
SIFA: Exploiting Ineffective Fault Inductions on

Symmetric Cryptography

Christoph Dobraunig1, Maria Eichlseder1, Thomas Korak2, Stefan Mangard1, Florian Mendel2,

Robert Primas1

1Graz University of Technology, Austria

first.last@iaik.tugraz.at

2Infineon Technologies AG, Germany

first.last@infineon.com

mailto:first.last@iaik.tugraz.at
mailto:first.last@infineon.com

Outlook

We present fault attacks that are ...

• Hard to prevent

• Defy detection, any degree of redundancy

• Defy infection

• (Defy masking)

• Versatile

• Many possible fault locations/effects

• Applicable to many symmetric schemes

• Evaluated on various platforms

1

Outlook

We present fault attacks that are ...

• Hard to prevent

• Defy detection, any degree of redundancy

• Defy infection

• (Defy masking)

• Versatile

• Many possible fault locations/effects

• Applicable to many symmetric schemes

• Evaluated on various platforms

1

Outlook

We present fault attacks that are ...

• Hard to prevent

• Defy detection, any degree of redundancy

• Defy infection

• (Defy masking)

• Versatile

• Many possible fault locations/effects

• Applicable to many symmetric schemes

• Evaluated on various platforms

1

Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA)

ENC

PT

CT

2

Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA)

ENC

PT

CT*

2

Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA) CT

ENCENC

PT

CT*

2

Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA)

CTCT*

SUB KEYVERIFY

2

Fault Attacks

• Get device access:

• Set plaintexts

• Observe ciphertexts

• Cause (partially) erroneous computation

• Observe faulty and correct ciphertext

• Determine correct sub key guesses by

verifying output pairs

⇒ Differential Fault Attack (DFA)

CTCT*

SUB KEYVERIFY

2

Fault Countermeasures - Detection

• Use redundancy to detect faults

• Fault detected → No ciphertext

• 2 identical faults necessary for attack

→ More redundancy, Enc-Dec, masking, etc...

ENC

CT

ENC

PT

CT

CT

EN
C-

DE
TE

CT

3

Fault Countermeasures - Detection

• Use redundancy to detect faults

• Fault detected → No ciphertext

• 2 identical faults necessary for attack

→ More redundancy, Enc-Dec, masking, etc...
CT*

ENC

CT

ENC

PT

...

EN
C-

DE
TE

CT

3

Fault Countermeasures - Detection

• Use redundancy to detect faults

• Fault detected → No ciphertext

• 2 identical faults necessary for attack

→ More redundancy, Enc-Dec, masking, etc...
CT*

ENC ENC

PT

CT*

CT*

EN
C-

DE
TE

CT

3

Fault Countermeasures - Detection

• Use redundancy to detect faults

• Fault detected → No ciphertext

• 2 identical faults necessary for attack

→ More redundancy, Enc-Dec, masking, etc...
CT*

ENC ENC

PT

CT*

CT*

EN
C-

DE
TE

CT

3

Fault Countermeasures - Infection

• Use redundancy, interleaved computation and

dummy rounds

• Faults are amplified s.t. ciphertext is not

related to the key anymore

• Key recovery not possible

• Attacks still possible but hard...

EN

C

 E
N

C

 E

N
C

PT

CT

EN
C-

IN
FE

CT

4

Fault Countermeasures - Infection

• Use redundancy, interleaved computation and

dummy rounds

• Faults are amplified s.t. ciphertext is not

related to the key anymore

• Key recovery not possible

• Attacks still possible but hard...

EN

C

 E
N

C

 E

N
C

PT

%&$

EN
C-

IN
FE

CT

4

Fault Countermeasures - Infection

• Use redundancy, interleaved computation and

dummy rounds

• Faults are amplified s.t. ciphertext is not

related to the key anymore

• Key recovery not possible

• Attacks still possible but hard...

CT

SUB KEYVERIFY

%&$

4

Fault Countermeasures - Infection

• Use redundancy, interleaved computation and

dummy rounds

• Faults are amplified s.t. ciphertext is not

related to the key anymore

• Key recovery not possible

• Attacks still possible but hard...

CT

SUB KEYVERIFY

%&$

4

Statistical Ineffective Fault Attacks (SIFA)

Combines ...

• Ineffective Fault Attacks (IFA) by Clavier et al. [Cla07]

+ Exploits only correct ciphertexts (similar to safe error attacks)

− Requires precise faults with known effect

• Statistical Fault Analysis (SFA) by Fuhr et al. [FJLT13]

+ Any fault, even if effect is unknown

− Mitigated by detection/infection

⇒ Statistical Ineffective Fault Attacks (SIFA)

+ Exploits only correct ciphertexts

+ Any fault, even if effect is unknown

5

Statistical Ineffective Fault Attacks (SIFA)

Combines ...

• Ineffective Fault Attacks (IFA) by Clavier et al. [Cla07]

+ Exploits only correct ciphertexts (similar to safe error attacks)

− Requires precise faults with known effect

• Statistical Fault Analysis (SFA) by Fuhr et al. [FJLT13]

+ Any fault, even if effect is unknown

− Mitigated by detection/infection

⇒ Statistical Ineffective Fault Attacks (SIFA)

+ Exploits only correct ciphertexts

+ Any fault, even if effect is unknown

5

Statistical Ineffective Fault Attacks (SIFA)

Combines ...

• Ineffective Fault Attacks (IFA) by Clavier et al. [Cla07]

+ Exploits only correct ciphertexts (similar to safe error attacks)

− Requires precise faults with known effect

• Statistical Fault Analysis (SFA) by Fuhr et al. [FJLT13]

+ Any fault, even if effect is unknown

− Mitigated by detection/infection

⇒ Statistical Ineffective Fault Attacks (SIFA)

+ Exploits only correct ciphertexts

+ Any fault, even if effect is unknown

5

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

Ciphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts” Ciphertext

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertextCiphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertextCiphertextCiphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertextCiphertextCiphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertextCiphertextCiphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts”

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertextCiphertextCiphertext

6

SIFA on AES - Fault Injection Phase

Example for AES...

• Over multiple encryptions, state bytes are

uniformly distributed

• Fault somewhere between MC in round 8-9

• Goal is some non-uniform distribution

• Stuck-at fault, random fault, skips, flips...

• Fault Granularity: 1 bit → a few bytes

• Works even for ineffective faults

• i.e. a fault was injected but the computation

is still correct

• Attacker gets “access to subset of ciphertexts” CiphertextCiphertext

 R
O

UN
D

10

 R

O
UN

D
9

RO

UN
D

8

KEY ADD 10

SHIFT ROWS

SUB BYTES

KEY ADD 9

SHIFT ROWS

SUB BYTES

MIX COLUMNS

KEY ADD 8

MIX COLUMNS

SHIFT ROWS

:

CiphertextCiphertextCiphertext

6

SIFA Intuition

0 1 0 1

0 1

7

SIFA Intuition

0 1 0 1

0 1

7

SIFA Intuition

Bitflip

0 1 0 1

0 1

7

SIFA Intuition

Bitflip

0 1 0 1

0 1

7

SIFA Intuition

Rand

0 1 0 1

0 1

7

SIFA Intuition

Rand

0 1 0 1

0 1

7

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

SIFA on AES - Key Recovery Phase

• Collect set of correct ciphertexts C1 . . . Cn from faulted encryptions

• Guess 32-bit sub key K10 and calculate state Si in round 9 (K9 is not needed):

Si = MC−1 ◦ SB−1 ◦ SR−1(Ci ⊕K10)

• Measure uniformity of S1 . . .Sn using e.g. the Squared Euclidean Imbalance (SEI)

• Uniform distribuiton expected for wrong key candidate

• Non-uniform distribuiton expected for correct key candidate

• Key candidate corresponding to highest SEI is likely correct

8

Practical Results - Detection

2 4 6 8 10

2−1

20

Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 128D4

• SW-AES from AVR-crypto-lib

• ≈ 5 correct ciphertexts

• ≈ 1 300 faulted encryptions

50 100 150 200 250

2−7

2−6

2−5

2−4

Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 256A3

• HW-AES co-processor

• ≈ 220 correct ciphertexts

• ≈ 1 000 faulted encryptions
9

Practical Results - Detection

2 4 6 8 10

2−1

20

Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 128D4

• SW-AES from AVR-crypto-lib

• ≈ 5 correct ciphertexts

• ≈ 1 300 faulted encryptions

50 100 150 200 250

2−7

2−6

2−5

2−4

Correct ciphertexts

S
E
I

Correct key

Wrong keys

• Clock glitch on ATXmega 256A3

• HW-AES co-processor

• ≈ 220 correct ciphertexts

• ≈ 1 000 faulted encryptions
9

Results - Infection by Tupsamudre et al. [TBM14]

• Clock glitch: ATXmega128D4

• SW-AES with infection

• 22 real + 11 dummy rounds

• ≈ 25 correct ciphertexts

• ≈ 6 500 faulted encryptions

5 10 15 20 25 30

2−3

2−2

2−1

Correct ciphertexts

S
E
I

Correct key

Wrong keys

10

Results - Infection by Tupsamudre et al. [TBM14]

• Clock glitch: ATXmega128D4

• SW-AES with infection

• 22 real + 22 dummy rounds

• ≈ 34 correct ciphertexts

• ≈ 9 000 faulted encryptions

5 10 15 20 25 30 35
2−4

2−2

Correct ciphertexts

S
E
I

Correct key

Wrong keys

11

Results - Infection by Tupsamudre et al. [TBM14]

• Clock glitch: ATXmega128D4

• SW-AES with infection

• 22 real + 66 dummy rounds

• ≈ 180 ciphertexts needed

• ≈ 46 000 faulted encryptions

30 60 90 120 150 180 210
2−7

2−6

2−5

2−4

Correct ciphertexts

S
E
I

Correct key

Wrong keys

12

Summary

SIFA ...

• defies popular fault countermeasures: detection/infection

• requires hundreds/thousands faulted computations

• requires only one fault per computation

• does not require precise fault locations

• works with any type of fault, even if effect is unknown (→ blackbox attacks)

⇒ works for AE schemes (SAC 2018) [DMMP18]
→ including stream-cipher, sponge-based schemes

→ e.g. all CAESAR finalists

⇒ works for masked implementations (ASIACRYPT 2018) [DEG+18]
→ just faulting one share is sufficient

→ same performance, no real overhead

→ essentially independent of degree of masking and redundancy 13

Summary

SIFA ...

• defies popular fault countermeasures: detection/infection

• requires hundreds/thousands faulted computations

• requires only one fault per computation

• does not require precise fault locations

• works with any type of fault, even if effect is unknown (→ blackbox attacks)

⇒ works for AE schemes (SAC 2018) [DMMP18]
→ including stream-cipher, sponge-based schemes

→ e.g. all CAESAR finalists

⇒ works for masked implementations (ASIACRYPT 2018) [DEG+18]
→ just faulting one share is sufficient

→ same performance, no real overhead

→ essentially independent of degree of masking and redundancy 13

Summary

SIFA ...

• defies popular fault countermeasures: detection/infection

• requires hundreds/thousands faulted computations

• requires only one fault per computation

• does not require precise fault locations

• works with any type of fault, even if effect is unknown (→ blackbox attacks)

⇒ works for AE schemes (SAC 2018) [DMMP18]
→ including stream-cipher, sponge-based schemes

→ e.g. all CAESAR finalists

⇒ works for masked implementations (ASIACRYPT 2018) [DEG+18]
→ just faulting one share is sufficient

→ same performance, no real overhead

→ essentially independent of degree of masking and redundancy 13

Thank you for your attention!

14

References i

Christophe Clavier.

Secret external encodings do not prevent transient fault analysis.

In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and

Embedded Systems – CHES 2007, volume 4727 of LNCS, pages 181–194.

Springer, 2007.

Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard, Florian

Mendel, and Robert Primas.

Statistical ineffective fault attacks on masked AES with fault

countermeasures.
Cryptology ePrint Archive, 2018.
https://eprint.iacr.org/2018/357.

15

https://eprint.iacr.org/2018/357

References ii

Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert Primas.

Fault attacks on nonce-based authenticated encryption: Application to

keyak and ketje.

To appear at: Selected Areas of Cryptography, 2018.

Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard.

Fault attacks on AES with faulty ciphertexts only.

In Wieland Fischer and Jörn-Marc Schmidt, editors, Fault Diagnosis and Tolerance

in Cryptography – FDTC 2013, pages 108–118. IEEE Computer Society, 2013.

16

References iii

Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay.

Destroying fault invariant with randomization – A countermeasure for AES

against differential fault attacks.

In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and

Embedded Systems – CHES 2014, volume 8731 of LNCS, pages 93–111. Springer,

2014.

17

SIFA Intuition (cont.)

Stuck

0 1 0 1

0 1

18

SIFA Intuition (cont.)

0 1

0 1

Stuck

0 1

18

SIFA Intuition (cont.)

0 1

Stuck

0 1

0 1

18

