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Abstract. The current state of the art of Boolean masking for the modular addition
operation in software has a very high performance overhead. Firstly, the instruction
count is very high compared to a normal addition operation. Secondly, until recently,
the entropy consumed by such protections was also quite high. Our paper significantly
improves both aspects, by applying the Threshold Implementation (TI) methodology
with two shares and by reusing internal values as randomness source in such a way
that the uniformity is always preserved. Our approach performs considerably faster
compared to the previously known masked addition and subtraction algorithms by
Coron et al. and Biryukov et al. improving the state of the art by 36%, if we only
consider the number of ARM assembly instructions. Furthermore, similar to the
masked adder from Biryukov et al. we reduce the amount of randomness and only
require one bit additional entroy per addition, which is a good trade-off for the
improved performance. We applied our improved masked adder to ChaCha20, for
which we provide two new first-order protected implementations and achieve a 36%
improvement over the best published result for ChaCha20 using an ARM Cortex-M4
microprocessor.
Keywords: Modular Addition Masking Side-channel Analysis ChaCha20

1 Introduction
Modular addition is a common operation in many cryptographic algorithms. For instance,
ARX ciphers, such as Threefish [FLS+10], Speck [BSS+15], or ChaCha20 [Ber08] rely only
on the three operations (modular) addition, rotation and XOR. Software implementations
of these ciphers are usually easy to protect against timing side-channel attacks, but at the
same time harder to protect against power or EM analysis, e.g. against the butterfly attack
on Skein’s modular addition [ZKS12] or the bricklayer attack on ChaCha20 [AFM17].
The overhead of applying Boolean masking is high for the addition operation, even with
state of the art implementations [BDLCU17, DGLC17]. This is especially evident when
comparing ARX ciphers with substitution-permutation network (SPN) ciphers, such
as AES, where masked bit-sliced implementations can be used to reduce the overhead
significantly [SS16, BGRV15].

In this paper, we investigate how to improve the efficiency of side-channel hardend
software implementations of ARX ciphers against power and EM side-channel analysis. To
that end, we propose several optimizations to reduce the overhead of such protections. We
investigate how to implement the Boolean masking for modular addition and subtraction
using a 2-share Threshold Implementation (TI). For our best performing masked addition,
most remasking steps of the previous algorithms become redundant and can be removed.
It is furthermore possible to optimize the instruction count for ARM implementations
using the flexible second operand feature [Ltd18], which allows to execute instructions such
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as z ← x(y � c) in one clock cycle, where c is a constant. Our case study for Boolean
masking is performed for ChaCha20 on a Cortex-M4 platform. In particular, we provide
performance measurements using a the STM32F411 microcontroller [STM14]. We chose
ChaCha20 as an example because it is a stream cipher with 256 bit security and hence
seems to be a promising candidate for long terms security, because its resilience to quantum
computer based attacks with Grover’s algorithm.

1.1 Masking Of Modular Addition
Early work on masking of the modular addition suggested to use a conversion technique to
switch between different types of masking [Gou01]. In that work, Goubin suggested to
use Boolean masking for linear operations and arithmetic masking for modular additions.
This setting requires conversions between the two types of masks. While one conversion is
practically free with an asymptotic cost of O(1), the conversion from arithmetic to Boolean
masks is more complex. Goubin proposed an O(k) algorithm for this task, where k is
the bit width of the addition [Gou01]. This asymptotic complexity was later improved
to O(log k) by Coron et al. [CGTV15] using the Kogge-Stone adder (KSA). In addition
to the conversion algorithms, Coron et al. also proposed a direct application of Boolean
masking to the addition operation, also based on the KSA. In our paper, we focus on the
direct application of Boolean masking, but we note, that our work can be also adapted for
converting masks.

Several publications followed the work of Coron et al., optimizing the masked modular
addition further. Won et al. proposed an improved version of the basic scheme to micro-
controllers which have a register width that is smaller than the width of the addition to
be implemented [WH17]. Their changes lower the constant of the asymptotic complexity
for such targets considerably and can also be applied to our proposed algorithms. Later,
Biryukov et al. investigated optimal instruction counts for individual gates, such as SHIFT,
AND and XOR [BDLCU17]. Using these optimized masked gates to implement the addition
operation, Biryukov et al. achieved a considerable performance improvement over Coron et
al.’s masked addition. Dinu et al. also reduced the constant in the asymptotic complexity
using a carry save adder [DGLC17]. However, their algorithm has a variable runtime and
hence, it might be susceptible to timing-based side-channel attacks. Another development
by Schneider et al. transferred the masked addition to hardware implementations using a
Threshold Implementation approach with three shares [SMG15]. While the number of clock
cycles is reduced significantly to only six for a first-order secure hardware implementation
of a 32 bit addition, a serialized software implementation would need considerably more
clock cycles due to the processing with three shares instead of only two.

Despite the recent progress, the overall overhead to apply masking to modular addition
is still high, which results in a considerable total runtime overhead. For instance, in
[AFM17] an overhead of more than 21× is reported for ChaCha20 on ARM Cortex-M4
platforms using the masked addition from Coron et al. [CGTV15]. Slightly different
penalty factors between 11× and 22× have been reported for other algorithms such as
Speck-64/128 in [BDLCU17].

Another drawback of most published first-order masking schemes for modular addition
is, that they need a high amount of additional randomness. While Coron et al. state in
[CGTV15], that some masks can be reused for other additions, reuse can lead to other
issues as mentioned in [MOP07]. For instance, collision correlation attacks could be possible
[RL13]. Consequently, mask reuse has to be limited for security sensitive applications and
a conservative approach introduces new masks regularly during the computation, e.g. one
new mask per addition. This adds a considerable overhead, especially if the entropy source
of a system does not supply a sufficient amount of random bits fast enough.

The exception to these additional randomness requirements is the work of Biryukov et
al., which reduces the cost of randomness to zero by optimizing the masked AND gate
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[BDLCU17]. However, according to the authors, their implementation of the masked AND
gate is not easily composable in the classical Boolean masking setting. Hence, a mask
refresh with the original input masks has to be used to guarantee the uniformity, which is
a basic requirement for first-order masking schemes. This still adds some runtime overhead
to the implementation.

1.2 Our Contributions
In this paper, we study improvements on Boolean masking for ARX ciphers. For Boolean
masking, we use Threshold Implementations (TI) as our basis [NRR06, NRS08]. Originally,
TI has been designed as an alternative to traditional Boolean masking schemes for hardware
implementations. The main feature of TI is its security in the presence of glitches
[NRR06, NRS08]. In its original form, it uses d + 1 shares, where d is the degree of the
function to share. However, many papers have proposed to decompose functions with a
higher degree into functions with a smaller degree [BNN+12, KNPW13]. In the best case,
this results in degree d = 2 and hence, three shares seemed to be the minimum number of
shares needed for a first-order secure TI.

However, recent generalizations of the first-order secure TI scheme have reduced the
minimum of three shares to only two [RBN+15, CFE16, DCRB+16]. As a side-effect, the
runtime overhead in software implementations can be significantly reduced. Therefore,
it is worthwhile to revisit TI in the software setting. In this work, we demonstrate that
the number of elementary operations (AND, SHIFT, XOR, etc.) for the masked addition
operation can be reduced compared to the current state of the art by Biryukov et al.
[BDLCU17].

We discovered two main optimization possibilities. Firstly, we are able to demonstrate
that some of the remasking steps introduced in the masked addition proposed in [BDLCU17]
are unnecessary in our improved algorithm. Secondly, if we include the flexible second
operand feature of the ARM instruction set in our study, the number of operations can
be reduced without decreasing the theoretical security. In total, we reduce the number
of ARM instructions from 22 · log2 k + 6 [BDLCU17] to 14 · log2 k + 6. We also study
the modular subtraction used for some decryption algorithms (e.g. for the decryption in
Speck) and show that a much simpler algorithm, based directly on the two’s complement
representation, can outperform the proposed algorithm from [BDLCU17] by more than
50%, reducing the number of ARM instructions from 30 · log2 k + 6 [BDLCU17] to only
14 · log2 k + 13.

To reduce the amount of additional randomness, we investigate the following two ideas.
Firstly, we show how to apply a simple but effective scheme to reuse randomness, similar
to the Changing of the Guards technique proposed by Daemen [Dae17]. In contrast to
Daemen’s work, our technique can also be applied to modular addition. The difficulty
here is, that modular addition itself is not a permutation and therefore, the earlier proof
technique by Daemen does not apply. With our proof, the application to modular addition
becomes straightforward and we can prove that the uniformity is preserved for the modular
addition and also for full implementations of ARX ciphers. Secondly, we investigate the use
of the randomness-free masking of the AND gate described by Biryukov et al. [BDLCU17].
We show, that most remasking steps in the masked addition as proposed in [BDLCU17]
are unnecessary and thus, they can be removed, if their improved formula for the AND
gate is integrated in our design. The exception is the initial computation of the shared
propagates (p0, p1) and the generates (g0, g1). When applying the masked AND gate to
compute the generates, the distributions of the shared propagates and generates are not
independent and hence, the operations in the for loop would show some leakage. We
solve this issue with a one-time refreshing of the shares, which makes the distributions of
the generates and propagates in the inner loop independent of each other, consequently
removing the leakage in an efficient way.
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Using those two techniques, we reduce the required additional randomness to one bit
for each execution of ChaCha20 (and most other ARX ciphers). This reduces the amount
of consumed uniform randomness significantly and thus, further increases the efficiency of
implementations protected by Boolean masking.

Overall, our efforts to improve the theoretical performance of the masked addition
operation show significant improvements. However, we caution that in practice a software
implementation of the proposed algorithms is challenging, since the independent leakage
assumption does not hold for most microprocessors. For example, the Cortex-M3 and
Cortex-M4 microprocessors are well known to leak information due to their pipeline registers
[CGD17] and also due to other effects. These problems are not unique to our algorithms,
but are also present in most other previously presented implementations of Boolean masking
in software, as implementing masking securely is very challenging [BGG+14, BGRV15,
CGD17, PV17].

1.3 Paper Organization
The remainder of the paper is organized as follows. In Section 2, we introduce the Kogge-
Stone adder as our main addition algorithm. Then, we discuss side-channel countermeasures
for ARX ciphers in Section 3. In this section, we first recap the earlier proposed Boolean
masking scheme for modular addition (Section 3.2) and then move on to introduce our
new 2-share TI scheme (Section 3.3). The performance numbers for the Cortex-M4
implementations are given in Section 4. We conclude the paper in Section 5 with an
outlook for further research.

2 Modular Addition and Subtraction Algorithms
The asymptotically most efficient adders for adding two variables are (parallel) prefix

adders [LF80]. For our work, the Kogge-Stone adder (KSA) [KS73] is in particular
interesting, as shown in previous work by Coron et al. [CGTV15]. Like all prefix adders, the
KSA has a logarithmic runtime complexity in terms of the bit width k, when implemented
in software. While the asymptotic runtime is O(log k) for all prefix adders, the absolute
number of operations in a software implementation may vary greatly, because some of
the prefix adders would require a bit-wise processing in software, which would be very
inefficient. However, in the case of the KSA, the structure lends itself well to software
implementations. As shown in Algorithm 1, each loop iteration of the KSA consists
of several shifts, ANDs and XORs. This is attractive for a Boolean masking approach,

Algorithm 1 Kogge-Stone Adder (KSA)
Require: x, y ∈ Z2k , k > 0
Ensure: z = (x + y) mod 2k

1: n← max(dlog2(k − 1)e, 1)
2: g ← x ∧ y
3: p← x⊕ y
4: for i = 1 to n− 1 do
5: g ← (p ∧ (g � 2i−1))⊕ g
6: p← (p ∧ (p� 2i−1))
7: end for
8: g ← (p ∧ (g � 2n−1))⊕ g
9: z ← x⊕ y ⊕ 2g

10: return z
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Algorithm 2 KSA-based Subtraction
Require: x, y ∈ Z2k , k > 0
Ensure: z = (x− y) mod 2k

1: n← max(dlog2(k − 1)e, 1)
2: y ← ȳ
3: g ← x ∧ y
4: p← x⊕ y
5: g ← g ⊕ (p ∧ 1)
6: for i = 1 to n− 1 do
7: g ← (p ∧ (g � 2i−1))⊕ g
8: p← (p ∧ (p� 2i−1))
9: end for

10: g ← (p ∧ (g � 2n−1))⊕ g
11: z ← x⊕ y ⊕ 2g⊕1
12: return z

because all k bits of the addition are processed in parallel,1 which reduces the cost of an
implementation significantly compared to a bit-wise implemented masking scheme.

Some cryptographic algorithms do not only require the modular addition operation,
but also subtraction. The easiest way to implement subtraction is to reuse the addition
operation and rely on a two’s complement representation, as depicted in Algorithm 2. A
masked implementation of the described subtraction algorithm is much faster than the one
proposed in [BDLCU17], since there are only a couple of additional operations to mask
compared to the addition.

The improved subtraction algorithm works based on the observation that subtraction
is equivalent to addition with the two’s complement of the second operand. Hence, a
straightforward subtraction using the two’s complement involves a bit-wise inversion and
an addition of 1. Thus, because of the addition, a direct application of this idea would be
inefficient. The same behavior can be achieved, by only computing the bit-wise complement
before the addition and instead of adding 1 to the second operand, the carry-in is set to
c0 = 1. These changes result in only minor difference to the addition algorithm. To show
that this indeed produces the correct results, we look at how prefix adders compute the
carry bits ci from generates gi and propagates pi [Ros60]:

c0 ← c0

c1 ← g0 ⊕ p0c0

c2 ← g1 ⊕ p1g0 ⊕ p1p0c0

c3 ← g2 ⊕ p2g1 ⊕ p2p1g0 ⊕ p2p1p0c0

c4 ← g3 ⊕ p3g2 ⊕ p3p2g1 ⊕ p3p2p1g0 ⊕ p3p2p1p0c0

We can see, that in each equation only the last term includes c0.
With the exception of c0 and c1, the inner loop of the KSA computes all carries, i.e. at

the end of the loop, the generates are exactly the carry bits. Therefore, we can slightly
change the initialisation of g before the for loop. In particular, we set c0 = 1 and hence,
have to compute g0 ← g0 ⊕ p0 before the loop, which already produces c1 before the first
loop iteration (Line 5). Then, the loop (Lines 7− 8) produces

g1 ← g1 ⊕ p1g0 ⊕ p1p0

1Up to the data register width of the processor.
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in the first iteration,

g2 ← g2 ⊕ p2g1 ⊕ p2p1g0 ⊕ p2p1p0

g3 ← g3 ⊕ p3g2 ⊕ p3p2g1 ⊕ p3p2p1g0 ⊕ p3p2p1p0c0

in the second iteration, g4, g5, g6, g7 in the third iteration and so on. After loop iteration
log2(k), c1, . . . , ck will be equal to g0, . . . , gk−1.

The KSA algorithm works on whole words and not individual bits. Therefore, it
is necessary to additionally compute the AND with 1 to obtain the initial g = g ⊕ p0
(Algorithm 2, Line 5). We also have to take care of the carry-in c0 = 1 when computing
the final output, because g will only contain c1 to ck−1 and not c0. Therefore, we have
to change the final computation of the output z to include the operation ⊕1 (Line 11).
Overall, we add only four operations for the subtraction compared to the basic addition
operation (marked with boldface in Algorithm 2, Lines 2, 5, and 11).

3 Side-Channel Countermeasures

In our paper, we study the efficiency of first-order DPA countermeasures for modular
addition and also for the integration of the modular addition operation in the implemen-
tation of an ARX cipher. We first discuss existing masking countermeasures of Boolean
masking for the modular addition proposed by Coron et al. [CGTV15] and optimized
versions [BDLCU17, DGLC17]. Then, we develop a computationally more efficient masking
countermeasure, based on the Threshold Implementation (TI) scheme with two shares
[NRR06, NRS08, RBN+15, CFE16].

The proposed optimizations significantly reduce the instruction count over the previously
best constant-time masking scheme for modular addition in [BDLCU17]. To the best
of our knowledge, this is the first report of showing that 2-share TI may outperform
classical Boolean masking schemes on software platforms. There are two sources for this
improvement. Firstly, our best algorithm does not require most of the remasking steps
for the internal values during the addition operation as in the scheme by Biryukov et
al. [BDLCU17]. Secondly, we show that the flexible second operand feature of the ARM
instruction set can reduce the instruction count further. Overall, we achieve a significant
improvement over the proposed algorithms in [BDLCU17] (Table 2).

Our first masked addition algorithm only needs one bit of uniform randomness as input,
compared to the algorithm in [BDLCU17]. We will call this additional input guard share
in the remainder of this paper, like in Daemen’s Changing of the Guards paper [Dae17].
We show formally how to use this guard share together with the reuse of randomness
from other shares to achieve a uniform first-order secure TI of the KSA. Additionally, our
addition algorithm also generates an output guard share, which can be used as an input
share for the next addition in an ARX cipher. Therefore, we can chain several additions
without the need to sample new entropy during the computation of the entire ARX cipher.
We can prove that one bit of entropy is needed per en- or decryption operation.

In addition, our second proposed masked addition exploits the optimized masked AND
gate in [BDLCU17]. Using this optimized AND gate, we can remove all but one mask
refreshings without destroying the uniformity property. The single mask refreshing is
necessary after computing the initial propagates and generates, because the distributions
are not independent of each other. However, after a one-time refreshing after the first
AND gate is sufficient to remove the problematic dependencies from the modular addition
algorithm with a low overhead per addition.
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3.1 Overview of Masked Addition
ARX ciphers mix linear operations with non-linear modular additions. As noted in [CG00],
it is easy to apply Boolean masking to linear operations, but the addition operation
is simpler to protect using arithmetic masking. Unfortunately, the masks used for the
two masking schemes are incompatible with each other and hence, the masks have to
be converted. In [Gou01], Goubin proposed the first approach to convert Boolean to
arithmetic masks and vice versa. A subsequent publication by Coron et al. reduced the
conversion cost from Boolean to arithmetic masks from O(k) to O(log k) [CGTV15]. In
the same paper, Coron et al. also investigated a direct application of Boolean masking
to the Kogge-Stone adder as an alternative to the mask conversion. The performance of
both methods is similar, but depending on the number of subsequent additions without
mask conversion, either the mask conversion or the direct application of Boolean masking
is faster. Since our main study object – ChaCha20 – would need a conversion after each
addition, we concentrate on the direct application of Boolean masking, because mask
conversion would incur a higher overhead. However, our techniques are also applicable to
the case of mask conversion, with minor differences.

3.2 Conventional Boolean Masking of the KSA
The application of Boolean masking to the KSA algorithm can be performed by imple-
menting secured versions of the AND, XOR, and SHIFT operations. However, instead
of processing the addition bit-wise, parallel versions of these operations can be used to
implement the KSA. The secured versions of the gates are SecAnd, SecXor and SecShift
as proposed in [CGTV15, BGRV15]. We also checked the application to our subtraction
variant, which improves on the one proposed in [BGRV15], reducing the cost of subtraction
to 22 log2 k + 10. Both the masked addition and the masked subtraction can be found in
Appendix A.

The main drawback in both algorithms are the remaskings in the inner loop after
SecShift and SecAnd (Algorithm 12, Lines 4, 10, and 12, Algorithm 13, Lines 5, 12, 14).
Also, it is not easy to integrate the shift operation into the other Boolean operations
using the flexible second operand feature. Both issues can be resolved by constructing the
Boolean masking in a different way, using 2-share TI.

A competing approach to the KSA-based masked adders is based on the carry-save
addition (CSA) [DGLC17]. The main benefit of masking the carry-save adder is, that
on average, the loop of the carry-save addition terminates quite early and therefore, it is
possible to reduce the average number of clock cycles. However, this approach introduces
a timing side-channel, which may be possible to exploit. Furthermore, compared to the
state of the art masked addition by Biryukov et al., the performance gain is only about
7%. Also our fastest proposed algorithm beats the published CSA-based results without
compromising on the security by exposing a potential timing side-channel. Hence, we do
not further discuss this masked addition in this paper.

3.3 2-Share Threshold Implementation of the KSA
Threshold Implementations (TI) have been introduced in [NRR06, NRS08] as an alternative
to Boolean masking schemes. The main improvement of TI over most conventional masking
schemes is a security proof, which shows that TI-based implementations are also secure in
the presence of glitches.

TI is based on a linear application of Shamir’s secret sharing scheme, i.e. the original
data is divided into multiple shares and the computation is performed on these shares. For
software implementations, TI has not been sparked much interest, because of the original
requirement to have a minimum of three shares for a first order secure implementation
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[NRR06, NRS08], compared to only two shares for normal Boolean masking. However,
recently, it has been shown how to construct a secure TI-like sharing with only two input
shares and four output shares. These four output shares are then collapsed to two input
shares in the following clock cycle [RBN+15, CFE16]. This reduces the area overhead for
hardware implementations [CFE16, DCRB+16] and as we show in our paper, it also has
a potential application to improve the performance of masked software implementations.
Implementations which use the TI scheme have to fulfill the following three basic properties:

1. Correctness requires that the linear combination of all input and output shares is
equal to the correct original value of the unshared input or output. However, it is
not necessary, that all intermediate states that are generated during the computation
of the output shares have this property.

2. Non-completeness requires that a sharing with d input shares recombines at most
d − 1 shares to be first-order secure. For fulfilling this requirement, a two share
implementation of a non-linear gate needs to produce more than two output shares
first and save the intermediate results to registers. After registering the intermediate
outputs, it is possible to collapse the shares to the original number of two shares. This
also means that at least two clock cycles are necessary to achieve non-completeness
with only two shares.

3. Uniformity requires that all inputs and outputs of a shared function are uniformly
shared. Therefore, it is sufficient to show that, if the input shares are a uniform
sharing, then the output shares are also a uniform sharing. However, it is not
necessary that all intermediate states of the shared function are uniform sharings,
because if the inputs are always uniform sharings, then the distributions of internal
states will be independent of the original unshared input.

For software implementations as in this paper, achieving non-completeness is easier
than for parallel hardware implementations, because each operation is stored to a register
anyway. Therefore, if none of the individual terms recombines d shares of the same variable
before the register write and if all of the input shares are independent uniform sharings,
non-completeness is always fulfilled. However, this is not enough to achieve a secure
software implementation, because the independent leakage assumption often does not hold
due to other physical defaults [BDF+17], e.g. register reuse, leading to transition-based
leakage [BDF+17] or coupling, which might recombine shares non-linearly [DCBG+17].
For simplicity, we assume in the following proofs, that no glitches, no distance-based
leakages and no coupling effects occur, i.e. that the independent leakage assumption holds.

We would like to point out, that we follow a less strict interpretation of non-completeness
for our sharings as previously proposed in [RBN+15, CFE16], i.e. in a two share implemen-
tation with x = x0 ⊕ x1 and y = y0 ⊕ y1, the pair (x0, y1) (respectively (x1, y0)) can be
combined in a single term, as long as x0 and y1 (respectively x1 and y0) are independently
distributed of each other. Otherwise, with only two shares, there would be no possible
sharing for any non-linear function. As proposed in [RBN+15, CFE16], we have to increase
the number of output shares to four shares. After an optional mask refresh, the four output
shares can be collapsed to two shares, such that the number of shares does not increase by
each operation.

In this setting, we first consider a single AND gate computing z = x ∧ y. The sharing
can be performed as follows, using a direct sharing approach [BNN+12, CFE16, GMK16]:

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1, s2 ← x1 ∧ y0, s3 ← x1 ∧ y1

Since this leaves us with four output shares, we have to recombine some of the shares, e.g.
z0 ← s0 ⊕ s3 and z1 ← s1 ⊕ s2.
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Unfortunately, the sharing (z0, z1) is not uniform. Therefore, we have to repair the
uniformity by refreshing some of the shares with fresh uniform randomness (Equation 3).
This can be achieved using one additional guard share m and then, by computing the
following sequence of operations [GMK16]:

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1 (1)
s2 ← x1 ∧ y0, s3 ← x1 ∧ y1 (2)
t0 ← s0 ⊕m, t1 ← s1 ⊕m (3)
z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3 (4)

Lemma 1. The output sharing (z0, z1) computed by Equations 1 to 4 is a correct, non-
complete and uniform sharing of z = xy, if (x0, x1), (y0, y1) are uniform sharings of x and
y, if the distribution of m is independent of (x0, x1) and (y0, y1), and if the intermediate
state (t0, t1) is stored to a register before computing the output sharing (z0, z1).

Proof. The correctness of the sharing defined by Equations 1 and 2 follows from the
construction of the first part by direct sharing. Furthermore, we add the guard share m to
two of the four shares, which means that this operation will not change the correctness
of the sharing, since m is canceled out when retrieving the unshared value of z. The last
step, collapsing four shares to two shares also does not change the correctness, because of
the application of only a linear operation.

The non-completeness property holds, because firstly, every operation has two uniformly
shared inputs and secondly, we assume that (t0, t1) is registered before the output shares
(z0, z1).

The proof of uniformity can be obtained by enumerating all possibilities. We used the
Python script in the appendix for verification (Listing 1 in Appendix C).

In a similar fashion also z = xy ⊕ u can be shared as follows, where u0 and u1 takes
the place of m and hence, no refreshing is needed [CFE16]. In the remainder of this paper,
this gate is called AND-XOR gate.

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1 (5)
s2 ← x1 ∧ y0, s3 ← x1 ∧ y1 (6)
t0 ← s0 ⊕ u0, t1 ← s1 ⊕ u1 (7)
z0 ← t0 ⊕ s2, z1 ← t1 ⊕ s3 (8)

The proof of the TI properties for the sharing of z = xy ⊕ u is essentially the same as
for Lemma 1, hence, we skip the proof of the following lemma. However, the proof of
uniformity is slightly different, therefore, we supply a slightly adapted Python script in
Listing 2 in Appendix D.

Lemma 2. The output sharing (z0, z1) computed by Equations 5 to 8 is a correct, non-
complete and uniform sharing of z = xy ⊕ u, if (x0, x1), (y0, y1) are uniform sharings of x
and y, if the distribution of the sharing (u0, u1) is independent of (x0, x1) and (y0, y1), and
if the intermediate state (t0, t1) is stored to a register before computing the output sharing
(z0, z1).

These two sharings are essential for the 2-share TI of our masked modular addition
operation. However, a direct application to the KSA algorithm leads to a very high
consumption of randomness, because of the necessary mask refreshs in each loop iteration.
We can solve this in an elegant way by reusing shares.

We apply the reuse scheme to a parallel execution of k shared AND gates, where each
individual AND gate has a different set of inputs. We show that it can be shared uniformly
with only a single guard share, instead of k uniformly distributed random refresh masks.
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Algorithm 3 2-Share TI of a k-radix AND gate (SecAnd).
Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}
Ensure: (z0 ⊕ z1) = (x0 ⊕ x1) ∧ (y0 ⊕ y1) mod 2k

1: m← ((x0 � 1)⊕ (u� (k − 1)) # Generate refresh mask
2: (s0, s1, s2, s3)← (x0 ∧ y0, x0 ∧ y1, x1 ∧ y0, x1 ∧ y1) # Shared AND
3: (t0, t1)← (s0 ⊕m, s1 ⊕m) # Refresh masks
4: (z0, z1)← (t0 ⊕ s2, t1 ⊕ s3) # Collapse shares
5: return (z0, z1)

Algorithm 4 2-Share TI of a k-radix AND-XOR gate (SecAndXor).
Require: x0, x1, y0, y1, u0, u1 ∈ Z2k , k > 0
Ensure: (z0 ⊕ z1) = ((x0 ⊕ x1) ∧ (y0 ⊕ y1))⊕ (u0 ⊕ u1) mod 2k

1: (s0, s1, s2, s3)← (x0 ∧ y0, x0 ∧ y1, x1 ∧ y0, x1 ∧ y1) # Shared AND
2: (t0, t1)← (s0 ⊕ u0, s1 ⊕ u1) # Shared XOR
3: (z0, z1)← (t0 ⊕ s2, t1 ⊕ s3) # Collapse shares
4: return (z0, z1)

In this scheme, we reuse the property that inputs are uniformly distributed and thus,
the inputs to an adjacent AND gate can be used to guard the uniformity of its (direct)
neighbor. Only the uniformity of one shared AND gate needs to be protected by an
additional independently uniformly distributed random input.

Based on this idea, we develop Algorithm 3 (SecAnd) for a k-radix AND Gate and
a corresponding proof of the TI properties (Lemma 3). Additionally, in Algorithm 4
(SecAndXor) we show the k-radix variant of the AND-XOR gate. We skip the proof of the
TI properties for Algorithm 4, because it is only a repeated application of Lemma 2. In all
of the following proofs, we assume a certain bit order, i.e. the lowest significant bit is bit 0
and the highest significant bit is bit k − 1.

Lemma 3. Algorithm 3 implements a correct, non-complete and uniform sharing of a
k-radix AND gate with k inputs and k outputs,

1. if the inputs (x0, x1), (y0, y1) are uniform sharings of x, y,

2. if u is uniformly distributed,

3. if the distributions of x0[k − 1], x1[k − 1], y0[k − 1], y1[k − 1] are independent of the
distribution of u,

4. and if the intermediate state (t0, t1) is stored to a register before computing the output
sharing (z0, z1).

Proof. By Lemma 1, the computation of the top most bits k − 1 of z0 and z1, i.e. the pair
(z0[k − 1], z1[k − 1]), with m[k − 1] = u is a correct, non-complete and uniform sharing,
because the mask m[k − 1] = u is assumed to be independent of x0[k − 1], x1[k − 1] and
y0[k − 1], y1[k − 1]. Correctness and non-completness for the bits 0 to k − 2 can be also
directly derived from Lemma 1.

For the uniformity of the bits 0 to k − 2, we have to show that the guard share is
uniformly distributed and independent from the input shares. The uniformity of the
guard shares follows from the reuse of the uniformly distributed inputs x0[1], . . . , x0[k − 1]
which are reused as guard shares. Furthermore, the distributions of the guard shares are
independent of the inputs, because different bits of x0 are used, i.e. m[i] = x0[i + 1] for
0 ≤ i ≤ k − 2, whereas the inputs to the shared AND gates are x0[i], x1[i] and y0[i], y1[i]
for 0 ≤ i ≤ k − 2, which are, by assuming uniform sharings, all independently distributed
from x0[i + 1]. Hence, uniformity for the shared k-radix AND follows.
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Algorithm 5 2-Share TI of a k-radix AND-SHIFT gate (SecAndShift).
Require: x0, x1 ∈ Z2k ,k>0, u ∈ {0, 1}, 0 ≤ i < k
Ensure: (z0 ⊕ z1) = (x0 ⊕ x1) ∧ ((x0 ⊕ x1)� i) mod 2k

m← ((x0 � 1) + (u� (k − 1)) # Generate refresh mask
(y0, y1)← (x0 � i, x1 � i) # Shared SHIFT
(s0, s1, s2, s3)← (x0 ∧ y0, x0 ∧ y1, x1 ∧ y0, x1 ∧ y1) # Shared AND
(t0, t1)← (s0 ⊕m, s1 ⊕m) # Refresh masks
(z0, z1)← (t0 ⊕ s2, t1 ⊕ s3) # Collapse shares
return (z0, z1)

Algorithm 6 2-Share TI of a k-radix AND-XOR-SHIFT gate (SecAndShiftXor).
Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, 0 ≤ i < k
Ensure: (z0 ⊕ z1) = (x0 ⊕ x1) ∧ ((y0 ⊕ y1)� i)⊕ y0 ⊕ y1) mod 2k

1: (v0, v1)← (y0 � i, y1 � i), # Shared SHIFT
2: (s0, s1, s2, s3)← (x0 ∧ v0, x0 ∧ v1, x1 ∧ v0, x1 ∧ v1) # Shared AND
3: (t0, t1)← (s0 ⊕ y0, s1 ⊕ y1) # Shared XOR
4: (z0, z1)← (t0 ⊕ s2, t1 ⊕ s3) # Collapse shares
5: return (z0, z1)

In addition, we are interested in an integration of the shift operation into SecAnd and
SecAndXor to be able to use the flexible second operand feature of the ARM instruction set.
This operation takes only one shared input (x0, x1) and an additional shift parameter i.
Then, the shared input (x0, x1) is shifted by i bits to the left to generate the second
operand of SecAnd. This leads to the two shared operations SecAndShift (Algorithm 5)
and SecAndShiftXor (Algorithm 6). Proving the uniformity of SecAndShift is essentially
the same as Lemma 3, therefore we skip the proof of Lemma 4, because by construction,
precondition 3 of Lemma 3 is automatically fullfilled, if (x0, x1) is a uniform sharing of x.

Lemma 4. Algorithm 5 implements a correct, non-complete and uniform sharing of a
k-radix AND-SHIFT gate with k inputs and k outputs:

1. if the inputs x0, x1 is a uniform sharing of x,

2. if u is uniformly distributed,

3. if the distributions of x0[k − 1], x1[k − 1], x0[k − i], x1[k − i] are independent of the
distribution of u,

4. and if the intermediate state (t0, t1) is stored to a register before computing the output
sharing (z0, z1).

The next important observation is that the least significant bit x0[0] is not used to
guard any other output shares. Thus, this bit can be reused as guard share for the next
series of parallel ANDs in the for loop of the KSA algorithm, which again leaves us with
a single bit which we can reuse as guard share in the next iteration. We inductively
prove this property by isolating the repeated AND-SHIFT gate which computes all the
propagates in the for loop of the KSA algorithm (Algorithm 7).

Lemma 5. Algorithm 7 implements a correct, non-complete and uniform sharing of the
function p[k − 1]← (x[0]⊕ y[0]) ∧ · · · ∧ (x[k − 1]⊕ y[k − 1]),

• if x0, x1, y0, y1 are uniform sharings of x, y,

• and if u is uniformly distributed and if its distribution is independent of the inputs
x0[k − 1], x1[k − 1], y0[k − 1], y1[k − 1].
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Algorithm 7 2-Share TI of the computation of propagates
Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x0 ⊕ x1 and y = y0 ⊕ y1.
Ensure: p[k − 1] = (x[0]⊕ y[0]) ∧ · · · ∧ (x[k − 1]⊕ y[k − 1]), with p = p0 ⊕ p1

1: n← max(dlog2(k − 1)e, 1)
2: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
3: for i = 1 to n− 1 do
4: v ← p0[0] # Save guard share i + 1
5: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT
6: u← v # Use new guard share
7: end for
8: return (p0, p1)

Proof. The initial part (Line 2) before the for loop is correct, non-complete and uniform,
since it is only a linear combination of uniformly distributed random inputs.

In the for loop (Lines 4-6) we first assume, that in iteration i, u is uniformly distributed
and independent of the shares p0[k − 1] and p1[k − 1]. Then, by Lemma 4, the output of
the SecAndShift (p′0, p′1) is a correct, non-complete and uniform sharing. For iteration
i + 1, the new u′ has to be uniformly distributed and independent of the outputs p′0[k − 1]
and p′1[k − 1] of iteration i. The uniformity of the distribution of u′ is derived from the
uniformity of p0, namely u′ = p0[0]. Furthermore, the independence of the distribution of
u′ from p′0[k − 1] and p′1[k − 1] follows, because the sharing (p′0[k − 1], p′1[k − 1]) has been
refreshed using another independently uniformly distributed guard share, which is either u
for index k − 1 or p0[k − 1− j] for 0 ≤ j < k − 2.

Since the initial values for the loop iteration i = 1 are generated by a correct, non-
complete and uniform sharing, the loop invariant, that u is uniformly distributed and
independent of p0, and p1, holds. Therefore, Algorithm 7 implements a correct, non-
complete and uniform sharing.

The proof of Lemma 5 is a variant of Daemen’s proof in [Dae17]. Besides the obvious
similarity, the proof itself is different, because Daemen’s proof only works for permutations
and hence, it is not applicable to our setting of the modular addition. Instead of basing
our proof on the property of a permutation, we show that the inputs to the shared AND

Algorithm 8 Kogge-Stone 2-Share Addition
Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x0 ⊕ x1 and y = y0 ⊕ y1
Ensure: z = (x + y) mod 2k, with z = z0 ⊕ z1

1: n← max(dlog2(k − 1)e, 1)
2: v ← x0 mod 2 # Save next guard share
3: (g0, g1)← SecAnd(x0, x1, y0, y1, u) # Shared AND
4: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
5: u← v # Update guard share
6: for i = 1 to n− 1 do
7: v ← p0 mod 2 # Save next guard share
8: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
9: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT

10: u← v # Update guard share
11: end for
12: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
13: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
14: return (z0, z1, u)
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gates and the guard masks are independently distributed in all cases during the for loop.
Therefore, we can also show the uniformity property is fulfilled.

Using Lemma 5, we can now construct the 2-share TI of the full Kogge-Stone adder
as depicted in Algorithm 8. The uniformity follows in a straight forward manner from
Lemma 3, Lemma 5 and from a parallel version of Lemma 2. Therefore, we give the
theorem without proof.

Theorem 1. Algorithm 8 implements a correct, non-complete and uniform sharing of the
Kogge-Stone Adder.

In Appendix B, we also provide the subtraction variant (Algorithm 14) by making the
same changes as we did to Biryukov et al.’s masked addition (Algorithm 13).

3.4 Extension to ARX ciphers
Typical state of the art ciphers use more than one addition operation. Therefore, it is an
interesting additional question, if the remaining guard share from the adder can be used
as input guard share for other additions. We show that this idea is indeed sound for the
application in any ARX cipher. Therefore, we can implement any ARX cipher with either
our first unoptimized 2-share KSA or with its optimized variant.

Theorem 2. Reusing the unused guard share u from the last iteration in Algorithm 8
as guard share in a subsequent addition results in a correct, non-complete and uniform
sharing of the subsequent addition in ChaCha20 (and all similar ARX ciphers).

Proof. All outputs of the 2-share additions are reshared with inputs independent of
the unused guard share u. Therefore, all outputs are independently distributed from
u. Furthermore, all other shares of the internal state of the cipher are independently
distributed and therefore, it is impossible that the distribution of u is dependent on any
other bit of a sharing of the internal state of the cipher.

3.5 Improved 2-Share TI Addition
Our new algorithm can be improved further by optimizing the shared AND (Algo-

rithm 9), described in [BDLCU17]. The main benefit is a further reduction on the number
of instructions. We like to highlight that the addition formula from Biryukov et al. could
also be interpreted as 2-share TI that could be found by direct sharing and application of
correction terms as proposed in the TI literature [BNN+12]. The equivalent formulas with
correction terms in sum-of-products normal form are:

s0 ← x0 ∧ y0, s1 ← x0 ∧ y1 ⊕ y1 ⊕ 1
s2 ← x1 ∧ y0, s3 ← x1 ∧ y1 ⊕ y1 ⊕ 1
z0 ← s0 ⊕ s1, z1 ← s2 ⊕ s3

Therefore, a version which also integrates the shift operation (Algorithm 10) can be used
as a drop-in replacement for our algorithm SecAndShift, which results in Algorithm 11.

Algorithm 9 Optimized 2-Share TI of a k-radix AND gate (SecAndOpt) [BDLCU17].
Require: x0, x1, y0, y1 ∈ Z2k , k > 0, u ∈ {0, 1}, 0 ≤ i < k
Ensure: (z0 ⊕ z1) = (x0 ⊕ x1) ∧ ((x0 ⊕ x1)� i) mod 2k

1: s0 ← x0 ∧ y0, s1 ← x0 ∨ ¬y1 # Shared AND
2: s2 ← x1 ∧ y0, s3 ← x1 ∨ ¬y1
3: z0 ← s0 ⊕ s1, z1 ← s2 ⊕ s3
4: return (z0, z1)
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Algorithm 10 Optimized 2-Share TI of a k-radix AND-SHIFT gate (SecAndShiftOpt)
[BDLCU17].
Require: x0, x1 ∈ Z2k , k > 0, u ∈ {0, 1}, 0 ≤ i < k
Ensure: (z0 ⊕ z1) = (x0 ⊕ x1) ∧ ((x0 ⊕ x1)� i) mod 2k

1: (y0, y1)← (x0 � i, x1 � i) # Shared SHIFT
2: (s0, s1, s2, s3)← (x0 ∧ y0, x0 ∨ ¬y1, x1 ∧ y0, x1 ∨ ¬y1) # Shared AND
3: (z0, z1)← (s0 ⊕ s1, s2 ⊕ s3) # Collapse shares
4: return (z0, z1)

Algorithm 11 Kogge-Stone Optimized 2-Share Addition
Require: x1, x2, y1, y2 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z = (x + y) mod 2k, with z = z1 ⊕ z2

1: n← max(dlog2(k − 1)e, 1)
2: m← ((x0 � 1)⊕ (u� (k − 1)) # Generate refresh mask
3: (g0, g1)← SecAndOpt(x0, x1, y0, y1) # Shared AND
4: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
5: (g0, g1)← (g0 ⊕m, g1 ⊕m) # Refresh sharing of g
6: u← x0[0] # Update guard share
7: for i = 1 to n− 1 do
8: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
9: (p0, p1)← SecAndShiftOpt(p0, p1, 2i−1) # Shared AND-SHIFT

10: end for
11: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
12: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1)
13: return (z0, z1, u)

For SecAndShiftXor there is no performance benefit, because the number of instructions
will be worse in a generic setting, if the optimized masked AND gate is combined with the
shared XOR gate and identical for ARM.

Regarding the additional entropy, it is important to note, that the composition in
Algorithm 11 would not work without the additional refreshing of randomness before the
loop. This problem arises, because the outputs of the SecAndOpt and SecXor gates are
not statistically independent and hence, we would observe leakage during the computation
of the shared generates. The refreshing makes the distributions of the sharing of g and
the sharing of p independent of each other before the loop. This independence is then
preserved because the SecAndShiftXor gate uses the sharing (g0, g1) to refresh the entropy
and since the initial distributions of (g0, g1) and (p0, p1) in the loop are independent of
each other, the independence is always preserved throughout the loop. In the following
theorem, we show that the 2-Share TI KSA shown in Algorithm 11 is a proper 2-share TI
which needs only one refreshing and hence, a one bit guard share u.

Theorem 3. Algorithm 11 implements a correct, non-complete and uniform sharing of
the Kogge-Stone Adder.

Proof. The correctness and non-completeness follows from the usage of the components
SecXor, SecAndOpt, SecAndShiftXor, and SecAndShiftOpt. The mask refresh on Line 5
also does not change the correctness of the implementation and is obviously non-complete.

For the uniformity, we investigate the individual components:

1. SecAndOpt (Line 3) and SecXor (Line 4) produce uniform, but not independent
sharings.
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2. The mask refresh on Line 5 restores the independence of the shared propagates
(p0, p1) which are produced by the SecAndOpt operation (Line 3) from the generates
(g0, g1).

3. For the uniformity of the loop, we first show, that a simplified variant of Lemma 5
also holds for SecAndShiftOpt. The sharing of the AND-SHIFT gate in the for
loop (Line 7 in Algorithm 11) is a uniform sharing, if the input is uniformly shared.
The uniformity condition is sufficient, because the shift operation guarantees the
independence of the two shared inputs to the original masked AND gate. Therefore,
for iteration i, the output of the AND-SHIFT gate is a uniform sharing of the original
AND-SHIFT output. Furthermore, the input to the AND-SHIFT gate for iteration
i + 1 is also a uniform sharing, since it is the output of iteration i. Therefore, also
the output for iteration i + 1 is a uniform sharing. Since the initial sharing (p0, p1)
for iteration 1 is also uniform, the AND-SHIFT gate in the for loop (Line 7 in
Algorithm 11) only produces uniform sharings of the intermediates of the propagates.

4. For the AND-SHIFT-XOR operation in the loop, we can perform a similar proof
than for the AND-SHIFT gate. Firstly, we assume that (p0, p1) and (g0, g1) are
independently uniformly distributed sharings in iteration i. Then the output of
AND-SHIFT-XOR is also a uniform sharing which is independently distributed of
the sharing (p0, p1). Secondly, since the output of AND-SHIFT-XOR in iteration i
is uniform, the inputs g0, g1 in iteration i + 1 are uniform. Furthermore, we already
proofed that in all loop iterations (p0, p1) is a uniform sharing of p. Therefore, also
the output in iteration i+1 is uniform. Since the inputs in iteration 1 are also uniform
and independently distributed, all output sharings during the loop computation are
also uniform.

5. The uniformity of the AND-SHIFT-XOR gate on line 11 follows, because the outputs
of the loop are independently uniformly distributed, and they are the inputs of this
operation.

6. On line 12, all operations are linear combinations of uniform sharings and are
therefore obviously uniform.

Since all operations have uniform input and output sharings, the optimized KSA is also
uniform and hence a correct, non-complete and uniform 2-share TI.

3.6 Operation Count
In Table 1, we show the detailed operation counts for the individual operations. The
generic architecture assumes, that there are only four operations available, NOT, AND,
XOR and SHIFT, while we allow the full ARM instruction set for the ARM figures.
The table shows, that our new operations are competitive in general and especially, that
merging operations can lead to considerable performance savings, without compromising
the theoretical security, even though the formulas presented in [BDLCU17] are optimal for
the two-input gates. Although our SecAnd operation is slower in the generic setting than
the variants from [CGTV15, BDLCU17], this is mainly due to the integration of the mask
generation. If we disregard this and if we look a the ARM results for SecAndShift, the
number of instructions for ARM does not increase, since the shift can be integrated in the
same instruction and hence, the operation is faster. Furthermore, if we use the optimizations
proposed by Biryukov et al., we can further reduce the instruction count for the ARM
implementation of SecAndShift to only 6 instructions, which saves 25% instructions on
this important platform. In addition, we note, that using the SecAndShiftXor seems to
be beneficial in all settings, which is due to merging AND, SHIFT and XOR in a single
operation.
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Table 1: Comparison of masked operations.
SecXor SecShift SecAnd SecAndShift/-Opt SecAndShiftXor

Generic [CGTV15] 2 4 8 8 + 2 8 + 4 + 2
ARM [CGTV15] 2 4 8 8 + 2 8 + 4 + 2
Generic [BDLCU17] 2 2 7 7 + 2 7 + 2 + 2
ARM [BDLCU17] 2 2 6 6 + 2 6 + 2 + 2
Generic [new] 2 - 8 (11)1 10 (13)1/9 10
ARM [new] 2 - 8 (11)1 8 (11)1/6 8
1 Value in parenthesis includes generation of refresh mask.

Table 2: Comparison of masked addition and subtraction.
Addition Opt. Addition Subtraction Opt. Subtraction Rand.

Generic [CGTV15] 28 log2 k + 4 - - - k
ARM [CGTV15] 28 log2 k + 4 - - - k
Generic [BDLCU17] 22 log2 k + 6 - 32 log2 k + 4 - 0
ARM [BDLCU17] 22 log2 k + 4 - 30 log2 k + 6 - 0
Generic [new] 24 log2 k + 6 19 log2 k + 11 24 log2 k + 12 19 log2 k + 17 1
ARM [new] 18 log2 k + 4 14 log2 k + 8 18 log2 k + 11 14 log2 k + 13 1

A similar effect can be seen in Table 2, where we see that the removal of some mask
refreshing steps, the usage of the second operand feature and also other optimizations on
the assembly level can outperform the previously published results significantly. Our basic
addition variant already improves the state of the art for ARM implementations about
18%, but when we also take the other optimizations by Biryukov et al. into account, we
end up with an even more impressive saving of about 50% compared to the results from
[CGTV15] and 36% compared to [BDLCU17]. Furthermore, the improved subtraction
algorithm is about 53% faster than the one proposed in [BDLCU17]. Overall, for one
of the most common values of k, k = 32, we reduce the overhead from 114 instructions
[BDLCU17] to only 83. This is a significant cost saving, especially, if we consider that an
unprotected addition usually takes only one clock cycle on most common platforms. As
a reference, we also append ARM implementations of our two addition implementations
in Appendix E. However, we only made sure that no basic distance-based leakage from
register writes are existing in the implementations and hence, the implementations are
likely to leak in practice and therefore, they only serve as a starting point for real world
implementations.

4 Implementation Overview
For our evaluation, we developed several ARM assembly implementations of ChaCha20,
targeting ARM Cortex-M3 and Cortex-M4 processors. We implemented an unprotected
reference according to the recommendations reported in [SSS17], to serve as a baseline
to compare the relative performance overhead of our protected implementations. Fur-
thermore, we developed two protected implementations of ChaCha20, one with our first
unoptimized masked addition and the second with the optimized counterpart. All of our
performance numbers are reported in Table 3 alongside other implementation results from
[AFM17, SSS17]. However, due to different hardware, the clock cycle counts are not fully
comparable, because the memory architecture plays an important role, even if the basic
ARM architecture is identical.

In most cases, we used the optimizations such as the second flexible operand, as
described in [SSS17], to reduce the cycle count. Hence, our unprotected version performs
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Table 3: Code sizes and runtime cycle counts for the tested implementations
Implementation Code Stack Cycles
Our Reference [new] 488 56 1726
Unprotected [AFM17] N/A N/A 4380
Unprotected [SSS17] 734 232 1487
Unprotected [SSS17] 3174 228 1287
2-Share [new] 2214 316 72721
2-Share Optimized [new] 2138 316 60623
Masked [AFM17] N/A N/A 121618
Masked [AFM17] N/A N/A 93993

roughly as fast as reported in [SSS17].
The size and time overheads of the protected implementations in comparison to our

reference are considerable. Both 2-Share variants exhibit a 4.5 fold increase in size, and
a 35× to 42× increase in duration. This overhead is much higher than the 21× increase
reported in [AFM17], however, our reference implementation is also much faster than
theirs.

Note that the optimized 2-share variant is about 17% faster than our first implementa-
tion, a figure close to the 27% difference in the number of instructions presented in Table 2
(Section 3.6). Furthermore, we beat the results reported in [AFM17] by 36%. This shows,
that the masked addition is the driving factor for the speed of the countermeasure. The
assembly implementations for the masked additions are shown in Appendix E.

5 Conclusion

ARX ciphers such as ChaCha20 are deployed in many application domains. A major benefit
of such ciphers is that they are easy to protect against timing side-channel attacks. However,
other side-channel protections, such as against power or EM are less straightforward and
all secure state of the art protections are very costly.

Our results promise a significant performance improvement for Boolean masking for the
modular addition. With a reduction of the instruction count by 36% over the state of the art
masked adder and more than 50% for masked subtraction, our proposed algorithms provide
a major performance improvement. This also translates to a much faster implementation
for ChaCha20 on Cortex-M3/M4 processors.

At the same time, we cut down the requirement of randomness to only one additional
bit, which is very close to the randomness-free adder by Biryukov et al. [BDLCU17].
Therefore, only 513 bits of randomness have to be sampled per encryption (or decryption)
in the case of ChaCha20. Overall, the performance improvements and the much lower
randomness requirements are very helpful when ARX ciphers have to be protected against
side-channel attacks at a low cost. However, despite our improvements, the penalty for
masking ARX ciphers is still very high and hence, further research is necessary. One
direction could be an investigation of bit-sliced implementations, especially for processors
where SIMD operations are available.

It is also noteworthy, that we used the TI methodology with two shares to beat a
conventional Boolean masking implementation. To the best of our knowledge this is the first
report, that TI can also deliver competitive performance for software implementations.
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A Algorithms for Optimized Boolean Masking [BDLCU17]
This appendix contains the original masked adder (Algorithm 12) using the optimized
formula from Biryukov et al. [BDLCU17]. We also show our optimized subtraction
operation based on the same basic ideas (Algorithm 13).

Algorithm 12 Kogge-Stone Masked Addition [BDLCU17]
Require: x0, x1, y0, y1 ∈ Z2k , with x = x0 ⊕ x1 and y = y0 ⊕ y1
Ensure: z = (x + y) mod 2k, with z = z0 ⊕ z1

1: n← max(dlog2(k − 1)e, 1)
2: (p0, p1)← SecXor(x0, x1, y0, y1)
3: (g0, g1)← SecAnd(x0, x1, y0, y1)
4: (g0, g1)← ((g0 ⊕ x1)⊕ g1, x1)
5: for i = 1 to n− 1 do
6: (h0, h1)← SecShift(g0, g1, 2i−1)
7: (u0, u1)← SecAnd(p0, p1, h0, h1)
8: (g0, g1)← SecXor(g0, g1, u0, u1)
9: (h0, h1)← SecShift(p0, p1, 2i−1)

10: (h0, h1)← ((h0 ⊕ x1)⊕ h1, x1)
11: (p0, p1)← SecAnd(p1, p2, h0, h1)
12: (p0, p1)← ((p0 ⊕ y1)⊕ p1, y1)
13: end for
14: (h0, h1)← SecShift(g0, g1, 2n−1)
15: (u0, u1)← SecAnd(p0, p1, h0, h1)
16: (g0, g1)← SecXor(g0, g1, u0, u1)
17: (z0, z1)← SecXor(y0, y1, x0, x1)
18: (p0, p1)← ((z0 ⊕ (g0 � 1))⊕ (x1 � 1), y1)
19: return (z0, z1)
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Algorithm 13 Kogge-Stone Masked Subtraction (based on adder from [BDLCU17])
Require: x1, x2, y1, y2 ∈ Z2k , with x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z = (x− y) mod 2k, with z = z1 ⊕ z2

1: n← max(dlog2(k − 1)e, 1)
2: y1 ← ¬y1
3: (p0, p1)← SecXor(x0, x1, y0, y1)
4: (g0, g1)← SecAnd(x0, x1, y0, y1)
5: (g0, g1)← ((g0 ⊕ x1)⊕ g1, x1)
6: (g0, g1)← ((g0 ⊕ (y0 ∧ 1))⊕ (y1 ∧ 1), g1)
7: for i = 1 to n− 1 do
8: (h0, h1)← SecShift(g0, g1, 2i−1)
9: (u0, u1)← SecAnd(p0, p1, h0, h1)

10: (g0, g1)← SecXor(g0, g1, u0, u1)
11: (h0, h1)← SecShift(p0, p1, 2i−1)
12: (h0, h1)← ((h0 ⊕ x1)⊕ h1, x1)
13: (p0, p1)← SecAnd(p1, p2, h0, h1)
14: (p0, p1)← ((p0 ⊕ y1)⊕ p1, y1)
15: end for
16: (h0, h1)← SecShift(g0, g1, 2n−1)
17: (u0, u1)← SecAnd(p0, p1, h0, h1)
18: (g0, g1)← SecXor(g0, g1, u0, u1)
19: (z0, z1)← SecXor(y0, y1, x0, x1)
20: (z0, z1)← ((z0 ⊕ (g0 � 1))⊕ (x1 � 1), y1)
21: (z0, z1)← (z0 ⊕ 1, z1)
22: return (z0, z1)
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B Algorithms for 2-Share Subtraction

This appendix contains the 2-share subtraction variant of our 2-share addition operations,
both the first variant (Algorithm 14) and also the version optimized with Biryukov et al.’s
AND formula (Algorithm 15).

Algorithm 14 Kogge-Stone 2-Share Subtraction
Require: x1, x2, y1, y2 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z = (x− y) mod 2k, with z = z1 ⊕ z2

1: n← max(dlog2(k − 1)e, 1)
2: v ← x0 mod 2 # Save next guard share
3: y1 ← ¬y1
4: (g0, g1)← SecAnd(x0, x1, y0, y1, u) # Shared AND
5: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
6: (g1, g2)← (g1 ⊕ (y1 ∧ 1), g2 ⊕ (y2 ∧ 1))
7: u← v # Update guard share
8: for i = 1 to n− 1 do
9: v ← p0 mod 2 # Save next guard share

10: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
11: (p0, p1)← SecAndShift(p0, p1, u, 2i−1) # Shared AND-SHIFT
12: u← v # Update guard share
13: end for
14: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
15: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
16: (z1, z2)← (z1 ⊕ 1, z2)
17: return (z0, z1, u)

Algorithm 15 Kogge-Stone Optimized 2-Share Subtraction
Require: x1, x2, y1, y2 ∈ Z2k , k > 0, u ∈ {0, 1}, with x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z = (x− y) mod 2k, with z = z1 ⊕ z2

1: n← max(dlog2(k − 1)e, 1)
2: m← ((x0 � 1)⊕ (u� (k − 1)) # Generate refresh mask
3: y1 ← ¬y1
4: (g0, g1)← SecAndOpt(x0, x1, y0, y1) # Shared AND
5: (p0, p1)← SecXor(x0, x1, y0, y1) # Shared XOR
6: (g0, g1)← (g0 ⊕m, g1 ⊕m) # Refresh sharing of g
7: (g1, g2)← (g1 ⊕ (y1 ∧ 1), g2 ⊕ (y2 ∧ 1))
8: u← x0[0] # Update guard share
9: for i = 1 to n− 1 do

10: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2i−1) # Shared AND-SHIFT-XOR
11: (p0, p1)← SecAndShiftOpt(p0, p1, 2i−1) # Shared AND-SHIFT
12: end for
13: (g0, g1)← SecAndShiftXor(p0, p1, g0, g1, 2n−1) # Shared AND-SHIFT-XOR
14: (z0, z1)← (x0 ⊕ y0 ⊕ 2g0, x1 ⊕ y1 ⊕ 2g1) # Compute final output
15: (z1, z2)← (z1 ⊕ 1, z2)
16: return (z0, z1, u)
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C Proof of Uniformity for Lemma 1

Listing 1 Proof of Uniformity for Lemma 1

1 import numpy as np
2
3 d i s t r i b u t i o n = np . z e r o s (4 )
4
5 f o r x in xrange ( 0 , 4 ) :
6 x0 = x >> 1
7 x1 = x & 1
8
9 f o r y in xrange ( 0 , 4 ) :

10 y0 = y >> 1
11 y1 = y & 1
12
13 f o r m in xrange ( 0 , 2 ) :
14 s0 = x0 & y0
15 s1 = x1 & y0
16 s2 = x0 & y1
17 s3 = x1 & y1
18
19 t0 = s0 ^ m
20 t1 = s1 ^ m
21
22 z0 = t0 ^ s2
23 z1 = t1 ^ s3
24
25 d i s t r i b u t i o n [ z0 << 1 | z1 ] += 1
26
27 # d i s t r i b u t i o n [ 3 ] and d i s t r i b u t i o n [ 0 ] are r e p r e s e n t a t i o n s o f ’0 ’
28 # Therefore , they must be equal to f u l f i l l un i fo rmi ty .
29 a s s e r t ( d i s t r i b u t i o n [ 3 ] == d i s t r i b u t i o n [ 0 ] )
30 # d i s t r i b u t i o n [ 3 ] and d i s t r i b u t i o n [ 0 ] are r e p r e s e n t a t i o n s o f ’1 ’
31 # Therefore , they must be equal to f u l f i l l un i fo rmi ty .
32 a s s e r t ( d i s t r i b u t i o n [ 2 ] == d i s t r i b u t i o n [ 1 ] )
33 # The AND operat i on outputs three t imes ’0 ’ and once ’ 1 ’ .
34 a s s e r t ( d i s t r i b u t i o n [ 3 ] / d i s t r i b u t i o n [ 2 ] == 3)
35
36 p r i n t "The shar ing o f the AND gate i s uniform "
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D Proof of Uniformity for Lemma 2

Listing 2 Proof of Uniformity for Lemma 2

1 import numpy as np
2
3 d i s t r i b u t i o n = np . z e r o s (4 )
4
5 f o r x in xrange ( 0 , 4 ) :
6 x0 = x >> 1
7 x1 = x & 1
8
9 f o r y in xrange ( 0 , 4 ) :

10 y0 = y >> 1
11 y1 = y & 1
12
13 f o r u in xrange ( 0 , 4 ) :
14 u0 = u >> 1
15 u1 = u & 1
16
17 s0 = x0 & y0
18 s1 = x1 & y0
19 s2 = x0 & y1
20 s3 = x1 & y1
21
22 t0 = s0 ^ u0
23 t1 = s1 ^ u1
24
25 z0 = t0 ^ s2
26 z1 = t1 ^ s3
27
28 d i s t r i b u t i o n [ z0 << 1 | z1 ] += 1
29
30 # d i s t r i b u t i o n [ 3 ] and d i s t r i b u t i o n [ 0 ] are r e p r e s e n t a t i o n s o f ’0 ’
31 # Therefore , they must be equal to f u l f i l l un i fo rmi ty .
32 a s s e r t ( d i s t r i b u t i o n [ 3 ] == d i s t r i b u t i o n [ 0 ] )
33 # d i s t r i b u t i o n [ 2 ] and d i s t r i b u t i o n [ 1 ] are r e p r e s e n t a t i o n s o f ’1 ’
34 # Therefore , they must be equal to f u l f i l l un i fo rmi ty .
35 a s s e r t ( d i s t r i b u t i o n [ 2 ] == d i s t r i b u t i o n [ 1 ] )
36 # The AND−XOR gate outputs ’0 ’ and ’1 ’ with the same frequency .
37 a s s e r t ( d i s t r i b u t i o n [ 3 ] / d i s t r i b u t i o n [ 2 ] == 1)
38
39 p r i n t "The shar ing o f the AND−XOR gate i s uniform "
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E Addition ARM Assembly

Listing 3 and 4 show the assembly code for the 2-Share TI addition presented in this work.
In both cases, the registers r0 and r1 contain the shares for the first operand, r2 and r3
the shares for the second. The resulting shares are placed in registers r0 and r1. Register
r12 contains the additional 1-bit random value for mask refreshing.

Listing 3 2-Share TI Addition ARM implementation

1 // Generate mask
2 or r r4 , r12 , r0 , l s r #1
3 l s l r12 , r0 , #31
4 and r5 , r0 , r2
5 and r6 , r0 , r3
6 eor r0 , r0 , r2
7 eor r5 , r5 , r4
8 eor r6 , r6 , r4
9 and r9 , r1 , r2

10 and r8 , r1 , r3
11 eor r1 , r1 , r3
12 eor r5 , r5 , r8
13 eor r6 , r6 , r9
14 // I t e r a t i o n 1
15 // Generate mask
16 or r r4 , r12 , r0 , l s r #1
17 l s l r12 , r0 , #31
18 and r7 , r0 , r5 , l s l #1
19 and r8 , r1 , r5 , l s l #1
20 and r10 , r0 , r6 , l s l #1
21 and r11 , r1 , r6 , l s l #1
22 eor r6 , r6 , r11
23 eor r6 , r6 , r10
24 eor r5 , r7 , r5
25 eor r5 , r8 , r5
26 and r2 , r0 , r0 , l s l #1
27 and r3 , r1 , r0 , l s l #1
28 and r10 , r0 , r1 , l s l #1
29 and r11 , r1 , r1 , l s l #1
30 eor r8 , r11 , r4
31 eor r8 , r10 , r8
32 eor r7 , r3 , r4
33 eor r7 , r7 , r2
34 // I t e r a t i o n 2
35 // Generate mask
36 or r r4 , r12 , r7 , l s r #1
37 l s l r12 , r7 , #31
38 and r2 , r7 , r5 , l s l #2
39 and r3 , r8 , r5 , l s l #2
40 and r10 , r7 , r6 , l s l #2
41 and r11 , r8 , r6 , l s l #2
42 eor r6 , r6 , r11
43 eor r6 , r6 , r10
44 eor r5 , r2 , r5
45 eor r5 , r3 , r5
46 and r2 , r7 , r7 , l s l #2
47 and r3 , r8 , r7 , l s l #2
48 and r10 , r7 , r8 , l s l #2
49 and r11 , r8 , r8 , l s l #2
50 eor r8 , r11 , r4
51 eor r8 , r10 , r8
52 eor r7 , r3 , r4
53 eor r7 , r7 , r2

51 // I t e r a t i o n 3
52 // Generate mask
53 or r r4 , r12 , r7 , l s r #1
54 l s l r12 , r7 , #31
55 and r2 , r7 , r5 , l s l #4
56 and r3 , r7 , r6 , l s l #4
57 and r9 , r8 , r5 , l s l #4
58 and r10 , r8 , r6 , l s l #4
59 eor r5 , r5 , r2
60 eor r6 , r6 , r3
61 eor r5 , r5 , r9
62 eor r6 , r6 , r10
63 and r2 , r7 , r7 , l s l #4
64 and r3 , r7 , r8 , l s l #4
65 and r9 , r8 , r7 , l s l #4
66 and r10 , r8 , r8 , l s l #4
67 eor r7 , r2 , r4
68 eor r8 , r3 , r4
69 eor r7 , r7 , r10
70 eor r8 , r8 , r9
71 // I t e r a t i o n 4
72 // Generate mask
73 or r r4 , r12 , r7 , l s r #1
74 l s l r12 , r7 , #31
75 and r2 , r7 , r5 , l s l #8
76 and r3 , r7 , r6 , l s l #8
77 and r9 , r8 , r5 , l s l #8
78 and r10 , r8 , r6 , l s l #8
79 eor r5 , r5 , r2
80 eor r6 , r6 , r3
81 eor r5 , r5 , r9
82 eor r6 , r6 , r10
83 and r2 , r7 , r7 , l s l #8
84 and r3 , r7 , r8 , l s l #8
85 and r9 , r8 , r7 , l s l #8
86 and r10 , r8 , r8 , l s l #8
87 eor r7 , r2 , r4
88 eor r8 , r3 , r4
89 eor r7 , r7 , r10
90 eor r8 , r8 , r9
91 // Post loop
92 and r2 , r7 , r5 , l s l #16
93 and r3 , r7 , r6 , l s l #16
94 and r9 , r8 , r5 , l s l #16
95 and r10 , r8 , r6 , l s l #16
96 eor r5 , r5 , r2
97 eor r6 , r6 , r3
98 eor r5 , r5 , r9
99 eor r6 , r6 , r10

100 eor r0 , r0 , r5 , l s l #1
101 eor r1 , r1 , r6 , l s l #1
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The reference implementations given in this section are given to study the minimum
number of assembly instructions for a masked 32 bit addition using our algorithms. If
simulated with the MAPS simulator [CGD17] (without simulating the pipeline) the simu-
lation confirms that there is no (distance-based) leakage. In a real world implementation,
these implementations have to be adapted to remove other sources of leakage, such as
pipeline leakages.

Listing 4 Optimized 2-Share TI Addition ARM implementation

1 // Generate mask
2 or r r11 , r12 , r0 , l s r #1
3 l s l r12 , r0 , #31
4 orn r4 , r0 , r3
5 and r6 , r2 , r0
6 orn r5 , r1 , r3
7 and r7 , r2 , r1
8 eor r5 , r7 , r5
9 eor r4 , r6 , r4

10 eor r2 , r2 , r0
11 eor r3 , r1 , r3
12 eor r5 , r5 , r11
13 eor r4 , r11 , r4
14 // I t e r a t i o n 1
15 and r8 , r3 , r4 , l s l #1
16 and r9 , r2 , r4 , l s l #1
17 eor r4 , r9 , r4
18 eor r4 , r8 , r4
19 and r10 , r3 , r5 , l s l #1
20 and r11 , r2 , r5 , l s l #1
21 eor r5 , r10 , r5
22 eor r5 , r11 , r5
23 orn r8 , r3 , r3 , l s l #1
24 and r10 , r3 , r2 , l s l #1
25 orn r9 , r2 , r3 , l s l #1
26 and r11 , r2 , r2 , l s l #1
27 eor r7 , r10 , r8
28 eor r6 , r9 , r11
29 // I t e r a t i o n 2
30 and r8 , r7 , r4 , l s l #2
31 and r9 , r6 , r4 , l s l #2
32 eor r4 , r9 , r4
33 eor r4 , r8 , r4
34 and r10 , r7 , r5 , l s l #2
35 and r11 , r6 , r5 , l s l #2
36 eor r5 , r10 , r5
37 eor r5 , r11 , r5
38 orn r8 , r7 , r7 , l s l #2
39 and r10 , r7 , r6 , l s l #2
40 orn r9 , r6 , r7 , l s l #2
41 and r11 , r6 , r6 , l s l #2
42 eor r7 , r10 , r8
43 eor r6 , r9 , r11

43 // I t e r a t i o n 3
44 and r8 , r7 , r4 , l s l #4
45 and r9 , r6 , r4 , l s l #4
46 eor r4 , r9 , r4
47 eor r4 , r8 , r4
48 and r10 , r7 , r5 , l s l #4
49 and r11 , r6 , r5 , l s l #4
50 eor r5 , r10 , r5
51 eor r5 , r11 , r5
52 orn r8 , r7 , r7 , l s l #4
53 and r10 , r7 , r6 , l s l #4
54 orn r9 , r6 , r7 , l s l #4
55 and r11 , r6 , r6 , l s l #4
56 eor r7 , r10 , r8
57 eor r6 , r9 , r11
58 // I t e r a t i o n 4
59 and r8 , r7 , r4 , l s l #8
60 and r9 , r6 , r4 , l s l #8
61 eor r4 , r9 , r4
62 eor r4 , r8 , r4
63 and r10 , r7 , r5 , l s l #8
64 and r11 , r6 , r5 , l s l #8
65 eor r5 , r10 , r5
66 eor r5 , r11 , r5
67 orn r8 , r7 , r7 , l s l #8
68 and r10 , r7 , r6 , l s l #8
69 orn r9 , r6 , r7 , l s l #8
70 and r11 , r6 , r6 , l s l #8
71 eor r7 , r10 , r8
72 eor r6 , r9 , r11
73 // Post loop
74 and r9 , r7 , r4 , l s l #16
75 and r8 , r6 , r4 , l s l #16
76 eor r4 , r9 , r4
77 eor r4 , r8 , r4
78 and r11 , r7 , r5 , l s l #16
79 and r10 , r6 , r5 , l s l #16
80 eor r5 , r11 , r5
81 eor r5 , r10 , r5
82 eor r0 , r2 , r4 , l s l #1
83 eor r1 , r3 , r5 , l s l #1
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