
Efficient Side-Channel Protections of ARX Ciphers

Bernhard Jungk1 Richard Petri2 Marc Stöttinger3

1Fraunhofer Singapore, Singapore, bernhard.jungk@fraunhofer.sg

2Fraunhofer SIT, Germany, richard.petri@sit.fraunhofer.de

3Continental AG, Germany, marc.stoettinger@contiental-corporation.com

September 10, 2018

1 / 14

mailto:bernhard.jungk@fraunhofer.sg
mailto:richard.petri@sit.fraunhofer.de
mailto:marc.stoettinger@contiental-corporation.com

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.

I “Butterfly Attack” against modular addition in
Skein

I “Bricklayer Attack” on ChaCha20

I Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between

(Cost: O(k))

I Simpler: Apply Boolean masking directly to an
Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.

I “Butterfly Attack” against modular addition in
Skein

I “Bricklayer Attack” on ChaCha20
I Early work by Goubin (2001) suggested Boolean

and arithmetic masking, with conversion in-between

(Cost: O(k))

I Simpler: Apply Boolean masking directly to an
Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.
I “Butterfly Attack” against modular addition in

Skein
I “Bricklayer Attack” on ChaCha20

I Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between

(Cost: O(k))

I Simpler: Apply Boolean masking directly to an
Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.
I “Butterfly Attack” against modular addition in

Skein
I “Bricklayer Attack” on ChaCha20

I Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between

(Cost: O(k))
I Simpler: Apply Boolean masking directly to an

Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.
I “Butterfly Attack” against modular addition in

Skein
I “Bricklayer Attack” on ChaCha20

I Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between
(Cost: O(k))

I Simpler: Apply Boolean masking directly to an
Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Protecting ARX Ciphers

I ARX ciphers (e.g. Threefish, Speck, ChaCha20)
rely on modular Addition, Rotation and XOR

I Easily protected against timing side-channels, but
all the harder to protect against power/EM
side-channels, see e.g.
I “Butterfly Attack” against modular addition in

Skein
I “Bricklayer Attack” on ChaCha20

I Early work by Goubin (2001) suggested Boolean
and arithmetic masking, with conversion in-between
(Cost: O(k))

I Simpler: Apply Boolean masking directly to an
Addition algorithm in software!

a b c d

≪

≪

≪

≪

2 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions

I Introduce masked versions of combined SHIFT-AND(-XOR) gates
I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)

in one instruction
I Reduce the number of necessary remasking steps, reducing amount of required

entropy

I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions

I Introduce masked versions of combined SHIFT-AND(-XOR) gates
I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)

in one instruction
I Reduce the number of necessary remasking steps, reducing amount of required

entropy
I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions
I Introduce masked versions of combined SHIFT-AND(-XOR) gates

I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)
in one instruction

I Reduce the number of necessary remasking steps, reducing amount of required
entropy

I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions
I Introduce masked versions of combined SHIFT-AND(-XOR) gates
I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)

in one instruction

I Reduce the number of necessary remasking steps, reducing amount of required
entropy

I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions
I Introduce masked versions of combined SHIFT-AND(-XOR) gates
I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)

in one instruction
I Reduce the number of necessary remasking steps, reducing amount of required

entropy

I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Our contribution

I Threshold Implementations (TI) initially only of interest for hardware
implementations until recent developments reduced the number of necessary
shares

I We introduce some optimizations for masking additions
I Introduce masked versions of combined SHIFT-AND(-XOR) gates
I Include the “flexible second operand” of ARM platform, performing z ← x(y � c)

in one instruction
I Reduce the number of necessary remasking steps, reducing amount of required

entropy
I Not in this presentation: We introduce a simpler algorithm for modular subtraction

3 / 14

Kogge-Stone Adder (KSA)

Input

Bit 0

(x [0], y [0])

Bit 1

(x [1], y [1])

Bit 2

(x [2], y [2])

Bit 3

(x [3], y [3])

Bit 4

(x [4], y [4])

Bit 5

(x [5], y [5])

Bit 6

(x [6], y [6])

Bit 7

(x [7], y [7])

Iteration 1

Iteration 2

Iteration 3

Output

g [b]← x [b]⊕ y [b]
p[b]← x [b] ∧ y [b]

(x [b], y [b])

(g [b], p[b])

g [b]← (p[b] ∧ g [b − 2i])⊕ g [b]
p[b]← (p[b] ∧ p[b − 2i])

(g [b], g [b]) (g [b − 2i], y [b − 2i])

(g [b], p[b])

Combined SHIFT-AND(-XOR) gates

4 / 14

Kogge-Stone Adder (KSA)

Input

Bit 0

(x [0], y [0])

Bit 1

(x [1], y [1])

Bit 2

(x [2], y [2])

Bit 3

(x [3], y [3])

Bit 4

(x [4], y [4])

Bit 5

(x [5], y [5])

Bit 6

(x [6], y [6])

Bit 7

(x [7], y [7])

Iteration 1

Iteration 2

Iteration 3

Output

g [b]← x [b]⊕ y [b]
p[b]← x [b] ∧ y [b]

(x [b], y [b])

(g [b], p[b])

g [b]← (p[b] ∧ g [b − 2i])⊕ g [b]
p[b]← (p[b] ∧ p[b − 2i])

(g [b], g [b]) (g [b − 2i], y [b − 2i])

(g [b], p[b])

Combined SHIFT-AND(-XOR) gates

4 / 14

TI AND(-XOR) Gate with 2 shares

(z0 ⊕ z1)← (x0 ⊕ x1) ∧ (y0 ⊕ y1)

m← (x0 � 1)⊕ (u � k − 1)

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1

s2 ← x1 ∧ y0, s3 ← x1 ∧ y1

z0 ← s0 ⊕ s2, z1 ← s1 ⊕ s3

I Direct approach to constructing an AND gate with four output shares, which are
registered and recombined

I Output is not uniform, requiring remasking with a guard share m
I Typical software implementation processes k-shares in parallel → use one uniform

input shares as guard share (just need one fresh bit)
I In the case of z ← (x ∧ y)⊕ u no guard share is required

5 / 14

TI AND(-XOR) Gate with 2 shares

(z0 ⊕ z1)← (x0 ⊕ x1) ∧ (y0 ⊕ y1)

m← (x0 � 1)⊕ (u � k − 1)

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1

s2 ← x1 ∧ y0, s3 ← x1 ∧ y1

t0 ← s0 ⊕m, t1 ← s1 ⊕m
z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3

I Direct approach to constructing an AND gate with four output shares, which are
registered and recombined

I Output is not uniform, requiring remasking with a guard share m

I Typical software implementation processes k-shares in parallel → use one uniform
input shares as guard share (just need one fresh bit)

I In the case of z ← (x ∧ y)⊕ u no guard share is required

5 / 14

TI AND(-XOR) Gate with 2 shares

(z0 ⊕ z1)← (x0 ⊕ x1) ∧ (y0 ⊕ y1)

m← (x0 � 1)⊕ (u � k − 1)
s0 ← x0 ∧ y0, s1 ← x0 ∧ y1

s2 ← x1 ∧ y0, s3 ← x1 ∧ y1

t0 ← s0 ⊕m, t1 ← s1 ⊕m
z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3

I Direct approach to constructing an AND gate with four output shares, which are
registered and recombined

I Output is not uniform, requiring remasking with a guard share m
I Typical software implementation processes k-shares in parallel → use one uniform

input shares as guard share (just need one fresh bit)

I In the case of z ← (x ∧ y)⊕ u no guard share is required

5 / 14

TI AND(-XOR) Gate with 2 shares

(z0 ⊕ z1)← (x0 ⊕ x1) ∧ (y0 ⊕ y1)⊕ (u0 ⊕ u1)

m← (x0 � 1)⊕ (u � k − 1)

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1

s2 ← x1 ∧ y0, s3 ← x1 ∧ y1

t0 ← s0 ⊕ u0, t1 ← s1 ⊕ u1

z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3

I Direct approach to constructing an AND gate with four output shares, which are
registered and recombined

I Output is not uniform, requiring remasking with a guard share m
I Typical software implementation processes k-shares in parallel → use one uniform

input shares as guard share (just need one fresh bit)
I In the case of z ← (x ∧ y)⊕ u no guard share is required

5 / 14

Combined SHIFT-AND(-XOR) gate

m← (x0 � 1)⊕ (u � k − 1)
s0 ← x0 ∧ (x0 � i), s1 ← x0 ∧ (x1 � i)
s2 ← x1 ∧ (x0 � i), s3 ← x1 ∧ (x1 � i)
t0 ← s0 ⊕m, t1 ← s1 ⊕m
z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3

I The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR)
operation which lends itself well to the ARM “flexible second operand”

I Again, in the case of z ← (x ∧ (y << i))⊕ y no guard share is required

6 / 14

Combined SHIFT-AND(-XOR) gate

m← (x0 � 1)⊕ (u � k − 1)

s0 ← x0 ∧ (y0 � i), s1 ← x0 ∧ (y1 � i)
s2 ← x1 ∧ (y0 � i), s3 ← x1 ∧ (y1 � i)
t0 ← s0 ⊕ y0, t1 ← s1 ⊕ y1

z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3

I The KSA heavily uses a combined SHIFT-AND (and SHIFT-AND-XOR)
operation which lends itself well to the ARM “flexible second operand”

I Again, in the case of z ← (x ∧ (y << i))⊕ y no guard share is required

6 / 14

Protected KSA

Require: x , y ∈ Z2k , k > 0
Ensure: z = (x + y) mod 2k

1: n← max(dlog2(k − 1)e, 1)
2: g ← x ∧ y
3: p ← x ⊕ y

4: for i = 1 to n − 1 do

5: g ← (p ∧ (g � 2i−1))⊕ g
6: p ← (p ∧ (p � 2i−1))

7: end for
8: g ← (p ∧ (g � 2n−1))⊕ g
9: z ← x ⊕ y ⊕ 2g

10: return z

7 / 14

Protected KSA

Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x0 ⊕ x1 and y = y0 ⊕ y1
Ensure: z = (x + y) mod 2k , with z = z0 ⊕ z1
1: n← max(dlog2(k − 1)e, 1)
2: (g0, g1)← SecAnd(x0, x1, y0, y1, u) # Shared AND
3: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
4: u ← x0 mod 2 # Update guard share
5: for i = 1 to n − 1 do
6: v ← p0 mod 2 # Save next guard share
7: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
8: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT
9: u ← v # Update guard share

10: end for
11: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
12: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
13: return (z0, z1, u)

7 / 14

Protected KSA

Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x0 ⊕ x1 and y = y0 ⊕ y1
Ensure: z = (x + y) mod 2k , with z = z0 ⊕ z1
1: n← max(dlog2(k − 1)e, 1)
2: (g0, g1)← SecAnd(x0, x1, y0, y1, u) # Shared AND
3: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
4: u ← x0 mod 2 # Update guard share
5: for i = 1 to n − 1 do
6: v ← p0 mod 2 # Save next guard share
7: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
8: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT
9: u ← v # Update guard share

10: end for
11: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
12: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
13: return (z0, z1, u)

7 / 14

Protected KSA

Input

Bit 0

(x [0], y [0])

Bit 1

(x [1], y [1])

Bit 2

(x [2], y [2])

Bit 3

(x [3], y [3])

Bit 4

(x [4], y [4])

Bit 5

(x [5], y [5])

Bit 6

(x [6], y [6])

Bit 7

(x [7], y [7])

Iteration 1

Iteration 2

Iteration 3

Output

LSB can be used as guard
share for next iteration

7 / 14

Protected KSA

Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x0 ⊕ x1 and y = y0 ⊕ y1
Ensure: z = (x + y) mod 2k , with z = z0 ⊕ z1
1: n← max(dlog2(k − 1)e, 1)
2: (g0, g1)← SecAnd(x0, x1, y0, y1, u) # Shared AND
3: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
4: u ← x0 mod 2 # Update guard share
5: for i = 1 to n − 1 do
6: v ← p0 mod 2 # Save next guard share
7: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
8: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT
9: u ← v # Update guard share

10: end for
11: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
12: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
13: return (z0, z1, u)

7 / 14

Further optimization

s0 ← x0 ∧ y0, s1 ← x0 ∨ ¬y1

s2 ← x1 ∧ y0, s3 ← x1 ∨ ¬y1

z0 ← s0 ⊕ s1, z1 ← s2 ⊕ s3

I Biryukov et al. (2017) introduced a further optimized secure AND gate
(SecAndOpt/SecAndShiftOpt) which can be combined with our approach

8 / 14

Comparision of masked operations

SecXor SecShift SecAnd SecAndShift / -Opt SecAndShiftXor

Generic [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2
ARM [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2

Generic [Biryukov et al.] 2 2 7 7 + 2 7 + 2 + 2
ARM [Biryukov et al.] 2 2 6 6 + 2 6 + 2 + 2

Generic [new] 2 - 8 10 / 9 10
ARM [new] 2 - 8 8 / 6 8

I Combined AND-SHIFT operations save most of the instructions

I Especially when combined with optimizations proposed by Biryukov et el.
I Generation of refresh mask takes only 3 instructions

9 / 14

Comparision of masked operations

SecXor SecShift SecAnd SecAndShift / -Opt SecAndShiftXor

Generic [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2
ARM [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2

Generic [Biryukov et al.] 2 2 7 7 + 2 7 + 2 + 2
ARM [Biryukov et al.] 2 2 6 6 + 2 6 + 2 + 2

Generic [new] 2 - 8 10 / 9 10
ARM [new] 2 - 8 8 / 6 8

I Combined AND-SHIFT operations save most of the instructions
I Especially when combined with optimizations proposed by Biryukov et el.

I Generation of refresh mask takes only 3 instructions

9 / 14

Comparision of masked operations

SecXor SecShift SecAnd SecAndShift / -Opt SecAndShiftXor

Generic [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2
ARM [Coron et al.] 2 4 8 8 + 2 8 + 4 + 2

Generic [Biryukov et al.] 2 2 7 7 + 2 7 + 2 + 2
ARM [Biryukov et al.] 2 2 6 6 + 2 6 + 2 + 2

Generic [new] 2 - 8 10 / 9 10
ARM [new] 2 - 8 8 / 6 8

I Combined AND-SHIFT operations save most of the instructions
I Especially when combined with optimizations proposed by Biryukov et el.
I Generation of refresh mask takes only 3 instructions

9 / 14

Comparision of masked 32-bit modular addition

Add Add (ARM)
Sub Sub (ARM)

144 144
116 114

164 156

106
78

112
83

#
in

st
ru

ct
io

ns Coron et al.
Biryukov et al.
This work

I ARM implementation improved by 31% when combined with approach by
Biryukov et al.

I Significantly improved subtraction instruction counts
I Needs one random bit, outputs one random bit

10 / 14

Comparision of masked 32-bit modular addition

Add Add (ARM)
Sub Sub (ARM)

144 144
116 114

164 156

106
78

112
83

#
in

st
ru

ct
io

ns Coron et al.
Biryukov et al.
This work

I ARM implementation improved by 31% when combined with approach by
Biryukov et al.

I Significantly improved subtraction instruction counts

I Needs one random bit, outputs one random bit

10 / 14

Comparision of masked 32-bit modular addition

Add Add (ARM)
Sub Sub (ARM)

144 144
116 114

164 156

106
78

112
83

#
in

st
ru

ct
io

ns Coron et al.
Biryukov et al.
This work

I ARM implementation improved by 31% when combined with approach by
Biryukov et al.

I Significantly improved subtraction instruction counts
I Needs one random bit, outputs one random bit

10 / 14

Application to ChaCha20 cipher

I We implemented an unprotected reference and two protected variants

I Masked addition is the driving factor
I Note: cycle-counts not entirely comparable due to possible differences in memory

architecture

Reference Previous Results This Work

#
cy

cle
s 121,618

93,993
Masked [Adomnicai et al.]
Masked Opt. [Adomnicai et al.]

1,726

72,721
60,623

TI 2-share
TI 2-share Opt.

11 / 14

Application to ChaCha20 cipher

I We implemented an unprotected reference and two protected variants
I Masked addition is the driving factor

I Note: cycle-counts not entirely comparable due to possible differences in memory
architecture

Reference Previous Results This Work

#
cy

cle
s 121,618

93,993
Masked [Adomnicai et al.]
Masked Opt. [Adomnicai et al.]

1,726

72,721
60,623

TI 2-share
TI 2-share Opt.

11 / 14

Application to ChaCha20 cipher

I We implemented an unprotected reference and two protected variants
I Masked addition is the driving factor
I Note: cycle-counts not entirely comparable due to possible differences in memory

architecture

Reference Previous Results This Work

#
cy

cle
s 121,618

93,993
Masked [Adomnicai et al.]
Masked Opt. [Adomnicai et al.]

1,726

72,721
60,623

TI 2-share
TI 2-share Opt.

11 / 14

Simulation
I ChaCha implementation was simulated with Micro-Architectural Power Simulator

(MAPS)1

I Simulator was extended by 11 instructions
I Hamming distance is sampled for each register assignment
I t-Test with a fixed vs. random setup and 105 noise free traces
I Noise amplification methods like shuffling should still be used

−10
−5

0
5

10

0 5 10 15 20 25 30 35

t

Time [Samples ×103]

1https://github.com/cryptolu/maps
12 / 14

Thank you for listening

13 / 14

Chacha Shuffling (Backup Slide)

I In the case of ChaCha, shuffling can be used to
amplify the noise

I ChaCha State consists of 4 columns which are
processed independently (within a round)

I Instead of processing columns sequentially, one
can jump between columns

I (4·12)!
(12!)4 ≈ 288 Permutations

I Noise can be further amplified by splitting the
masked addition into several operations

Col0 Col1 Col2 Col3

add add add add

xor xor xor xor

shift shift shift shift

add add add add

xor xor xor xor

shift shift shift shift

add add add add

xor xor xor xor

.

14 / 14

Chacha Shuffling (Backup Slide)

I In the case of ChaCha, shuffling can be used to
amplify the noise

I ChaCha State consists of 4 columns which are
processed independently (within a round)

I Instead of processing columns sequentially, one
can jump between columns

I (4·12)!
(12!)4 ≈ 288 Permutations

I Noise can be further amplified by splitting the
masked addition into several operations

Col0 Col1 Col2 Col3

add add add add

xor xor xor xor

shift shift shift shift

add add add add

xor xor xor xor

shift shift shift shift

add add add add

xor xor xor xor

.

14 / 14

