
M&M: Masks and Macs against Physical Attacks
Lauren De Meyer1, Victor Arribas1,

Svetla Nikova1, Ventzislav Nikov2 and Vincent Rijmen1

1 KU Leuven, imec - COSIC, Belgium
firstname.lastname@esat.kuleuven.be

2 NXP Semiconductors, Belgium
venci.nikov@gmail.com

Abstract. Cryptographic implementations on embedded systems need to be protected
against physical attacks. Today, this means that apart from incorporating counter-
measures against side-channel analysis, implementations must also withstand fault
attacks and combined attacks. Recent proposals in this area have shown that there
is a big tradeoff between the implementation cost and the strength of the adversary
model. In this work, we introduce a new combined countermeasure M&M that
combines Masking with information-theoretic MAC tags and infective computation.
It works in a stronger adversary model than the existing scheme ParTI, yet is a lot
less costly to implement than the provably secure MPC-based scheme CAPA. We
demonstrate M&M with a SCA- and DFA-secure implementation of the AES block
cipher. We evaluate the side-channel leakage of the second-order secure design with
a non-specific t-test and use simulation to validate the fault resistance.
Keywords: SCA, DFA, combined, countermeasure, masking, CAPA, ParTI, embedded,
infective computation

1 Introduction
The implementation of cryptographic algorithms in embedded systems should be done
with extreme care. Physical attacks are proliferating considerably and they are becoming
easier and cheaper to perform. The most important physical attacks are Side-Channel
Analysis (SCA), a non-invasive attack that exploits the physical leakages emanating from
the device (power consumption or electromagnetic radiation among others) and Fault
Attacks (FA), in which an adversary induces and exploits logical errors in the computation.
These attacks are commonly used to retrieve secret data from the embedded device and can
be executed either separately or combined. The most threatening attacks are differential
power analysis (DPA) [KJJ99] for SCA and differential fault analysis (DFA) [BS97] and
fault sensitivity analysis (FSA) [LSG+10] for FA.

In the case of SCA, a popular and established countermeasure is masking [ISW03,
NRR06, PR11, NRS11, BGN+14, RBN+15, GMK16, GM17], a secret sharing-based
method in which intermediate variables are stochastically split into multiple shares in
order to make the side-channel-leaked information independent of sensitive data. To
protect against fault injections there are two major countermeasures, as noted in [LRT12]:
The first, Detection, checks whether the algorithm was faulted during the execution by
using either area or time redundancy (e.g. duplication [BECN+06], concurrent error
detection [BBK+03, KKG03, KKT04], . . .). The problem with duplication is that it does
not provide security when faults are duplicated as well. Even with error-detecting codes, a
powerful attacker can avoid detection if the injected faults result in valid codewords. The
second approach, Infection, prevents an adversary from extracting secret information from

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2019, No. 1, pp. 25–50
DOI:10.13154/tches.v2019.i1.25-50

mailto:lauren.demeyer@esat.kuleuven.be,victor.arribas@esat.kuleuven.be,svetla.nikova@esat.kuleuven.be,vincent.rijmen@esat.kuleuven.be
mailto:venci.nikov@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2019.i1.25-50

26 M&M: Masks and Macs against Physical Attacks

a faulty ciphertext by ensuring that any induced fault results in a garbage output [GST12].
So far, all infective computations schemes have been broken [BG13].

The research direction of combined countermeasures - that is, countermeasures against
both SCA and FA - is quite young and experimental. A popular methodology is to
superpose two techniques that separately resist one family of attacks. Examples of schemes
that combine masking against SCA with redundancy against FA are ParTI [SMG16]
and Private Circuits II [IPSW06, CN16]. These countermeasures naturally inherit the
drawbacks of redundancy, that is, they are vulnerable against the injection of smart
undetectable faults. Moreover, implementing a checking mechanism that does not reveal
sensitive information under combined attacks is a difficult task. More recently, an actively
secure multi-party computation protocol was adapted to the context of embedded systems
in order to provide security against combined attacks [RDB+18]. The resulting combined
countermeasure benefits from very strong formal security guarantees, but is extremely
expensive to implement in hardware. A combination of duplication and infection is explored
in [LRT12], but this scheme was broken in [BG13]. Infective computation is also combined
with polynomial masking in [SFRES18]. These schemes alleviate the need for a checking
mechanism, but as a result cannot give an honest user any indication on whether or not
the chip has been tampered with.

Our Contribution In this work, we describe M&M, a new family of countermeasures that
extends any SCA-secure masking scheme with information-theoretic MAC tags against DFA
(i.e. Masks & MACs) and combines them with an infective computation mechanism. By
instantiating M&M with a dth-order secure masking scheme, one achieves generic order of
protection for SCA. The M&M construction then ensures generic order of protection against
DFA and the combination of SCA and DFA. As opposed to error detecting codes, the MAC
mapping is perfectly unpredictable, eliminating the possibility of smart undetectable faults.
This makes M&M secure against stronger adversaries than when error detecting codes are
used. We demonstrate M&M with first- and second-order secure implementations of the
AES cipher. This example shows that M&M can be very efficient in area with an overhead
factor of merely 2.53 compared to an implementation that protects only against SCA. We
perform a SCA evaluation of our implementations where no leakage is found with up to
100 million traces. Additionally, we design and perform a fault evaluation to confirm our
theoretically claimed fault coverage.

Scheme Overview We revisit the infective computation scheme of [LRT12], which uses a
redundant encryption of the plaintext and uses the difference between the two ciphertexts
to infect the output. That is, if the ciphertexts match, the output is exactly that ciphertext.
If the ciphertexts do not match, the output is randomized so the attacker cannot get any
information from it. The general idea is illustrated in Figure 1. For more details, we refer
to the original work.

This scheme was broken in [BG13] because of a bias on the randomized output. We
make two important changes. First, instead of using redundancy, which is vulnerable to
the injection of identical faults, we replace the second instantiation of the cipher with a
computation on information-theoretic MAC tags of the plaintext. If faults occur anywhere
in the computation, the output of this block does not correspond to a valid MAC tag of
the ciphertext with arbitrarily high probability. We use the difference between what the
MAC tag should be and what it actually is, to randomize the ciphertext without any bias.
This is illustrated in Figure 2. We also ensure that one can find out whether the ciphertext
is correct or not. In a way, we thus combine the advantages of detection and infection.

The computation on masks and MACs resembles the approach of [RDB+18]. However,
instead of using expensive MPC machinery, we devise new constructions for generic field
operations using existing SCA-secure gadgets.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 27

!′

#

!

EncEnc

Infect

!$

Figure 1: Infective Computation Scheme such as that of [LRT12]

!"#(%)

'

%

EncMacEnc

Infect

%(

!"#(')

Figure 2: Our scheme

In Section 2, we introduce our adversarial model. Section 3 presents our framework
of shared data and information-theoretic MAC tags and the basic M&M building blocks
that are subsequently used in Section 4 to do more complex computations. In particular,
we describe M&M blocks for elementary Galois Field operations, which can be used to
construct the encryption blocks Enc and EncMac. In Section 5 we describe how the shared
ciphertext and MAC tags are used in an infective computation. This is followed by a
discussion of the security in Section 6. Finally in Section 7, we demonstrate our scheme
with an implementation and practical evaluation of the AES cipher.

2 Adversarial Model
In this work, we consider a semi-invasive adversary with probing and faulting capabilities.
On the one hand, we work under the d-probing model introduced in [ISW03] for SCA,
providing security against dth-order side-channel analysis attacks under the independent
leakage assumption. The model can include or exclude hardware glitches, but in this work,
we specifically instantiate M&M considering glitches.

On the other hand, we consider two types of faults. We model faults as stochastic
additive errors: this means the effect of a fault is the XOR of the current state with an
error variable following some random distribution. This adversary model is very similar to
the one described in [SMG16]. However, in this work, we do not limit the adversary in the
number of bits he can alter, since we present a scheme which can tolerate multiple faults

28 M&M: Masks and Macs against Physical Attacks

with any Hamming weight.
In addition, we allow the attacker to inject non-stochastic faults (for example very

precise laser injections or stuck-at faults). In that case however, the faults must be
restricted to affect at most d of the d+ 1 shares. We can justify this limitation by a proper
placement of the circuit on the chip and the more complex setup of these kinds of faults.

3 M&M: The Basics
In this section, we describe the M&M framework and its most fundamental M&M building
blocks, i.e. field multiplication and squaring in GF(2k). We omit descriptions of trivial
linear operations such as addition and scaling. Using these blocks, it is possible to secure
any circuit against both SCA and DFA. Indeed, one only has to replace each AND-gate
(resp. XOR-gate) with a M&M multiplication (resp. addition) in the field GF(2). We note
that the proposed approach is only meant for the datapath. The control logic and public
constants do not require a combined countermeasure as they are only vulnerable to FA.

3.1 The M&M Framework
Notation. x denotes a d + 1-sharing (x0, . . . , xd) of an element x ∈ GF(2k) such that
x = x0+. . .+xd, with “+” denoting addition in the Galois Field GF(2k). Additionally, “·” is
a field multiplication in GF(2k) and “�” a shared (i.e. SCA protected) field multiplication
in GF(2k) : x� y = z ⇔ x · y = z. Upright bold font is used for bit vectors x ∈ (GF(2))k
and matrices M ∈ (GF(2))k×k.

Information-theoretic MAC tags. Detection of faults in the computation is achieved
by accompanying each intermediate variable x ∈ GF(2k) with an information-theoretic
MAC tag. Let α ∈ GF(2k) denote a MAC key, which must be fresh for every encryption.
For each x ∈ GF(2k), we have a MAC tag τx = α · x. Note that, if α were fixed and
identical for all encryptions, the values and tags would be equivalent to an error detecting
code. Security against faults is based on the fact that the MAC key α is secret. Without
knowledge of α, an adversary cannot forge a valid tag τ x̃ for a faulty x̃. Its best strategy
is guessing α, which offers a success probability of 2−k. If the field GF(2k) is too small,
one can assign to each intermediate x multiple MAC tags τx[j], each for a different MAC
key α[j] for j = 1, . . . ,m. The success probability of the adversary is then at most 2−km.
For readability, we will assume m = 1 unless otherwise mentioned.

Data representation against SCA and DFA. With security against both side-channel
analysis and faults in mind, we port the information-theoretic MAC tags to the shared
domain. This means that every intermediate x ∈ GF(2k) is represented by 〈x〉 = (x, τx)
with value shares x = (x0, . . . , xd) such that x0 + . . . + xd = x and tag shares τx =
(τx0 , . . . , τxd) such that τx0 + . . . + τxd = τx. The MAC key itself is also shared: α =
(α0, . . . , αd). Note that the MAC key α authenticates the sensitive value x itself and not
merely its shares xi. Hence, the tag shares τxi are not tags of the value shares xi but rather
a share of the tag τx:

τxi 6= α · xi∑
i

τxi = α ·
∑
i

xi

Shared multiplication. In what follows, we describe how M&M extends an existing SCA-
secure masking scheme with protection against faults. Literature provides us with many
secure Boolean masking schemes to choose from [ISW03, NRR06, PR11, NRS11, BGN+14,

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 29

RBN+15, GMK16]. Each of those is defined by how it performs nonlinear operations (i.e.
a multiplication) on Boolean shares. A specific instantiation of M&M thus depends on the
choice of how to implement the shared multiplication operation x� y = z. We assume
that this operation transforms d+ 1-sharings of two variables x and y into a d+ 1-sharing
of their product z = xy. The latency and randomness cost of this operation depends on
the choice of SCA countermeasure. However, we assume for now that the latency is one
clock cycle, since this is the case in most schemes. For further discussion on the latency of
the multiplication gadgets, see Section 7.1.

3.2 Basic M&M Building Blocks
M&M Multiplication. Given two operands 〈x〉 and 〈y〉, we want to compute the value
shares z and tag shares τ z of z = xy. The value shares z can naturally be obtained using
a shared multiplier with x and y as inputs. From this point, for ease of notation, we use
xy to denote a sharing of the product xy.

x� y = xy = z

Deploying the same multiplier for the tag shares does not result in a valid tag for z

τx � τy = αx�αy = α2z 6= τ z

However, if we use the result above in another shared multiplication with a sharing of α−1,
we can obtain the correct tag shares:

α−1 � (τx � τy) = αz = τ z

Note that we could also obtain these tag shares by either x� τy or τx � y, but we
want to avoid crossing the datapaths of value and tag shares such that faults introduced
in the values cannot automatically propagate to the tags. Consider for example a fault
injected on input x, resulting in x̃. Then x̃� τy is a valid tag for x̃� y.

The M&M multiplication is summarized in the left side of Figure 3. We assume the
operation � includes one register stage, since this is the case for most state-of-the-art
d-secure multipliers. The value-datapath of a M&M multiplication thus requires one clock
cycle whereas that of the tags requires two.

!

"
#!

#"

$%&

'

#'

⊙

⊙ ⊙

!

#!

$%&

'

#'

⋆*

⋆* ⊙

Figure 3: M&M nonlinear operations: Obtaining the value and tag shares of z = xy(left)
and z = x2(right)

This multiplication uses a sharing of the inverse of the MAC key α−1. We assume this
is made available together with the sharing of the MAC key itself. If this is not the case,
α−1 can be precomputed and stored.

30 M&M: Masks and Macs against Physical Attacks

M&M Squaring. Note that squaring in M&M follows the same procedure. That is, to
obtain 〈z〉 from 〈x〉 such that z = x2, we first square the value shares x and tag shares
τx. Since a characteristic-two finite field allows (a+ b)2 = a2 + b2, squaring in the shared
domain is a local operation that requires no registers: x2 = (x2

0, . . . , x
2
d) and (τx)2 =

((τx0)2, . . . , (τxd)2). We then again calculate the tag shares τ z by a shared multiplication
with the inverse of the MAC key α−1. The M&M squaring operation therefore takes one
clock cycle and is depicted in the right side of Figure 3. The local squaring operation of
shared data is depicted as ?2. Extending this means that exponentiations by a power of
two (x2l) take l clock cycles for the tags.

The Field GF(2). Note that in the case of bits (the field GF(2)), no correction of the
MAC tag is needed since we then have that α2 = α, i.e. τx � τy = τ z. As a result, the
M&M multiplication in GF(2) has the same latency as the SCA-secure multiplication and
M&M squaring (as well as exponentiation by a power of two) is local.

4 Building circuits with M&M
In this section we describe how to use the above building blocks to construct circuits
for more complex operations in the M&M framework. Specifically, we demonstrate the
methodology for an inversion in GF(2k), k > 21, which is of course of particular interest
for implementing the AES S-box. Furthermore, we introduce a method for processing an
affine transformation over bits, as used as well in the AES S-box.

4.1 Galois Field Inversion
We discuss two methods to do an inversion in Galois Field GF(2k). The first constructs a
multiplication chain from the M&M multiplication and squaring blocks described above.
This methodology is generic and can be applied to any S-box since any S-box can be
presented as a polynomial over the considered field. The second version uses a SCA-secure
inversion implementation from existing literature to build a secure M&M block. This
approach is specific for the AES S-box, but results in a more efficient implementation.

4.1.1 Version 1: “Generic”

For x ∈ GF(28), the inversion x−1 is equivalent to the power map x254. We can obtain
this function via the following power chain [GPS14]:

x254 = x4 ·
(((

x5)5)5)2

Since x5 = (x2)2 · x, this inversion requires seven M&M squares and four M&M multiplica-
tions. Using the above squaring and multiplication blocks, obtaining the inversion output
thus requires 15 clock cycles.

Optimization 1. The calculation can be sped up using a specialized block for the expo-
nentiation to the power five, shown in Figure 4. This is also done in [GPS14] and justifies
the choice of multiplication chain. In our case however, it is not trivial to do the same
optimization for the tag calculation. The operation ?5 raises the shares of x to the power
five in one clock cycle. This requires a local computation of x4 = (x4

0, . . . , x
4
d), followed by

a shared multiplication x � x4 = x5. This must be done with care since x and x4 are
essentially the same variable and multiplying them may break non-completeness due to

1In GF(2) and GF(22), inversion is trivial as it corresponds respectively to the identity and squaring
function

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 31

the dependencies among these two variables. We therefore precompute and refresh x4 one
cycle before it is used.

After this first stage, which takes one clock cycle, we thus obtain a sharing of x5 in the
value datapath:

(x4
0, . . . , x

4
d) = x4

x� x4 = x5

and a sharing of (τx)5 = α5x5 in the tag datapath:

((τx0)4, . . . , (τxd)4) = (τx)4

τx � (τx)4 = (τx)5 6= τx
5

A valid tag for x5 is obtained through one more shared multiplication with α−4, which is
easily obtained locally from α−1:

α−4 � (τx � (τx)4) = τx
5

!

"!

⋆$

%

"%⊙

⋆'

⋆'

()*

Figure 4: Obtaining the value and tag shares of z = x5

With this specialized block, one obtains the exponentiation to the power five of 〈x〉 in
two clock cycles, if (x4, (τx)4) is already refreshed beforehand. In those two clock cycles,
we can obtain both the output 〈z〉 and a refreshed (z4, (τ z)4) to be ready for the next
block. The value shares can be refreshed using the second register stage (i.e. while the tag
shares are being multiplied with α−4). For the tag shares, there is no spare register stage
for refreshing. In the shared multiplication with α−4, we therefore raise each crossproduct
to the power four. Before the register stage, we thus create a (d+ 1)2-sharing of both τz
and of (τz)4, each using its own randomness. As a result, the inversion result is available
in only ten clock cycles:

• One cycle for the preparation of refreshed x4 and (τx)4

• The calculation of 〈x125〉 = 〈
((
x5)5)5〉 requires six cycles.

• In the next cycle, we square 〈x125〉
• The last two cycles are spent on the multiplication of the result 〈x250〉 with 〈x4〉 to

obtain 〈x254〉.

Optimization 2. By merging the last two operations into one step of two clock cycles,
we reduce the total latency of the M&M inversion to nine cycles. This is possible because
x254 = f(x4, x125) with f(a, b) = a · b2. We apply the same methodology as above. For
the value shares:

(b2
0, . . . , b

2
d) = b2

a� b2 = f(a, b)

32 M&M: Masks and Macs against Physical Attacks

For the tag shares:

((τ b0)2, . . . , (τ bd)2) = (τ b)2

τa � (τ b)2 = α3f(a, b) 6= τ f(a,b)

α−2 � (τa � (τ b)2) = τ f(a,b)

Figure 5 summarizes the nine-stage pipeline that calculates the value and tag shares
for an inversion of 〈x〉.

!"

#

!" !"#" #$"

!%$

#&$"

!' #'
#(&

Figure 5: Inversion pipeline. (Register stages are depicted by red dotted lines.)

4.1.2 Version 2: “Custom”

The AES S-box has been extensively studied in literature and an abundance of SCA-
protected implementations has already been proposed. When implementing the AES S-box
in the M&M framework, it only makes sense to exploit the results from this research. We
can take the above optimizations even further by merging all stages together into one.
Consider applying a dth-order secure shared inversion in GF(2k) (denoted ?−1) on both
the value and tag shares. One obtains x−1 and (τx)−1 = α−1x−1 6= τx

−1 . Only a
shared multiplication with α2 is required to calculate the correct tag shares of x−1. This
is illustrated in Figure 6. Again, it is easy to obtain α2 by locally squaring the shares of α.

!

"!

⋆$

%

"%⊙

⋆'(

⋆'(

)

Figure 6: M&M inversion: Obtaining the value and tag shares of z = x−1

4.2 Affine transformation over bits
The AES affine transformation at the end of the S-box A(x) = L(x) + c is linear over
GF(2). The linear part of the transform, L(x) is a matrix multiplication operating on the
bitvector of x. A sharing of L(x) is trivially obtained by applying the transform locally
to each share of x. The same cannot be said for the tag shares of x. In this section, we
describe how to obtain the tag shares for any linear transform of this type.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 33

Isomorphisms. Consider the isomorphism φ between the finite field GF(2k) and the vector
space (GF(2))k, that maps each element to its bitrepresentation vector, i.e. φ(2i) = ei
with ei the ith unit vector. We denote the bitvector of x as φ(x) = x. For the linear
transform, we thus have

φ(L(x)) = Lφ(x) = Lx
with L ∈ (GF(2))k×k the matrix that defines the linear transformation. One of the
consequences of this isomorphism is

∀α ∈ GF(2k),∃Mα ∈ (GF(2))k×k s.t. ∀x ∈ GF(2k) : φ(αx) = Mαφ(x) = Mαx

Note that the opposite direction does not work: not for every M ∈ (GF(2))k×k there exists
an α ∈ GF(2k) such that this relation holds.

Given a value x ∈ GF(2k) and a corresponding tag τx = αx ∈ GF(2k), we wish to obtain
a tag τL(x) satisfying τL(x) = αL(x). We denote the bitvector of τx as φ(τx) = t = Mαx.
We have

φ(τL(x)) = φ(αL(x)) = Mαφ(L(x))
= MαLx
= MαL(Mα−1t)
= (MαLMα−1)t

Hence, we can go from (x, τx) to (L(x), τL(x)) by applying L to the bitvector of x and
MαLMα−1 to the bitvector of τx. A similar approach is used in error detecting/correcting
code schemes [BCC+14]. In our case however, the code depends on α and thus the matrix
MαLMα−1 is secret and different in every encryption.

Calculating Mα. The matrix Mα is straightforward to find. The ith column of Mα can
be denoted by Mαei = Mαφ(2i) = φ(α2i). We therefore know that

Mα =
[
φ(128α) φ(64α) . . . φ(2α) φ(α)

]
By seeing a matrix product as a compact way to describe k matrix-vector products

AB =
[
Abk−1 Abk−2 . . . Ab0

]
we get that

LMα−1 =
[
φ(L(128α−1)) φ(L(64α−1)) . . . φ(L(α−1))

]
and thus

MαLMα−1 =
[
φ(αL(128α−1)) φ(αL(64α−1)) . . . φ(αL(α−1))

]
For each MAC key α, this matrix can be precomputed and stored in d+1 shares, similar

to the precomputed sharing of α−1. In the linear transformation, we obtain the tag shares
τL(x) by a shared matrix-vector multiplication with the sharing of MαLMα−1 . A shared
matrix-vector multiplication can use the same equations as the SCA-secure multiplier
�, but with one of the inputs a matrix and with the field multiplication ‘·’ replaced
by matrix-vector products. Because of the register stage in the shared matrix-vector
multiplication, the affine transformation requires one clock cycle.

Latency Optimization Note that in cases such as AES, where the affine transformation
follows a power map, a little trick can ensure that the affine transformation does not
increase the total latency of an S-box evaluation. The last clock cycle of the inversion in
§4.1.1 (resp. §4.1.2) is spent on a shared multiplication of intermediate tag shares with
α−2 (resp. α2). We can incorporate this tag correction in the affine transformation by
replacing the matrix MαLMα−1 with MαLMα−3 (resp. MαLMα).

34 M&M: Masks and Macs against Physical Attacks

5 Infective Computation
We have described above how to implement two encryption blocks: one that calculates
ciphertext shares, given plaintext shares and another that calculates ciphertext tag shares
from plaintext tag shares and MAC key shares αi. We now consider the ciphertext block-
per-block with blocksize k. Let ci ∈ GF(2k) be the shares of one ciphertext block and
τ ci ∈ GF(2k) the shares of the corresponding tag block. If the tags are consistent with the
data, then

∑
i τ
c
i = α ·

∑
i ci.

5.1 The Problem with Error Checking
The use of infective computation in M&M is motivated by the difficulty of designing an
error checking mechanism that is secure against combined attacks. Consider the following
algorithm that computes the error on the tags E = τ c + α · c and verifies that it is zero.
We assume sufficient registers are in place to prevent glitch problems.

Check(c, τ c, α)
Let θ ← α� c
for all shares i do

Let Ei ← θi + τ ci
end for
E =

∑
iEi

Output (E == 0)
This checking algorithm is not secure in a combined adversary model with probing and

faulting. When an attacker manages to insert a known fault ∆ in one share of the shared
multiplication such that the check is performed with α′ = α+ ∆, the unshared (zero) error
E is replaced by

E′ = τ c + α′ · c
= τ c + α · c+ ∆ · c
= ∆ · c

A single probe on the unshared E′ thus reveals the (faulty) ciphertext c. This attack
defeats the very purpose of the error check, which is to stop a faulty ciphertext from being
released to the adversary.

5.2 The Solution
We propose the following routine Infect, which is local except for one shared multiplication
to obtain a sharing of the correct MAC tag αc. Let R be a uniformly random mask
∈ GF(2k) \ {0}. Each share of the output ciphertext block is modified using this random
mask and the difference of the tags.

Infect (c, τ c, α)
Let θ ← α� c
Draw R

$← GF(2k) \ {0}
for all shares i do

Let c̃i ← ci +R · (θi + τ ci)
end for
Output c̃
The scheme outputs a sharing of the adapted ciphertext block c̃ =

∑
i c̃i = c+R · (α ·

c+ τ c). Thus, if the tags are consistent (α · c+ τ c = 0), the scheme outputs a sharing of

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 35

the computed block c. On the other hand, if the tags do not match (α · c+ τ c 6= 0), the
unshared output c̃ is random.

One may note that generating a nonzero mask R is nontrivial. However, there must be
a PRNG with enough throughput to realize all the randomness for the computation of the
S-box. The number of random bits available for the routine Infect is thus much higher
than the amount required. From this, it is easy to generate one nonzero byte.

Unbiased Randomization We verify that the infected ciphertexts are uniformly dis-
tributed, so the attacker cannot obtain any information from them. Consider the case
when the computation of Enc (and EncMac) is disturbed by faults ∆c (resp. ∆τ), resulting
in the unshared infected ciphertext block

c̃ = c+ ∆c +R · (α · (c+ ∆c) + τ c + ∆τ)

We may assume ∆c is non-zero and unkown to the attacker. In fact, knowing the faulty
ciphertext, or indeed ∆c, is the goal of the adversary in a DFA attack. Furthermore, we
assume a strong probing adversary can know the value of the mask R, which is why we do
not allow it to be zero. However, the MAC key α is always secret due to sharing. These
introduced faults (∆c,∆τ) remain undetected with a probability of 2−km, corresponding
to the case when ∆τ = α ·∆c. We therefore claim an error detection probability (EDP) of
1− 2−km and focus now on the case when ∆τ 6= α ·∆c.

Using the fact that α ·c+τ c = 0, we rewrite c̃ = c+∆c · (1+R ·α)+∆τ ·R. Clearly, the
unbiased randomization of the output depends on the uniformity of the mask (1 +R · α).
It can be verified that this mask is uniformly random in GF(2k) when R is uniformly
random in GF(2k) \ {0} and α uniformly random in GF(2k). As a result, c̃ is uniformly
random in GF(2k) when ∆c 6= 0.

5.3 Combining Infection and Detection

In many applications, outputting garbage when the chip is under attack suffices. There are
however some use cases, where one might want to know whether the outputted ciphertext is
correct. If that is the case, we propose to do the infective computation twice, with different
masks and with different MAC keys. The two resulting ciphertexts can be compared; If
the computation was corrupted, the ciphertexts are distinct and randomized. Otherwise,
they are identical.

The above adaption requires that the number of MAC keys m is at least two. If m = 1
suffices for security, we propose the following solution to avoid duplicating the tagsize just
for the sake of outputting two ciphertexts. A second MAC key β is created only for the
infective computation part and not for the cipher evaluation. The procedure Infect2 below
describes how to obtain the second ciphertext block c̃′ apart from the original c̃ obtained
with Infect.

Infect2 (c, τ c, α−1, β, R)
Let θ′ ← β � c
Let τ c′ ← α−1 � (β � τ c)
Draw R′

$← GF(2k) \ {0, R}
for all shares i do

Let c̃′i ← ci +R′ · (θi′ + τ ci
′)

end for
Output c̃′

36 M&M: Masks and Macs against Physical Attacks

The two unshared outputs are thus

c̃ =
∑
i

c̃i = c+R · (α · c+ τ c)

c̃′ =
∑
i

c̃′i = c+R′ · (β · c+ β · α−1 · τ c)

6 Security Analysis
In this section, we discuss the security of the M&M scheme. Note that M&M can be
based on several different Boolean masking schemes providing SCA secure multiplication,
inversion and refreshing gadgets in the chosen adversary model and thus the security of
any instantiation depends heavily on those choices.

6.1 Security against SCA.
By adhering to security principles such as ensuring non-completeness [BGN+14] and
proper refreshing is satisfied everywhere, M&M inherits the SCA security of the shared
multiplication and inversion mechanism used. A Boolean masking scheme that is secure in
the considered SCA attacker model thus provides security against dth-order SCA. Since the
model can include or exclude hardware glitches if the shared multiplication and inversion
mechanism used are also secure in the presence of glitches, M&M inherits this.

The computation of the tag shares follows the same design principles as the value
share calculations. The two datapaths operate completely independently of each other
and receive their own distinct fresh randomness (see Figure 7). It is important to note
that the input sharings p and τp must be independent as well, which is easily achieved
if the initial maskings of p and τp are obtained separately. The independence of the two
datapaths ensure that their merging in the Infect block does not induce leakage on p or τp.

Enc

EncMac

Infect

!

"!

$%R

%

"%

RNG

RNG

RNG

Figure 7: Overview of the scheme

The Refreshing Gadget. It is important that any refreshing mechanism used (cf. § 4.1.1)
ensures the same security as is provided by the used masking scheme. The kind of refreshing
thus depends on the targeted security order d [BBP+16] and the considered attacker model.
In general, one can always make use of the multiplication-based refresh gadget of Ishai
et al. [ISW03]. It has been shown in [BBD+16, Gadget 4b] that this refreshing ensures
composability at any order. For a specific target security level, randomness can be
consumed more efficiently. For example, the ring refreshing approach of [CRB+16] uses

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 37

d+ 1 fresh masks in a circular manner to refresh d+ 1 shares. This method suffices for
second- and third-order security. At certain higher orders, one can use its variant, offset
refreshing, which still uses only d+ 1 units of fresh randomness but rotates with an offset
of more than 1 [BBD+18, Alg. 2]. Finally, additive refreshing using only d fresh masks is
sufficient when first-order security is targeted. For a more detailed treatment of refreshing
gadgets, we refer to [BBD+18].

6.2 Security against FA.
The introduction of MAC tags to the circuit results in resistance against FA, in which
faults are not limited in Hamming weight nor in quantity. Faults are only undetected if
both the value and MAC tag shares are modified in such a way that the relation∑

i

τxi = α ·
∑
i

xi (1)

remains true. Since the MAC key α ∈ GF(2km) is unkown to the adversary, any number
of stochastic additive errors result in this relation with probability at most 2−km. If the
attacker has the ability to inject non-stochastic faults, our model restricts these to affect
at most d of the d+ 1 shares. In that case, the success probability still depends on the
probability of guessing the secret MAC key α ∈ GF(2km) correctly. We therefore claim an
error detection probability (EDP) of 1− 2−km.

As stated in the adversarial model in §2, the faults we consider are neither limited
in Hamming weight nor in quantity. The worst-case probability that (1) is satisfied is
2−km regardless of the Hamming weight of a single fault. The accumulated effect of
multiple faults also does not change this probability. The adversary obtains no additional
information after injecting faults hence random shooting or guessing α remains the best
strategy for subsequent faults. In the end, the same equation (1) in GF(2km) must hold
for the faults to remain undetected. It holds with probability 2−km. We experimentally
investigate the effect of multiple faults in Section 7.3.2.

The zero MAC key. The event that the MAC key is zero occurs with probability 2−km.
Since α is secret and shared, the adversary cannot know when the tags are zero and must
still guess α to determine what fault to inject in the tag computation. An adversary
strategy of not injecting faults in the tag computation, i.e. injecting faults only on the
value computations, corresponds to guessing that α = 0 and succeeds with probability
2−km. This is completely analogous to guessing for example that α = 1 and injecting
identical faults in both the tag and value computation accordingly. Either by guessing
α or by injecting a random fault, the adversary hits the correct value with probability
2−km, corresponding to our claimed EDP of 1− 2−km. Hence, in theory, the case α = 0 is
equivalent to any other nonzero MAC key. In practice however, the strategy corresponding
to guessing α = 0 is easier since it requires only fault injections in the value datapath and
not the tag datapath. To avoid it, one could exclude the zero MAC key and reduce the
EDP to 1− (2km − 1)−1. This difference is negligible if km is sufficiently large. However,
note that in that case, the infective computation output phase can no longer be used, since
it requires α to be uniformly random in GF(2km).

Ineffective Faults. Apart from DFA and FSA, there is also an interesting branch of fault
attacks that exploits so-called ineffective faults. For example, a stuck-at-zero fault on
a wire or set of wires is ineffective when those wires already carry the zero value. This
type of faults are naturally undetectable at algorithm level, which makes them immune
to both detection and infection countermeasures. A flavour of Ineffective Fault Analysis
(IFA) [Cla07] called Statistical Ineffective Fault Analysis (SIFA) [DEK+18] has recently

38 M&M: Masks and Macs against Physical Attacks

been proposed. SIFA collects a subset of correct ciphertexts from a large number of
faulted encryptions and exploits the fact that the intermediate state of the algorithm
is not uniformly distributed in this subset. This attack has been extended to masked
implementations in [DEG+18]. Ineffective faults (and thus SIFA) fall outside of our
adversary model since they are impossible to detect. Protection against such attack can
be provided at a different level, for example using a protocol that erases the key as soon
as a certain threshold of faulty ciphertexts has been detected.

6.3 Security against combined attacks.
Having brought the MAC tags to the shared domain, our scheme also provides security
against combined attacks. Thanks to the fact that the MAC key α is shared, it remains
secret even to a probing adversary. As a result, the detection probability of injected faults
does not change, even when the adversary combines them with SCA. We recall that our
model limits the injection of deterministic faults to d of the d + 1 shares. In case of a
combined attack, the total number of affected shares by either faults or probes should thus
still not exceed d.

Modern combined attacks such as PACA [AVFM07, CFGR10], which require a faulty
ciphertext to succeed, are prevented since faulty ciphertexts are only released with prob-
ability 2−km. The effective complexity of such attacks thus increases by a factor at
least 2km. Thanks to the infective computation, M&M is also secure against combined
attacks that target the checking mechanism or that exploit correlations on the faulty
ciphertext [RLK11, DV12].

Although we are not aware of any combined attack against M&M, we cannot formally
prove it as CAPA [RDB+18] does. The only provable approach against combined attacks
known so far is to adapt an actively secure MPC protocol. No other formal techniques
have yet been found.

7 AES Case Study
M&M has been designed in a way that allows it to use both provably secure (e.g.
SNI [BBD+15]) gadgets or more efficient but non-provably secure blocks. We now present
specific AES implementations confirming the latter. We target first- and second-order
security as those are relevant for realistic attacks and use TVLA for these specific orders
to demonstrate the security.

Our implementations are mere examples of the many different ways to instantiate M&M.
Any existing or future SCA-secure gadgets can be used as the underlying building blocks.
In this section, we first detail our choice of gadgets and investigate the implementation cost
of the resulting AES constructions. We then empirically validate our SCA claims using
univariate and bivariate test vector leakage assessment and we perform a simulation-based
verification of the DFA security.

7.1 Implementation Details
In Section 4, we described essentially all components that are needed to construct an AES
SubBytes implementation: the inversion in GF(28) and the affine transformation over bits.
We distinguish two versions of the S-box implementation. One follows a rather generic
methodology using multiplication chains and the other is customized for the inversion. We
investigate the implementation cost of both implementations for first- and second-order
SCA security (d = 1 or 2). For our specific instantiations of M&M, we only claim first-
and second-order security. Nevertheless, it is extendable to higher-orders given a suitable
choice of building blocks.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 39

The remaining AES blocks (ShiftRows, MixColumns and AddRoundKey) consist
exclusively of linear operations and are thus trivially implemented for the M&M framework.
More specifically, the datapaths in both the Enc and EncMac blocks each consist of d+ 1
copies of the AES state and key arrays. These arrays contain data shares in the encryption
block Enc and tag shares in case of the EncMac block. In total, the area cost of these
blocks increases with a factor (d+ 1)(m+ 1) compared to an unprotected implementation.
Our implementation uses the same byte-serialized architecture as used in [GMK17].

We now detail our choice of multiplication and refresh gadgets which are used in the
multiplication chain version of the inversion (cf. version 1, Figure 5) and the inversion
gadget used in version 2 (cf. Figure 6).

Multiplication gadgets. We choose a d+ 1-share multiplier as our SCA-secure multiplier.
The following equations describe for example a three-share, second-order (d = 2) secure
multiplication of shared variables x = (x0, x1, x2) and y = (y0, y1, y2) into z = (z0, z1, z2),
using three units of randomness r0, r1, r2 ∈ GF(2k) as in [GMK16]. We first calculate nine
intermediate values tij for i, j ∈ {0, 1, 2}. After a register stage for synchronization of tij ,
we compute the output shares z = (z0, z1, z2). The latency of the operation � is thus 1
clock cycle.

t00 = x0 · y0

t01 = x0 · y1 + r0

t02 = x0 · y2 + r1

t10 = x1 · y0 + r0

t11 = x1 · y1

t12 = x1 · y2 + r2

t20 = x2 · y0 + r1

t21 = x2 · y1 + r2

t22 = x2 · y2

z0 = [t00]reg + [t01]reg + [t02]reg
z1 = [t10]reg + [t11]reg + [t12]reg
z2 = [t20]reg + [t21]reg + [t22]reg

The corresponding first-order construction is given in [GMK16]. Each multiplication
requires

(
d+1

2
)
fresh units of randomness. It has been shown in [FGMDP+18] that such

a multiplication gadget is composable if the result is stored in a register. As shown on
Figure 5, we present in this work a construction with such registers in the value share
datapath but without extra registers in the tag share datapath. Note that, the intermediate
registers of [FGMDP+18] are a requirement for SNI schemes in HW, but the SNI property
is not a prerequisite for a scheme to be secure and we customized our design for better
performance. We see currently no formal way to prove the security of our construction,
but because the tag shares can be seen as Boolean shares of a multiplicative share of the
secret, we judge that the tag shares do not need to be stored in registers in order to obtain
security. We verify our approach empirically using TVLA and do not detect any leakage
(cf. §7.3.1). Provable security can be achieved by adding registers to each of the tag share
and value share datapaths.

Refreshing gadgets. When d = 1, a d+ 1-share variable x can be refreshed with d fresh
random units using additive refreshing:

(x0, x1, . . . , xd)→ (x0 + r0, x1 + r1, . . . , xd−1 + rd−1, xd +
d−1∑
i=0

ri)

40 M&M: Masks and Macs against Physical Attacks

For second-order security, we use ring refreshing as in [CRB+16], which consumes d+ 1
fresh random units.

Figure 8: Ring and Additive Refreshing [CRB+16]

We use these refreshings for the shares of x4, x20 and x100 in Figure 5 as well as for
the shares of (τx)4. We let r(d) be the corresponding randomness cost for refreshing d+ 1
shares with security order d, i.e. r(1) = 1 and r(2) = 3. The shares of (τx5)4 and (τx25)4

are refreshed using
(
d+1

2
)
units during the last multiplication in the M&M power five block

(cf. Figure 4). For d ∈ {1, 2}, we actually have that r(d) =
(
d+1

2
)
, so the cost of each

refreshing is r(d). We note again that these types of refreshing gadgets are only to be used
for respectively first- and second-order security and are not secure for higher orders.

Inversion gadget. For the shared inversion in GF(28), ?−1, we can use De Cnudde et
al.’s d + 1 [CRB+16] or Gross et al.’s Domain Oriented Masking [GMK17] AES S-box
implementations. Both are based on Canright’s compact S-box [Can05] using the tower
field approach. We opt for the first, which requires five register stages. Together with the
final shared multiplication with α2, the latency of the M&M inversion in Figure 6 is thus
six cycles.

7.2 Implementation Cost
Randomness We summarize the randomness cost in Table 1.

Recall that for d ∈ {1, 2}, each shared multiplication � and each refreshing consume(
d+1

2
)
units of randomness, where each unit is a byte in the case of AES. The inversion

pipeline of Figure 5 performs four M&M nonlinear operations (three times a5 and once ab2).
Each of these requires exactly three �’s, although we count one less for the f(a, b) = ab2

block (because this operation is included in the affine transform). We count two additional
�’s with α−1 for the computation of the tag shares of x4 and one � for the tag shares
in the affine transform. This brings the total number of shared multiplications � to 14.
In addition, we need 6 refreshings to preserve the non-completeness in the power five
exponentiations ?5.

The inversion circuit from [CRB+16] consumes 54 (resp. 162) bits of randomness
in first-(resp. second-)order. The M&M inversion in Figure 6 uses this circuit twice.
Furthermore, the affine transformation adds one additional shared (matrix) multiplication.

Finally, the infective computation uses randomness for one shared multiplication and
an additional unit for the mask R. However, since the infection takes place when all
SubBytes evaluations have finished, the total randomness does not increase.

Latency The first inversion from §4.1 requires nine clock cycles. In version 2, we use the
?−1 implementation from [CRB+16], which results in a M&M inversion of six clock cycles.
Recall from §4.2 that the AES affine transformation in M&M requires no additional cycles.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 41

Table 1: Randomness Cost for the AES S-box implementations

� # ?−1 # Fresh # Random Bits
d d = 1 d = 2

Shared Mult. (�)/Refresh 1 - - 8
(

d+1
2

)
8 24

Shared Inv. (?−1) [CRB+16] - 1 - - 54 162
Fresh Mask - - 1 8 8 8

S-box V1 14+6 - - 160
(

d+1
2

)
160 480

S-box V2 1 2 - - 116 348
Infective Computation 1 - 1 8

(
d+1

2

)
+ 8 16 32

In total, the AES S-box output is thus obtained in nine clock cycles with version 1 and six
clock cycles with version 2.

The byte-serialized architecture from [GMK17] is very efficient as it performs the
MixColumns, ShiftRows and AddRoundKey stages in parallel with the SubBytes stage.
As a result, when the S-box latency is C ≥ 4 cycles, one round of encryption (including
key schedule) requires exactly 16 + C clock cycles: During the first 16 cycles, all the state
bytes are fed to the S-box pipeline input. The MixColumns operation is done in parallel
every four cycles. The remaining C cycles are spent waiting for the last S-box output.
During the first four of these, the S-box can be used by the key schedule. In the last cycle,
the last S-box output is shifted into the state at the same time as ShiftRows is performed.

Our two versions of the AES Encryption therefore require respectively 25 and 22 clock
cycles per encryption round.

Area We report our area results for first- and second-order security in Table 2 together
with latency and randomness cost. As expected, the more customized version of the
S-box results in a much more efficient implementation. Note that many more tradeoffs
between area, latency and randomness cost are possible depending on design choices (e.g.
multiplication chain) and used building blocks (e.g. shared inversion block ?−1).

Table 2: Cost of first- and second-order AES implementations

Area [kGE] Latency # Random bits/cycle
d = 1 d = 2 [# cycles] d = 1 d = 2

State Array 5.6 8.5 - - -
Key Array 4.2 6.3 - - -
S-box
• V1 19.2 42.0 9 160 480
• V2 6.5 13.5 6 116 348
Control 0.2 0.2 - - -
Infective Comp. 1.7 3.3 - 16 32
Other 1.0 1.4 - - -

Total
• V1 31.9 61.7 266 160 480
• V2 19.2 33.2 236 116 348

Comparison to State-of-the-art. In Table 3, we report our area results next to other
state-of-the-art schemes. Some of these protect only against SCA [CRB+16, GMK17] and
some are combined countermeasures, such as ParTI [SMG16] and CAPA [RDB+18]. For
the latter, it is not easy to compare the results given the difference in cipher implemented
and synthesis libraries used. We try to overcome these differences by also reporting the

42 M&M: Masks and Macs against Physical Attacks

overhead factor of the combined countermeasure, compared to an implementation that
provides only protection against SCA.

The ParTI countermeasure is applied to the LED scheme in [SMG16]. The authors
report an area of 20.2 kGE obtained with a UMC 0.18µm library [Inc04], compared
to 7.9 kGE for the SCA-only first-order secure LED implementation. This signifies an
area overhead factor of 20.2

7.9 = 2.56. For the combined countermeasure CAPA, we can
compute the overhead over a SCA-secure KATAN implementation [RDB+18, Table 2].
Finally, we compare our first-order M&M AES (V2) with De Cnudde’s [CRB+16] first-order
implementation against SCA only. Table 3 reports the area of the implementation that is
only secure against SCA in the fourth column and the area of the combined countermeasure
in the fifth column. The overhead factor for those can be found in the last column. We
note that the dependency on the synthesis library cannot completely be eliminated this
way. Furthermore, all schemes consider very different adversary models.

Table 4 does the same for second-order secure implementations.

Table 3: Area comparison for first-order secure implementations

Countermeasure Synthesis Library Cipher SCA-only Combined Overhead
[kGE] [kGE] factor

[CRB+16] Nangate 45nm [NAN] AES 7.62 - -
[GMK17] UMC 90nm Low-K AES 6.0 - -
CAPA [RDB+18] Nangate 45nm [NAN] KATAN 3.6 30.5 8.47
ParTI [SMG16] UMC 0.18µm [Inc04] LED 7.9 20.2 2.56
M&M NanGate 45nm [NAN] AES 7.6 19.2 2.53

Table 4: Area comparison for second-order secure implementations

Countermeasure Synthesis Library Cipher SCA-only Combined Overhead
[kGE] [kGE] factor

[CRB+16] Nangate 45nm [NAN] AES 12.61 - -
[GMK17] UMC 90nm Low-K AES 10.0 - -
CAPA [RDB+18] Nangate 45nm [NAN] KATAN 5.9 55.2 9.35
M&M NanGate 45nm [NAN] AES 12.6 33.2 2.63

7.3 Evaluation
Evaluation of our M&M implementations is done separately for SCA and DFA, since no
comprehensive method for verifying against combined attacks has been published to our
knowledge. For the first, we program both versions of a second-order protected AES on an
FPGA and evaluate the leakage coming from the power consumption with a non-specific
t-test. The state-of-the-art on evaluating fault countermeasures is less advanced. We
evaluate the scheme’s EDP through a simulation of the circuits, in which we model additive
faults in the RTL.

7.3.1 SCA evaluation

Setup. To assess the security of our implementations we use a SAKURA-G board, which
is specifically designed for side-channel evaluation. On this board there are two distinct
Spartan-6 FPGA’s. The control FPGA handles the communication with the host computer
and generates the shares for the cryptographic FPGA. In the crypto FPGA, we deploy
the actual encryption scheme. This way we isolate the power consumption of the actual

2This number differs from the one reported in [CRB+16]. We contacted the authors and obtained their
code in order to synthesize with the same software and library as our M&M implementation.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 43

encryption, reducing considerably the noise in the experiment. We use a very slow 3 MHz
clock to ensure clear power traces with minimal overlap between consecutive time samples.
The synthesis of the design is done using Xilinx tools with the KEEP HIERARCHY constraint,
in order to avoid optimizations across different shares. We sample the power consumption
at 1.0GS/s with 10 000 points per frame, which includes 30 clock cycles. This is equivalent
to approximately 1.2 rounds of V1 and 1.4 rounds of V2.

TVLA. We perform a non-specific test vector leakage assessment (TVLA) [BCD+13]
using the methodology described in [RGV17]. This assessment is not used to mount an
attack but to detect correlations of the instantaneous power consumption with the secret.
We gather power traces for two distinct plaintext classes (one fixed and one random) and
compare the two sets using the t-test statistic. When the t-statistic exceeds the threshold
4.5 in absolute value, one can conclude with confidence 99.9995% that the two sets of power
traces follow different distributions and thus, that the design leaks. This is a necessary
but not sufficient condition for a successful attack to exist. When the t-statistic remains
below this threshold, the designer can conclude with high confidence that the design is
secure. We choose the fixed plaintext equal to the key so that all S-box inputs in the first
round are zero.

We first perform the t-test on an unprotected AES implementation to verify that our
setup is sound and able to detect leakage. We emulate the unprotected implementation
by disabling the PRNG. Leakage is then expected in every order. When we turn the
PRNG on and activate the countermeasures, we expect only third-order leakage since the
implementation is second-order secure.

Figure 9: Non-specific t-test on second-order secure M&M AES implementation, V1. Left:
PRNG off (24K traces); Right: PRNG on (100M traces). Rows (top to bottom): one
exemplary power trace; first-order t-test; second-order t-test; third-order t-test.

The t-test results for version 1 and 2 of our AES implementation are shown in Figures 9
and 10 respectively. In both cases, we see clear evidence of leakage at only 24 000 traces
when the PRNG is turned off. When we enable the PRNG, neither the first- nor second-
order t-test statistics surpass the threshold 4.5 with up to 100 million power traces.

In addition, we perform a bivariate analysis by combining time samples. For memory
efficiency, we reduce the resolution of the oscilloscope to 100MS/s, resulting in power traces
of 1 000 time samples each. We then perform the t-test as described above on 1 000× 1 000
matrices, formed by a centered product of the traces. The results are shown in Figure 11
and confirm that there is no bivariate leakage with up to 50 million traces.

44 M&M: Masks and Macs against Physical Attacks

Figure 10: Non-specific t-test on second-order secure M&M AES implementation, V2.
Left: PRNG off (24K traces); Right: PRNG on (100M traces). Rows (top to bottom): one
exemplary power trace; first-order t-test; second-order t-test; third-order t-test.

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000 0

4.5

10

20

30

40

50

60

70

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000 0

4.5

20

40

60

80

100

120

Figure 11: Bivariate t-test on second-order secure M&M AES imlementation, V1 (left)
and V2 (right). Below diagonal: PRNG off (20K traces); Above diagonal: PRNG on (50M
traces).

7.3.2 FA evaluation

In this section we evaluate the behaviour of our design when multiple stochastic faults are
injected. We describe our experiment, which aims to measure M&M’s detection rate of
faults. For simplicity, we evaluate our first-order secure AES implementations.

Fault modeling. Traditionally, fault modeling theory distinguishes between faults that
affect the logic function on the one hand and delay faults on the other. Moreover, faults
can be clasified as structural (modifying the interconnections among components in the
circuit) or functional (modifying the functionality of certain parts of the circuit) [ABF94].

Faults in cryptographic devices are typically injected with a laser or introduced by
clock or power line glitches. In our experiments we consider functional faults in the logic
functions to model the adversary of §2 (i.e. additive errors). We model faults using XOR
additions. This does not only allow us to flip one specific bit, but also to XOR entire
offsets to k-bit words.

Fault injection. We enable a fault injection on a wire by extending the original VHDL
code with an additional fault gate on that wire. Such a gate is simply an XOR with a fault
selector, indicating whether or not we want to inject a fault.

In each design to be tested, we select a number of critical bytes where an attacker is

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 45

most likely to inject a fault. These points are: the input to the state register; the state
and key byte before AddRoundKey; the SubBytes input from the key schedule and four
different points inside SubBytes. Faults can be inserted in every data share and every tag
share of those bytes.

This means that 256 fault gates are installed in the first order implementations. We
collect the corresponding fault selectors in a fault vector, which is controlled by the
testbench. Each bit set to ’1’ in the fault vector corresponds to a fault on a single bit.
By setting multiple bits in the vector, we enable multiple faults in the implementation.
When several faults are activated in the same byte, it implies the XOR of an offset to that
variable.

We want to be able to randomly draw fault vectors with a chosen Hamming weight H.
For this, we draw inspiration from the basic principles of address decoding. We draw one
random bit; if it is ‘zero’, a fault occurs in the first half of the vector and if it is ‘one’, in the
second half. We draw a second bit and follow the same procedure to decide which of the
two quarters. We continue this way until a single fault bit is selected. Thus, log2(256) = 8
random bits are needed to set a one-bit fault in a 256-bit vector. By repeating this method
H times, we can draw random fault vectors with Hamming weight H. In our experiments
we choose H = 128.

For each selected bit, we flip one more coin that decides whether the selected fault is
activated or not. This means that of the 128 selected faults, approximately half will be
active. Since most of the fault attacks in literature target one of the last rounds of AES,
we similarly “inject” our faults in the last round of encryption.

Results. We simulate the fault-augmented VHDL code with Xilinx ISIM for 50 000
iterations and measure the fault detection rate. In each experiment, approximately 64 bits
are altered in the computation. We are thus faulting one or more bits in multiple bytes.
We consider the faults detected if the returned ciphertext is infected. In version 1 of our
M&M AES, the experiment shows that 210 faulty ciphertexts are not infected. This means
that the experimental rate of detection of our M&M implementation is 0.9958, compared
to the theoretical 1− 2−8 = 0.9961. In our second AES version, 189 faulty ciphertexts are
not infected, which means the experimental detection probability is 0.9962.

8 Conclusion
We introduce a new family of countermeasures to provide security against both SCA and
DFA. M&M can extend any masking countermeasure with information-theoretic MAC
tags and infective computation. We demonstrate how to construct basic M&M building
blocks and how to build a secure implementation of any cipher. We illustrate our proposal
with first- and second-order secure implementations of AES and we experimentally verify
the SCA and DFA security. We show that M&M implementations can be very efficient
while providing resistance against both SCA and DFA in a strong but realistic adversary
model.

Acknowledgements
The authors would like to thank Dusan Bozilov, Begül Bilgin and Nigel Smart for fruitful
discussions and also the CHES reviewers for their helpful comments. This work was
supported in part by the Research Council KU Leuven: C16/15/058 and OT/13/071, by
the NIST Research Grant 60NANB15D346 and the EU H2020 project FENTEC. Lauren
De Meyer is funded by a PhD fellowship of the Fund for Scientific Research - Flanders
(FWO).

46 M&M: Masks and Macs against Physical Attacks

References
[ABF94] M. Abramovici, M. Breuer, and A. Friedman. Digytal systems testing and

testable design. Wiley-IEEE Press, September 1994.

[AVFM07] F. Amiel, K. Villegas, B. Feix, and L. Marcel. Passive and active combined
attacks: Combining fault attacks and side channel analysis. In Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pages
92–102, Sept 2007.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. Veriffied proofs of higher-order
masking. EUROCRYPT, IACR Cryptology ePrint Archive, 2015:060, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pages 116–129. ACM, 2016.

[BBD+18] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, François-Xavier Standaert, and Pierre-Yves Strub. Improved
parallel mask refreshing algorithms - generic solutions with parametrized
non-interference & automated optimizations. IACR Cryptology ePrint
Archive, 2018:505, 2018.

[BBK+03] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo
Piuri. Error analysis and detection procedures for a hardware implemen-
tation of the advanced encryption standard. IEEE Trans. Computers,
52(4):492–505, 2003.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume
9666 of Lecture Notes in Computer Science, pages 616–648. Springer, 2016.

[BCC+14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and
Houssem Maghrebi. Orthogonal direct sum masking - A smartcard friendly
computation paradigm in a code, with builtin protection against side-channel
and fault attacks. In David Naccache and Damien Sauveron, editors, Infor-
mation Security Theory and Practice. Securing the Internet of Things - 8th
IFIP WG 11.2 International Workshop, WISTP 2014, Heraklion, Crete,
Greece, June 30 - July 2, 2014. Proceedings, volume 8501 of Lecture Notes
in Computer Science, pages 40–56. Springer, 2014.

[BCD+13] G. Becker, J. Cooper, E. De Mulder, G. Goodwill, J. Jaffe, G. Kenwor-
thy, T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, et al. Test
vector leakage assessment (tvla) methodology in practice. In International
Cryptographic Module Conference, volume 1001, page 13, 2013.

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 47

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE,
94(2):370–382, Feb 2006.

[BG13] Alberto Battistello and Christophe Giraud. Fault analysis of infective AES
computations. In Wieland Fischer and Jörn-Marc Schmidt, editors, 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos,
CA, USA, August 20, 2013, pages 101–107. IEEE Computer Society, 2013.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. Higher-order threshold implementations. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 326–343. Springer, 2014.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems, pages 513–525. Springer Berlin Heidelberg, Berlin, Heidelberg,
1997.

[Can05] David Canright. A very compact s-box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September
1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science,
pages 441–455. Springer, 2005.

[CFGR10] C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet. Passive and active
combined attacks on aes combining fault attacks and side channel analysis.
In 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages
10–19, Aug 2010.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[CN16] Thomas De Cnudde and Svetla Nikova. More efficient private circuits II
through threshold implementations. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016, pages 114–124. IEEE Computer Society, 2016.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 194–212. Springer, 2016.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. IACR Cryptology ePrint Archive,
2018:357, 2018.

48 M&M: Masks and Macs against Physical Attacks

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. Sifa: Exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):547–572, Aug. 2018.

[DV12] F. Dassance and A. Venelli. Combined fault and side-channel attacks on
the aes key schedule. In 2012 Workshop on Fault Diagnosis and Tolerance
in Cryptography, pages 63–71, Sept 2012.

[FGMDP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in the
presence of physical defaults & the robust probing model. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(3):89–120,
Aug. 2018.

[FH17] Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science. Springer, 2017.

[GM17] Hannes Groß and Stefan Mangard. Reconciling d+1 masking in hardware
and software. In Fischer and Homma [FH17], pages 115–136.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. IACR Cryptology ePrint Archive, 2016:486, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-
channel protected AES implementation with arbitrary protection order. In
Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The
Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA,
USA, February 14-17, 2017, Proceedings, volume 10159 of Lecture Notes in
Computer Science, pages 95–112. Springer, 2017.

[GPS14] Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert. Efficient
masked s-boxes processing - A step forward -. In David Pointcheval and
Damien Vergnaud, editors, Progress in Cryptology - AFRICACRYPT 2014 -
7th International Conference on Cryptology in Africa, Marrakesh, Morocco,
May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in Computer
Science, pages 251–266. Springer, 2014.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In Alejandro Hevia and Gregory Neven, editors,
Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference
on Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer
Science, pages 305–321. Springer, 2012.

[Inc04] Virtual Silicon Inc. 0.18 µm VIP Standard cell library tapeout ready,
partnumber: UMCL18G212T3, process: UMC logic 0.18µm generic II
technology: 0.18µm, July 2004.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. Private
circuits II: keeping secrets in tamperable circuits. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International

L. De Meyer, V. Arribas, S. Nikova, V. Nikov, V. Rijmen 49

Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004
of Lecture Notes in Computer Science, pages 308–327. Springer, 2006.

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware
against Probing Attacks, pages 463–481. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[KJJ99] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 388–397, 1999.

[KKG03] Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Parity-based con-
current error detection of substitution-permutation network block ciphers.
In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, volume
2779 of Lecture Notes in Computer Science, pages 113–124. Springer, 2003.

[KKT04] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander Taubin. Differen-
tial fault analysis attack resistant architectures for the advanced encryption
standard. In Jean-Jacques Quisquater, Pierre Paradinas, Yves Deswarte,
and Anas Abou El Kalam, editors, Smart Card Research and Advanced
Applications VI, IFIP 18th World Computer Congress, TC8/WG8.8 &
TC11/WG11.2 Sixth International Conference on Smart Card Research and
Advanced Applications (CARDIS), 22-27 August 2004, Toulouse, France,
volume 153 of IFIP, pages 177–192. Kluwer/Springer, 2004.

[LRT12] Victor Lomné, Thomas Roche, and Adrian Thillard. On the need of
randomness in fault attack countermeasures - application to AES. In Guido
Bertoni and Benedikt Gierlichs, editors, 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, pages
85–94. IEEE Computer Society, 2012.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault Sensitivity Analysis, pages 320–334.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[NAN] NANGATE. The NanGate 45nm Open Cell Library. Available at http:
//www.nangate.com.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
Implementations Against Side-Channel Attacks and Glitches. In Information
and Communications Security, 8th International Conference, ICICS 2006,
Raleigh, NC, USA, December 4-7, 2006, Proceedings, pages 529–545, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware im-
plementation of nonlinear functions in the presence of glitches. J. Cryptology,
24(2):292–321, 2011.

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free imple-
mentation of the AES using secure multi-party computation protocols. In
Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara,
Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture
Notes in Computer Science, pages 63–78. Springer, 2011.

http://www.nangate.com
http://www.nangate.com

50 M&M: Masks and Macs against Physical Attacks

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 764–783. Springer, 2015.

[RDB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver
against physical attacks. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 121–151. Springer, 2018.

[RGV17] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Fast leakage
assessment. In Fischer and Homma [FH17], pages 387–399.

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined Fault and
Side-Channel Attack on Protected Implementations of AES, pages 65–83.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[SFRES18] Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer
Steinwandt. Extending glitch-free multiparty protocols to resist fault injec-
tion attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(3):394–430, Aug. 2018.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti: Towards com-
bined hardware countermeasures against side-channeland fault-injection
attacks. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors,
Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 39. ACM, 2016.

	Introduction
	Adversarial Model
	M&M: The Basics
	The M&M Framework
	Basic M&M Building Blocks

	Building circuits with M&M
	Galois Field Inversion
	Affine transformation over bits

	Infective Computation
	The Problem with Error Checking
	The Solution
	Combining Infection and Detection

	Security Analysis
	Security against SCA.
	Security against FA.
	Security against combined attacks.

	AES Case Study
	Implementation Details
	Implementation Cost
	Evaluation

	Conclusion

