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The Physical Security Challenge

Tamper Attempts

any tool

any time

any technique
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Where We Stand in Physical Security

“Security outside the black-box model” by Ventzi Nikov at CARDIS 2016 (Invited Talk)
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Where We Stand in Physical Security

“Security outside the black-box model” by Ventzi Nikov at CARDIS 2016 (Invited Talk)

skip the rest, let’s make this green (at least try)
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Security Enclosures = Access Denial Systems

goal: detect and counteract physical a�acks

tamper-detection tamper-response zeroization

ba�ery-backed mechanism for continuous protection

zeroization wipes volatile memory containing critical security parameters
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Access Denial Systems: Commercial Examples

countermeasures: active meshes, obfuscation, light sensors, switches, po�ing, . . .

ADP Gauselmann HP Atalla IBM Cryptographic Coprocessor
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High-Level Goals of Access Denial Systems

Producibility

Usability

Security

Access
Denial
System

desired level of security: no demonstrable way to circumvent

→ secure in the field; prevent HW trojans in distribution chain

| 5



Selected Properties of Shown Examples

� Producibility:
� Envelopes: complex manufacturing but highest geometrical security
� Covers/shells/housings: less complex but also less secure

� Usability:
� Ba�ery typically limits operating range w.r.t. temperature
� Shelf life is limited or necessitates additional service

� Security:
� Energy-preserving approach leads to crude measurement resolution
� Prone to single point of failure at PCB-level (e.g., cut-off alarm, fake check signal)
� Security mostly based on black-box model
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Tamper-Evident PUFs as Designated Alternative

� “True” purpose of PUFs: tamper-detection w/o ba�ery-backed sensors

� Upon power-on: key derivation from tamper-evident PUF enclosure
� If it fails: goal achieved, still initiate further countermeasures
� If it succeeds: decrypt system or unlock critical security parameters

� Unfortunately, very li�le (public) work in this area!
� Move towards white-box PUF design w/o diminishing security
� Additional obfuscation then makes it even more difficult to a�ack
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Proof of Concept: Design Overview
Cover

sensoric region with fine mesh
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Design Goals and Security Objectives

� Design Goals:
� Investigate how far we can get with COTS components
� Check validity of concept and if it is worth developing further
� Make physical integrity check complex and bury deep inside IC
� Concept must scale with advancements in manufacturing

� Security Objectives:
� “Deny physical access” = disassembly is destructive; force multiple holes
� Maximize distance from enclosure surface to insides of targeted chip
� Entropy loss upon a�ack substantial, not possible to reconstruct
� Increase need for customized tooling
� Considered diameter = 300 µm

| 10



Physical Domain: Layer Stack-Up of Cover

PCB manufacturing process causes intrinsic variation in mutual capacitanceCM

Layer Description Comment

1 Shield Facing to outside

Bonding

2 Tx electrodes Driven electrodes

Polyimide m Mutual capacitanceCM

3 Rx electrodes Receiving electrodes

Bonding

4 Shield }

Facing inside (to PCB)Polyimide

5 Connectors and routing
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Physical Domain: Mesh with 16 RX × 16 TX Electrodes
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Stochastic Model of Sensor Nodes

� All tiny track overlaps behave like capacitors in parallel

� C
M comprised of nominal capacitanceCN and variationC

V

� Differential measurement needed to remove common offsetCN

� C
V
<<< C

N requiring high-resolution circuit
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Analog/Digital Domain: Abs+Diff+Integrity Measurement

Dual DAC
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+ Adjust
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M

C
M

� Measurements of different nature, one cannot exist w/o the other:
� Absolute capacitance measurement
� Differential capacitance measurement
� Integrity measurement (open/short circuit)

� Applications:
� Integrity for rapid measurements and factory-initialization
� Differential measurement for key generation and on-the-fly rate and range limits
� Absolute measurement for additional tamper detection and temperature sensor
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Application Domain / Boot Process
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Basic Statistics

Data acquired from 115 flexPCB covers at constant environmental conditions.
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Figure: Absolute capacitance per node position.

Data in line with expectations. Low noise essential for tamper-evident application.
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Entropy and PUF Assessment (Global)

Shannon entropy over PUF population: 5.2 bit per node / 4.17 bit (with temperature)
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Figure: Uniqueness computed via Hamming
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Uniquess for tamper-evident PUFs: think beyond Hamming over binary responses!
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Entropy Assessment (Localized) – Spatial Context-Tree-Weighting

X

(joint work with Michael Pehl of TU Munich; to be published)

Investigate

• Spatial entropy dependencies

• Context around drill hole

• Worst-case (on average)

Tamper-Evident PUF Results

• Entropy = 3.7 bit (radius 1)

• Entropy = 3.1 bit (radius 2,3)

• Degradation exists due to

crude layout and PCB process

radius 1

radius 2

strong a�ack: given information around drill hole, complexity to reconstruct X

prevent a�acker from obtaining PUF output; consider helper data leakage
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More Data/A�acks/Inspection/Environmental Tests – See Paper
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Conclusions

� Still, only a tiny step towards access denial systems without ba�ery

� Full stack approach needed for tamper-evidence/resistance

� COTS-based approach has its limits, especially regarding repairs

� Development of access denial systems in white-box model challenging

� Always use a layered approach to security!
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Selected Future Work

� Layout Randomization:
� Increase # of electrode pairs, recombination based on challenge
� Naturally translates to layout randomization; breaks up local dependencies

� Customize PDF:
� Impregnation of paired nominal CN values without altering variation C

V

� Bimodal or arbitrary PDF for improved circuit and tamper behavior

� Tailored Materials:
� Increase CV and reduce CN to improve local entropy loss
� Make repairs more difficult

. . . and so much more!

| 21



Contact Information

Vincent Immler

Central Office for Information Technology

in the Security Sector (ZITiS)

For government inquiries only:

e urm.i m .i b ndi sc lte t dzn .n e@iv

All other inquiries:

2ec c m s9 mi e th s @e 0+ .1c ns

This work was performed while with Fraunhofer Institute AISEC.
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Thank You!
�estions?
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Backup
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Packaging Concept

heatsink
screw

stiffener frametop cover

bottom cover

connectors

PCB
vertical protection

structure

metal core

potting resin
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Measurement Chain
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Data Processing Chain

PUF Primitive Discretization Filtering Compensation Normalization Quantization ECC Application
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