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Outlook

We present fault attacks that are ...

• Hard to prevent

• Defy detection, any degree of redundancy

• Defy infection

• (Defy masking)

• Versatile

• Many possible fault locations/effects

• Applicable to many symmetric schemes

• Evaluated on various platforms
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Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA)
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Fault Countermeasures - Detection

• Use redundancy to detect faults

• Fault detected → No ciphertext

• 2 identical faults necessary for attack

→ More redundancy, Enc-Dec, masking, etc...
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Fault Countermeasures - Infection

• Use redundancy, interleaved computation and

dummy rounds

• Faults are amplified s.t. ciphertext is not

related to the key anymore

• Key recovery not possible

• Attacks still possible but hard...
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Statistical Ineffective Fault Attacks (SIFA)

Combines ...

• Ineffective Fault Attacks (IFA) by Clavier et al. [Cla07]

+ Exploits only correct ciphertexts (similar to safe error attacks)

− Requires precise faults with known effect

• Statistical Fault Analysis (SFA) by Fuhr et al. [FJLT13]

+ Any fault, even if effect is unknown

− Mitigated by detection/infection

⇒ Statistical Ineffective Fault Attacks (SIFA)

+ Exploits only correct ciphertexts

+ Any fault, even if effect is unknown

5
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SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”
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SIFA Intuition
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SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8



Practical Results - Detection
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• ≈ 1 300 faulted encryptions

50 100 150 200 250

2−7

2−6

2−5

2−4

# Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 256A3

• HW-AES co-processor

• ≈ 220 correct ciphertexts

• ≈ 1 000 faulted encryptions
9



Practical Results - Detection

2 4 6 8 10

2−1

20

# Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 128D4

• SW-AES from AVR-crypto-lib

• ≈ 5 correct ciphertexts

• ≈ 1 300 faulted encryptions

50 100 150 200 250

2−7

2−6

2−5

2−4

# Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 256A3

• HW-AES co-processor

• ≈ 220 correct ciphertexts

• ≈ 1 000 faulted encryptions
9



Results - Infection by Tupsamudre et al. [TBM14]

• Clock glitch: ATXmega128D4

• SW-AES with infection

• 22 real + 11 dummy rounds

• ≈ 25 correct ciphertexts

• ≈ 6 500 faulted encryptions
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Results - Infection by Tupsamudre et al. [TBM14]
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Results - Infection by Tupsamudre et al. [TBM14]

• Clock glitch: ATXmega128D4

• SW-AES with infection

• 22 real + 66 dummy rounds

• ≈ 180 ciphertexts needed

• ≈ 46 000 faulted encryptions
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Summary

SIFA ...

• defies popular fault countermeasures: detection/infection

• requires hundreds/thousands faulted computations

• requires only one fault per computation

• does not require precise fault locations

• works with any type of fault, even if effect is unknown (→ blackbox attacks)

⇒ works for AE schemes (SAC 2018) [DMMP18]
→ including stream-cipher, sponge-based schemes

→ e.g. all CAESAR finalists

⇒ works for masked implementations (ASIACRYPT 2018) [DEG+18]
→ just faulting one share is sufficient

→ same performance, no real overhead

→ essentially independent of degree of masking and redundancy 13
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Thank you for your attention!
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