Efficient Side-Channel Protections of ARX Ciphers

Bernhard Jungk ${ }^{1}$ Richard Petri ${ }^{2}$ Marc Stöttinger ${ }^{3}$
${ }^{1}$ Fraunhofer Singapore, Singapore, bernhard.jungk@fraunhofer.sg
${ }^{2}$ Fraunhofer SIT, Germany, richard.petri@sit.fraunhofer.de
${ }^{3}$ Continental AG, Germany, marc.stoettinger@contiental-corporation.com

September 10, 2018

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
- "Butterfly Attack" against modular addition in Skein
- "Bricklayer Attack" on ChaCha20

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
- "Butterfly Attack" against modular addition in Skein
- "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
- "Butterfly Attack" against modular addition in Skein
- "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between (Cost: $\mathcal{O}(k)$)

Protecting ARX Ciphers

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
- "Butterfly Attack" against modular addition in Skein
- "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between (Cost: $\mathcal{O}(k)$)
- Simpler: Apply Boolean masking directly to an Addition algorithm in software!

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
- Introduce masked versions of combined SHIFT-AND(-XOR) gates

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
- Introduce masked versions of combined SHIFT-AND(-XOR) gates
- Include the "flexible second operand" of ARM platform, performing $z \leftarrow x(y \ll c)$ in one instruction

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
- Introduce masked versions of combined SHIFT-AND(-XOR) gates
- Include the "flexible second operand" of ARM platform, performing $z \leftarrow x(y \ll c)$ in one instruction
- Reduce the number of necessary remasking steps, reducing amount of required entropy

Our contribution

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
- Introduce masked versions of combined SHIFT-AND(-XOR) gates
- Include the "flexible second operand" of ARM platform, performing $z \leftarrow x(y \ll c)$ in one instruction
- Reduce the number of necessary remasking steps, reducing amount of required entropy
- Not in this presentation: We introduce a simpler algorithm for modular subtraction

Kogge-Stone Adder (KSA)

Iteration 1

Iteration 2

Iteration 3

Output

Kogge-Stone Adder (KSA)

TI AND (-XOR) Gate with 2 shares

$$
\begin{array}{ll}
& \left(z_{0} \oplus z_{1}\right) \leftarrow\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
s_{0} \leftarrow x_{0} \wedge y_{0}, & s_{1} \leftarrow x_{0} \wedge y_{1} \\
s_{2} \leftarrow x_{1} \wedge y_{0}, & s_{3} \leftarrow x_{1} \wedge y_{1} \\
z_{0} \leftarrow s_{0} \oplus s_{2}, & z_{1} \leftarrow s_{1} \oplus s_{3}
\end{array}
$$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined

TI AND (-XOR) Gate with 2 shares

$$
\begin{array}{ll}
& \left(z_{0} \oplus z_{1}\right) \leftarrow\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
s_{0} \leftarrow x_{0} \wedge y_{0}, & s_{1} \leftarrow x_{0} \wedge y_{1} \\
s_{2} \leftarrow x_{1} \wedge y_{0}, & s_{3} \leftarrow x_{1} \wedge y_{1} \\
t_{0} \leftarrow s_{0} \oplus m, & t_{1} \leftarrow s_{1} \oplus m \\
z_{0} \leftarrow t_{0} \oplus s_{2}, & z_{1} \leftarrow t_{1} \oplus s_{3}
\end{array}
$$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined
- Output is not uniform, requiring remasking with a guard share m

TI AND(-XOR) Gate with 2 shares

$$
\begin{array}{ll}
& \left(z_{0} \oplus z_{1}\right) \leftarrow\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
m \leftarrow\left(x_{0} \gg 1\right) \oplus(u \ll k-1) & \\
s_{0} \leftarrow x_{0} \wedge y_{0}, & s_{1} \leftarrow x_{0} \wedge y_{1} \\
s_{2} \leftarrow x_{1} \wedge y_{0}, & s_{3} \leftarrow x_{1} \wedge y_{1} \\
t_{0} \leftarrow s_{0} \oplus m, & t_{1} \leftarrow s_{1} \oplus m \\
z_{0} \leftarrow t_{0} \oplus s_{2}, & z_{1} \leftarrow t_{1} \oplus s_{3}
\end{array}
$$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined
- Output is not uniform, requiring remasking with a guard share m
- Typical software implementation processes k-shares in parallel \rightarrow use one uniform input shares as guard share (just need one fresh bit)

TI AND(-XOR) Gate with 2 shares

$$
\left(z_{0} \oplus z_{1}\right) \leftarrow\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \oplus\left(u_{0} \oplus u_{1}\right)
$$

$$
\begin{aligned}
& s_{0} \leftarrow x_{0} \wedge y_{0} \\
& s_{2} \leftarrow x_{1} \wedge y_{0} \\
& t_{0} \leftarrow s_{0} \oplus u_{0} \\
& z_{0} \leftarrow t_{0} \oplus s_{2}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1} \leftarrow x_{0} \wedge y_{1} \\
& s_{3} \leftarrow x_{1} \wedge y_{1} \\
& t_{1} \leftarrow s_{1} \oplus u_{1} \\
& z_{1} \leftarrow t_{1} \oplus s_{3}
\end{aligned}
$$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined
- Output is not uniform, requiring remasking with a guard share m
- Typical software implementation processes k-shares in parallel \rightarrow use one uniform input shares as guard share (just need one fresh bit)
- In the case of $z \leftarrow(x \wedge y) \oplus u$ no guard share is required

Combined SHIFT-AND(-XOR) gate

$$
\begin{array}{ll}
m \leftarrow\left(x_{0} \gg 1\right) \oplus(u \ll k-1) & \\
s_{0} \leftarrow x_{0} \wedge\left(x_{0} \ll i\right), & s_{1} \leftarrow x_{0} \wedge\left(x_{1} \ll i\right) \\
s_{2} \leftarrow x_{1} \wedge\left(x_{0} \ll i\right), & s_{3} \leftarrow x_{1} \wedge\left(x_{1} \ll i\right) \\
t_{0} \leftarrow s_{0} \oplus m, & t_{1} \leftarrow s_{1} \oplus m \\
z_{0} \leftarrow t_{0} \oplus s_{2}, & z_{1} \leftarrow t_{1} \oplus s_{3}
\end{array}
$$

- The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR) operation which lends itself well to the ARM "flexible second operand"

Combined SHIFT-AND(-XOR) gate

$$
\begin{aligned}
& s_{0} \leftarrow x_{0} \wedge\left(y_{0} \ll i\right) \\
& s_{2} \leftarrow x_{1} \wedge\left(y_{0} \ll i\right) \\
& t_{0} \leftarrow s_{0} \oplus y_{0} \\
& z_{0} \leftarrow t_{0} \oplus s_{2}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1} \leftarrow x_{0} \wedge\left(y_{1} \ll i\right) \\
& s_{3} \leftarrow x_{1} \wedge\left(y_{1} \ll i\right) \\
& t_{1} \leftarrow s_{1} \oplus y_{1} \\
& z_{1} \leftarrow t_{1} \oplus s_{3}
\end{aligned}
$$

- The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR) operation which lends itself well to the ARM "flexible second operand"
- Again, in the case of $z \leftarrow(x \wedge(y \ll i)) \oplus y$ no guard share is required

Protected KSA

Require: $x, y \in \mathbb{Z}_{2^{k}}, k>0$
Ensure: $z=(x+y) \bmod 2^{k}$
1: $n \leftarrow \max \left(\left\lceil\log _{2}(k-1)\right\rceil, 1\right)$
2: $g \leftarrow x \wedge y$
3: $p \leftarrow x \oplus y$
4: for $i=1$ to $n-1$ do
5: $\quad g \leftarrow\left(p \wedge\left(g \ll 2^{i-1}\right)\right) \oplus g$
6: $\quad p \leftarrow\left(p \wedge\left(p \ll 2^{i-1}\right)\right)$
7: end for
8: $g \leftarrow\left(p \wedge\left(g \ll 2^{n-1}\right)\right) \oplus g$
9: $z \leftarrow x \oplus y \oplus 2 g$
10: return z

Protected KSA

Require: $x_{0}, x_{1}, y_{0}, y_{1} \in \mathbb{Z}_{2^{k}}, k>0, u \in\{0,1\}$, with $x=x_{0} \oplus x_{1}$ and $y=y_{0} \oplus y_{1}$
Ensure: $z=(x+y) \bmod 2^{k}$, with $z=z_{0} \oplus z_{1}$
1: $n \leftarrow \max \left(\left\lceil\log _{2}(k-1)\right\rceil, 1\right)$
2: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAnd}\left(x_{0}, x_{1}, y_{0}, y_{1}, u\right)$
3: $\left(p_{0}, p_{1}\right) \leftarrow \operatorname{Sec} \operatorname{Xor}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)$
4: $u \leftarrow x_{0} \bmod 2$
for $i=1$ to $n-1$ do
6: $\quad v \leftarrow p_{0} \bmod 2$
7: $\quad\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{i-1}\right)$
8: $\quad\left(p_{0}, p_{1}\right) \leftarrow \operatorname{SecAndShift}\left(p_{0}, p_{1}, u, 2^{i-1}\right)$
9: $u \leftarrow v$
10: end for
11: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{n-1}\right)$
\# Shared AND
\# Shared XOR
\# Update guard share
\# Save next guard share
\# Shared AND-SHIFT-XOR
\# Shared AND-SHIFT
\# Update guard share
\# Shared AND-SHIFT-XOR
12: $\left(z_{0}, z_{1}\right) \leftarrow\left(x_{0} \oplus y_{0} \oplus 2 g_{0}, x_{1} \oplus y_{1} \oplus 2 g_{1}\right)$
13: return $\left(z_{0}, z_{1}, u\right)$

Protected KSA

Require: $x_{0}, x_{1}, y_{0}, y_{1} \in \mathbb{Z}_{2^{k}}, k>0, u \in\{0,1\}$, with $x=x_{0} \oplus x_{1}$ and $y=y_{0} \oplus y_{1}$
Ensure: $z=(x+y) \bmod 2^{k}$, with $z=z_{0} \oplus z_{1}$
1: $n \leftarrow \max \left(\left\lceil\log _{2}(k-1)\right\rceil, 1\right)$
2: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAnd}\left(x_{0}, x_{1}, y_{0}, y_{1}, u\right)$
3: $\left(p_{0}, p_{1}\right) \leftarrow \operatorname{Sec} \operatorname{Xor}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)$
4: $u \leftarrow x_{0} \bmod 2$
for $i=1$ to $n-1$ do
6: $\quad v \leftarrow p_{0} \bmod 2$
7: $\quad\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{i-1}\right)$
8: $\quad\left(p_{0}, p_{1}\right) \leftarrow \operatorname{SecAndShift}\left(p_{0}, p_{1}, u, 2^{i-1}\right)$
9: $u \leftarrow v$
10: end for
11: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{n-1}\right)$
\# Shared AND
\# Shared XOR
\# Update guard share
\# Save next guard share
\# Shared AND-SHIFT-XOR
\# Shared AND-SHIFT
\# Update guard share
\# Shared AND-SHIFT-XOR
12: $\left(z_{0}, z_{1}\right) \leftarrow\left(x_{0} \oplus y_{0} \oplus 2 g_{0}, x_{1} \oplus y_{1} \oplus 2 g_{1}\right)$
13: return $\left(z_{0}, z_{1}, u\right)$

Protected KSA

Protected KSA

Require: $x_{0}, x_{1}, y_{0}, y_{1} \in \mathbb{Z}_{2^{k}}, k>0, u \in\{0,1\}$, with $x=x_{0} \oplus x_{1}$ and $y=y_{0} \oplus y_{1}$
Ensure: $z=(x+y) \bmod 2^{k}$, with $z=z_{0} \oplus z_{1}$
1: $n \leftarrow \max \left(\left\lceil\log _{2}(k-1)\right\rceil, 1\right)$
2: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAnd}\left(x_{0}, x_{1}, y_{0}, y_{1}, u\right)$
3: $\left(p_{0}, p_{1}\right) \leftarrow \operatorname{Sec} \operatorname{Xor}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)$
4: $u \leftarrow x_{0} \bmod 2$
for $i=1$ to $n-1$ do
6: $\quad v \leftarrow p_{0} \bmod 2$
7: $\quad\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{i-1}\right)$
8: $\quad\left(p_{0}, p_{1}\right) \leftarrow \operatorname{SecAndShift}\left(p_{0}, p_{1}, u, 2^{i-1}\right)$
9: $u \leftarrow v$
10: end for
11: $\left(g_{0}, g_{1}\right) \leftarrow \operatorname{SecAndShiftXor}\left(p_{0}, p_{1}, g_{0}, g_{1}, 2^{n-1}\right)$
\# Shared AND
\# Shared XOR
\# Update guard share
\# Save next guard share
\# Shared AND-SHIFT-XOR
\# Shared AND-SHIFT
\# Update guard share
\# Shared AND-SHIFT-XOR
12: $\left(z_{0}, z_{1}\right) \leftarrow\left(x_{0} \oplus y_{0} \oplus 2 g_{0}, x_{1} \oplus y_{1} \oplus 2 g_{1}\right)$
13: return $\left(z_{0}, z_{1}, u\right)$

Further optimization

$$
\begin{aligned}
& s_{0} \leftarrow x_{0} \wedge y_{0} \\
& s_{2} \leftarrow x_{1} \wedge y_{0} \\
& z_{0} \leftarrow s_{0} \oplus s_{1}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1} \leftarrow x_{0} \vee \neg y_{1} \\
& s_{3} \leftarrow x_{1} \vee \neg y_{1} \\
& z_{1} \leftarrow s_{2} \oplus s_{3}
\end{aligned}
$$

- Biryukov et al. (2017) introduced a further optimized secure AND gate (SecAndOpt/SecAndShiftOpt) which can be combined with our approach

Comparision of masked operations

	SecXor	SecShift	SecAnd	SecAndShift / -Opt	SecAndShiftXor
Generic [Coron et al.]	2	4	8	$8+2$	$8+4+2$
ARM [Coron et al.]	2	4	8	$8+2$	$8+4+2$
Generic [Biryukov et al.]	2	2	7	$7+2$	$7+2+2$
ARM [Biryukov et al.]	2	2	6	$6+2$	$6+2+2$
Generic [new]	2	-	8	$10 / 9$	10
ARM [new]	2	-	8	$8 / 6$	8

- Combined AND-SHIFT operations save most of the instructions

Comparision of masked operations

	SecXor	SecShift	SecAnd	SecAndShift / -Opt	SecAndShiftXor
Generic [Coron et al.]	2	4	8	$8+2$	$8+4+2$
ARM [Coron et al.]	2	4	8	$8+2$	$8+4+2$
Generic [Biryukov et al.]	2	2	7	$7+2$	$7+2+2$
ARM [Biryukov et al.]	2	2	6	$6+2$	$6+2+2$
Generic [new]	2	-	8	$10 / 9$	10
ARM [new]	2	-	8	$8 / 6$	8

- Combined AND-SHIFT operations save most of the instructions
- Especially when combined with optimizations proposed by Biryukov et el.

Comparision of masked operations

	SecXor	SecShift	SecAnd	SecAndShift / -Opt	SecAndShiftXor
Generic [Coron et al.]	2	4	8	$8+2$	$8+4+2$
ARM [Coron et al.]	2	4	8	$8+2$	$8+4+2$
Generic [Biryukov et al.]	2	2	7	$7+2$	$7+2+2$
ARM [Biryukov et al.]	2	2	6	$6+2$	$6+2+2$
Generic [new]	2	-	8	$10 / 9$	10
ARM [new]	2	-	8	$8 / 6$	8

- Combined AND-SHIFT operations save most of the instructions
- Especially when combined with optimizations proposed by Biryukov et el.
- Generation of refresh mask takes only 3 instructions

Comparision of masked 32-bit modular addition

- ARM implementation improved by 31% when combined with approach by Biryukov et al.

Comparision of masked 32-bit modular addition

- ARM implementation improved by 31% when combined with approach by Biryukov et al.
- Significantly improved subtraction instruction counts

Comparision of masked 32-bit modular addition

- ARM implementation improved by 31% when combined with approach by Biryukov et al.
- Significantly improved subtraction instruction counts
- Needs one random bit, outputs one random bit

Application to ChaCha20 cipher

- We implemented an unprotected reference and two protected variants

Application to ChaCha20 cipher

- We implemented an unprotected reference and two protected variants
- Masked addition is the driving factor

Application to ChaCha20 cipher

- We implemented an unprotected reference and two protected variants
- Masked addition is the driving factor
- Note: cycle-counts not entirely comparable due to possible differences in memory architecture

Simulation

- ChaCha implementation was simulated with Micro-Architectural Power Simulator (MAPS) ${ }^{1}$
- Simulator was extended by 11 instructions
- Hamming distance is sampled for each register assignment
- t-Test with a fixed vs. random setup and 10^{5} noise free traces
- Noise amplification methods like shuffling should still be used

[^0]Thank you for listening

Chacha Shuffling (Backup Slide)

- In the case of ChaCha, shuffling can be used to amplify the noise
- ChaCha State consists of 4 columns which are processed independently (within a round)
- Instead of processing columns sequentially, one can jump between columns
$-\frac{(4 \cdot 12)!}{(12!)^{4}} \approx 2^{88}$ Permutations
- Noise can be further amplified by splitting the masked addition into several operations

Chacha Shuffling (Backup Slide)

- In the case of ChaCha, shuffling can be used to amplify the noise
- ChaCha State consists of 4 columns which are processed independently (within a round)
- Instead of processing columns sequentially, one can jump between columns
- $\frac{(4 \cdot 12)!}{(12!)^{4}} \approx 2^{88}$ Permutations
- Noise can be further amplified by splitting the masked addition into several operations

[^0]: ${ }^{1}$ https://github.com/cryptolu/maps

