
Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Joël Cathébras

Alexandre Carbon

Renaud Sirdey

Nicolas Ventroux

DATA FLOW ORIENTED HARDWARE DESIGN OF RNS-BASED

POLYNOMIAL MULTIPLICATION FOR SHE ACCELERATION

Peter Milder

| 2

IMPLEMENTATION PROBLEMATIC

FOR RLWE-BASED LEVELED-FHE SCHEMES

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Handling polynomial of 𝑹 = ℤ 𝑋 /(𝐹(𝑋)) and 𝑹𝑞 = 𝑹/𝑞𝑹:

• Modulus 𝑞 ~ several hundred of bits

• deg(𝐹) ~ several thousand
Security

Multiplicative depthImpact

| 3

IMPLEMENTATION PROBLEMATIC

FOR RLWE-BASED LEVELED-FHE SCHEMES

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞 =

𝑖=1

𝑘

𝑞𝑖

• Residue Number System: 𝑎𝑞1 𝑏𝑞1

𝑟𝑞1

×
𝑞1

𝑎𝑞𝑖 𝑏𝑞𝑖

𝑟𝑞𝑖

×
𝑞𝑖

𝑎𝑞𝑘 𝑏𝑞𝑘

𝑟𝑞𝑘

×
𝑞𝑘

… …×

𝑎 𝑏

𝑟

⇔
𝑞

• Handling polynomial of 𝑹 = ℤ 𝑋 /(𝐹(𝑋)) and 𝑹𝑞 = 𝑹/𝑞𝑹:

• Modulus 𝑞 ~ several hundred of bits

• deg(𝐹) ~ several thousand
Security

Multiplicative depthImpact

| 4

IMPLEMENTATION PROBLEMATIC

FOR RLWE-BASED LEVELED-FHE SCHEMES

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞 =

𝑖=1

𝑘

𝑞𝑖

• Residue Number System: 𝑎𝑞1 𝑏𝑞1

𝑟𝑞1

×
𝑞1

𝑎𝑞𝑖 𝑏𝑞𝑖

𝑟𝑞𝑖

×
𝑞𝑖

𝑎𝑞𝑘 𝑏𝑞𝑘

𝑟𝑞𝑘

×
𝑞𝑘

… …×

𝑎 𝑏

𝑟

⇔
𝑞

• Handling polynomial of 𝑹 = ℤ 𝑋 /(𝐹(𝑋)) and 𝑹𝑞 = 𝑹/𝑞𝑹:

• Modulus 𝑞 ~ several hundred of bits

• deg(𝐹) ~ several thousand

• Bajard et al. in 2016, further simplified by Halevi et al. in 2018 :

• RNS compatible FV. Dec𝑅𝑁𝑆 and FV.Mult&Relin𝑅𝑁𝑆.
• New 𝒓𝒍𝒌𝑅𝑁𝑆: pair of 𝑘 × 𝑘–matrices with elements in 𝑅𝑞𝑖 for 𝑖 in 1,… , 𝑘.

• Performance bottleneck: Residue Polynomial Multiplication (𝑅𝑞𝑖 ’s products)

Security

Multiplicative depthImpact

| 5

IMPLEMENTATION PROBLEMATIC

FOR RLWE-BASED LEVELED-FHE SCHEMES

• Negative Wrapped Convolution over 𝑅𝑞𝑖 = ℤ𝑞𝑖 𝑋 /(𝐹(𝑋)):

• No polynomial modular reduction.

• Restrict the choice of 𝐹 𝑋 = 𝑋𝑛 + 1 with 𝑛 a power of 2.

• Restrict the choice of 𝑞𝑖: 𝑞𝑖 ≡ 1mod 2𝑛.

• 2𝑛𝑘 precomputed values: (𝜓𝑖
𝑗
)0≤𝑗<2𝑛, where 𝜓𝑖 a 𝑛-th primitive root of -1 in ℤ𝑞𝑖

∗ .

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞 =

𝑖=1

𝑘

𝑞𝑖

• Residue Number System: 𝑎𝑞1 𝑏𝑞1

𝑟𝑞1

×
𝑞1

𝑎𝑞𝑖 𝑏𝑞𝑖

𝑟𝑞𝑖

×
𝑞𝑖

𝑎𝑞𝑘 𝑏𝑞𝑘

𝑟𝑞𝑘

×
𝑞𝑘

… …×

𝑎 𝑏

𝑟

⇔
𝑞

• Handling polynomial of 𝑹 = ℤ 𝑋 /(𝐹(𝑋)) and 𝑹𝑞 = 𝑹/𝑞𝑹:

• Modulus 𝑞 ~ several hundred of bits

• deg(𝐹) ~ several thousand

• Bajard et al. in 2016, further simplified by Halevi et al. in 2018 :

• RNS compatible FV. Dec𝑅𝑁𝑆 and FV.Mult&Relin𝑅𝑁𝑆.
• New 𝒓𝒍𝒌𝑅𝑁𝑆: pair of 𝑘 × 𝑘–matrices with elements in 𝑅𝑞𝑖 for 𝑖 in 1,… , 𝑘.

• Performance bottleneck: Residue Polynomial Multiplication (𝑅𝑞𝑖 ’s products)

Security

Multiplicative depthImpact

| 6

RELATED WORKS (HARDWARE ACCELERATION)

• Migliore et al. 2018: Karatsuba rather than NWC (no RNS)

• Finer choice of 𝐹(𝑋) allowing batching of binary messages.

• Asymptotic complexity in 𝑂(𝑛1,585) Vs 𝑂(𝑛 log𝑛): turning point (𝑛 = 6144, log2 𝑞 = 512).
Not sufficient to target large multiplicative depth.

• Öztürk et al. 2015: RNS and NTT approach for LTV scheme (no NWC)

• Memory-access iterative NTT.

• External pre-computation of NTT twiddle factors.

Use communication bandwidth for non-payload data.

• Cousins et al. 2017: RNS and NTT approach for LTV scheme

• Dataflow oriented pipelined NTT.

• Local storage of all twiddle factors at compile time.

Storage cost in O(𝑘𝑛), dependent of RNS basis size.

• Sinha Roy et al. 2015: RNS and NTT (no NWC) approach for RLWE-based scheme

• Memory-access iterative NTT.

• Local storage of a subset of the twiddle factors, and computation on-the-fly of the others.

Better storage in O(𝑘 log𝑛), but still dependent of RNS basis size.

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Dataflow oriented NWC with on-the-fly computation of twiddle factors

| 7

NWC ARCHITECTURE PRINCIPLE

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

GEN

ITW

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

GEN

PCTW
GEN

TW

𝑛𝑖
−1

𝜓𝑖
𝑤

…

𝑛𝑖
−1

(𝑞𝑖 , 𝑣𝑖 , Ψ𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖) (𝑞𝑖 , 𝑣𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖
−1) (𝑞𝑖 , 𝑣𝑖 , 𝑛𝑖

−1 ⋅ Ψ𝑖
−1)

VEC

PW

MM

𝐴𝑖

𝐵𝑖

VEC

NTT

PW

MM
NTT

PW

MM
𝐶𝑖

twiddle flow

data flow

Ω𝑖 ⊂ Ψ𝑖 and Ω𝑖
−1 ⊂ Ψ𝑖

−1 (𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖)

One NWC over 𝑹⟺ O(𝑘) smaller NWC over the 𝑹𝑞𝑖 ’s : 𝐶𝑖 = NWC𝑖 𝐴𝑖 , 𝐵𝑖

• Architecture principle:

• Required values for NWC𝑖:
• 𝜓𝑖: a 𝑛-th primitive root of -1 over ℤ𝑞𝑖

∗ ⇒ 𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖 is a 𝑛-th primitive root of 1 over ℤ𝑞𝑖

∗

| 8

NWC ARCHITECTURE PRINCIPLE

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑂 𝑤 seeds ≪ 𝑂 𝑛 twiddles

Generation of Ψ𝑖 = 𝜓𝑖
𝑗

𝑗=0

𝑛−1
.

One set every 𝑇 =
𝑛

𝑤
cycles.

GEN

ITW

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

GEN

PCTW
GEN

TW

𝑛𝑖
−1

𝜓𝑖
𝑤

…

𝑛𝑖
−1

(𝑞𝑖 , 𝑣𝑖 , Ψ𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖) (𝑞𝑖 , 𝑣𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖
−1) (𝑞𝑖 , 𝑣𝑖 , 𝑛𝑖

−1 ⋅ Ψ𝑖
−1)

VEC

PW

MM

𝐴𝑖

𝐵𝑖

VEC

NTT

PW

MM
NTT

PW

MM
𝐶𝑖

twiddle flow

data flow

Ω𝑖 ⊂ Ψ𝑖 and Ω𝑖
−1 ⊂ Ψ𝑖

−1 (𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖)

One NWC over 𝑹⟺ O(𝑘) smaller NWC over the 𝑹𝑞𝑖 ’s : 𝐶𝑖 = NWC𝑖 𝐴𝑖 , 𝐵𝑖

• Architecture principle:

• Required values for NWC𝑖:
• 𝜓𝑖: a 𝑛-th primitive root of -1 over ℤ𝑞𝑖

∗ ⇒ 𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖 is a 𝑛-th primitive root of 1 over ℤ𝑞𝑖

∗

| 9

NWC ARCHITECTURE PRINCIPLE

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑂 𝑤 seeds ≪ 𝑂 𝑛 twiddles

Generation of Ψ𝑖 = 𝜓𝑖
𝑗

𝑗=0

𝑛−1
.

One set every 𝑇 =
𝑛

𝑤
cycles.

GEN

ITW

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

GEN

PCTW
GEN

TW

𝑛𝑖
−1

𝜓𝑖
𝑤

…

𝑛𝑖
−1

(𝑞𝑖 , 𝑣𝑖 , Ψ𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖) (𝑞𝑖 , 𝑣𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖
−1) (𝑞𝑖 , 𝑣𝑖 , 𝑛𝑖

−1 ⋅ Ψ𝑖
−1)

VEC

PW

MM

𝐴𝑖

𝐵𝑖

VEC

NTT

PW

MM
NTT

PW

MM
𝐶𝑖

twiddle flow

data flow

Ω𝑖 ⊂ Ψ𝑖 and Ω𝑖
−1 ⊂ Ψ𝑖

−1 (𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖)

One NWC over 𝑹⟺ O(𝑘) smaller NWC over the 𝑹𝑞𝑖 ’s : 𝐶𝑖 = NWC𝑖 𝐴𝑖 , 𝐵𝑖

• Architecture principle:

• Required values for NWC𝑖:
• 𝜓𝑖: a 𝑛-th primitive root of -1 over ℤ𝑞𝑖

∗ ⇒ 𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖 is a 𝑛-th primitive root of 1 over ℤ𝑞𝑖

∗

Computation of Ψ𝑖
−1 = 𝜓𝑖

−𝑗

𝑗=0

𝑛−1

Ψ𝑖
−1 = Reorder(𝑞𝑖 −Ψ𝑖)

(𝑞𝑖 − 𝜓𝑖
𝑗
= 𝜓𝑖
− 𝑛−𝑗
mod 𝑞𝑖)

| 10

NWC ARCHITECTURE PRINCIPLE

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑂 𝑤 seeds ≪ 𝑂 𝑛 twiddles

Generation of Ψ𝑖 = 𝜓𝑖
𝑗

𝑗=0

𝑛−1
.

One set every 𝑇 =
𝑛

𝑤
cycles.

Scale Ψ𝑖
−1 by 𝑛𝑖

−1

(𝑛𝑖
−1 = 𝑛−1 mod 𝑞𝑖)

GEN

ITW

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

GEN

PCTW
GEN

TW

𝑛𝑖
−1

𝜓𝑖
𝑤

…

𝑛𝑖
−1

(𝑞𝑖 , 𝑣𝑖 , Ψ𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖) (𝑞𝑖 , 𝑣𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖
−1) (𝑞𝑖 , 𝑣𝑖 , 𝑛𝑖

−1 ⋅ Ψ𝑖
−1)

VEC

PW

MM

𝐴𝑖

𝐵𝑖

VEC

NTT

PW

MM
NTT

PW

MM
𝐶𝑖

twiddle flow

data flow

Computation of Ψ𝑖
−1 = 𝜓𝑖

−𝑗

𝑗=0

𝑛−1

Ψ𝑖
−1 = Reorder(𝑞𝑖 −Ψ𝑖)

(𝑞𝑖 − 𝜓𝑖
𝑗
= 𝜓𝑖
− 𝑛−𝑗
mod 𝑞𝑖)

Ω𝑖 ⊂ Ψ𝑖 and Ω𝑖
−1 ⊂ Ψ𝑖

−1 (𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖)

One NWC over 𝑹⟺ O(𝑘) smaller NWC over the 𝑹𝑞𝑖 ’s : 𝐶𝑖 = NWC𝑖 𝐴𝑖 , 𝐵𝑖

• Architecture principle:

• Required values for NWC𝑖:
• 𝜓𝑖: a 𝑛-th primitive root of -1 over ℤ𝑞𝑖

∗ ⇒ 𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖 is a 𝑛-th primitive root of 1 over ℤ𝑞𝑖

∗

| 11

NWC ARCHITECTURE PRINCIPLE

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑂 𝑤 seeds ≪ 𝑂 𝑛 twiddles

Generation of Ψ𝑖 = 𝜓𝑖
𝑗

𝑗=0

𝑛−1
.

One set every 𝑇 =
𝑛

𝑤
cycles.

Scale Ψ𝑖
−1 by 𝑛𝑖

−1

(𝑛𝑖
−1 = 𝑛−1 mod 𝑞𝑖)

GEN

ITW

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

GEN

PCTW
GEN

TW

𝑛𝑖
−1

𝜓𝑖
𝑤

…

𝑛𝑖
−1

(𝑞𝑖 , 𝑣𝑖 , Ψ𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖) (𝑞𝑖 , 𝑣𝑖) (𝑞𝑖 , 𝑣𝑖 , Ω𝑖
−1) (𝑞𝑖 , 𝑣𝑖 , 𝑛𝑖

−1 ⋅ Ψ𝑖
−1)

VEC

PW

MM

𝐴𝑖

𝐵𝑖

VEC

NTT

PW

MM
NTT

PW

MM
𝐶𝑖

twiddle flow

data flow

Computation of Ψ𝑖
−1 = 𝜓𝑖

−𝑗

𝑗=0

𝑛−1

Ψ𝑖
−1 = Reorder(𝑞𝑖 −Ψ𝑖)

(𝑞𝑖 − 𝜓𝑖
𝑗
= 𝜓𝑖
− 𝑛−𝑗
mod 𝑞𝑖)

Ω𝑖 ⊂ Ψ𝑖 and Ω𝑖
−1 ⊂ Ψ𝑖

−1 (𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖)

One NWC over 𝑹⟺ O(𝑘) smaller NWC over the 𝑹𝑞𝑖 ’s : 𝐶𝑖 = NWC𝑖 𝐴𝑖 , 𝐵𝑖

• Architecture principle:

• Required values for NWC𝑖:
• 𝜓𝑖: a 𝑛-th primitive root of -1 over ℤ𝑞𝑖

∗ ⇒ 𝜔𝑖 = 𝜓𝑖
2 mod 𝑞𝑖 is a 𝑛-th primitive root of 1 over ℤ𝑞𝑖

∗

| 12

• SPIRAL tool: DFT hardware generator.

• Design space exploration.

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (1)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

| 13

• SPIRAL tool: DFT hardware generator.

• Design space exploration.

• Complex arithmetic ⇒ ℤ𝑞𝑖 modular arithmetic.

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (1)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞𝑖⟵ NFLlib prime selection.

Barrett modular reduction.

(𝑣𝑖 =
22(𝑠+2)

𝑞𝑖
mod 2s+2)

| 14

• SPIRAL tool: DFT hardware generator.

• Design space exploration.

• Complex arithmetic ⇒ ℤ𝑞𝑖 modular arithmetic.

• Modifying twiddle factor handling.

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (1)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞𝑖⟵ NFLlib prime selection.

Barrett modular reduction.

(𝑣𝑖 =
22(𝑠+2)

𝑞𝑖
mod 2s+2)

Example of NTT data path (𝑟 = 2, 𝑛 = 16, 𝑤 = 4):

𝑞𝑖
𝑞𝑖 , 𝑣𝑖 𝑞𝑖 , 𝑣𝑖

𝑞𝑖 𝑞𝑖 𝑞𝑖

𝑞𝑖
𝑞𝑖 , 𝑣𝑖 𝑞𝑖 , 𝑣𝑖 𝑞𝑖 , 𝑣𝑖

𝑞𝑖 𝑞𝑖 𝑞𝑖

𝜔𝑖
0, 𝜔𝑖
2, 𝜔𝑖
4, 𝜔𝑖
6

𝜔𝑖
1, 𝜔𝑖
3, 𝜔𝑖
5, 𝜔𝑖
7

𝜔𝑖
0, 𝜔𝑖
4

𝜔𝑖
2, 𝜔𝑖
6

𝜔𝑖
4

Init

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2NTT 2NTT 2NTT 2

Stage 0 Stage 1 Stage 2 Stage 3

Characteristics:

- 𝐿 = log𝑟 𝑛 stages.

- 𝑤 words per cycles.

- One transform every 𝑇 =
𝑛

𝑤
cycles.

| 15

• SPIRAL tool: DFT hardware generator.

• Design space exploration.

• Complex arithmetic ⇒ ℤ𝑞𝑖 modular arithmetic.

• Modifying twiddle factor handling.

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (1)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑞𝑖⟵ NFLlib prime selection.

Barrett modular reduction.

(𝑣𝑖 =
22(𝑠+2)

𝑞𝑖
mod 2s+2)

Example of NTT data path (𝑟 = 2, 𝑛 = 16, 𝑤 = 4):

Init

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2

Perm

NTT 2NTT 2NTT 2NTT 2

Stage 0 Stage 1 Stage 2 Stage 3

Characteristics:

- 𝐿 = log𝑟 𝑛 stages.

- 𝑤 words per cycles.

- One transform every 𝑇 =
𝑛

𝑤
cycles.

𝜔𝑖
0

𝜔𝑖
2

𝜔𝑖
4

𝜔𝑖
6

𝜔𝑖
1

𝜔𝑖
3

𝜔𝑖
5

𝜔𝑖
7

𝜔𝑖
0

𝜔𝑖
4
𝜔𝑖
2

𝜔𝑖
6

𝜔𝑖
4𝑞𝑖 , 𝑣𝑖

- RNS channel specific

- Reprogrammable

Twiddle Bank (TWB)

(1,0)

(2,0)(2,1)

(3,0)(3,1)

| 16

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

TWB 1 TWB 𝐺…

NTT DP

next_in next_out

data_in data_out

𝐺 =
Lat𝐷𝑃
𝑇
+ 1

𝑤 words 𝑤 words
read addresses
write addresses
write enables

twiddle flow

𝑡 : way index (in 0,… ,
𝑤

2
− 1)

𝑙 : stage index

Cyclic access and

reprogramming

of TWB

In
it

 P
e
rm N

T
T

 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

N
T

T
 2

N
T

T
 2

N
T

T
 2

| 17

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

TWB 1 TWB 𝐺…

…

CTRL

n
e
x
t_

[0
:𝐿

]

INTERCONNECT DP

NTT DP

next_in next_out

data_in data_out

𝐺 =
Lat𝐷𝑃
𝑇
+ 1

𝑤 words 𝑤 words
read addresses
write addresses
write enables

twiddle flow

𝑡 : way index (in 0,… ,
𝑤

2
− 1)

𝑙 : stage index

Cyclic access and

reprogramming

of TWB

In
it

 P
e
rm N

T
T

 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

N
T

T
 2

N
T

T
 2

N
T

T
 2

| 18

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

TWB 1 TWB 𝐺…

…

CTRL

n
e
x
t_

[0
:𝐿

]

INTERCONNECT DP

NTT DP

next_in next_out

data_in data_out

𝐺 =
Lat𝐷𝑃
𝑇
+ 1

𝑤 words 𝑤 words
read addresses
write addresses
write enables

twiddle flow

𝑡 : way index (in 0,… ,
𝑤

2
− 1)

𝑙 : stage index

Cyclic access and

reprogramming

of TWB

In
it

 P
e
rm N

T
T

 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

N
T

T
 2

N
T

T
 2

N
T

T
 2

INTERCONNECT PRG

GA

| 19

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

TWB 1 TWB 𝐺…

…

CTRL

n
e
x
t_

[0
:𝐿

]

INTERCONNECT DP

NTT DP

next_in next_out

data_in data_out

𝐺 =
Lat𝐷𝑃
𝑇
+ 1

𝑤 words 𝑤 words

PRG

next_prg

twiddles
𝑤/2 words

read addresses
write addresses
write enables

twiddle flow

𝑡 : way index (in 0,… ,
𝑤

2
− 1)

𝑙 : stage index

Cyclic access and

reprogramming

of TWB TWB 𝑔

reg

(𝑙, 𝑡)

mem

(𝑙, 𝑡)0

1

…
…

…

prg_tw_*

prg_tw_*

tw_(𝑙, 𝑡)

tw_(𝑙, 𝑡)

we_(𝑙, 𝑡)

we_(𝑙, 𝑡)
rd_addr_𝑙

wr_addr_(𝑙, 𝑡)

• Reprogramming a TWB:

In
it

 P
e
rm N

T
T

 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

N
T

T
 2

N
T

T
 2

N
T

T
 2

INTERCONNECT PRG

GA

| 20

AUTOMATIC GENERATION OF MULTI FIELD NTT DESIGN (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

TWB 1 TWB 𝐺…

…

CTRL

n
e
x
t_

[0
:𝐿

]

INTERCONNECT DP

NTT DP

next_in next_out

data_in data_out

𝐺 =
Lat𝐷𝑃
𝑇
+ 1

𝑤 words 𝑤 words

PRG

next_prg

twiddles
𝑤/2 words

• Example of reprogram counters (𝑟 = 2, 𝑛 = 16, 𝑤 = 4):

Counter for mem(3,1) : offset 0, step 1, index 1

Counter for mem(2,1) : offset 1, step 2, index 0

𝜔𝑖
1, 𝜔𝑖
3, 𝜔𝑖
5, 𝜔𝑖
7

𝜔𝑖
2, 𝜔𝑖
6

twiddles ⇒ 𝑤/2 words per cycles

prg_tw_0

prg_tw_1 𝜔𝑖
1, 𝜔𝑖
3, 𝜔𝑖
5, 𝜔𝑖
7

𝜔𝑖
0, 𝜔𝑖
2, 𝜔𝑖
4, 𝜔𝑖
6

Select from the flow ⇒ Update we_(𝑙, 𝑡) and wr_addr_(𝑙, 𝑡)

read addresses
write addresses
write enables

twiddle flow

𝑡 : way index (in 0,… ,
𝑤

2
− 1)

𝑙 : stage index

Cyclic access and

reprogramming

of TWB TWB 𝑔

reg

(𝑙, 𝑡)

mem

(𝑙, 𝑡)0

1

…
…

…

prg_tw_*

prg_tw_*

tw_(𝑙, 𝑡)

tw_(𝑙, 𝑡)

we_(𝑙, 𝑡)

we_(𝑙, 𝑡)
rd_addr_𝑙

wr_addr_(𝑙, 𝑡)

• Reprogramming a TWB:

In
it

 P
e
rm N

T
T

 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

P
e
rm

N
T

T
 2

N
T

T
 2

N
T

T
 2

N
T

T
 2

INTERCONNECT PRG

GA

| 21

RPM CHARACTERIZATION

PROOF-OF-CONCEPT INTEGRATION (1)

RPM

WRAP

AXI

+

FIFOs

BCHI

DMA 2

DMA 1

DS

DMA 0

P
C

Ie
 3

 x
8

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Preliminary integration:

• Alpha-Data ADM-PCIE 7v3.

• Xilinx Virtex 7: XC7VX690T-2-FFG1157C.

• PCIe Gen3, 8 lanes.

• Vivado 2016.3: placed and routed.

𝑛 = 212, log 𝑞𝑖 = 30, 𝑤 = 2

12.5%

8.3%

7.7%

14.1%

14.4%

LUT

LUTRAM

FF

BRAM

DSP

6.4%

3.1%

4.6%

10.4%

1.3%

LUT

LUTRAM

FF

BRAM

DSP

𝑓𝑅𝑃𝑀 = 200 MHz

Test PCIe Ok!

| 22

RPM CHARACTERIZATION

PROOF-OF-CONCEPT INTEGRATION (1)

RPM

WRAP

AXI

+

FIFOs

BCHI

DMA 2

DMA 1

DS

DMA 0

P
C

Ie
 3

 x
8

• Preliminary integration:

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

𝑛 = 212, log 𝑞𝑖 = 30, 𝑤 = 2

• Alpha-Data ADM-PCIE 7v3.

• Xilinx Virtex 7: XC7VX690T-2-FFG1157C.

• PCIe Gen3, 8 lanes.

• Vivado 2016.3: placed and routed.

RPM more constraining resources:

• BRAM slices

• DSP slices

• PCIe bandwidth

How does RPM scale in

SHE context?

12.5%

8.3%

7.7%

14.1%

14.4%

LUT

LUTRAM

FF

BRAM

DSP

6.4%

3.1%

4.6%

10.4%

1.3%

LUT

LUTRAM

FF

BRAM

DSP

𝑓𝑅𝑃𝑀 = 200 MHz

Test PCIe Ok!

| 23

RPM CHARACTERIZATION

PROJECTIONS (1)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Impact of the polynomial degree 𝑛 (𝑤 = 2 and log2 𝑞𝑖 = 30):

Xilinx Virtex 7: XC7VX690T-2-FFG1157C

Slight increase in

DSP utilization.

Resource limitation (FPGA / PCIe Gen3 x8)

Required bandwidth

is acheivable

BRAM is restrictive for 𝑛 > 215

([58-65]% for NTT permutations)

DSP BRAM

Required

bandwidth

(𝑓 = 200MHz)

| 24

RPM CHARACTERIZATION

PROJECTIONS (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Impact of the streaming width 𝑤 (𝑛 = 214 and log2 𝑞𝑖 = 30):

Xilinx Virtex 7: XC7VX690T-2-FFG1157C

Resource limitation (FPGA / PCIe Gen3 x8)

DSP BRAM

Great increase in DSP

utilization.

Required

bandwidth

(𝑓 = 200MHz)

Required bandwidth is

prohibitive

Increase of BRAM

utilization.

| 25

RPM CHARACTERIZATION

PROJECTIONS (3)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Impact of the RNS prime size log2 𝑞𝑖 (𝑛 = 2
14 and 𝑤 = 2):

Xilinx Virtex 7: XC7VX690T-2-FFG1157C

Resource limitation (FPGA / PCIe Gen3 x8)

DSP BRAM

Required Bandwidth

may become restrictive.
Balanced impact on DSP and BRAM

utilization.

Required

bandwidth

(𝑓 = 200MHz)

| 26

PERFORMANCE PROJECTIONS: FV-RNS APPLICATION

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Performance projection @200MHz:

With respect to timing from [HPS18] (𝜆 > 128)

• :

• Raw performances:

~ 𝑓𝑅𝑃𝑀3𝑤 log2 𝑞𝑖

𝑓𝑅𝑃𝑀
𝑛
𝑤

Required

bandwidth

RPM / s

| 27

• Performance projection @200MHz:

With respect to timing from [HPS18] (𝜆 > 128)

• :

PERFORMANCE PROJECTIONS: FV-RNS APPLICATION

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Scalability w.r.t. multiplicative depth:

• Speedup (su) is scalable.

• Realistic bandwidth usage.

• Timing after RPM speedup:

• Basis ext. & Scaling: [77-86] %

• RPMs: [9-16] %

• RPM Vs NTT implementation?

• Raw performances:

~ 𝑓𝑅𝑃𝑀3𝑤 log2 𝑞𝑖

𝑓𝑅𝑃𝑀
𝑛
𝑤

Required

bandwidth

RPM / s

| 28

PERFORMANCE PROJECTIONS: FV-RNS APPLICATION

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Increasing parallelism:

• Greatly improves speedup.

• Bandwidth and DSPs may be

quickly restrictive.

• Performance projection @200MHz:

With respect to timing from [HPS18] (𝜆 > 128)

• :

• Raw performances:

~ 𝑓𝑅𝑃𝑀3𝑤 log2 𝑞𝑖

𝑓𝑅𝑃𝑀
𝑛
𝑤

Required

bandwidth

RPM / s

Scalability w.r.t. multiplicative depth:

• Speedup (su) is scalable.

• Realistic bandwidth usage.

• Timing after RPM speedup:

• Basis ext. & Scaling: [77-86] %

• RPMs: [9-16] %

• RPM Vs NTT implementation?

| 29

• Performance projection @200MHz:

With respect to timing from [HPS18] (𝜆 > 128)

• :

PERFORMANCE PROJECTIONS: FV-RNS APPLICATION

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Increasing parallelism:

• Greatly improves speedup.

• Bandwidth and DSPs are

quickly restrictive.

Increasing prime size:

• Slightly improves speedup.

• Balanced cost on DSP and

BRAM usage.

• Bandwidth may be restrictive.

• Raw performances:

~ 𝑓𝑅𝑃𝑀3𝑤 log2 𝑞𝑖

𝑓𝑅𝑃𝑀
𝑛
𝑤

Required

bandwidth

RPM / s

Scalability w.r.t. multiplicative depth:

• Speedup (su) is scalable.

• Realistic bandwidth usage.

• Timing after RPM speedup:

• Basis ext. & Scaling: [77-86] %

• RPMs: [9-16] %

• RPM Vs NTT implementation?

| 30

• Hardware implementation for SHE should be flexible:

• Refinement of parameter range still in progress.

• Multiplicative depth has significant impact on both 𝑛 and log2 𝑞.

CONCLUSION & PERSPECTIVES

• Our response:

• Dataflow RNS-based NWC with on-the-fly generation of twiddles.

• Exploiting DSP knowledge on DFT implementation.

• Minimize the impact of log2 𝑞 on hardware design.

• Research perspectives:

• NTT Vs RPM?

• Proper system integration

• Design space exploration with SPIRAL

• Application perspectives:

• Hybrid architecture for SHE acceleration

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

Centre de Saclay
Nano-Innov PC 172 - 91191 Gif sur Yvette Cedex

Conference on Cryptographic Hardware and Embedded Systems 2018

Amsterdam, The Netherlands | 09-10-18

Thanks! Questions?

| 32Mid-term evaluation | Joël Cathébras

Homomorphic encryption has to be secure … and correct !

INTRODUCTION : HOMOMORPHIC ENCRYPTION

𝑐1 𝑐2 𝑐sum+𝒞 =

𝑐mul𝑐1 𝑐2×𝒞 =

𝑐
Decrypt

𝑚𝑒

𝑐
Decrypt

𝑚e

𝜎

Error distribution 𝜒𝑒𝑟𝑟
Usually 𝜒𝑒𝑟𝑟 = 𝑁(0, 𝜎²)

𝑒𝑟𝑟

𝑚1 ∘ 𝑚2 ⟺ 𝑐1⊚ 𝑐2

Dec 𝑐1 ∘ Dec 𝑐2 = Dec(𝑐1⊚ 𝑐2)𝑐1, 𝑐2 two ciphertexts such that

𝑐1 = Enc 𝑚1 and 𝑐2 = Enc 𝑚2

• Decryption function is an homomorphism:

𝑚 ∈ ℳ message space

𝑚𝑒 ∈ ℋ cleartext space

𝑐 ∈ 𝒞 ciphertext space

𝑚
Encode Encrypt

𝑚𝑒 𝑐

𝑐
Decrypt Decode

𝑚𝑒 𝑚

• Semantic security : noise in ciphertexts

| 33

MODULAR ARITHMETIC

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Modular Addition: • Modular Subtraction:

• Modular Multiplication (NFLlib):

| 34

GENERATION OF TWIDDLE FACTORS (1)

𝑅0 = 𝐴0 ⋅ 𝐴0

L
o
c
a
l

S
to

ra
g
e

𝐴0

𝐴1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

4

32

3 6

5

8

74

5

6

7

22

21

20

19

18

17

28

27

26

25

24

23

32

31

30

29

9

8 9

10 11

10

12

11

13

12

15

14

14

13

16

15

4

3 4

6

5 6

8

7 8

7 8

10

9 1615

16

10

11

12

14

15

16

11

12

13

14

13

14

15

16

12

13

14

15

16

Lat𝑀𝑀

1

2

In
p

u
ts

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

• Example of Ψ generation (𝑛 = 32, 𝑤 = 2):

• Problematic of twiddle generation:

• Data dependencies.

• Modular multiplication latency.

• Required throughput 𝑇 =
𝑛

𝑤
.

• Example of recurrence relation:

• 𝜓2𝑘 = 𝜓𝑘 ⋅ 𝜓𝑘 and 𝜓2𝑘+1 = 𝜓𝑘 ⋅ 𝜓𝑘+1

• Intermediate storage in 𝑂
𝑛

4

• Compute “at the earliest”

𝑅1 = 𝐴0 ⋅ 𝐴1

| 35

GENERATION OF TWIDDLE FACTORS (2)

Conference on Cryptographic Hardware and Embedded Systems 2018 | Amsterdam, The Netherlands | 09-10-18

IN
T

E
R

C
O

N
N

E
C

T

O
U

T

IN
T

E
R

C
O

N
N

E
C

T
 I

N

GH 1

GH 𝐻

MMB

CTRL COMPUTE

…

𝑞𝑖
𝑣𝑖
𝜓𝑖
1

𝜓𝑖
𝑤

…

BUF 𝐻

…

BUF 1

CTRL SORT

num valid

next_in

twiddles

next_out

Sequential access to

MMB (𝑤 MMs) with cyclic

priority order

𝐻 =
Lat𝐺𝐸𝑁

𝑇
+ 1

(𝐻 = 3 when 𝑇 ≫ Lat𝑀𝑀)

• Data flow twiddle generation:

• Minimize Generation Handler local storage:

𝜓𝑡+1

𝜓𝑡+2

𝜓𝑡+𝑤

…bunch𝑡

twiddle set ≈ (bunch𝑡)𝑡=0
𝑇−1

bunch𝑡𝑛𝑒𝑥𝑡 = 𝑓𝑗 ∙ bunch𝑡𝑙𝑎𝑠𝑡

𝑓𝑗 = 𝜓
𝑗𝑤

(𝑡𝑛𝑒𝑥𝑡 = 𝑗 + 𝑡𝑙𝑎𝑠𝑡)

𝑗 is upper bounded

by design parameter

only

Local storage

independent of 𝑛!

⇒

