0 0 0 0 1 0 0 0

Output for K1

Output for K2

41

 Stronger requirement for the generation of DIPs

 DIPs with the largest Hamming Distance in their propagated

value to the primary output

 Such a DIP has a much higher pruning capability

Mode 4: Accelerated SMT Attack

0 1 0 1 1 1 0 1

1 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1

Output for K1

Output for K2

42

 Assessing DIPs based on HD of the primary output

 Using a BitVector theory solver

 Allows us to perform integer-oriented arithmetic operations

 Addition

 Subtraction

 Multiplication

 The HD of output Y1 and Y2 is obtained using

Mode 4: Accelerated SMT Attack

Maximum Possible

(Constant)

Sweeping from Maximum

to Minimum (Variable)

43

 Applicable to SAT-hard Logic Locking

 e.g. Point functions such as SARLock

and Anti-SAT

 Point Function obfuscation properties:

 Small output corruption

 Each DIP eliminates a single key value

 The number of iterations are exponentially large

 To increase the corruption

SAT hard obfuscation is

usually combined with a

high corruption obfuscation

Enabling Approximate Attack

Original or
Locked
Circuit

IN

K1

One-Point
Flipping
Circuit

K2

Anti-SAT

S
A
R
L
o
ck

Y
YO

44

 Adding a termination strategy in Accelerated SMT

 Using BitVector (based on Hamming Distance)

 Find keys related to high corruption obfuscation

 Hamming Distance > 1

 Stop when we keep finding many keys with HD=1

 This is the sat-hard trap zone

 Return the Key as Approximate (with known HD)

Enabling Approximate Attack

Original or
Locked
Circuit

IN

K1

One-Point
Flipping
Circuit

K2

Anti-SAT

S
A
R
L
o
ck

Y
YO

45

Calculate HD using BitVector

Mode 4: AccSMT

46

Maximum HD = Output Width (Constant)

Minimum HD = Starts from Maximum

Minimum HD Sweeping (Iteratively Decreasing)

Mode 4: AccSMT

47

 Evaluation of SMT reduced to SAT Attack

 Purpose: to show SMT is superset of SAT

 We experimented using two obfuscation methods

 random XOR/XNOR insertion (RLL)

 obfuscation using nets with unbalanced probabilities IOLTS’14

 We used ISCAS-85 benchmarks with obfuscation overhead ranging

from 1% to 25%.

Experimental Results

48

 Random XOR/XNOR insertion (RLL)

 Obfuscation using nets with unbalanced probabilities IOLTS'14

10-2

10-1

100

101

102

1% 5%10%25%

Ex
ec

u
ti

o
n

 T
im

e
 (

s)

SMT
SAT

Obfuscation Overhead

1% 5%10%

25%

1% 5%10%

25%

1% 5%

10%25%

1% 5%

10%25%

C1908 C2670 C3540 C5315 C7552

100

101

102

So
lv

er
 It

er
at

io
n

s

1% 5%10%25%

Obfuscation Overhead
C1908

1% 5%10%25% 1% 5%10%25% 1% 5%10%25% 1% 5%10%25%

C2670 C3540 C5315 C7552

SMT
SAT

Evaluation of SMT Reduced to SAT

49

 DLL as the case study

 cannot be modeled in a SAT attack.

 DLL + MUX/XOR-based logic locking

 Serial invocation of theory and SAT solver.

µ

Theory

SAT Solver

µ*

SAT/UNSAT

Evaluation of Eager SMT Attack

50

 DLL as the case study

 cannot be modeled in a SAT attack.

 DLL + MUX/XOR-based logic locking

 Parallel invocation of theory and SAT solver
µ

Theory SAT Solver

SAT/UNSAT

Evaluation of Lazy SMT Attack

51

 Ability to find stronger DIPs

 Pruning power of DIPs is higher!

 Higher rate in decreasing the number of remaining keys

20

23

26

29

212

215

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
C

o
rr

ec
t

K
ey

s
DIPs (Iterations)

AccSMT SAT
Below Exponential
Key Reduction Rate
in Traditional SAT
 Depending on

 Obfuscated Circuit

So
lv

e
d

!

Evaluation of AccSMT

Clause added Clause added Clause added Clause added

Set of potential Correct Keys (SCK)

Set of Invalid Keys (SIK)

52

 SARLock + IOLTS'14

 Finds the correct keys for high-corruption

 detects the SAT-hard trap

 exits, and reports the approximate key

Enabling Approximate Attack

Original or
Locked
Circuit

IN

K1

One-Point
Flipping
Circuit

K2

Anti-SAT

S
A
R
L
o
ck

Y
YO

53

 introduced the powerful SMT attacks

 Benefits from the expressive nature of theory solvers

 Proved that SMT attack is a superset of the SAT attack

 Explained the Eager and Lazy mode of SMT attack

 Using both Eager and Lazy approach

 We broke the DLL obfuscation That cannot be broken by a SAT attack

 Why? SMT attack's capabilities go beyond a SAT attack

 Presented the accelerated SMT attack (AccSMT)

 significant speed-up compare to pure SAT attack

 Presented a formulation for SMT approximate attack

 To find an approximate key for compound obfuscation schemes

Conclusion

Selected References
[1] J. Roy et al. 2010. Ending piracy of integrated circuits. Computer, 43, 10 (2010), 30–38.

[2] P. Tuyls et al. 2006. Read-proof hardware from protective coatings. In CHES. 369–383.

[3] J. Rajendran et al. 2012. Security analysis of logic obfuscation. In DAC. 83–89.

[4] K. Shamsi et al. 2017. AppSAT: Approximately deobfuscating integrated circuits. In HOST. 95–100.

[5] M. Yasin et al. 2017. Removal attacks on logic locking and camouflaging techniques. IEEE Trans. on Emerging Topics in

Computing1 (2017).

[6] P. Subramanyan et al. 2015. Evaluating the security of logic encryption algorithms. In HOST.137–143.

[7] Y. Shen and H. Zhou. 2017. Double dip: Re-evaluating security of logic encryption algorithms. In GLSVLSI. 179–184.

[8] D. Sirone and P. Subramanyan. 2018. Functional Analysis Attacks on Logic Locking. arXiv preprint arXiv:1811.12088

(2018).

[9] M. Yasin et al. 2016. SARLock: SAT Attack Resistant Logic Locking. In HOST. 236–241.

[10] Y. Xie and A. Srivastava. 2016. Mitigating sat attack on logic locking. In CHES. 127–146.

[11] M. Yasin et al. 2017. Provably-secure logic locking: From theory to practice. In ACM-CCS. 1601–1618.

[12] H. M. Kamali et al. 2019. Full-Lock: Hard Distributions of SAT Instances for Obfuscating Circuits using Fully

Configurable Logic and Routing Blocks. In DAC. 6.

[13] S. Roshanisefat et al. 2018. SRCLock: SAT-Resistant Cyclic Logic Locking for Protecting the Hardware. In GLSVLSI.

153–158.

[14] Y. Xie et al. 2017. Delay locking: Security enhancement of logic locking against ic counterfeiting and overproduction. In

DAC. 9.

[15] M. Yasin et al. 2017. Security analysis of anti-sat. In ASP-DAC. 342–347.

[16] H. Zhou et al. 2017. CycSAT: SAT-based attack on cyclic logic encryptions. In ICCAD. 49–56.

[17] Y. Shen et al. 2019. BeSAT: behavioral SAT-based attack on cyclic logic encryption. In ASP-DAC.ACM, 657–662.

[18] C. Barrett et al. 2015. Satisfiability modulo theories. In Handbook of Model Checking. 305–343.

[19] S. Bayless et al. 2015. Sat Modulo Monotonic Theories. In AAAI. 2015. 3702–3709.

54

55

SAT Attack

 SAT Attack

56

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Replace all obfuscated cells

with key programmable gates

+

Adding Key Inputs

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

SAT Attack

 SAT Attack

57

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Duplicating KPC
- Primary Inputs are in Common

- Keys are Different

- XORed

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

SAT Attack

 SAT Attack

58

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Duplicating KPC
- Primary Inputs are in Common

- Keys are Different

- XORed

Observing CO for new DIP

Finding Discriminating

Input Pattern (DIP)

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

SAT Attack

 SAT Attack

59

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Validating the found DIP
- DI validation Circuit confirms that two

new keys produce the same correct

output for a previously found DI

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

SAT Attack

 SAT Attack

60

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

Iteratively, Finding and

Validating new DIP
- ANDed to confirms all of the

previously found DIPs

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

SAT Attack

 SAT Attack

61

SAT Circuit
(SATC)

Obfuscated
Circuit

CLocked (X, Y)

Y
X

KPG
KPG

KPG

KPG

KPG

C(X,K,Y)

Y

X

K

Key-
Programmable
Circuit (KPC)

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2)

KPC

KPC

X

DI Validation
Circuit (DIVC)

K1

K2 KPC

XDI

KPC

ORACLE eval

Y2

...

XDI

DIVC

DIVC

K1

K2

DIVC

XDI
(d)

XDI
(2)

(1)

SCK Validation
Circuit (SCKVC)

XDI
(1)

XDI
(2)

..
XDI

(d)

K1

K2

X

LC

SCKVC

KDC

×

Terminate Condition:
- SAT is not able to find a new DIP

- Finding Correct Key based on all

previously found DIPs.

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK)

Set of Invalid Keys (SIK)

Breaks within few minutes (few iterations)!

Mode 2: Eager SMT Attack

62

 By having K TDK cells

 2K in total

 SAT solver returns one logically correct key sequence among (2k)

different set

 Only one of such key does not result in setup and hold time violations

 The correct attack should consider the delay and timing

properties of the netlist

 In addition to its logical correctness!

yk1

x

k2

C

Tunable Delay
Buffer (TDB)

TDK

i1

i2
i3

i4
K0 K1

g1 g2

g3

g4

y

K2 K3

TDK

Using TimeOut

63

 The execution of SAT and SMT attack

 By just reducing the number of SAT iterations (N)

 We cannot guarantee a shorter execution time

 We limit the time allowance for finding a DIP in each iteration

 TO prevents the SMT solver from spending a long time for

finding a DIP with large HD

t(i) is the execution time of the ith iteration

of an SMT attack

Using TimeOut(Cont.)

64

 TO prevents the SMT solver from spending a long time for

finding a DIP with large HD

 By adapting TO feature during SMT attack, the HD requirement

is reduced

 The SMT solver returns UNSAT

 There is no such input

 We encounter TO interrupt

 The HD constraints posed on BitVector theory solver is reduced by one

 The SMT solver is called

 Time interrupt is supported by MonoSAT used in this paper

 Our experiments illustrate that this usually results in considerably

smaller execution time.

65

Check Repetitive avoid trapping -----

-------------------------(Approximate Key)

Mode 4: AccSMT

66

 Comparison of the execution time and the number of iterations

between the SAT solver and the AccSMT solver

 AccSMT attack is carried in a smaller number of iterations and

requires order(s) of magnitude smaller execution time

Evaluation of AccSMT

67

 Eager vs. Lazy

 majority of cases:

 Lazy approach outperforms the Eager

 some cases (e.g. for Benchmark C1908 with 50% overhead):

 The Lazy approach is slower than Eager approach

 Lazy approach doesn't always result in the stronger attack

 There exist a set of problems that Eager is not even applicable

 leaving the Lazy approach as the only solution forward

Eager vs. Lazy

68

 Standard flow for extracting the register setup time

 we are looking at 5% increase in tclk-q when we sweep the data-clock

arrival time difference from a large negative to a large positive

number.

Calculating Setup time and Hold time

69

 A Conjunction of one or more Clauses

 each Clause is a Disjunction of Literals

 Similar to Product of Sum (PoS)

 C = not(A)

Conjunctive Normal Form (CNF)

