
Data Flow Oriented Hardware Design of
RNS-based Polynomial Multiplication for SHE

Acceleration
Joël Cathébras1, Alexandre Carbon1, Peter Milder2, Renaud Sirdey1 and

Nicolas Ventroux1

1 CEA, LIST, F-91191 Gif-sur-Yvette, France. firstname.lastname@cea.fr
2 Stony Brook University, Stony Brook, NY 11794-2350, USA. peter.milder@stonybrook.edu

Abstract. This paper presents a hardware implementation of a Residue Polynomial
Multiplier (RPM), designed to accelerate the full Residue Number System (RNS)
variant of the Fan-Vercauteren scheme proposed by Bajard et al. [BEHZ16]. Our
design speeds up polynomial multiplication via a Negative Wrapped Convolution
(NWC) which locally computes the required RNS channel dependent twiddle factors.
Compared to related works, this design is more versatile regarding the addressable
parameter sets for the BFV scheme. This is mainly brought by our proposed twiddle
factor generator that makes the design BRAM utilization independent of the RNS
basis size, with a negligible communication bandwidth usage for non-payload data.
Furthermore, the generalization of a DFT hardware generator is explored in order
to generate RNS friendly NTT architectures. This approach helps us to validate
our RPM design over parameter sets from the work of Halevi et al. [HPS18]. For
the depth-20 setting, we achieve an estimated speed up for the residue polynomial
multiplications greater than 76 during ciphertexts multiplication, and greater than
16 during relinearization. It thus results in a single-threaded Mult&Relin ciphertext
operation in 109.4 ms (×3.19 faster than [HPS18]) with RPM counting for less than
15% of the new computation time. Our RPM design scales up with reasonable use of
hardware resources and realistic bandwidth requirements. It can also be exploited for
other RNS based implementations of RLWE cryptosystems.
Keywords: Homomorphic Encryption · Polynomial Multiplication · Residue Number
System · Negative Wrapped Convolution · Hardware Implementation

1 Introduction
Since the first Fully Homomorphic Encryption (FHE) scheme presented by Gentry [G+09]
in 2009, homomorphic cryptography has been an active research area. The interesting
property of an homomorphic encryption scheme is its ability to perform computations over
encrypted data without the necessity of decrypting them. Among other uses, it is viewed
as a promising solution to guarantee data privacy in cloud computing services.

The initial work from Gentry, impractical due to complexity and exponential noise
growth, has been followed by numerous advances [BV11, Bra12, FV12, GHS12] to reach
real yet modest practical applications (e.g. [CNS+16]). Improvements have been made:
in the definition of schemes to make them simpler, in noise expansion control during
ciphertext operations, and in implementation approaches for practical performances.

At the time of writing, four generations of Somewhat/Fully Homomorphic Encryption
(S/FHE) schemes can be identified. The first starts with Gentry’s initial work and is
articulated around bootstrapping-based noise management. The second results from noise

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 69–88
DOI:10.13154/tches.v2018.i3.69-88

mailto:joel.cathebras@cea.fr,alexandre.carbon@cea.fr,peter.milder@cea.fr,renaud.sirdey@cea.fr,nicolas.ventroux@cea.fr
mailto:peter.milder@stonybrook.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.69-88

70
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

management improvements known as key and modulus switching, allowing the definitions of
Leveled-FHE schemes, further improved in scale-invariant L-FHE. A third generation began
with the GSW scheme from Gentry et al. [GSW13] built upon Brakerski’s LWE-based
scheme [Bra12] and removing the need for relinearization in scale-invariant Leveled-FHE.
It has been quickly followed by Khedr et al. [KGV16] presenting a ring variant of GSW
named SHIELD. Finally, the fourth generation returns to bootstrapping procedure, making
it faster as it is part of the schemes somehow [DM15, CGGI16]. This paper focuses on the
FV scheme [FV12] and its full Residue Number System (RNS) variant brought by Bajard
et al. [BEHZ16] and further improved by Halevi et al. [HPS18].

Due to significant performance overheads in the encrypted domain, hardware accelera-
tion appears necessary to address practical applications for S/FHE. In RLWE [LPR10]
based cryptosystems like FV, a common approach to perform polynomial multiplication
is through the NTT-based negative wrapped convolution [PG12]. The implementations
of hardware acceleration for RLWE scheme seem to preferably target FPGA [ÖDSS15,
RJV+15, PNPM15, CRS17, MRL+18]. GPU acceleration is also explored [DDS14, KG18]
but is mostly considered for NTRU-based schemes.

The NTT-based polynomial ring multiplication reduces the computational asymptotic
complexity due to the degree n of the handled polynomial, but the complexity of coefficient
arithmetic, due to large modulus q, is still a problem for parameter sets targeting important
multiplicative depth evaluation capability. An interesting approach is the use of Residue
Number System (RNS) representation to reduce the size of basic arithmetic and bring
parallelism [ÖDSS15, RJV+15, CRS17]. One difficulty with the coupled approach of RNS
representation and NTT-based polynomial multiplication is brought by the large amount
of precomputed values. Indeed, each RNS channel has its own twiddle factors and weight-
vectors to perform a Negative Wrapped Convolution (NWC). In related implementations,
this issue is handled either by storing all the required values on the FPGA [CRS17], or by
storing them on the host side, and sending them along with the polynomials [ÖDSS15]. In
[RJV+15], the authors choose an in-between solution by storing in ROM only a subset of
the twiddle factors and computing the others when needed.

Our contribution. Following the mainstream approach to improve homomorphic evalua-
tions based on RNS and NWC, this work explores the feasibility of a pipelined Residue
Polynomial Multiplier (RPM) in a single flow.

To design this RPM, we present a generalization of the DFT architectures generated
by the SPIRAL hardware backend, presented in [MFHP12], in order to generate NTT
architectures independent of a predefined finite field. The resulting streaming NTT design
is finite-field independent by means of cyclic reprogramming of twiddle factors memories.

Another contribution is the design of a twiddle factor generator that makes our approach
scalable over practical homomorphic encryption parameter sets. Indeed, with n being the
degree of polynomial handled and k the size of the RNS basis, our local generation requires
O(n) memory resources compared to O(kn) or O(k logn)) with local storage approaches,
and this with negligible bandwidth utilization compared to an external storage.

To the best of our knowledge, our design is competitive with related hardware accelera-
tion works, but with a much more versatile scalability over practical parameters of the full
RNS variant of FV.

Outline. Section 2 presents notions and notations used throughout this paper. Related
works on hardware acceleration for FV like schemes are discussed in section 3 to present
our motivations. Then, our residue polynomial multiplier design is detailed in section 4.
A proof-of-concept implementation is presented section 5, followed by a projection of
our approach on more practical homomorphic encryption parameter sets. Finally, the
conclusion highlights the main teachings of this work, and draws some perspectives.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 71

2 Notations and Basic Notions
2.1 Notations
In this paper we consider polynomial rings of the form Z[X]/(f(X)), with f(X) a monic
irreducible polynomial of Z[X]. In particular the polynomial rings where f(X) is a
cyclotomic polynomial of order m a power of two, that is f(X) = Φm(X) = Xn + 1 and
n = m/2. From now on, R = Z[X]/(Xn + 1) is the ring of polynomials with degree strictly
inferior to n and integer coefficients.

For a prime pi ∈ Z, Zpi
denotes the finite-field (Z/piZ,+, ∗) of all congruence classes

modulo pi. In further discussions, we will be interested in the product ring Zq
∼=

∏
1≤i≤k Zpi .

Considering the polynomial ring Rq = Zq[X]/(Xn + 1), in which coefficients are integers
in [−q/2, q/2), and the k-sized basis of mutually prime moduli p1, ..., pk, the RNS repre-
sentation of a polynomial A ∈ Rq is the vector of residue polynomial (A1, ..., Ak), such
that Ai ∈ Rpi

= Zpi
[X]/(Xn + 1).

When computing Negative Wrapped Convolution (NWC) some precomputed values are
required. Weight values for weighted convolution and actual twiddle factors for underlying
NTT are indifferently called twiddle factors here. The concatenation of all twiddle factors
for a specific field Zpi

, is called a twiddle factor set. Four subsets of a twiddle factor
set appear in our discussions: the input weight-vector Ψi = (ψj

i)0≤j<n, the twiddle
factors for the forward NTT Ωi = {ωj

i }0≤j<n/2, the twiddle factors for the inverse NTT
Ω−1

i = {ω−j
i }0≤j<n/2, and the output weight-vector Ψ−1

i = (ψ−j
i)0≤j<n.

When considering FV parameters, the plaintext modulus is noted t, the size of the
ciphertext modulus Sq = log2 q, the degree of the cyclotomic polynomial n, the evaluation
multiplicative depth L, the prime sizes s, and the security coefficient λ.

2.2 Residue Number System
The Residue Number System is a non-positional representation of numbers according to
a basis of mutually prime moduli p1, ..., pk. This representation is a direct consequence
of the Chinese Remainder Theorem (CRT) which expresses the ring isomorphism Zq

∼=∏
1≤i≤k Zpi

. Under this representation, modular arithmetic modulo q =
∏

1≤i≤k pi is
performed with k smaller and independent modular operations. For additions, subtractions
and multiplications, the RNS representation is an efficient way of creating parallelism, but
when it comes to divisions, some more complex computations like basis extensions are
required. It is possible to exploit the parallelism brought by the RNS representation for
large integer arithmetic. This only requires the RNS basis to be large enough to cover the
dynamic range of the considered operations over Z.

In lattice-based cryptography, and particularly in its use for homomorphic cryptography,
polynomials with large size coefficients are manipulated. The size of these coefficients
can reach several hundreds of bits, which implies an important complexity constant when
performing polynomial operations using classical multi-precision arithmetic. Moreover,
multi-precision arithmetic is less suitable for parallelism due to intermediate results
propagation. For those reasons the RNS representation is considered as an interesting
candidate for limiting the impact of complexity brought by arithmetic of large integers in
lattice-based cryptography.

2.3 Negative Wrapped Convolution
One of the main performance bottlenecks of lattice based cryptography is brought by the
underlying multiplications over the ring R = Z[X]/(f(X)). In both hardware and software
implementations, a common strategy to improve performances is to exploit the NTT-based
negative wrapped convolution theorem to perform those multiplications [PG12]. This

72
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

approach restricts the choice of f(X) to cyclotomic polynomial of order m a power of two
(f(X) = Φm(X) = Xn + 1, with n = m/2).

Under RNS representation, the multiplications over R are computed through multiple
smaller multiplications over polynomial rings of the form Zpi

[X]/(Xn + 1). This implies
a reduction in the choice of RNS basis elements to ensure the applicability of a negative
wrapped convolution over each finite-field Zpi

. To compute such a convolution, one has
to find an n-th primitive root of −1, which exists if and only if pi = 1 mod 2n. In this
paper, RNS basis elements are selected as primes using the prime selection algorithm of
NFLlib [AMBG+16].

Multiplications over rings Zpi
[X]/(Xn + 1) are performed with NTT-based weighted

convolutions of size n. That is to say, for each finite-field Zpi
, computation of the twiddle

set {ψj
i }0≤j<2n with ψi a n-th primitive root of −1 over Zpi

is required. In practice, ψi

is chosen such that ωi = ψ2
i mod pi is a n-th primitive root of unity over Zpi . Doing so,

twiddle factor sets for the n-point NTT, and inverse NTT, are subsets of respectively
{ψj

i }0≤j<n and {ψ−j
i }0≤j<n.

For Ai and Bi in Zpi
[X]/(Xn + 1), ring product Ri is computed as in equation (1),

with Ψi = {ψj
i }0≤j<n and Ψ−1

i = {ψ−j
i }0≤j<n.

Ri = Ψ−1
i � INTTi ((NTTi (Ψi �Ai))� (NTTi (Ψi �Bi))) (1)

3 Related Works & Motivations
The underlying hardware acceleration strategy targets the scheme proposed by Fan and
Vercauteren in [FV12] and its full RNS variant brought by Bajard et al. in [BEHZ16] and
further improved by Halevi et al. in [HPS18]. Nevertheless, our analysis and contributions
could be exploited in others’ RLWE based cryptosystems as our work mainly focuses on
polynomial ring arithmetic.

3.1 Polynomial Ring Multiplication
The main motivation behind our work is to bring a consistent hardware implementation
strategy to improve homomorphic evaluation performance. In a previous work [CCSV17],
we profiled an homomorphic evaluation of Trivium [CCF+16], using an FV implementation
based on FLINT [CDS15]. More than 99% of the estimated cycles are spent in ciphertext
multiplications and relinearizations. At a lower arithmetic level, on the overall evaluation
of Trivium, more than 75% of the estimated cycles are spent in FFT convolutions to
compute polynomial multiplications.

The complexity of the underlying polynomial multiplications comes both from the
size of the coefficients and from the degree of the polynomials. A common strategy to
tackle that complexity is with the combination of RNS representation and NTT-based
polynomial multiplication. Following this approach, Bajard et al. [BEHZ16] and Halevi et
al. [HPS18] have proposed a full RNS version of the FV scheme. Our acceleration strategy
fits with this aforementioned BFV scheme.

At the time of writing, the most recent software implementation of the BFV scheme is
accessible in the PALISADE library [PRR]. For more accurate projections regarding our
hardware acceleration strategy, the profiling of critical functions is directly extracted from
[HPS18]1 as reminded in Table 1. According to their paper, the main bottleneck is still
due to NTT required to compute multiplications over the polynomial rings Zpi [X]/(Xn +1).
Hence, this work addresses the acceleration of these polynomial multiplications.

1This profiling refers to the first version of their article from January 2018. The second version from
June 2018 has slightly different parameters which reduce the part of the NTT computations while increasing
CRT extension and scaling parts.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 73

Table 1: Profiling of BFV ciphertext multiplication and relinearization by Halevi et al.
reproduced from [HPS18]. Single-threaded mode, Linux CentOS, Intel Core i7-3770 CPU
4 cores at 3.40GHz with 16 GB of RAM; plaintext space t = 2, s ≈ 47, security λ > 128

L n Sq k
Total Mul. Relin. Mult. details

CRT ext. NTT Othersms ms ms & Scaling
1 212 94 2 17.7 15.9 1.76 34 % 60 % 6 %
5 213 141 3 53.7 46.3 7.42 34 % 62 % 4 %
10 214 235 5 197.8 158 39.8 33 % 62 % 5 %
20 214 376 8 349.6 258 91.6 37 % 59 % 4 %
30 215 564 12 1,334 858 476 40 % 56 % 4 %

3.2 Residue Multiplication Over Polynomial Rings
Related works explore different strategies to perform polynomial multiplications. A
hardware/software co-design of a Karatsuba polynomial multiplication from Migliore et
al. [MRL+18] brings an alternative to the popular NTT-based approach for small parameter
sets (for FHE evaluation with small multiplicative depth: 4 in their case). Migliore et al.
identified a turning point in their approach for degree 6, 144 and coefficient of size 512
bits, upon this range of parameters, the asymptotic complexity of Karatsuba does not
permit to compete with NTT-based approach. It has to be emphasized that neither the
Karatsuba approach, nor the NTT-based approach from Pöppelmann et al. [PNPM15] to
which they compare, handle polynomial coefficients under RNS representation.

In [ÖDSS15], Öztürk et al. proposed a RNS and NTT based polynomial multiplication.
As their architecture is not pipelined, it cannot start a new polynomial multiplication
before the previous one finishes. Its latency is then paid numerous time for the computation
of a polynomial multiplication over Z[X]/(Xn + 1) (as much as the size of the extended
RNS basis). Furthermore, Öztürk et al. choose to pre-compute the different NTT twiddle
factor sets on the host side, and send them along with the polynomial coefficients through
the bus on which their accelerator is connected. Doing so, the communication cost between
the host and the accelerator is doubled.

Cousins et al. [CRS17] developed an Homomorphic Encryption Processing Unit to
accelerate the LTV scheme, which is not scale-invariant like FV, but also has its bottleneck
complexity in polynomial ring multiplications. They implemented a pipelined NTT as a
primitive of the HEPU, and contrary to [ÖDSS15], they chose to store the NTT twiddle
factors in ROM filled up at compile time. As they point out, the storage capacity required
for the different twiddle factor sets, one for each element pi of the modulus chain, is
quite important and uses a large part of the available BRAM on the targeted FPGA.
This problem arises also for the FV scheme when polynomials are handled under RNS
representation of their coefficients.

Sinha Roy et al. [RJV+15] present a co-processor (HE-processor) implementing building
block operations for RLWE-based schemes, and in particular NTT and CRT primitives.
They implement a memory access iterative NTT with improved routing of coefficients.
They store in ROM only a subset of each required twiddle factor set and compute the others
when needed. This results in a reduced memory requirement (O(k log2(n))) compared
to [CRS17] (O(kn)). Nevertheless, they note that the computation of the other twiddles
inserts some bubbles into the NTT computation (up to ∼ 10, 000 bubbles for n = 216).

In view of implementation issues previously expressed, our acceleration strategy is to
implement a data flow oriented NTT-based polynomial ring multiplier, with on-the-fly
computation of the twiddle factor sets.

74
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

3.3 Towards Automatic Generation of RTL Level Design
In our approach, the most complex operation to implement in hardware is the Number
Theoretical Transform (NTT). This operation is similar to a Discrete Fourier Transform
(DFT) in which complex arithmetic is replaced with modular arithmetic. With this in
mind, our work explores the generalization of the hardware backend of the SPIRAL tool,
from Milder et al. [MFHP12], to generate NTT designs in addition to DFT designs.

The SPIRAL project studies automatic generation of hardware and software for digital
signal processing and other areas. Thus the DFT structure has already been explored in
great details forming an ideal starting point to generalize towards NTT implementations.
For example, in a PhD thesis work, LingChuan Meng [Men15] explores the automatically
generating tuned software libraries for modular polynomial multiplication. However, a
similar extension to SPIRAL’s hardware generation capability has not been explored;
for example [MFHP12] focuses on using SPIRAL to generate hardware for linear DSP
transforms; while [ZMP16] generates hardware for sorting networks. In this paper, we
investigate the DFT hardware created by the SPIRAL tool and propose generalizations
required to make it compliant with NTT-based polynomial ring multiplications.

The long-term perspective is to be able to express high level directives to an NTT design
generator, allowing a system designer to tune the performance of its NTT according to
application and system requirements. Tuned parameters could be related to lattice-based
cryptosystem parameters, like NTT size n and manipulated word size s, or part of the
implementation parameters like architecture type, radix size or streaming width.

In this work, we modify the DFT hardware produced by SPIRAL to convert it into a
practical NTT structure for polynomial ring multiplications by making two sets of changes.
First, we replace the DFT’s arithmetic blocks with those that perform modular arithmetic.
Second, we adapt the design’s twiddle factor storage system. This second change is crucial
to our task, as in our application context, a notable difference from classical DFT hardware
implementation is the necessity to change the twiddle factors of the NTT each time it
handles a polynomial of a different RNS channel (ring Zpi [X]/(Xn + 1)).

Thus, a part of the contributions presented in this paper is a method for handling
circularly-buffered twiddle factors to make NTT design compliant with regular, if not
systematic, changes of twiddle factor sets. Regarding time constraints, only fully-streaming
architectures for NTT generated with the SPIRAL hardware backend are considered in
this paper. Nevertheless, further work could explore the adaptation of our first hand-made
solution to other NTT designs.

4 Residue Polynomial Multiplier Design
This section describes our design of a multiplier over power of two cyclotomic polynomial
rings (Zpi [X]/(Xn + 1)). The main difference from related works is the generation of
required twiddles values for NWC in parallel of the data path. It results in an hardware
accelerator imposing no choice of RNS basis at compile time, beside the size of the primes.

4.1 Global Architecture Overview
Our first analysis of FV evaluation complexity, detailed in [CCSV17], leads us to accelerate
the overall Residue Polynomial Multiplication (RPM). Furthermore, regarding the number
of RPM to perform during ciphertext operations, it has been chosen to design a streaming
architecture, in order to pipeline the RPM of different channels. When considering RPM
through NWC, the operations to perform are summarized by equation (1).

The NWC requires the set of precomputed values {Ψi,Ψ−1
i } = {ψj

i }0≤j<2n, and the
pair (pi, vi) (see section 4.4), to perform a multiplication over Zpi [X]/(Xn + 1). With n
and q being large for practical HE, tens of different polynomial rings require 2n+ 2 values.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 75

Twiddle path

Data path

vi

pi

ψi
1

ni
-1

...

VEC
PW
MM

GEN
TW

GEN
ITW

GEN
PCTW

VEC
NTT

PW
MM INTT PW

MM

w +2
words

w/2+ 2
words

2
words

w/2+ 2
words

w +2
words

w
words

w
words

w
words

}...

Ai

Bi

Ri

ψi
w

Figure 1: Residue Polynomial Multiplier (RPM) flow.

For scalability over RNS basis size, it has been chosen to locally generate the twiddle factor
sets and use them on-the-fly.

The overall architecture flow is presented in Figure 1 without control and artificial
latency for representation simplicity. The architecture is generic regarding the size of the
NTT n, the width of the data path w (called streaming-width), and the prime size s in
bits, with n and w being powers of two and s ≤ 64.

In the following description, multiplication refers to multiplication over the ring Zpi .
As presented in section 4.4, modular multiplications are performed following the NFLlib
algorithm [AMBG+16], and require appropriate prime pi and reciprocal vi as inputs.

There are two parallel paths in this architecture: the twiddle path and the data path.
On one side, the twiddle path feeds the data path with the appropriate twiddle values,
consistent with the actual polynomial ring (Zpi [X]/(Xn + 1)) of the residue polynomials
Ai and Bi. On the other side, the data path performs the negative wrapped convolution
of the two input polynomials seen as n-sequence of coefficients.

Data path. Five distinct steps are required to perform a NWC on inputted polynomials.
The first step is performed by VEC PW MM and consists of inner-products of the input

polynomials with the weight-vector Ψi = (ψj
i)0≤j<n to output the polynomials Ψi � Ai

and Ψi �Bi. Only the n first elements of the twiddle factor set are required.
The second step VEC NTT computes forward NTT on each input and outputs si-

multaneously the transformed polynomials NTTi (Ψi �Ai) and NTTi (Ψi �Bi). It needs
Ωi = {ωj

i }0≤j<n/2 = {ψ2j
i }0≤j<n/2 which is a subset of the values involved in Ψi.

The third step PW MM corresponds to the inner-product of the two weighted poly-
nomials in the NTT domain NTTi (Ψi �Ai)�NTTi (Ψi �Bi). Only the pair (pi, vi) is
required to perform this inner-product.

The fourth step INTT reverts the polynomial from the NTT domain, and twiddles
Ω−1

i = {ω−j
i }0≤j<n/2 = {ψ−2j

i }0≤j<n/2 are required. Ω−1
i is a subset of the weight-vector

Ψ−1
i used in the fifth step.
Finally, the fifth step PW MM performs, in a single step, the scaling by n−1

i mod
pi required at the end of INTT, and the inner-product with the weight-vector Ψ−1

i =
(ψ−j

i)0≤j<n. Thus, only the n last elements of the twiddle factor set are required.

Twiddle path. As emphasized in the description of the data path, the twiddle values
are not all required at the same time. Consequently, the computation of the twiddles is

76
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

decomposed in three steps.
The first step consists of the generation of the n first powers of ψi, namely Ψi =

{ψj
i }0≤j<n. Along with the corresponding (pi, vi) pair, they feed the first three steps of

the data path. The twiddle generator GEN TW, described in section 4.3, only requires
the first w elements (ψ1

i , ..., ψ
w
i) of the Ψi sequence, and outputs the n sized sequence at a

rate of w elements per cycle, after a certain latency.
The second step GEN ITW outputs, after a certain latency, the sequence Ψ−1

i =
{ψ−j

i }0≤j<n at a rate of w elements per cycle. The computation of this sequence is
done by first computing the sequence {ψ−(n−j)

i }0≤j<n, and then reordering it to obtain
{ψ−j

i }0≤j<n. The sequence to reorder is computed by subtracting each element of Ψi

from pi
1. Half of the Ψ−1

i sequence feeds the inverse NTT, because only {ψ−2j
i }0≤j<n/2 is

required.
The third step GEN PCTW scales the sequence outputted by GEN ITW by n−1

i

(inverse of n in Zpi). It then feeds the point-wise multiplier (again with (pi, vi)) at the
end of the data flow which, thus, can complete the negative wrapped convolution.

Data flow operations. The overall architecture is data flow oriented, meaning that it
starts a new polynomial multiplication, over a different RNS channel (polynomial ring
Zpi

[X]/(Xn + 1)), every T = n/w cycles. From now on, T will be identified as the
throughput of the RPM design.

As the overall design is pipelined, the streaming NTT architecture has to manage
multiple twiddle sets at a time, one for each RNS channel simultaneously active on the
data path. Moreover, contrary to classical DFT architecture in which twiddle factors do
not change with the inputs, the twiddle memories have to be programmable in our case. In
the next section, we describe our proposed architecture which desirably achieves no stalling
in the NTT data path by means of cyclic reprogramming of the twiddle set memories.

For the RPM to achieve a throughput of T = n/w cycles, the different twiddle sequences,
computed by the twiddle path, have to be generated with the same throughput. Section 4.3
details the generation of the initial sequence Ψi = {ψj

i }0≤j<n from the first w elements
(ψ1

i , ..., ψ
w
i). Then, the generation of subsequent sequences with the required throughput

is quite straightforward.

4.2 Number Theoretical Transform
The forward NTTs and the inverse NTT have the same architecture, the only difference is
in the twiddle sets, namely Ωi for the forward one and Ω−1

i for the inverse one. The core
of the NTT architecture is generated by the hardware backend of SPIRAL [MFHP12], and
modified to handle multiple RNS channels in the data path. For simplicity, but without
loss of generality, all figures and examples in the following description consider w = 2.

Modified NTT architecture. In the initial SPIRAL generated fully-streaming architec-
ture, the NTT is composed of several type of stages. When w = 2 (and n a power of two)
there are three types of stages: permutation (P Stage), multiply (M Stage) and butterfly
(B Stage). For each type of stage, we look for the required precomputed values, specific to
a RNS channel, to now consider them as inputs for the stage.

No modification is required for a permutation stage as it does not require any twiddle
values, nor the (pi, vi) pair. Each multiply stage requires a subset of the twiddle factors,
depending on the considered multiply stage, plus the (pi, vi) pair to perform multiplications
over Zpi

(see section 4.4 for more details on modular arithmetic). Finally, a butterfly

1First ψn
i = −1 mod pi implies ψ2n

i = 1 mod pi. Then, ψ−(n−j)
i = ψ−n

i ψj
i = ψn

i ψ
j
i mod pi. And,

lastly, ψn
i ψ

j
i = (pi − 1)ψj

i = pi − ψj
i mod pi. Hence, pi − ψj

i = ψ
−(n−j)
i mod pi.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 77

new_twiddles

GEN
ADDRS

ACCESS INTERCONNECT

PRG
TW BANK

Twiddle
input

start_data

PROGRAM INTERCONNECT

we_[0:K]
wr_addr_[1:K]
rd_addr_[1:K]

num_prg

CONTROL
UNIT

start

TW BANK 1

M
em

 1v
p M

em
 K

TW BANK G

M
em

 1v
p M

em
 K...

...

...

NTT DATA PATH

Data
input

validP
St

ag
e

l

M
 S

ta
ge

 k

B
St

ag
e

b

...

............

...

{pi,vi,ωi
j}

Data
output

Figure 2: Number Theoretical Transform (NTT) flow. Schematic for w = 2.

stage requires only the value pi to perform its operations. For different values of w, and
depending on other architecture parameters (like radix size), some stages can be hybrid of
butterfly and multiply. Nevertheless, required twiddles can be identified for each one of
them, and same modifications described below can be applied.

Initially, each multiply stage had its own dedicated twiddle memory implemented as
ROM and filled up at compile time. The extension of the NTT architecture implemented
here requires disassociating the twiddle memories of all concerned stages, implementing
them as RAM, and handling them as a bank of memories. From now on, a twiddle bank
refers to the concatenation of all twiddle memories for a specific RNS channel. Each
twiddle bank stores a twiddle factor set of one RNS channel at a time, and is reprogrammed
with a new set when required. The maximum number of simultaneous RNS channels in
the data path is dlatNT T /T e. To avoid any overlap between programming and accessing
twiddle banks, the architecture instantiates G = dlatNT T /T e+ 1 of them.

Figure 2 shows the resulting NTT architecture. The G different twiddle banks feed
the NTT data path through an interconnect controlled by CONTROL UNIT. The same
control unit selects also the twiddle bank currently programmed by the PRG TW BANK
unit. PRG TW BANK generates the we_[0:K] and wr_addr_[1:K] signals for each
memory of the programmed bank, consistent with the current w/2 twiddle factors flowing
through. It also updates the (pi, vi) pair of the programmed bank at the beginning of the
reprogramming procedure. The banks that are not currently programmed are accessed
according to the rd_addr_[1:K] signals generated by GEN ADDRS. For each memory
in the bank, the wr_addr_k signal generation is updated by the CONTROL UNIT that
receives control feedback from the corresponding stage on the data path flow.

Reprogramming a twiddle bank. A twiddle bank (TW BANK) is the concatenation of all
the twiddle memories required in the NTT data path. For w = 2 there are K = log2 (n)−1
multiply stages that require a twiddle memory. Butterfly stages only require the prime pi,
and permutation stages require no RNS channel specific values. In this case, the memory of
the k-th multiply stage (with k ∈ {1, ...,K}) contains 2k twiddles. For each RNS channel,

78
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

{pi,vi,ωi
j}

PROGRAM INTERCONNECT

CONTROL UNIT
{pi,vi,ωi

j}

GEN ADDRS

PRG
TW BANK

new_twiddles

we_g_[0:K]

rd_addr_[1:K]

wr_addr_[1:K]
start 1

0

=g

++
0 num_prg

Combinatorial logic

(a) Selection of programmed TW BANK

TW BANK g

rd_addr_K
wr_addr_K

we_g_K
1

0

Mem K tw_g_K

we_g_0

rd_addr_1
wr_addr_1

we_g_1
1

0

Mem 1 tw_g_1
ωi

j
v_gv
p_gp

vi

pi

...

...

...

...

(b) TW BANK address selection

Figure 3: Bank of memory reprogramming. Schematics for w = 2.

only n/2 different twiddle factors are required to compute the NTT, but half of the factors
are duplicated from one multiply stage to another. It results in a total of n−2 single words
stored in K different address spaces, plus a pair of single words (pi, vi) that characterizes
the current RNS channel in bank.

To reprogram a twiddle bank, the pair (pi, vi) and the twiddle factors {ωj
i }0≤j<n/2 are

sent through PRG TW BANK along with appropriate write address and write enable
signals for each memory of the bank. As seen in Figure 3a, the bank currently programmed
receives the we_[0:K] signals from PRG TW BANK: bank number g is reprogrammed
when num_prg is equal to g. Other banks are only addressed for reads, using the simple
mechanism of address selection in Figure 3b. The choice of the bank currently programmed
is done by cyclically updating the num_prg register in {1, ..., G} with the arrival of new
twiddle factor sets, signaled with new_twiddles going high for one cycle.

The signal generation of PRG TW BANK depends on two factors: the way the
twiddle sequence {ωj

i }0≤j<n/2 is inputted, and the way they have to be dispatched in the
different memories of a bank. To respect the throughput of the overall architecture, the
reprogramming has to be done in at most T = n/w cycles. As an example, the case w = 2
is presented in the following description.

The sequence of twiddle factors is inputted one per cycle in increasing order of power.
For k ∈ {1, ...,K}, the k-th memory of the bank contains the subset {ω(n∗j)/2k+1

i }0≤j<2k .
Therefore, the address wr_addr_k and the signal we_k are updated every n/(2k+1) cycles.
The required throughput is thus achieved.

Accessing the twiddle factors. The mechanism instantiated in the ACCESS INTER-
CONNECT, responsible of feeding appropriate values to each stage of the NTT data path,
is similar to the selection of the programmed bank.

A distinction has to be made between the different types of stages. As an example
with w = 2, Figure 4a shows for a multiply stage, and Figure 4b for a butterfly stage, the
selection of the correct values among the outputs of the G different twiddle banks. In
both cases, the principle is the same: the arrival of a different RNS channel in the data
flow is signaled by a next signal. This signal is responsible of the cyclic update of the
corresponding register in the CONTROL UNIT (ms_k and bs_b in Figure 4). The next
signals of multiply stages are also responsible of the re-synchronization of the rd_addr_k
generators in the GEN ADDRS unit, but this is not shown in Figure 4a for simplicity.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 79

ACCESS
INTERCONNECT

ms_k ms_k ms_k

CONTROL UNIT

++
0 ms_k

Combinatorial logic

M
 S

ta
ge

 k

......

... ...
NTT DATA PATH

next_ms_k

...

v_
1

v_
G

...
p_

1

p_
G

...

...

tw
_1

_k

tw
_G

_k
...
...

(a) Twiddle access for a multiply stage

ACCESS
INTERCONNECT

bs_b

CONTROL UNIT

++
0 bs_b

Combinatorial logic

B
St

ag
e

b

......

... ...
NTT DATA PATH

next_bs_b

p_
1

p_
G

...

...

(b) Twiddle access for a butterfly stage

Figure 4: Control of the twiddle access to feed NTT data path. Schematics for w = 2.

IN
PU

T
 IN

T
ER

C
O

N
N

EC
T

O
U

T
PU

T
IN

T
ER

C
O

N
N

EC
TGEN

HANDLER 1

GEN
HANDLER H

...

MMS
BANK

COMPUTE CONTROL

da
_[1

:H
]

se
l_a

rg
s

se
l_o

ut
s M

M
S_

ar
gs

GenCtrl_[1:H]

}...
start

GEN TW COMPUTE

BUFFER 1

BUFFER H

...

BUFFER
CONTROL

GEN TW SORT
num
valid

valid

outputs
w +2
words

vi

pi

ψi
1

...

ψi
w

Figure 5: Generation of twiddles (GEN TW) flow.

4.3 Twiddle Factor Generator
Our acceleration strategy is based on the generation of the n-sequence Ψi = {ψj

i }0≤j<n

with the required throughput T = n/w, from the initial knowledge of the first w elements
(ψ1

i , ..., ψ
w
i) only. From a high level point of view, it is required to compute n elements

in T cycles, so if the generator outputs w elements per cycle the required throughput is
achieved. The difficulties of this generation come both from the dependence between the
elements of the sequence to be generated and from the latency of the modular multipliers
that compute the elements. This problem can be expressed as the search for an overlap in a
dependency graph, in which different solutions can be found regarding different constraints.
As the problem of generating the power sequence of a number is outside the scope of this
document, the following brief description simply presents the generator architecture and
details only how it meets the needs of the RPM architecture.

The principle of our solution is that when there are inevitable bubbles in the generation
of a set, due to expectation of intermediate results, the generator fills these bubbles with
calculations from another set’s generations ready to be performed. It results in a mixed
set output sequence from which each n-length sequences has to be sorted out.

Consequently, the generation is done in two steps presented in Figure 5. The generator
handles up to H different twiddle set generations at the same time, and schedules them on

80
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

the single computing resource MMS BANK, which contains exactly w modular multipliers.
When T is large in front of the modular multiplier latency (which is true for lattice-based
cryptography applications), H = 3 is sufficient to saturate the MMS BANK with twiddle
computations and achieve the required throughput to feed the rest of the RPM design.

Each twiddle set is associated to a specific GEN HANDLER which instantiates data
handling according to chosen generation heuristic1. COMPUTE CONTROL schedules
the different twiddle set generations by supervising their sequential access to MMS BANK.
It updates at each cycle the GenCtrl signal for each GEN HANDLER, and selects
appropriately which one feeds MMS BANK with new arguments (MMS_args), and which
one outputs the w further elements of its twiddle set.

Each output of GEN TW COMPUTE unit is associated to num and valid signals that
specify the validity of the output and its origin. The outputs of GEN TW COMPUTE
are sorted in H different buffers according to these signals. When a GEN HANDLER
finishes its twiddle set generation, BUFFER CONTROL initiates the output of the n-
sequence stored in the corresponding BUFFER, w elements per cycle. The concerned
GEN HANDLER and BUFFER can then be used for a new twiddle set generation.

The latency of the twiddle factor generator, namely the number of cycles between
the input of the initial elements ψ1

i , ..., ψ
w
i and the w first outputs of the n-sequence

by GEN TW SORT, is a bit larger than T . Consequently, the RPM requires artificial
latencies in the data path to synchronize the output of the twiddles with the inputs of
the coefficients. On experimental grounds, these latencies are not too large, but still uses
some BRAM resources on an FPGA implementation. It is nevertheless a relatively small
cost regarding the impact of BRAM utilization for NTT permutations for large n.

4.4 Modular arithmetic
Our RPM design is based on modular arithmetic, which is dependent on the considered
modulus (pi). It is considered here that RNS basis elements are selected using the prime
selection algorithm from NFLlib [AMBG+16]. In addition to prime selection, NFLlib
proposes a modular reduction algorithm compliant with selected primes. This modified
Barrett reduction algorithm requires a (s + 2)-bit reciprocal related to the modulus pi

(vi = b22(s+2)/pic mod 2(s+2)).
For modular additions and modular subtractions, inputs are bounded by the modulus

pi (s-bit), thus they require only one addition, one subtraction and one comparison to be
performed. Modular multipliers are instantiated by a classical s-bit multiplication followed
by the modular reduction from NFLlib. It requires three s-bit multiplications, one 2s-bit
addition, two subtractions (one 2s-bit and one s-bit), and one comparison.

As our RPM design is data flow oriented, all the modular operators implemented
are pipelined. Modular additions and subtractions have two cycles latency (LatMADD =
LatMSUB = 2), and modular multipliers’ latency depends on the underlying s-bit multipli-
ers (LatMM = 3 ∗ LatM + 3, with LatM the latency of a s-bit multiplier).

5 Results and Approach Validation
This section provides implementation results for a proof-of-concept set of small cryptosystem
parameters. Then, it studies the scaling of our approach to sets of larger cryptosystem
parameters by changing SPIRAL generated DFT into NTT. This part allows us to explore
performances of the RPM architecture on most of the parameter sets from [HPS18]. Finally,
it shows the positive impact of the twiddle set generator on the scalability of the overall
RPM for BFV-like homomorphic schemes.

1A example of heuristic : ψ2j
i = ψj

iψ
j
i mod pi and ψ2j+1

i = ψj
iψ

j+1
i mod pi for all j in {1, ..., n/2−1}.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 81

Table 2: Resource utilization post implementation on a Virtex xc7vx690t. Synthesis,
placement and route using Xilinx Vivado 2016.3. Frequency 200MHz.

Ressources RPM BCHI
type available total NTT MM GTW Others & WRAP
LUT 432,368 54,188 41,964 5,198 5,906 1,120 27,775
LUTRAM 173,992 14,402 10,710 2,056 1,550 86 5,425
FF 864,736 66,444 50,961 6,755 7,761 967 39,614
BRAM 1,470 208 147 0 21 40 153
DSP 3,600 517 363 88 66 0 48
IO 600 0 0 0 0 0 59
Pcie 3 0 0 0 0 0 1

5.1 Implementation Results
This subsection presents the implementation results, as a proof of concept, of the RPM
design with n = 4096, w = 2 and s = 30. The experimentation has taken place on an
Alpha-Data board ADM-PCIE-7V3, embedding a Xilinx Virtex 7 xc7vx690t, and connected
to host PC through PCIe Gen3 ×8 lanes. The RPM design is synthesized, placed and
routed along with the Bridge Host Controler Interface (BHCI) IP, provided by Alpha-Data,
controlling the PCIe and DMA that access the RPM design. Synthesis, placement and
route have been completed with integrated tools of Xilinx Vivado 2016.3. The achieved
running frequency is 200MHz.

In Table 2, the resource utilization post-implementation is shown for the proof-of-
concept RPM design. Considering only the RPM design w.r.t. the FPGA resources, the
critical resources are DSP and BRAM tiles with respectively 14,4% and 14,2% utilization,
12,5% for LUT, and 8,3% for LUTRAM. The larger part of the resource utilization comes
from the three NTT (70,2% of DSP, 70,8% of BRAM, and 77,4% of LUT). The twiddle
path, embedding our twiddle factor generator, uses roughly around 10%-13% of DSP,
BRAM and LUT. The inner-products in the overall data flow consume 17% of the DSP,
and the various latencies synchronizing the data path and the twiddle path together take
20% of the BRAM utilization. As expressed in section 4.3, the hardware cost for the
synchronization can be considered constant as it becomes relatively small for larger n.

In the next section, we study the scalability of our approach over more practical
parameter sets for homomorphic encryption. It has to be emphasized that it is a pessimistic
study, as one can see for the case n = 4096, w = 2 and s = 30, when comparing the
following estimate to the post-implementation hardware utilization presented in Table 2.
Nevertheless, we prefer not to take into account in our discussion the potential optimizations
specific to an implementation environment.

5.2 Scalability Over More Practical Parameter Sets
In order to analyze the scalability of our hardware acceleration approach, its behaviour
under the concrete parameter sets from [HPS18] is studied in this section. The estimations
presented here are built on two basis : the concrete implementation for n = 4096, w = 2
and s = 30, presented in previous subsection, and the estimated changes of SPIRAL
generated DFT into NTT. For each estimation, we examined the resource count of the
appropriate DFT design, and adjusted the costs of the arithmetic, memories, and required
bandwidth to match the requirements of the corresponding modified NTT design. When
considering a data flow design, going from DFT to NTT mainly impacts the hardware cost
of the design, as the throughput does not change for a specific transform size. Similarly,

82
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

212 213 214 215

564
672

n, w = 2, s = 30
2 4 8 16

636

4,836

limit

w, n = 214, s = 30

NTT PWMM GTW

30 41 51 58 62

636

2,544

s, n = 214, w = 2
(a) Influence of (n, w, s) on DSP utilization.

212 213 214 215

226

1,074

n, w = 2, s = 30
2 4 8 16

595

1,240

w, n = 214, s = 30

NTT perms NTT twiddles GTW

30 41 51 58 62

595

1,078

s, n = 214, w = 2
(b) Influence of (n, w, s) on BRAM utilization.

212 213 214 215

4.5

n, w = 2, s = 30
2 4 8 16

4.5

36

limit

w, n = 214, s = 30

In Out

30 41 51 58 62

4.5

9.3
limit

s, n = 214, w = 2
(c) Influence of (n, w, s) on communication bandwidth requirements (GB/s).

Figure 6: Estimation of resource utilization under the influence of sizing parameters.

the impact on the latency of changing DFT into NTT is not considered here regarding the
number of pipelined RPM to perform in practice.

Hardware cost. The development of the RPM design was oriented towards FPGA
implementation and in the following discussion the hardware cost is expressed as the
number of DSP and BRAM. A DSP refers to 7 series DSP48E1, and a BRAM refers to a
36Kb Block RAM. The utilization estimate is based on the corresponding Xilinx IP core
generators. Note that neither the optimization from [CRS17] to reduce BRAM utilization
for twiddle storage, nor potential synthesizer optimizations has been taken into account,
resulting in a pessimistic estimate. Finally, the number of LUT is neglected because it
does not appear as a critical resource in practice, similarly as in [CRS17].

All sizing parameters n, w and s have a significant impact on resource utilization.
Figure 6a shows their influence on DSP utilization, Figure 6b on BRAM utilization and
Figure 6c on communication bandwidth requirement. The limit value represents the

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 83

Table 3: Timing estimate derived from the profiling result of [HPS18]. Single-threaded
mode, Linux CentOS, Intel Core i7-3770 CPU 4 cores at 3.40GHz and 16 GB of RAM;
plaintext space t = 2, s ≈ 47, security λ > 128.

L n Sq
Total CRT ext. Mul.RPM Relin.RPM Others& Scaling
ms ms % ms % ms % ms %

1 212 94 17.7 5.4 30.6 10.3 58.3 1.7 9.5 0.3 1.6
5 213 141 53.7 15.7 29.3 30.2 56.2 7 13.1 0.7 1.4
10 214 235 197.8 52.1 26.4 104.3 52.7 37.8 19.1 3.6 1.8
20 214 376 349.6 95.5 27.3 160.5 45.9 87 24.9 6.6 1.9
30 215 564 1,334 343.2 25.7 507.9 38.1 452.2 33.9 30.7 2.3

available hardware/bandwidth resource within Alpha-Data board of section 5.1, taking
into account the BCHI usage and a 10% margin for a concrete implementation.

The degree n of the handled polynomials, in addition to reducing the RPM through-
put (T = n/w), mainly impacts the number of BRAM required, in particular for the
permutations in the NTT. The streaming width w improves the throughput of the RPM
significantly, but has a heavy drawback on the DSP utilization, and on the required com-
munication bandwidth. The elements size s has a balanced impact on BRAM utilization,
DSP utilization and required communication bandwidth, but has no impact on RPM
throughput. Nevertheless, some increments of s have a more significant impact on DSP
utilization, and increase the latencies of basic arithmetic operators if one wants to keep
the same running frequency.

Performance scalability. Some additional estimations have been made to study the
performance scalability of the RPM design. The profiling from Halevi et al. [HPS18]
considers the complexity at NTT level rather than RPM level. It is assumed that inner-
products required for RPM operations are counted as part of Others in their profiling
(Table 1). For the following projections, it is estimated that 80% of Others are in fact
inner-products to performs RPM operations. Furthermore, not knowing the ciphertext
relinearization primitive detailed profiling, it is estimated that 95% of the relinearization
is spent performing the equivalent of RPM operations. Table 3 presents the resulting
estimated profiling over which the following study is based.

Considering the complexity at RPM level makes us consider more NTTs than in
the PALISADE implementation. During ciphertext multiplications, each polynomial is
transformed to the NTT domain only once in their work. Considering RPM operations,
polynomials are transformed each time they are required, i.e. twice. Even if comparisons
based on timing with different abstraction levels are subject to caution, it can reasonably
be considered here as a disadvantage in terms of acceleration results. Nevertheless, it is
beyond the scope of this paper to study the choice of RPM acceleration rather than NTT
acceleration, and this question is delayed to further works.

In Table 4 performance results over different parameter sets from [HPS18] are pre-
sented. The number of RPM performed during ciphertext multiplication and ciphertext
relinearization depends on RNS basis sizes k and k′. Namely, tensor product of BFV
ciphertext multiplication requires 3(k + k′)1 residue polynomial multiplications, and each
scalar product in ciphertext relinearization requires k2 of them.

Here it is considered that k′ = k+1 should be sufficient in practice to conduct operations
in R during the tensor product in a ciphertext multiplication, as long as the primes are

1Using a Karatsuba-like approach.

84
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

Table 4: Estimated performance of our RPM design over the different parameter sets.
Throughput T = n/w. Timings are estimated with a RPM design clocked at 200MHz.
Total corresponds to the new timing for ciphertext Mult&Relin. (su stands for speedup).

Parameters RPM Mul.RPM Relin.RPM Total
L n Sq s k w 1/ms # ms(su) # ms(su) ms
1 212 94

30

4

2

97.7 27 0.3(37.3) 32 0.3(5.1) 6.3
5 213 141 5 48.8 33 0.7(44.7) 50 1.0(6.9) 18.2
10 214 235 8 24.4 51 2.1(49.9) 128 5.2(7.2) 63
20 214 376 13 81 3.3(48.4) 338 13.8(6.3) 119.3
30 215 564 19 12.2 117 9.6(53) 722 59.1(7.6) 442.6

20 214 376 30 13

2 24.4

81

3.3(48.4)

338

13.8(6.3) 119.3
4 48.8 1.7(96.7) 6.9(12.6) 110.7
8 97.7 0.8(193.5) 3.5(25.1) 106.4
16 195.3 0.4(387) 1.7(50.3) 104.2

20 214 376

30 13

2 24.4

81 3.3(48.4) 338 13.8(6.3) 119.3
41 10 63 2.6(62.2) 200 8.2(10.6) 112.9
51 8 51 2.1(76.8) 128 5.2(16.6) 109.4
58 7 45 1.8(87.1) 98 4.0(21.7) 10862 7

correctly distributed in each basis.

5.3 Positive Impact of the Twiddle Factors Generator
The scalability of our approach is brought by the local generation of twiddle sets which is
compared here to two other straightforward strategies. First, local storage in FPGA ROM
at compile time, similar to the work of Cousins et al. [CRS17]. Second, external storage
and communication along with polynomials, similar to the work of Öztürk et al. [ÖDSS15].

Local storage. For the first strategy, the proposed twiddle factor generator saves a large
amount of BRAM, and makes the RPM design scalable regarding the RNS basis size.
Indeed, the cost of handling multiple twiddle sets is now independent of k. In Table 5, are
compared, in terms of FPGA resource utilization, the twiddle generation implemented in
the RPM design, and the scenario where the twiddles are stored in ROM, on the FPGA,
at compile time. To be more specific, it is considered that only the Ψ = {ψi}1≤i≤n are
stored for each twiddle set, and that the subsequent required values are computed similarly
as in the RPM design without online twiddle factor generation.

Unsurprisingly, the number of BRAM needed to store all the different twiddle sets
exponentially increases with larger parameters sets (to gain in multiplicative depth).
Indeed, both the size of each set (depending on n) and the number of sets (k + k′) get
larger (depending on Sq, for fixed prime size s). The number of instantiated BRAM is
fixed by H (not considering the data path here) when using our twiddle factor generator.
These BRAM are mainly used for the H different BUFFER (storing n elements) that
sort the twiddles generated by GEN TW COMPUTE (Figure 5), and in practice H = 3
because T is large enough in front of a modular multiplier latency.

External storage. For the second strategy, the different twiddle sets are stored on external
memories (from the accelerator’s viewpoint). In this case, the required input bandwidth
to receive the twiddle factors from external storage space is compared to the one required

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 85

Table 5: Resource utilization for local storage and local generation of twiddle factors.
Parameters Local Storage Local Generation

L n Sq s k w DSP BRAM DSP BRAM
1 212 94

30

4

2

24 44 48 20
5 213 141 5 24 91 48 35
10 214 235 8 24 266 48 70
20 214 376 13 24 432 48 70
30 215 564 19 24 1,053 48 135

20 214 376 30 13

2 24 378 48 70
4 48 378 96 70
8 96 432 192 80
16 192 432 384 80

20 214 376

30 13

2

24 406 48 70
41 10 30 437 60 95
51 8 54 437 108 115
58 7 60 442 120 130
62 7 96 476 192 140

for local generation that is required by our RPM design. The memory footprint of the two
approaches is also compared.

In the first approach the memory footprint is O(kn) elements of size s, compared to
O(kw) in our approach. In the case of external storage, it is again considered that only
half of a twiddle set is stored. The result of the comparison is viewed in the Table 6. The
memory footprint of the twiddle factors goes from 0,14 MBytes to 4,79 MBytes for the
considered parameter sets, this is not critical in practice, but still, it could be avoided with
local generation requiring at most 1620 bytes (not considering word-wise storage).

A stronger disadvantage in the case of a data flow oriented RPM is the input bandwidth
requirements for the precomputed values. Considering the needs of the RPM twiddle flow,
namely w words of s-bit per cycle, storing the twiddle sets on external memories requires
at least 1,5 GB/s, for RPM clocked at 200MHz, of communication bandwidth between the
storage space and the RPM unit. With local generation of twiddle sets as instantiated in
our RPM design, only w words of s-bit are required every T cycles, thus saving precious
bandwidth to feed the accelerator with data leading to effective speedup.

6 Conclusion and Future Work
In this work, we designed a Residue Polynomial Multiplier to scale up evaluation capability
for homomorphic encryption based on RLWE. The RPM design has been constructed
studying the full RNS variant of the FV scheme, proposed by Bajard et al. [BEHZ16], and
further improved by Halevi et al. [HPS18]. The resulting RPM is then fully compatible
with the RNS representation w.r.t. polynomial coefficients, and implements an NTT-based
negative wrapped convolution to perform polynomial ring multiplications.

In order to address practical parameter sets (for reasonably large multiplicative depth),
our RPM embedded its own twiddle factor generator. This generator makes the RPM
design BRAM utilization independent of the RNS basis size while avoiding a non-negligible
communication cost between the host and the accelerator.

Compared to the software implementation of [HPS18], it is estimated that our RPM
design speeds-up the overall ciphertext multiplication and relinearization by a factor
between 2.81 (n = 212,w = 2,s = 30) to 3.19 (n = 214,w = 2,s = 51). These performance
improvements occur while staying in achievable FPGA hardware utilization and PCIe com-

86
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

Table 6: Memory footprint and communication bandwidth requirements for external
storage strategy and local generation of twiddle factors.

Parameters External Storage Local Generation

L n Sq s k w
MEM BW MEM BW
MB GB/s B kB/s

1 212 94

30

4

2

0.14

1.5

67.5 0.73
5 213 141 5 0.34 83 0.37
10 214 235 8 1.04 128 0.1820 214 376 13 1.66 203
30 215 564 19 4.79 293 0.09

20 214 376 30 13

2

1.66

1.5 203 0.18
4 3 405 0.73
8 6 810 2.93
16 12 1,620 11.72

20 214 376

30 13

2

1.66 1.5 203 0.18
41 10 1.76 2.1 216 0.25
51 8 1.78 2.6 217 0.31
58 7 1.78 2.9 218 0.35
62 7 1.9 3.1 233 0.38

munication bandwidth requirements. After acceleration, the new performance bottleneck
is located mainly in RNS extension and RNS scaling procedures (more than 75% of the
new timing), which parallelize well according to [HPS18].

Further work will compare the acceleration of only NTT rather than RPM, to take
into account algorithmic optimizations that reduce the equivalent number of NTT. This
comparison should be followed by a concrete prototype, with real timing and hardware
utilization results.

Acknowledgments
We would like to thanks the anonymous reviewers for their constructive comments which
lead to improvements of the present paper.

References
[AMBG+16] Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-

Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast lattice
library. In Topics in Cryptology - CT-RSA 2016, pages 341–356. Springer
Nature, 2016.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A
Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes.
In Selected Areas in Cryptography - SAC, St. John’s, Newfoundland and
Labrador, Canada, August 2016.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Advances in Cryptology–CRYPTO 2012, pages
868–886. Springer, 2012.

J. Cathébras, A. Carbon, P. Milder, R. Sirdey and N. Ventroux 87

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic
Encryption from (Standard) LWE. In 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science. IEEE, oct 2011.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream Ciphers: A
Practical Solution for Efficient Homomorphic-Ciphertext Compression. In
Fast Software Encryption, pages 313–333. Springer Nature, 2016.

[CCSV17] Joël Cathébras, Alexandre Carbon, Renaud Sirdey, and Nicolas Ventroux. An
Analysis of FV Parameters Impact Towards Its Hardware Acceleration. In Fi-
nancial Cryptography and Data Security, pages 91–106. Springer International
Publishing, 2017.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A compila-
tion Chain for Privacy Preserving Applications. In Proceedings of the 3rd
International Workshop on Security in Cloud Computing. Association for
Computing Machinery (ACM), 2015.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds. In Advances in Cryptology – ASIACRYPT 2016, pages 3–33.
Springer Nature, 2016.

[CNS+16] Sergiu Carpov, Thanh Hai Nguyen, Renaud Sirdey, Gianpiero Constantino,
and Fabio Martinelli. Practical Privacy-Preserving Medical Diagnosis Using
Homomorphic Encryption. In 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD). IEEE, jun 2016.

[CRS17] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. Designing an
FPGA-Accelerated Homomorphic Encryption Co-Processor. IEEE Transac-
tions on Emerging Topics in Computing, 5(2):193–206, apr 2017.

[DDS14] Wei Dai, Yarkin Doroz, and Berk Sunar. Accelerating NTRU based homo-
morphic encryption using GPUs. In High Performance Extreme Computing
Conference (HPEC), 2014 IEEE, pages 1–6. IEEE, 2014.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 617–640.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[G+09] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In
STOC, volume 9, pages 169–178, May 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of
the AES circuit. In Advances in Cryptology–CRYPTO 2012, pages 850–867.
Springer, 2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer,
2013.

88
Data Flow Oriented Hardware Design of RNS-based

Polynomial Multiplication for SHE Acceleration

[HPS18] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An Improved RNS Variant
of the BFV Homomorphic Encryption Scheme. Cryptology ePrint Archive,
Report 2018/117, jan 2018. https://eprint.iacr.org/2018/117.

[KG18] Alhassan Khedr and Glenn Gulak. SecureMed: Secure Medical Computation
Using GPU-Accelerated Homomorphic Encryption Scheme. 22:597–606, mar
2018.

[KGV16] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scal-
able Homomorphic Implementation of Encrypted Data-Classifiers. IEEE
Transactions on Computers, 65(9):2848–2858, sep 2016.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors over Rings, pages 1–23. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[Men15] Lingchuan Meng. Automatic Library Generation and Performance Tuning
for Modular Polynomial Multiplication. PhDthesis, Drexel University, 2015.

[MFHP12] Peter Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Computer
Generation of Hardware for Linear Digital Signal Processing Transforms.
ACM Transactions on Design Automation of Electronic Systems, 17(2):1–33,
apr 2012.

[MRL+18] Vincent Migliore, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand,
Caroline Fontaine, and Guy Gogniat. Hardware/Software Co-Design of
an Accelerator for FV Homomorphic Encryption Scheme Using Karatsuba
Algorithm. IEEE Transactions on Computers, 67(3):335–347, mar 2018.

[ÖDSS15] Erdinç Öztürk, Yarkin Doröz, Berk Sunar, and Erkay Savas. Accelerating
Somewhat Homomorphic Evaluation using FPGAs. IACR Cryptology ePrint
Archive, 2015:294, 2015.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards Efficient Arithmetic
for Lattice-Based Cryptography on Reconfigurable Hardware, pages 139–158.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias.
Accelerating Homomorphic Evaluation on Reconfigurable Hardware. In Lec-
ture Notes in Computer Science, pages 143–163. Springer Berlin Heidelberg,
2015.

[PRR] Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. PALISADE lattice cryp-
tography library.

[RJV+15] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov,
and Ingrid Verbauwhede. Modular Hardware Architecture for Somewhat
Homomorphic Function Evaluation. In Lecture Notes in Computer Science,
pages 164–184. Springer Berlin Heidelberg, 2015.

[ZMP16] Marcela Zuluaga, Peter Milder, and Markus Püschel. Streaming sorting
networks. ACM Trans. Des. Autom. Electron. Syst., 21(4):55:1–55:30, May
2016.

https://eprint.iacr.org/2018/117

	Introduction
	Notations and Basic Notions
	Notations
	Residue Number System
	Negative Wrapped Convolution

	Related Works & Motivations
	Polynomial Ring Multiplication
	Residue Multiplication Over Polynomial Rings
	Towards Automatic Generation of RTL Level Design

	Residue Polynomial Multiplier Design
	Global Architecture Overview
	Number Theoretical Transform
	Twiddle Factor Generator
	Modular arithmetic

	Results and Approach Validation
	Implementation Results
	Scalability Over More Practical Parameter Sets
	Positive Impact of the Twiddle Factors Generator

	Conclusion and Future Work

