Efficient Side-Channel Protections of ARX Ciphers

Bernhard Jungk¹ Richard Petri² Marc Stöttinger³

¹Fraunhofer Singapore, Singapore, bernhard.jungk@fraunhofer.sg

²Fraunhofer SIT, Germany, richard.petri@sit.fraunhofer.de

³Continental AG, Germany, marc.stoettinger@contiental-corporation.com

September 10, 2018

 ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
 - "Butterfly Attack" against modular addition in Skein
 - "Bricklayer Attack" on ChaCha20

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
 - "Butterfly Attack" against modular addition in Skein
 - "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
 - "Butterfly Attack" against modular addition in Skein
 - "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between (Cost: O(k))

- ARX ciphers (e.g. Threefish, Speck, ChaCha20) rely on modular Addition, Rotation and XOR
- Easily protected against timing side-channels, but all the harder to protect against power/EM side-channels, see e.g.
 - "Butterfly Attack" against modular addition in Skein
 - "Bricklayer Attack" on ChaCha20
- Early work by Goubin (2001) suggested Boolean and arithmetic masking, with conversion in-between (Cost: O(k))
- Simpler: Apply Boolean masking directly to an Addition algorithm in *software*!

 Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
 - Introduce masked versions of combined SHIFT-AND(-XOR) gates

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
 - Introduce masked versions of combined SHIFT-AND(-XOR) gates
 - ▶ Include the "flexible second operand" of ARM platform, performing $z \leftarrow x(y \ll c)$ in one instruction

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
 - Introduce masked versions of combined SHIFT-AND(-XOR) gates
 - Include the "flexible second operand" of ARM platform, performing z ← x(y ≪ c) in one instruction
 - Reduce the number of necessary remasking steps, reducing amount of required entropy

- Threshold Implementations (TI) initially only of interest for hardware implementations until recent developments reduced the number of necessary shares
- We introduce some optimizations for masking additions
 - Introduce masked versions of combined SHIFT-AND(-XOR) gates
 - ▶ Include the "flexible second operand" of ARM platform, performing $z \leftarrow x(y \ll c)$ in one instruction
 - Reduce the number of necessary remasking steps, reducing amount of required entropy
- Not in this presentation: We introduce a simpler algorithm for modular subtraction

Kogge-Stone Adder (KSA)

Kogge-Stone Adder (KSA)

$$(z_0 \oplus z_1) \leftarrow (x_0 \oplus x_1) \land (y_0 \oplus y_1)$$

$s_0 \leftarrow x_0 \wedge y_0,$	$s_1 \leftarrow x_0 \wedge y_1$
$s_2 \leftarrow x_1 \wedge y_0,$	$s_3 \leftarrow x_1 \wedge y_1$
$z_0 \leftarrow s_0 \oplus s_2,$	$\mathit{z}_1 \leftarrow \mathit{s}_1 \oplus \mathit{s}_3$

Direct approach to constructing an AND gate with four output shares, which are registered and recombined

$$(z_0\oplus z_1)\leftarrow (x_0\oplus x_1)\wedge (y_0\oplus y_1)$$

$s_0 \leftarrow x_0 \land y_0,$	$s_1 \leftarrow x_0 \wedge y_1$
$s_2 \leftarrow x_1 \wedge y_0,$	$s_3 \leftarrow x_1 \wedge y_1$
$t_0 \leftarrow s_0 \oplus m,$	$t_1 \leftarrow s_1 \oplus m$
$z_0 \leftarrow \underline{t_0} \oplus \underline{s_2},$	$\textbf{\textit{z}}_1 \leftarrow \textbf{\textit{t}}_1 \oplus \textbf{\textit{s}}_3$

Direct approach to constructing an AND gate with four output shares, which are registered and recombined

Output is not uniform, requiring remasking with a guard share m

$(z_0\oplus z_1)\leftarrow (x_0\oplus x_1)\wedge (y_0\oplus y_1)$	′ 1)
$m \leftarrow (x_0 \gg 1) \oplus (u \ll k-1)$	
$s_0 \leftarrow x_0 \wedge y_0,$	$\textit{s}_1 \gets \textit{x}_0 \land \textit{y}_1$
$s_2 \leftarrow x_1 \wedge y_0,$	$s_3 \leftarrow x_1 \wedge y_1$
$t_0 \leftarrow s_0 \oplus m,$	$t_1 \leftarrow s_1 \oplus m$
$z_0 \leftarrow t_0 \oplus s_2,$	$\mathit{z}_1 \leftarrow \mathit{t}_1 \oplus \mathit{s}_3$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined
- Output is not uniform, requiring remasking with a guard share m
- ► Typical software implementation processes k-shares in parallel → use one uniform input shares as guard share (just need one fresh bit)

$$(z_0 \oplus z_1) \leftarrow (x_0 \oplus x_1) \land (y_0 \oplus y_1) \oplus (u_0 \oplus u_1)$$

$s_0 \leftarrow x_0 \wedge y_0,$	$s_1 \leftarrow x_0 \wedge y_1$
$s_2 \leftarrow x_1 \wedge y_0,$	$s_3 \leftarrow x_1 \wedge y_1$
$t_0 \leftarrow s_0 \oplus u_0,$	$t_1 \leftarrow s_1 \oplus extsf{u_1}$
$z_0 \leftarrow t_0 \oplus s_2,$	$\mathit{z_1} \gets \mathit{t_1} \oplus \mathit{s_3}$

- Direct approach to constructing an AND gate with four output shares, which are registered and recombined
- Output is not uniform, requiring remasking with a guard share m
- ► Typical software implementation processes k-shares in parallel → use one uniform input shares as guard share (just need one fresh bit)
- ▶ In the case of $z \leftarrow (x \land y) \oplus u$ no guard share is required

Combined SHIFT-AND(-XOR) gate

$$egin{aligned} &m \leftarrow (x_0 \gg 1) \oplus (u \ll k-1) \ &s_0 \leftarrow x_0 \wedge (x_0 \ll i), \ &s_1 \leftarrow x_0 \wedge (x_1 \ll i) \ &s_2 \leftarrow x_1 \wedge (x_0 \ll i), \ &t_0 \leftarrow s_0 \oplus m, \ &t_1 \leftarrow s_1 \oplus m \ &z_0 \leftarrow t_0 \oplus s_2, \ &z_1 \leftarrow t_1 \oplus s_3 \end{aligned}$$

The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR) operation which lends itself well to the ARM "flexible second operand"

Combined SHIFT-AND(-XOR) gate

$$\begin{array}{ll} s_0 \leftarrow x_0 \land (y_0 \ll i), & s_1 \leftarrow x_0 \land (y_1 \ll i) \\ s_2 \leftarrow x_1 \land (y_0 \ll i), & s_3 \leftarrow x_1 \land (y_1 \ll i) \\ t_0 \leftarrow s_0 \oplus y_0, & t_1 \leftarrow s_1 \oplus y_1 \\ z_0 \leftarrow t_0 \oplus s_2, & z_1 \leftarrow t_1 \oplus s_3 \end{array}$$

- The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR) operation which lends itself well to the ARM "flexible second operand"
- ▶ Again, in the case of $z \leftarrow (x \land (y << i)) \oplus y$ no guard share is required

$$\begin{array}{ll} \textbf{Require:} & x, y \in \mathbb{Z}_{2^k}, \ k > 0 \\ \textbf{Ensure:} & z = (x + y) \ \text{mod} \ 2^k \\ 1: & n \leftarrow \max(\lceil \log_2(k - 1) \rceil, 1) \\ 2: & g \leftarrow x \land y \\ 3: & p \leftarrow x \oplus y \end{array}$$

4: for i = 1 to n - 1 do

5:
$$g \leftarrow (p \land (g \ll 2^{i-1})) \oplus g$$

6: $p \leftarrow (p \land (p \ll 2^{i-1}))$

7: end for 8: $g \leftarrow (p \land (g \ll 2^{n-1})) \oplus g$ 9: $z \leftarrow x \oplus y \oplus 2g$ 10: return z

Require: $x_0, x_1, y_0, y_1 \in \mathbb{Z}_{2^k}, k > 0, u \in \{0, 1\}$, with $x = x_0 \oplus x_1$ and $y = y_0 \oplus y_1$ **Ensure:** $z = (x + y) \mod 2^k$, with $z = z_0 \oplus z_1$ 1: $n \leftarrow \max(\lceil \log_2(k-1) \rceil, 1)$ 2: $(g_0, g_1) \leftarrow \text{SecAnd}(x_0, x_1, y_0, y_1, u)$ # Shared AND 3: $(p_0, p_1) \leftarrow \text{SecXor}(x_0, x_1, v_0, v_1)$ # Shared XOR # Update guard share 4: $u \leftarrow x_0 \mod 2$ 5: for i = 1 to n - 1 do 6: $v \leftarrow p_0 \mod 2$ # Save next guard share 7: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{i-1})$ # Shared AND-SHIFT-XOR $(p_0, p_1) \leftarrow \texttt{SecAndShift}(p_0, p_1, u, 2^{i-1})$ 8: # Shared AND-SHIFT # Update guard share Q٠ $\mu \leftarrow \nu$ 10: end for 11: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{n-1})$ # Shared AND-SHIFT-XOR 12: $(z_0, z_1) \leftarrow (x_0 \oplus y_0 \oplus 2g_0, x_1 \oplus y_1 \oplus 2g_1)$ # Compute final output 13: return (z_0, z_1, u)

Require: $x_0, x_1, y_0, y_1 \in \mathbb{Z}_{2^k}, k > 0, u \in \{0, 1\}$, with $x = x_0 \oplus x_1$ and $y = y_0 \oplus y_1$ **Ensure:** $z = (x + y) \mod 2^k$, with $z = z_0 \oplus z_1$ 1: $n \leftarrow \max(\lceil \log_2(k-1) \rceil, 1)$ 2: $(g_0, g_1) \leftarrow \text{SecAnd}(x_0, x_1, y_0, y_1, u)$ # Shared AND 3: $(p_0, p_1) \leftarrow \text{SecXor}(x_0, x_1, v_0, v_1)$ # Shared XOR # Update guard share 4: $u \leftarrow x_0 \mod 2$ 5: for i = 1 to n - 1 do 6: $v \leftarrow p_0 \mod 2$ # Save next guard share 7: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{i-1})$ # Shared AND-SHIFT-XOR $(p_0, p_1) \leftarrow \texttt{SecAndShift}(p_0, p_1, u, 2^{i-1})$ 8: # Shared AND-SHIFT # Update guard share Q٠ $\mu \leftarrow \nu$ 10: end for 11: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{n-1})$ # Shared AND-SHIFT-XOR 12: $(z_0, z_1) \leftarrow (x_0 \oplus y_0 \oplus 2g_0, x_1 \oplus y_1 \oplus 2g_1)$ # Compute final output 13: return (z_0, z_1, u)

Require: $x_0, x_1, y_0, y_1 \in \mathbb{Z}_{2^k}, k > 0, u \in \{0, 1\}$, with $x = x_0 \oplus x_1$ and $y = y_0 \oplus y_1$ **Ensure:** $z = (x + y) \mod 2^k$, with $z = z_0 \oplus z_1$ 1: $n \leftarrow \max(\lceil \log_2(k-1) \rceil, 1)$ 2: $(g_0, g_1) \leftarrow \text{SecAnd}(x_0, x_1, y_0, y_1, u)$ # Shared AND 3: $(p_0, p_1) \leftarrow \text{SecXor}(x_0, x_1, v_0, v_1)$ # Shared XOR # Update guard share 4: $u \leftarrow x_0 \mod 2$ 5: for i = 1 to n - 1 do 6: $v \leftarrow p_0 \mod 2$ # Save next guard share 7: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{i-1})$ # Shared AND-SHIFT-XOR $(p_0, p_1) \leftarrow \texttt{SecAndShift}(p_0, p_1, u, 2^{i-1})$ 8: # Shared AND-SHIFT # Update guard share Q٠ $\mu \leftarrow \nu$ 10: end for 11: $(g_0, g_1) \leftarrow \text{SecAndShiftXor}(p_0, p_1, g_0, g_1, 2^{n-1})$ # Shared AND-SHIFT-XOR 12: $(z_0, z_1) \leftarrow (x_0 \oplus y_0 \oplus 2g_0, x_1 \oplus y_1 \oplus 2g_1)$ # Compute final output 13: return (z_0, z_1, u)

Further optimization

$$\begin{array}{ll} s_0 \leftarrow x_0 \wedge y_0, & s_1 \leftarrow x_0 \vee \neg y_1 \\ s_2 \leftarrow x_1 \wedge y_0, & s_3 \leftarrow x_1 \vee \neg y_1 \\ z_0 \leftarrow s_0 \oplus s_1, & z_1 \leftarrow s_2 \oplus s_3 \end{array}$$

Biryukov et al. (2017) introduced a further optimized secure AND gate (SecAndOpt/SecAndShiftOpt) which can be combined with our approach

Comparision of masked operations

	SecXor	SecShift	SecAnd	SecAndShift / -Opt	SecAndShiftXor
Generic [Coron et al.]	2	4	8	8+2	8 + 4 + 2
ARM [Coron et al.]	2	4	8	8 + 2	8 + 4 + 2
Generic [Biryukov et al.]	2	2	7	7 + 2	7 + 2 + 2
ARM [Biryukov et al.]	2	2	6	6 + 2	6 + 2 + 2
Generic [new]	2	-	8	10 / 9	10
ARM [new]	2	-	8	8 / 6	8

Combined AND-SHIFT operations save most of the instructions

Comparision of masked operations

	SecXor	SecShift	SecAnd	<pre>SecAndShift / -Opt</pre>	SecAndShiftXor
Generic [Coron et al.]	2	4	8	8+2	8 + 4 + 2
ARM [Coron et al.]	2	4	8	8 + 2	8 + 4 + 2
Generic [Biryukov et al.]	2	2	7	7 + 2	7 + 2 + 2
ARM [Biryukov et al.]	2	2	6	6 + 2	6 + 2 + 2
Generic [new]	2	-	8	10 / 9	10
ARM [new]	2	-	8	8 / <mark>6</mark>	8

Combined AND-SHIFT operations save most of the instructions

Especially when combined with optimizations proposed by Biryukov et el.

Comparision of masked operations

	SecXor	SecShift	SecAnd	<pre>SecAndShift / -Opt</pre>	SecAndShiftXor
Generic [Coron et al.]	2	4	8	8+2	8 + 4 + 2
ARM [Coron et al.]	2	4	8	8 + 2	8 + 4 + 2
Generic [Biryukov et al.]	2	2	7	7 + 2	7 + 2 + 2
ARM [Biryukov et al.]	2	2	6	6 + 2	6 + 2 + 2
Generic [new]	2	-	8	10 / 9	10
ARM [new]	2	-	8	8 / 6	8

Combined AND-SHIFT operations save most of the instructions

- Especially when combined with optimizations proposed by Biryukov et el.
- Generation of refresh mask takes only 3 instructions

Comparision of masked 32-bit modular addition

 ARM implementation improved by 31% when combined with approach by Biryukov et al.

Comparision of masked 32-bit modular addition

- ARM implementation improved by 31% when combined with approach by Biryukov et al.
- Significantly improved subtraction instruction counts

Comparision of masked 32-bit modular addition

- ARM implementation improved by 31% when combined with approach by Biryukov et al.
- Significantly improved subtraction instruction counts
- Needs one random bit, outputs one random bit

Application to ChaCha20 cipher

We implemented an unprotected reference and two protected variants

Application to ChaCha20 cipher

We implemented an unprotected reference and two protected variants

Masked addition is the driving factor

Application to ChaCha20 cipher

- We implemented an unprotected reference and two protected variants
- Masked addition is the driving factor
- Note: cycle-counts not entirely comparable due to possible differences in memory architecture

Simulation

- ChaCha implementation was simulated with Micro-Architectural Power Simulator (MAPS)¹
- Simulator was extended by 11 instructions
- Hamming distance is sampled for each register assignment
- t-Test with a fixed vs. random setup and 10⁵ noise free traces
- Noise amplification methods like shuffling should still be used

Thank you for listening

Chacha Shuffling (Backup Slide)

- In the case of ChaCha, shuffling can be used to amplify the noise
- ChaCha State consists of 4 columns which are processed independently (within a round)
- Instead of processing columns sequentially, one can jump between columns
- $\frac{(4\cdot 12)!}{(12!)^4} \approx 2^{88}$ Permutations
- Noise can be further amplified by splitting the masked addition into several operations

Chacha Shuffling (Backup Slide)

- In the case of ChaCha, shuffling can be used to amplify the noise
- ChaCha State consists of 4 columns which are processed independently (within a round)
- Instead of processing columns sequentially, one can jump between columns
- $\frac{(4\cdot 12)!}{(12!)^4} \approx 2^{88}$ Permutations
- Noise can be further amplified by splitting the masked addition into several operations

