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Protecting ARX Ciphers

» ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR
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Protecting ARX Ciphers

a b c d
» ARX ciphers (e.g. Threefish, Speck, ChaCha20) \é%
rely on modular Addition, Rotation and XOR 1/

P> Easily protected against timing side-channels, but &
all the harder to protect against power/EM ) T
side-channels, see e.g. =

» “Butterfly Attack” against modular addition in

Skein =]
> “Bricklayer Attack” on ChaCha20 H

» Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between
(Cost: O(k))

» Simpler: Apply Boolean masking directly to an
Addition algorithm in software!
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Our contribution

» Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares
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Our contribution

» Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

» We introduce some optimizations for masking additions

» Introduce masked versions of combined SHIFT-AND(-XOR) gates

» Include the “flexible second operand” of ARM platform, performing z + x(y < ¢)
in one instruction

» Reduce the number of necessary remasking steps, reducing amount of required
entropy

» Not in this presentation: We introduce a simpler algorithm for modular subtraction
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Kogge-Stone Adder (KSA)
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TI AND(-XOR) Gate with 2 shares

(20 @ 21) = (x0 @ x1) A (Yo @ y1)

So < X0 A Yo, S1< X0 A\»n
S2 < x1 A Yo, 3¢ x1A\yn
Zp < So D s, Z1 < 51D s3

» Direct approach to constructing an AND gate with four output shares, which are
registered and recombined
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TI AND(-XOR) Gate with 2 shares

(20 ® 21) < (x0 D x1) A (Yo @ y1) © (o @ u1)

So < X0 /\ Yo, 51 X0 Ay
S2 < x1 N\ Yo, s34 Xx1Ayn
to < So D uo, 1 < s1bwu
zp < to D s, 71 < t1 D s3

» Direct approach to constructing an AND gate with four output shares, which are
registered and recombined

» Output is not uniform, requiring remasking with a guard share m

» Typical software implementation processes k-shares in parallel — use one uniform
input shares as guard share (just need one fresh bit)

» In the case of z <~ (x A y) @ u no guard share is required
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Combined SHIFT-AND(-XOR) gate

m«—(xo>1)@(u< k-1)

so < xo A (x0 < 1), s1 ¢ X0 A (x1 < i)
53 x1 A (x0 < i), s3 ¢ x1 A (31 <)
to < So D m, ti =51 m
29 < to D sp, 71 < t1 D s3

» The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR)
operation which lends itself well to the ARM “flexible second operand”
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Combined SHIFT-AND(-XOR) gate

so < X0 A (yo < i),
s2 < x1 A (yo < i),
to < so D Yo,
20 < 1o D sp,

s1 ¢ x0 N (y1 <)
s34 x1 A\ (y1 <)
t1—s1Dn
Z1 < t1 D s3

» The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR)
operation which lends itself well to the ARM “flexible second operand”

» Again, in the case of z + (x A (y << i)) @ y no guard share is required
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Protected KSA

Require: x,y € Zox, k>0
Ensure: z = (x + y) mod 2k
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Protected KSA

Require: xgp, x1, ¥0,y1 € Zok, k>0, u€ {0,1}, with x =x ® x; and y = o Dy
Ensure: z = (x +y) mod 2k, with z = 20 @ z

1:

e ol
wn o

CoOoNARLDN

n + max([log,(k — 1)1,1)
(gO»gl) — SeCAnd(X07X1 Yo, Y1, U)

(pOapl) — SeCXOI(Xlea)/Oa}/l)
U+ xg mod 2

fori=1ton—1do
V < pp mod 2
(g0, &1) < SecAndShiftXor(po, p1, 8o, £1,2 1)
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return (2,2, u)
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# Update guard share

# Save next guard share
# Shared AND-SHIFT-XOR
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# Update guard share

# Shared AND-SHIFT-XOR
# Compute final output
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Protected KSA

Bit7 : Bit6 : Bits ; Bit4 ; Bit3
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Further optimization

So < X0 A Yo, S1< XV
S < X1 A\ Yo, s34 x1Vyn
Zp < So D s1, Z1 < S5 D s3

» Biryukov et al. (2017) introduced a further optimized secure AND gate
(SecAndOpt/SecAndShiftOpt) which can be combined with our approach
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Comparision of masked operations

SecXor SecShift SecAnd SecAndShift / -Opt SecAndShiftXor

Generic [Coron et al.] 2 4 8 8+2 8+4+2
ARM [Coron et al.] 2 4 8 8+2 8+4+2
Generic [Biryukov et al.] 2 2 7 742 7T+2+2
ARM [Biryukov et al.] 2 2 6 6+2 6+2+2
Generic [new] 2 - 8 10/9 10
ARM [new] 2 - 8 8/6 8

» Combined AND-SHIFT operations save most of the instructions
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Comparision of masked operations

SecXor SecShift SecAnd SecAndShift / -Opt SecAndShiftXor

Generic [Coron et al.] 2 4 8 8+2 8+4+2
ARM [Coron et al.] 2 4 8 8+2 8+4+2
Generic [Biryukov et al.] 2 2 7 742 7T+2+2
ARM [Biryukov et al.] 2 2 6 6+2 6+2+2
Generic [new] 2 - 8 10/9 10
ARM [new] 2 - 8 8/6 8

» Combined AND-SHIFT operations save most of the instructions
» Especially when combined with optimizations proposed by Biryukov et el.

» Generation of refresh mask takes only 3 instructions
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Comparision of masked 32-bit modular addition
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» ARM implementation improved by 31% when combined with approach by
Biryukov et al.

v

Significantly improved subtraction instruction counts

v

Needs one random bit, outputs one random bit
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Application to ChaCha20 cipher

> We implemented an unprotected reference and two protected variants
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Application to ChaCha20 cipher

> We implemented an unprotected reference and two protected variants
» Masked addition is the driving factor

» Note: cycle-counts not entirely comparable due to possible differences in memory
architecture

mm Masked [Adomnicai et al.|
228 Masked Opt. [Adomnicai et al.]

# cycles

Tl 2-share
B8 T 2-share Opt.

Reference Previous Results This Work
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Simulation

» ChaCha implementation was simulated with Micro-Architectural Power Simulator
(MAPS)!

» Simulator was extended by 11 instructions
» Hamming distance is sampled for each register assignment
» t-Test with a fixed vs. random setup and 10° noise free traces
» Noise amplification methods like shuffling should still be used
e —————
=0 W
T — - .

0 5 10 15 20 25 30 35
Time [Samples x103]

https://github.com/cryptolu/maps
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Thank you for listening
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Chacha Shuffling (Backup Slide)

CO|0 C0|1 CO|2 CO|3

. add/ add/ add/ add
» In the case of ChaCha, shuffling can be used to Xfr Xér Xé' “or
amplify the noise
_ _ hike € | shife € | shike € | shift
» ChaCha State consists of 4 columns which are ° '\ ’ I\ ° '\ ™
processed independently (within a round) add\{ | add\{ | add\X | add
» Instead of processing columns sequentially, one xor 8\ | xor B\ | xor & | xor
can jump between columns
(412)! ] shift shift shift shift
> G N 288 Permutations
' _ add %dd %dd %dd
» Noise can be further amplified by splitting the
masked addition into several operations o X}’r X)”r X)”
/ s
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Chacha Shuffling (Backup Slide)

CO|0 C0|1 C0|2 CO|3

. add aigﬂ”"gddv ad%z
» In the case of ChaCha, shuffling can be used to o NT7N | o 7 or
amplify the noise
. . shift <—Tshift ity | shffe
» ChaCha State consists of 4 columns which are //"
processed independently (within a round) add e add ¥ | 0 fadd
» Instead of processing columns sequentially, one xor 1 xor 4 xor>/ xor
can jump between columns ) = "
> (4-12)! shift shrift shife shifd>

mnF ~ 288 Permutations

add 2 achet add

XOI’\ X0l r\ XOl r\

» Noise can be further amplified by splitting the
masked addition into several operations
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