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Abstract. Side-channel countermeasure designers often face severe performance
overheads when trying to protect a device. Widely applied countermeasures such as
masking and shuffling entail generating a large amount of random numbers, which
can result in a computational bottleneck. To mitigate the randomness cost, this work
evaluates low-randomness versions of both masking and shuffling, namely Recycled
Randomness Masking (RRM) and Reduced Randomness Shuffling (RRS). These
countermeasures employ memory units to store generated random numbers and reuse
them in subsequent computations,making them primarily suitable for implementation
on devices with sufficient memory. Both RRM and RRS are evaluated using the
MI-based framework in the context of horizontal attacks. The evaluation exhibits
the tradeoff between the randomness cost and the noisy leakage security level offered
by the countermeasures, enabling the designer to fine-tune a masking or shuffling
scheme and maximize the security level achieved for a certain cost.
Keywords: SCA, RNG, masking, shuffling

1 Introduction
The continuously growing Internet of Things (IoT) is rapidly changing modern infras-
tructure. Several industrial sectors, including construction, IT, agriculture, energy and
automotive manufacturing, are already harnessing the transformative impact of IoT on
their products. The price drop of IoT devices has enhanced everyday objects with data
processing capabilities and network connectivity. Still, the two most important challenges
to IoT adoption are the high cost of investment, as well as current concerns about security
and privacy [ind]. When combined together, these challenges exacerbate the need for
devices that offer an adequate level of protection at a reasonable cost, thus motivating the
current line of research.

For instance, the option of power/electromagnetic side-channel attacks (SCA) allows
adversaries to recover sensitive data, by observing and analyzing the physical characteris-
tics and emanations of a cryptographic implementation [KJJ99]. Naturally, these attacks
have lead towards countermeasures that perform noise amplification to impede potential
adversaries. Two of the most widely deployed countermeasures in cryptographic implemen-
tations are masking and shuffling and they are often combined in order to enhance the
security level [CJRR99,VMKS12,RPD09]. In order to hinder the attacker, masking applies
secret-sharing techniques that randomize intermediate values, while shuffling randomizes
the order of the cryptographic blocks and/or the implementation’s instructions. As a
result, both countermeasures require random numbers to function, making on-chip random
number generation (RNG) a useful addition to the device.
∗The work described in this paper has been supported by the Netherlands Organization for Scientific

Research NWO under project ProFIL (628.001.007).

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 524–546
DOI:10.13154/tches.v2018.i3.524-546

mailto:kostaspap88@gmail.com
mailto:kostaspap88@protonmail.ch
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.524-546


Kostas Papagiannopoulos 525

In order to perform RNG, designers can opt to use a symmetric cipher structure as
a pseudo random number generator, relying for instance on either full-round or reduced-
round block cipher [GSF14] or on a stream cipher construct. Alternatively, they can opt
directly for physical RNG or for structures that use a physical random number generator to
seed deterministic random bit generators [BK]. When implementing masking or shuffling,
the RNG requirement imposes a non-negligible performance overhead that can impact
the latency/throughput of the cryptographic implementation. Even if it is possible to
perform the RNG procedure during idle phases of the device, the required computations
will directly impact the device’s energy consumption.

Recently, Faust et al. [FPS17], have introduced the concept of amortizing randomness
in a masking scheme, i.e. recycling the available randomness between several gadgets in
order to reduce the RNG cost. Their work establishes the notion of security with common
randomness (denoted as t−SCR) and provides composable (t−SNI) gadgets [BBD+16]
that achieve randomness recycling. However, their analysis relies on simulation-based
proofs that do not take into account the effect of recycling on the noise level of the device
and on the noise amplification stage of masking.

Our contribution. In this work, we put forward low-randomness versions of stan-
dard masking and shuffling countermeasures, which we refer to as Recycled Randomness
Masking (RRM) and Reduced Randomness Shuffling (RRS) respectively. RRM and RRS
are able to reduce the RNG overhead by employing memory units to store random numbers
and reuse them later, e.g. in subsequent executions of the protected cipher. Trading
RNG overhead for memory overhead implies that every random number that is reused
needs to be stored. As a result, the proposed RRM and RRS schemes are geared towards
microcontroller units and possibly high-end FGPAs, since such devices can offer a fairly
large amount of memory storage. On the contrary, the more strict area requirements in
ASIC devices, encourage recycling on-the-fly, similarly to Faust et al. [FPS17].

Subsequently, we investigate the noisy leakage security of RRM and RRS. We note that
the formal approach of Faust et al. [FPS17] has already investigated the t−SNI property
of certain RRM schemes, introducing t−SCR. In order to establish a more holistic notion
of security, we complement their approach by performing an analysis of a t−NI RRM
scheme under the noisy leakage model, using the MI framework for SCA [SMY09]. In
particular, we demonstrate how reducing the available randomness for performance/cost
reasons interacts with the noise amplification stages of RRM and RRS. Thus, we establish
a direct link between the randomness cost and the noisy leakage security level provided
by a countermeasure, i.e. we integrate the noise factor in our analysis. We conclude that
this randomness-security tradeoff constitutes a potent tool in the designer’s arsenal that
enables us to provide adequate security (in the noisy leakage model), while limiting the
computational cost that stems from RNG. In addition to the noise-oriented approach, we
provide several efficient t−NI custom multiplication gadgets for low-order RRM schemes.

The rest of this paper is organized as follows. In Section 2, we provide background
information w.r.t. masking, shuffling as well as the notation used throughout the paper.
In Section 3 we provide the improved RRM gadgets and analyze the noise amplification
stage of RRM. Similarly, we describe RRS and analyze its noise amplification stage in
Section 4. Conclusions and future directions are discussed in Section 5.

2 Background & Related Work
Notation. Random variables are denoted with capital letters. Instances of random
variables and constant values are denoted with lowercase letters. Capital bold letters are
used for random variable vectors and matrices, unless otherwise specified. Calligraphic font
denotes sets and sans serif fonts denote leakage functions. The identity leakage function is
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stated as Lid(.). Observable leakages of a certain intermediate value V (or its instance v)
are denoted using subscript LV (or Lv respectively). Leakages observed after a specific
cipher layer are denoted using superscript L<layer>. The average of leakage variables from
set S is denoted as L, i.e. L = (1/|S|) ∗

∑
v∈S Lv.

Boolean Masking. Chari et al., Goubin et al. and Messerges [CJRR99,GP99,Mes00]
were the first to suggest randomizing intermediate values with a secret sharing scheme,
forcing the adversary to analyze higher-order statistical moments. In detail, a dth-order
secure Boolean masking scheme splits a sensitive value x into d+ 1 shares (x0,x1, . . . ,xd),
as shown below.

x = x0 ⊕ x1 ⊕ · · · ⊕ xd

The shares (x0,x1, . . . ,xd) are also referred to as the (d+ 1)-family of shares corresponding
to x [RP10]. Assuming sufficient noise, it has been shown that the number of traces required
for a successful attack grows exponentially w.r.t. the security order d [CJRR99,PR13], i.e.
masking performs noise amplification. Several definitions have been used to specify the
formal security properties of a masking scheme, and we revisit the most relevant below.

Probing-secure scheme. We refer to a scheme that uses certain families of shares as
t−probing-secure iff any set of at most t intermediate variables is independent from the
sensitive values [ISW03].

Non-interfering scheme. We refer to a scheme as t−non-interfering (t−NI) iff any set
of at most t intermediate variables can be perfectly simulated with at most t shares of
each input [BBD+16].

Strongly non-interfering scheme. We refer to a scheme as strong non-interfering (t−SNI)
iff any set of at most t intermediate variables, where t1 are on the internal variables and
t2 on the output variables, can be perfectly simulated with at most t1 shares of each
input [BBD+16].

Multiplying two families of shares under an ISW Boolean masking scheme consists of
the computation of all partial products, as well as a compression algorithm that produces
the final result, while injecting randomness [ISW03,BBP+16]. Several implementation
techniques and evaluation strategies have been suggested in the context of masking.
With respect to implementation aspects, the techniques proposed range from lookup-
table techniques [Cor14,WVGX15] to GF -based circuits [CB08,RP10,GR16]. Regarding
the evaluation strategies, recent advances by Battistello et al. [BCPZ16] and Grosso et
al. [GS17], suggest that masked multiplications are prone to horizontal attacks, i.e. attacks
that exploit several noisy intermediate values that are computed during the scheme. In
this work, we put specific emphasis on the impact of horizontal exploitation to the noisy
leakage security level of the scheme.

In the application of Boolean masking schemes, secure multiplications require quadratic
data complexity w.r.t. randomness, in order to ensure the refreshing of partial products.
Initially, Rivain et al. [RP10] extended the ISW scheme [ISW03] and put forward a
d-private compression algorithm (RP) that can compute dth-order secure multiplications
in GF (2n) using d(d+ 1)/2, n-bit elements. Following, Belaïd, Benhamouda, Passelègue
et al. [BBP+16] suggested an improved d-private compression (BBP) that performs partial
product refreshing using bd2/4c+d random numbers for security orders d > 4. In addition,
they derived optimal compression algorithms for security orders d = 2, 3 and 4 which have
data complexity, respectively 2, 4 and 5 random elements per multiplication.

Despite recent efforts, it is notable that high-order masking implies a severe RNG
overhead. Making for instance a 2nd-order secure AES implementation with optimal
compression (2nd-order secure BBP) requires 10240 random bits per block encryption1.

1The cipher runs for 10 rounds consisting of 16 Sboxes, each requiring 32 GF (2) multiplications that
need 2 random elements for refreshing the partial products.
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Generating this amount of random bits with a pseudo AES-based random number gener-
ator in ATmega microcontrollers implies an optimistic cost of roughly 20k clock cycles
(2-round AES generator) and a pessimistic cost of 100k clock cycles (10-round AES genera-
tor) [GSF14,aes]. We observe that the pessimistic case is fairly close to the computational
cost of the 2nd-order secure AES on AVR devices [BFG+17], i.e. it amounts to approxi-
mately 38% of the clock cycles. Similarly, a 2nd-order secure PRESENT implementation
on an ARM Cortex-M device spends 25% of its execution time for TRNG [dGPdLP+17].
The severe overhead of RNG in masking countermeasures can render the implementation
cost prohibitive for small embedded devices and has led countermeasure designers towards
lightweight alternatives. Low-entropy masking schemes [BDGN13,GSP13] reduce the
randomness requirements by using masks chosen within a subset of all the possible masks,
yet if the leakage function is not linear, they may reduce the security order. Schemes that
amortize randomness [FPS17] can achieve similar goals without this shortcoming. In
similar lines of work, threshold implementations examined techniques that reduce or even
minimize the fresh randomness required to achieve uniformity [BDN+13,Dae17]. Still,
we stress that several of these schemes need to be evaluated in a fair manner, i.e. by
using horizontal leakage exploitation, such as the analysis carried out by Battistello et
al. [BCPZ16] and Grosso et al. [GS17].

Shuffling. The shuffling countermeasure results in spreading information over n dif-
ferent points in time, according to a random permutation Pn [RPD09]. The permutation
Pn is defined as a vector (P1, . . . ,Pn), where Pi represents the new position of element i
and thus Pn is defined over the set of all possible n-dimensional permutations Pn. For
instance, assume two independent variables X = (X1,X2) that leak L = (LX1 ,LX2) at
different points in time. The shuffling scheme will generate a 2-dimensional permutation
P2 s.t. LX1 =Lid(XP1) + noise and LX2 =Lid(XP2) + noise. Charvillon et al. [VMKS12]
have analyzed the security provided by shuffling, in addition to investigating several imple-
mentation techniques. Motivated by the increased cost of RNG, Veshchikov et al. [VML16]
investigated cheaper shuffling methods. We will refer to a permutation that shuffles n
independent operations of a specific cipher layer as P{o1,...,on}

n , where oi the ith operation
in the layer.

Similar to masking, applying the shuffling countermeasure implies a non-negligible
randomness cost. Specifically, generating a permutation for shuffling k independent
operations of the same type requires k ∗ dlog2(k)e random bits, using a slightly-biased
version of the Knuth shuffle algorithm [Knu97,VMKS12]. In a practical scenario, shuffling
only 16 AES Sboxes requires 640 random bits in total2. In order to deal with this RNG
overhead, previous work on the shuffling countermeasure opted to reduce the amount of
possible permutations (random start index), to shuffle only in selected rounds (partial
shuffling) or to use non-homogeneous shuffle patterns, where the amount of possible
permutations varied between cipher layers [HOM06,RPD09].

3 Recycled Randomness Masking - RRM
This section puts forward a low-randomness version of the standard Boolean masking
schemes, namely it introduces Recycled Randomness Masking (RRM). The novelty of
RRM lies in considering two or more masked multiplications simultaneously and sharing
randomness between their compression layers. Using this approach, we develop t−NI
gadgets that reduce the RNG overhead of masked ciphers and enable side-channel protection
at a modest budget. We commence with two elementary examples that will be used
throughout this section to illustrate the core recycling idea and we introduce additional

2The cipher runs for 10 rounds, permuting 16 independent operations of the same type (Sbox) per
round. Every permutation requires 16 ∗ dlog2(16)e random bits.
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z0 = x0y0 ⊕ w0 c0 = a0b0 ⊕ (t0 ← w0)
z1 = x1y1 ⊕ (w0 ⊕ x0y1)⊕ x1y0 c1 = a1b1 ⊕ ((t0 ← w0)⊕ a0b1)⊕ a1b0

(multiplication 1 ) (multiplication 2 )

Figure 1: RRM scheme applied on two 1st-order secure ISW multiplications, generating
random element w0 in multiplication 1 and recycling it in multiplication 2.

notation to describe generic RRM schemes (Section 3.1). We continue with section 3.2
which searches for optimized t−NI randomness-recycling gadgets using formal verification
techniques and applies them to the AES cipher. Finally, Section 3.3 analyzes the noise
amplification stage of RRM schemes and demonstrates the impact of recycling in the noisy
leakage model.

3.1 Recycling Randomness in Masking
We illustrate the application of RRM using two masked ISW multiplications z = xy and
c = ab. The multiplications are protected by ISW of security order d = 1 (Figure 1) or
ISW of security order d = 2 (Figure 2). Both examples assume 4 independent families of
shares (xi)0≤i≤d, (yi)0≤i≤d, (ai)0≤i≤d and (bi)0≤i≤d in GF (2). Values t0, t1, t2,w0,w1,w2
are random elements in GF (2) that are necessary to maintain probing security3.
In Figures 1 and 2, red-annotated variables are fresh random elements and green-annotated

z0 = x0y0 ⊕ w0 ⊕ w1
z1 = (w0 ⊕ x0y1)⊕ x1y0 ⊕ x1y1 ⊕ w2
z2 = (w1 ⊕ x0y2)⊕ x2y0 ⊕ (w2 ⊕ x1y2)⊕ x2y1 ⊕ x2y2

(multiplication 1 )

c0 = a0b0 ⊕ (t0 ← w0) ⊕ (t1 ← w1)
c1 = ((t0 ← w0)⊕ a0b1)⊕ a1b0 ⊕ a1b1 ⊕ t2
c2 = ((t1 ← w1)⊕ a0b2)⊕ a2b0 ⊕ (t2 ⊕ a1b2)⊕ a2b1 ⊕ a2b2

(multiplication 2 )

Figure 2: RRM scheme applied on two 2nd-order secure ISW multiplications, generating
random elements w0 and w1 in multiplication 1 and recycling them in multiplication 2.

variables are recycled random elements. The left-arrow assignment describes the recycling
of a random element in a different multiplication. For instance, in the 1st-order secure
ISW-based scheme of Figure 1, the element w0 is generated in multiplication 1 and it
is subsequently recycled in multiplication 2 (t0 ← w0). Likewise, the 2nd-order secure
example of Figure 2 showcases two ISW multiplications, which originally require 6 random
elements: (w0,w1,w2) and (t0, t1, t2). To tackle the RNG overhead, RRM generates 3
fresh random elements (w0,w1,w2) during multiplication 1 and recycles w0 in t0 and w1
in t1. Thus, the amount of random elements required in multiplication 2 is reduced from
three to a single random element (t2).

The proposed recycling technique can be generalized to more than two multiplications
of any order and to describe such generic RRM schemes we introduce the following
notation. We assume a gadget consisting of n dth-order secure masked multiplications,

3Throughout this work we consider elements in GF (2), yet our results and observations remain
applicable in larger fields.
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where every masked multiplication requires s random elements to maintain probing security,
e.g. multiplication i requires random elements (ri,1, ri,2, . . . , ri,s). We assume all the inputs
to the masked multiplications to be independent families of shares, which may require
fresh randomness in our implementation. In addition, we assume that at least one out
of n masked multiplications will generate fresh randomness. Subsequently we define a
recycle set R = {R1,R2, . . . ,Rn} that consists of sets Ri, 1 ≤ i ≤ n. Every set Ri

describes all the the fresh or recycled random elements ri,j , 1 ≤ i ≤ n, 1 ≤ j ≤ s that
the multiplication i is using to maintain probing security. Figure 1 for instance has
R = {{r1,1}, {r2,1}} = {{w0}, {w0}}, since the single random element w0 is generated
and used in multiplication 1 and it is reused (recycled) in multiplication 2. Similarly,
in Figure 2, R = {{r1,1, r1,2, r1,3}, {r2,1, r2,2, r2,3}} = {{w0,w1,w2}, {w0,w1, t2}}, since
random elements w0 and w1 are generated in multiplication 1 and they are recycled
in multiplication 2, while element t2 is generated in multiplication 2. If only a single
multiplication generates fresh random elements and all the other multiplications recycle
them, then it holds that R = {R1,R2, . . . ,Rn}, where Ri = Rj for all 1 ≤ i, j ≤ n.
Symmetrically, if no randomness gets recycled (a.k.a. standard masking), then it holds
that Ri ∩ Rj = ∅ for all 1 ≤ i, j ≤ n and i 6= j. To specify the RNG overhead when
recycling, we define the randomness cost of an RRM gadget with n multiplications as the
total amount of fresh random elements generated. E.g. in Figure 1 the randomness cost is
1 and in Figure 2 the cost is 4, while in general the cost of an RRM scheme with recycle
set R is |R1 ∪ · · · ∪ Rn|. The cost of standard masking of n multiplications (without
recycling randomness) is equal to n ∗ s. In addition, we define the masking recycle factor
frm of every random element in the RRM scheme as the number of times it has been
used in any multiplication. In the example of Figure 1, frm(w0) = 4, since it occurs twice
in every multiplication. Similarly, in the example of Figure 2, frm(w0) = frm(w1) = 4
and frm(w2) = frm(t2) = 2. It is noteworthy that the recycling of random numbers is
similar to the repeated access to shares observed by Battistello et al. [BCPZ16], where
the recycle factor of a share in dth-order secure scheme is shown to be equal to d + 1.
We will henceforth refer to a dth-order secure masking gadget with n multiplications and
recycle set R as RRM(d,n,R). It is important to stress that RRM necessitates storing and
fetching the recycled random elements. Let gain g = n∗s−|R1∪· · ·∪Rn| be the reduction
in randomness cost achieved by an RRM(d,n,R) scheme. RRM requires g less random
elements and at most g extra storage units, depending on how many times the elements
are recycled. In addition, RRM requires at most g extra store and fetch instructions when
recycling. For example, in Figure 2 the gain g = 2 ∗ 3− |{w0,w1,w2} ∪ {w0,w1, t2}| = 2
and it implies 2 extra storage units (w0 and w1), 2 extra store instructions and 2 extra
fetch instructions.

3.2 Efficient RRM Multiplication Gadgets
As demonstrated, the core contribution of RRM is to reduce the randomness cost of n
multiplications below the n ∗ s random elements which are required by standard masking.
Notably, both ISW and BBP schemes are already reusing random elements during the
compression layer of a single multiplication, while maintaining dth-order probing security4.
Still, excessive recycling between multiplications can lead to RRM gadgets that are no
longer probing-secure. For instance, assume the ISW-based RRM(2, 2,R) gadget of Section
3.1, Figure 2 with recycle set R = {{w0,w1,w2}, {w0,w1,w2}}, i.e. 3 fresh elements
are generated in multiplication 1 and they are all recycled in multiplication 2. Then,
the tuple (z2, c2) depends on the sensitive values x, y, a and b simultaneously, because

4ISW uses a symmetric compression structure that reuses every random number once, thus requiring
half as many numbers as the naive solution. BBP uses a less regular structure which also reuses every
fresh number once.
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Table 1: Randomness cost of optimized RRM schemes for n = 2 multiplications.
Scheme compression

ISW security order d BBP security order d
1 2 3 1 2 3

Recycling yes 1 4 8 1 2 6
no 2 6 12 2 4 8

Table 2: Storage cost of optimized RRM schemes for n = 2 multiplications, assuming no
storage is needed when recycling within a single multiplication (large register file).

Scheme compression

ISW security order d BBP security order d
1 2 3 1 2 3

Recycling yes 1 2 4 1 2 2
no 0 0 0 0 0 0

z2⊕ c2 = x0y2⊕ x2y0⊕ x1y2⊕ x2y1⊕ x2y2⊕ a0b2⊕ a2b0⊕ a1b2⊕ a2b1⊕ a2b2. Since there
exists such a tuple (z2, c2), the particular RRM gadget is not 2nd-order probing-secure.

As a result, this section proposes t−NI optimized multiplication gadgets that are
capable to recycle a large amount of randomness. Analytically, for an RRM(d,n,R)
gadget, we search for recycle sets R that minimize the randomness cost, while the gadget
remains t−NI. We focus on small orders (d = 1, 2, 3) and two multiplications per gadget
(n = 2) due to their practical relevance in implementations. To detect potential security
flaws, we use the Lisp-based formal verification tool suggested by Coron [Cor17]. The
tool generates all possible tuples of intermediate values (with dimension less or equal to
d) that stem from the RRM(d,n,R) gadget and verifies the t−NI property using circuit
transformations. This process is repeated for all recycle sets R that ensure the correctness
of the scheme, rejecting the insecure choices and identifying the optimized recycle set that
minimizes the randomness cost.

The performed brute-force search of Algorithm 3a is carried out for both ISW-based
and BBP-based schemes5 and Figures 3b until 3f demonstrate the optimized t−NI gadgets.
The randomness and storage requirements of the proposed RRM gadgets are demonstrated
in Tables 1 and 2, which confirm that RRM is capable of reducing the randomness cost
substantially when compared to standard masking. It remains an open research question to
quantify how much the lack of composability (strong non-interference) affects the efficiency,
i.e. how many additional refresh layers will be required in the scheme in order to provide
a fair comparison with the work of Faust et al. [FPS17]. On the application of
RRM gadgets to the AES Sbox. Applying these novel randomness-recycling gadgets
in the AES cipher is extremely straightforward. Assume a 1st-order secure masked AES
cipher that uses the Boyar-Peralta decomposition [BP10] in the Sbox implementation,
i.e. the Sbox requires 32 multiplications in GF (2). During the first execution of the
AES cipher, we generate all the necessary random elements without any recycling, i.e.
for the first full Sbox execution we need 16 ∗ 32 ∗ 1 = 512 random elements, resulting
in 10 ∗ 512 = 5120 random elements for 10 rounds of Sbox executions. During the
second independent execution of the AES cipher every Sbox multiplication can recycle
the randomness generated in the respective multiplication of the first execution, since the
gadget RRM(1, 2, {{r1}, {r1}}) is t−NI (Figure 3b). Thus, the Sbox-related RNG cost of

5Running the tool on an Intel Core i7-4719HQ @ 2.5GHz requires minutes to verify 1st and 2nd-order
secure RRM gadgets and can reach approximately 5 hours for the verification of 3rd-order secure RRM
gadgets.
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n: number of multiplications
R: recycle sets
d: security order of multiplications
Td: d-sized tuples
procedure RecycleSetSearch(n,d)

for all R do
Generate Td for RRM(d, n,R)
for all tuples t ∈ Td do

Verify t−NI of t
if secure ∀t ∈ Td then

Compute RandomnessCost(R)

(a) Brute-force search algorithm.

z0 = x0y0 ⊕ r1
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0

c0 = a0b0 ⊕ r1
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0

(b) ISW RRM(1, 2, {{r1}, {r1}})
randomness/storage cost = 1

z0 = x0y0 ⊕ r1 ⊕ r2
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0 ⊕ r3
z2 = x2y2 ⊕ (r2 ⊕ x0y2)⊕ x2y0 ⊕ (r3 ⊕ x1y2)⊕ x2y1

c0 = a0b0 ⊕ r1 ⊕ r2
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0 ⊕ r4
c2 = a2b2 ⊕ (r2 ⊕ a0b2)⊕ a2b0 ⊕ (r4 ⊕ a1b2)⊕ a2b1

(c) ISW RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4})
randomness cost = 4, storage cost = 2

z0 = x0y0 ⊕ r1 ⊕ x0y2 ⊕ x2y0
z1 = x1y1 ⊕ r2 ⊕ x0y1 ⊕ x1y0
z2 = x2y2 ⊕ r1 ⊕ r2 ⊕ x1y2 ⊕ x2y1

c0 = a0b0 ⊕ r1 ⊕ a0b2 ⊕ a2b0
c1 = a1b1 ⊕ r2 ⊕ a0b1 ⊕ a1b0
c2 = a2b2 ⊕ r1 ⊕ r2 ⊕ a1b2 ⊕ a2b1

(d) BBP RRM(2, 2, {{r1, r2}, {r1, r2}})
randomness/storage cost = 2, left-to-right evaluation

z0 = x0y0 ⊕ r1 ⊕ r2 ⊕ r3
z1 = x1y1 ⊕ (r1 ⊕ x0y1)⊕ x1y0 ⊕ r4 ⊕ r5
z2 = x2y2 ⊕ (r2 ⊕ x0y2)⊕ x2y0 ⊕ (r4 ⊕ x1y2)⊕ x2y1 ⊕ r6
z3 = x3y3 ⊕ (x2y3 ⊕ r6)⊕ x3y2 ⊕ (x1y3 ⊕ r5)⊕ x3y1 ⊕ (x0y3 ⊕ r3)⊕ x3y0

c0 = a0b0 ⊕ r1 ⊕ r2 ⊕ r3
c1 = a1b1 ⊕ (r1 ⊕ a0b1)⊕ a1b0 ⊕ r7 ⊕ r8
c2 = a2b2 ⊕ (r2 ⊕ a0b2)⊕ a2b0 ⊕ (r7 ⊕ a1b2)⊕ a2b1 ⊕ r6
c3 = a3b3 ⊕ (a2b3 ⊕ r6)⊕ a3b2 ⊕ (a1b3 ⊕ r8)⊕ a3b1 ⊕ (a0b3 ⊕ r3)⊕ a3b0

(e) ISW RRM(3, 2, {{r1, r2, r3, r4, r5, r6}, {r1, r2, r3, r7, r8, r6}}), randomness cost = 8, storage
cost = 4

z0 = x0y0 ⊕ r1 ⊕ x0y3 ⊕ x3y0 ⊕ r2 ⊕ x0y2 ⊕ x2y0
z1 = x1y1 ⊕ r3 ⊕ x1y3 ⊕ x3y1 ⊕ r2 ⊕ x1y2 ⊕ x2y1
z2 = x2y2 ⊕ r4 ⊕ x2y3 ⊕ x3y2
c3 = a3b3 ⊕ r4 ⊕ r3 ⊕ r1 ⊕ a0b1 ⊕ a1b0

c0 = a0b0 ⊕ r1 ⊕ a0b3 ⊕ a3b0 ⊕ r5 ⊕ a0b2 ⊕ a2b0
c1 = a1b1 ⊕ r3 ⊕ a1b3 ⊕ a3b1 ⊕ r5 ⊕ a1b2 ⊕ a2b1
c2 = a2b2 ⊕ r6 ⊕ a2b3 ⊕ a3b2
z3 = a3b3 ⊕ r6 ⊕ r3 ⊕ r1 ⊕ a0b1 ⊕ a1b0

(f) BBP RRM(3, 2, {{r1, r2, r3, r4}, {r1, r5, r3, r6}}), randomness cost = 6, storage cost = 2, left-
to-right evaluation

Figure 3: Efficient RRM gadgets
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two AES executions is reduced from 10240 to 5120, i.e. RRM achieves a 50% reduction
of the RNG overhead, at the penalty of 5120 element storage, 5120 store and 5120 fetch
instructions6. In a similar fashion, we can apply the 3rd-order secure BBP-based RRM
scheme. During the first AES execution we generate 10 ∗ 16 ∗ 32 ∗ 4 = 20480 random
elements and in the second AES execution we recycle part of them using the specification
of the BBP(2, 2, {{r1, r2, r3, r4}, {r1, r5, r3, r6}}) gadget of Figure 3f. In this case, RRM
achieves a 25% RNG reduction, while storing and fetching 20480 elements. Proving the
t−NI property for RRM gadgets with more than 2 multiplications (n > 2) can enable
recycling between more than 2 independent AES executions.

3.3 RRM Noise Amplification
The previous section (Section 3.2) pinpointed the first pitfall of RRM schemes, i.e. how
excessive recycling can result in gadgets that are not probing-secure. Having tackled this
issue for low-order gadgets with formal methods, we proceed towards the second pitfall
of RRM. Namely, excessive recycling is hazardous to the noise amplification stage of
masking, even when the gadget is probing-secure. Specifically, this section analyzes the
noise amplification stage of several t−NI RRM gadgets of Section 3.2, using the mutual
information metric suggested by Standaert et al. [SMY09]. In other words, we evaluate
the proposed “recycling” countermeasure in the noisy leakage model and compare it to
standard masking schemes. The effectiveness of the noise amplification stage of RRM
largely depends on the adversary’s capability to observe multiple noisy intermediate values
during the gadget’s execution. We refer to this capability as horizontal exploitation and
we consider the following cases (C1-C3), in ascending order of adversarial strength:

C1 Naive-tuple attack. The adversary exploits a single noisy (d+1)-tuple of the RRM
gadget and disregards any repetition of noisy intermediate values. This scenario
is equivalent to an attack against a non-recycling scheme that disregards intra-
multiplication repetitions.

C2 Chosen-tuple attack. First, the adversary observes the noisy leakage of share
repetitions (noted also by Battistello et al. [BCPZ16]) and the noisy leakage of
random element repetitions (noted in this work as “randomness recycling”) in the
gadget. Second, he averages the observed noisy leakages in order to denoise the
side-channel emission. Finally, he exploits a chosen leakage (d+ 1)-tuple of the RRM
gadget that takes advantage of the denoising.

C3 Full-state attack. First, the adversary observes the noisy leakage of share rep-
etitions and random element repetitions in the gadget. Second, he averages the
observed leakages in order to denoise the side-channel emission. Finally, he exploits
the full state, i.e. all leaky intermediate values of the RRM gadget.

For our information-theoretic analysis (cases C1-C3), we introduce the following notation
to describe the leaky intermediate values and the noisy leakage of RRM gadgets. In a given
(d+ 1)-tuple of intermediate values, let random variable S be the sensitive (key-dependent)
intermediate value under attack and let random variables M0, . . . ,Md−1 be the masks
used to protect the sensitive value. The leakage of a (d+ 1)-tuple is described using the
following random vector: L = (LS⊕d−1

i=0 Mi
,LM0 , . . . ,LMd−1) + N, where LS⊕d−1

i=0 Mi
= Lid

(S⊕M0⊕· · ·⊕Md), LMi = Lid (Mi), 0 ≤ i ≤ d−1 and N is a (d+ 1)-dimensional random
vector representing Gaussian noise. We assume independent and equal noise σ2 in every
sample, i.e. diagonal noise covariance matrix and Li ∼ N (µi,σ2), 0 ≤ i ≤ d.

In the naive-tuple case C1, the adversary disregards the multiple accesses to the family
shares (due to the structure of the masking scheme) and also disregards the random

6The actual number of instructions depends on the architecture.
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element repetition (due to recycling), thus he cannot observe any repeated leakages. In
other words, the noise amplification stage in the C1 case is equivalent to that of standard
Boolean masking. This naive case is only applicable if the evaluator cannot identify and
locate the sample positions of the repeated leakages.

Contrary to C1, the chosen-tuple case C2 assumes that the adversary can locate the
leakage sample position of repeated shares and recycled random elements, yet he is still
limited to exploit a single (d+ 1)-tuple of leaky intermediate values for his attack. The
number of repetitions of a specific random element or share v in the RRM gadget is equal
to its recycle factor frm(v). Averaging all available samples that leak value v results in
substantial noise reduction, i.e. Lv ∼ N (µv,σ2/frm(v)), which the adversary can use in
order to diminish the noise amplification effect of masking. Specifically, he can target
a carefully chosen (d+ 1)-tuple of leaky intermediate values, whose leakages have been
noise-reduced beforehand. For instance, going back to the example of Section 3.1 - Figure
2, a sufficient (yet not efficient) attack tuple for RRM(2,2,{{w0,w1,w2}, {w0,w1, t2}})
is (x0y0,x1y1,x2y2). Since all the intermediate values of the tuple appear only once, it
holds that Lxiyi ∼ N (µxiyi ,σ2) for 0 ≤ i ≤ 2 and the noise amplification is the same as
standard masking. A more efficient choice is tuple (z2,w1,w2), where Lz2 ∼ N (µz2 ,σ2),
yet Lw1 ∼ N (µw1 ,σ2/4) and Lw2 ∼ N (µw2 ,σ2/2), because frm(w1) = 4 and frm(w2) = 2.

To highlight the effects of recycling on the noisy leakage model, we performed an
MI-based evaluation for 1st and 2nd-order secure ISW RRM gadgets that are proposed in
Section 3.2. We make various choices w.r.t. the recycling factor (frm ranges from 1 to 10)
and the strength of horizontal exploitation (we consider both naive-tuple C1 and chosen-
tuple C2 adversaries). The experiments are described in Table 3. Naturally, the evaluation
depends on the aforementioned parameters, yet we stress that it is adaptable to all RRM
choices made by the countermeasure designer. Concretely, computing the MI-metric for
a (d+ 1)-tuple requires summing over the randomness vector M = (M0, . . . ,Md−1) and
computing (d+ 1)-dimensional integrations [GS17]. The resulting MI vs. noise variance
plot is visible in Figure 4 (left). In addition to the MI-metric, we use the conjecture of Duc
et al. [DFS15], in order to approximate the number of traces required to perform a key
recovery in the high-noise regime. Analytically, we use the bound #traces ≥ H[S]

MI(S;L)d+1

and the no. of traces vs. noise variance plot is visible in Figure 4 (right).

MI(S; L) = H[S] +
∑
s∈S

Pr[s] ·
∑

m∈Md

Pr[m] ·
∫

l∈L(d+1)

Pr[l|s, m] · log2Pr[s|l] dl

where Pr[s|l] =
∑

m∗∈R Pr[l|s, m∗]∑
s∗∈S

∑
m∗∈R Pr[l|s∗, m∗]

The evaluation results of 1st and 2nd-order secure RRM (cases C1 and C2) are visible
in Figure 4 (left), from which we derive three core observations. First, we note that the
intermediate values used by the attacker affect directly the RRM evaluation, i.e. the
attacker can reduce the security level only by including the average leakage of the repeated
random elements or shares in his attack. If the noise-reduced leakages are disregarded
(Figure 4 solid red and solid blue lines), then the noise amplification remains intact and
equivalent to standard masking of the same order. Second, assuming the right tuple is
chosen, we observe that increasing the total recycle factor shifts the MI-curve to the right,
i.e. the amount of recycling (modest or excessive) indeed damages the noise amplification
stage of the scheme. This shift is visible between the dashed blue line (modest recycling)
and the dotted blue line (excessive recycling). Note also that excessive recycling may
increase the MI of a 2nd-order secure gadget above the MI of a 1st-order secure scheme.
Third, we conclude that the RRM technique is in fact a tradeoff between the mutual
information level achieved and the randomness cost required. This fact solidifies it as a
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Figure 4: MI evaluation and no. traces bound for 1st and 2nd-order secure RRM schemes
with 2 multiplications, assuming naive-tuple (C1 - equivalent to std. masking) and chosen-
tuple (C2) adversaries. The evaluation considers gadgets with modest and excessive
recycling. Blue lines denote 2nd-order attack (vs. 1st-order RRM) and red lines denote
3rd-order attack (vs. 2nd-order RRM).

lightweight alternative to standard masking that can be used by countermeasure designers
when the randomness cost becomes prohibitive in a certain application context. Naturally,
the designer needs to always be aware of the device’s noise level in order to adapt RRM
order and recycle set accordingly.

In case C3, the adversary is capable of exploiting the full state of a multiplication,
which implies a computational overhead in the MI-formula due to the increase in the
integral dimension and the scheme order. In order to bypass this limitation, we simplify the
computation of MI, using the approach established by Grosso et al. [GS17]. Analytically,
in order to include the (d+ 1)2 partial products in our evaluation, we use the information
bound established by Prouff et al. [PR13], stating that the multiplication’s leakage is
roughly 1.72(d + 1) + 2.72 times the leakage of a (d + 1)-tuple. Computing the bound
reduces the evaluation of an RRM multiplication to the evaluation of a single (d + 1)-
tuple. We also employ the independent shares’ leakage assumption to reduce the leakage
vector from the information of a (d + 1)-tuple X to the information of a single share
Xi, i.e. LX = LXi

[DFS15]. However, simplifying to a single-share evaluation does not
directly capture the noise reduction issue of RRM, caused by random element and/or
share repetitions. To incorporate the noise reduction in our evaluation, we consider the
worst-case scenario were the adversary is able to reduce the noise of all intermediate
values by a recycle factor fmax

rm . The factor fmax
rm is the maximum recycle factor observed

in any random number or share, e.g. in the gadget RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}),
the maximum recycling is observed on random numbers r1 and r2, thus fmax

rm = 4.
Note that fmax

rm may stem from either repetitions of random numbers or repetitions of
shares. The bound constructed is conservative, since we assume an adversary that can
average every noisy intermediate value of the encoding by the maximum recycle factor,
i.e. LXi

∼ N (µXi
,σ2/fmax

rm ), 0 ≤ i ≤ d. Still, it provides an efficient alternative to direct
computation of the MI formula and demonstrates the evaluation trend for RRM schemes
in the high-noise regime. It remains open whether closer bounds can be derived for such
scenarios. In Figure 5 (left) we demonstrate the MI evaluation of 2nd and 3rd-order secure
RRM schemes, with known recycle factor fmax

rm shown in Table 2, using the conservative
bound which raises MI(Xi;LXi

) to the security order. In Figure 5 (right) we demonstrate
the no. of traces bound.
On practical attacks and realistic leakage models. The non-trivial data complexity
of the optimal attacks for large order d and large amount of integral dimensions, has
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Table 3: t−NI RRM gadgets analyzed in the noisy leakage model assuming naive-tuple
(C1) and chosen-tuple (C2) adversaries. The attacks exploit a large amount of the available
recycling (case C2, excessive recycling) or a small amount of recycling (case C2, modest
recycling) or they disregard recycling (case C1).

Attack description RRM(d, n,R) gadget Attack tuple Recycle factor frm

Naive-tuple 1st-order secure
2nd-order attack RRM(1, 2, {{r1}, {r1}}) (x0y0, x1y1) frm(x0y0) = 1
modest recycling frm(x1y1) = 1
Chosen-tuple 1st-order secure

2nd-order attack RRM(1, 2, {{r1}, {r1}}) (z1, r1) frm(z1) = 1
modest recycling frm(r1) = 2
Chosen-tuple 1st-order secure

2nd-order attack RRM(1, 10, {{r1}, . . . , {r1}}) (z1, r1) frm(z1) = 1
excessive recycling frm(r1) = 10

Naive-tuple 2nd-order secure
3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) (z0, z1, z2) frm(z0) = 1
modest recycling frm(z1) = 1

frm(z2) = 2
Chosen-tuple 2nd-order secure

3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) (z2, r2, r3) frm(z2) = 1
modest recycling frm(r2) = 4

frm(r3) = 2

Table 4: t−NI RRM gadgets analyzed using a conservative bound assuming naive-tuple
(C1) and full-state (C3) adversaries.

Attack description RRM(d, n,R) gadget Attack tuple Recycle factor frm

Naive-tuple 2nd-order secure
3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) full state fmax

rm = 4
Chosen-tuple 2nd-order secure

3rd-order attack RRM(2, 2, {{r1, r2, r3}, {r1, r2, r4}}) full state fmax
rm = 4

Naive-tuple 3rd-order secure
4th-order attack RRM(3, 2, {{r1, r2, r3, r4, r5, r6},

{r1, r2, r3, r7, r8, r6}}) full state fmax
rm = 4

Naive-tuple 3rd-order secure
4th-order attack RRM(3, 2, {{r1, r2, r3, r4, r5, r6},

{r1, r2, r3, r7, r8, r6}}) full state fmax
rm = 4
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Figure 5: MI evaluation for 2nd and 3rd-order secure RRM schemes comparing naive-tuple
(C1) with full-state attack (C3). Blue lines denote 3rd-order attack (vs. 2nd-order RRM)
and red lines denote 4th-order attack (vs. 3rd-order RMM).

led to the development of heuristic attacks that combine the horizontal information of
several leaking instructions in a sub-optimal, yet efficient manner. To demonstrate this,
we provide two types of heuristic horizontal attacks on simulated leakages of a 1st-order
secure gadget with 16 multiplications, namely RRM(1, 16, {{r1}, . . . , {r1}}). First, we
employ the chosen-tuple attack (C2), where the attacker chooses a (d+ 1)-tuple of leakages
whose values have been sufficiently denoised by averaging the respective repetitions. The
horizontal exploitation of this heuristic attack implies a small overhead for the adversary,
namely he needs to perform an averaging pre-processing step. Consecutively, the adversary
will employ the noise-reduced tuple in order to attack using Correlation Power Analysis
(CPA) [BCO04]. The second heuristic attack that we use in order to exploit horizontally
the simulated traceset is a Soft Analytical Side-Channel Attack (SASCA) [VGS14], applied
in the context of masking [GS17]. The SASCA performs the same averaging during the
preprocessing step of the first heuristic attack. Continuing, it exploits the full state of a
multiplication by constructing a factor graph and using a belief propagation algorithm.
The horizontal exploitation of SASCA implies an overhead depending on the factor graph.
The results of the two heuristic attacks and the results of the naive-tuple CPA attack
without noise averaging (C1) are visible in Figure 6a. As expected, the additional effort
w.r.t. horizontal exploitation of the SASCA attack improves the success rate compared to
C1 and C2.

Moreover, throughout this work we assumed an idealized leakage noisy leakage model,
namely independent shares that leak according to the identity function. In practice,
several devices showcase order reduction due to various device effects such as glitches,
distance-based leakages and coupling [PV17]. We demonstrate this effect on Figure 6b,
using a 3rd-order secure RRM scheme and the order-reduction theorem of Balasch et
al. [BGG+14], which states that distance-based leakages can reduce the security order
from d to bd−1

2 c. The red and blue lines of Figure 6b give the lower and upper security
bounds caused by a large class of real-world leakage flaws.

On the necessity of a noise-based analysis. We conclude this section by show-
casing the importance of a noise-oriented analysis of RRM using the following custom
scenario. Assume an RRM gadget that recycles a single random number between n
1st-order secure ISW multiplications with mutually independent inputs, where n is large.
Trivially, an ISW-based proof shows such a case to be secure, because the adversary can
probe only a single intermediate value and thus cannot view multiple recyclings. Thus,
we can recycle a random number infinitely while the scheme remains probing-secure. In
practice however, the noise level of the leaking random number can be eliminated by
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(a) Success rate of naive, chosen-tuple and
SASCA attacks on simulated traces of 1st-order
secure RRM with frm = 16.

(b) Security of 3rd-order secure RRM scheme
under ideal (blue line) and order-reduced leakage
(red line). The order-reduced line is equivalent
to 1st-order secure RRM.

Figure 6: Practical attacks and realistic leakage models

averaging the recyclings. A noise-based analysis such as the MI metric or the SASCA can
exploit recycling horizontally and is essential to quantify the security damage. If instead
the attack remains naive, it may lure the evaluator into a false sense of security.

4 Reduced Randomness Shuffling - RRS
Motivated by the recycling ideas of Section 3, we use a similar approach on the popular
shuffling countermeasure against side-channel analysis. Analytically, we put forward the
Reduced Randomness Shuffling (RRS) countermeasure which consists of three shuffling
variants that can alleviate the randomness cost involved. In Section 4.1 we analyze how
RRS reduces the randomness cost compared to standard shuffling. Section 4.2 analyzes
the susceptibility of RRS to horizontal/multivariate attacks in the noisy leakage model.

4.1 Reducing Randomness in Shuffling
To achieve the goal of RNG reduction, we explore the following three variants: partitioned,
merged and recycled shuffling. We demonstrate these three variants using a generic
structure of layers and independent operations. In particular, we assume that the cipher
we want to shuffle can be described by the layer set L = {L1,L2, . . . ,Ln} that consists
of sets Li, 1 ≤ i ≤ n. Every set Li describes s independent operations that constitute
this layer, e.g. Li = {oi,1, oi,2, . . . , oi,s}. The partitioning of a cipher into layers and of
layers into independent operations rests upon the countermeasure designer and it is closely
related to the cipher implementation. For instance, the independent operations may range
from whole cipher parts (e.g. shuffling Sboxes) to individual assembly operations (e.g.
shuffling key-dependent instructions). We will refer to a Reduced Randomness Shuffling
scheme that shuffles independent operations according to the layer set L as RRS(L). In
addition we specify the randomness cost of the RRS countermeasure as the total RNG
overhead required to shuffle the cipher according to layer set L. Figures 7a-7d illustrate
the application of RRS on a layered structure.

The example of Figure 7a commences with an RRS scheme that shuffles a cipher
structure, using n = 2 layers and s = 4 independent operations per layer, i.e. layer
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set L = {{o1,1, o1,2, o1,3, o1,4}, {o2,1, o2,2, o2,3, o2,4}}. Both layers are shuffled using two
different permutations on 4 operations, namely permutations PL1

4 and PL2
4 . Thus, the

randomness cost for a single execution of the 2-layer structure is |R| ∗ |Ri| ∗ dlog2(|Ri|)e =
2 ∗ 4 ∗ log2(4) = 16 bits.

To scale down the randomness cost, partitioned shuffling splits vertically a set of
independent operations Ri into two or more smaller subsets that are cheaper to shuffle.
For instance, in Figure 7b, instead of shuffling a single set of 4 independent operations
L1 = {o1,1, o1,2, o1,3, o1,4}, we opt to partition L1 in two subsets of 2 independent operations
each. Thus, we will partition L1 to L′1 = {o1,1, o1,2} and L′′1 = {o1,3, o1,4}. An analogous
partitioning is done in L2, resulting in L′2 = {o2,1, o2,2} and L′′2 = {o2,3, o2,4}. We define
the granularity of this vertical partitioning as the partition factor fp, where fp = 1 implies
no partitioning. Performing partitioned shuffling with factor fp on |Ri| independent
operations reduces the randomness cost of layer i to |Ri| ∗ dlog2(|Ri|/fp)e. In the example
of Figure 7b, we use fp = 2 on both cipher layers and we replace PL1

4 and PL2
4 with PL

′
1

2

and PL
′
2

2 respectively, reducing the cost of a single execution from 16 to 8 bits.
To similar ends, the merged shuffling variant combines several cipher layers horizontally

in order to permute them together. The example of Figure 7c views L1 and L2 as a single
layer and shuffles them using the same permutation. That is, we merge PL1

4 and PL2
4

into permutation PL′′4 , s.t. L′′ = {{o1,1, o2,1}, {o1,2, o2,2}, {o1,3, o2,3}, {o1,4, o2,4}}. We
define the granularity of this horizontal combination as the merge factor fm, where fm = 1
implies no merging and observe that merged shuffling can reduce the randomness cost
of a single iteration to (|R|/fm) ∗ k ∗ dlog2(|Ri|)e. Naturally, merging and partitioning
can be combined, resulting in randomness cost of (|R|/fm) ∗ |Ri| ∗ dlog2(|Ri|/fp)e bits
per iteration. Still, different cipher layers can present a different number of independent
operations for partitioned/merged shuffling and thus may need to be homogenized by
shuffling additional dummy operations.

Last, recycled shuffling opts for the “external” recycling of the generated permutation,
i.e. we reuse a permutation between different executions or rounds of the cipher structure.
In Figure 7d, the layer L1 of cipher execution no. 1 and the layer L1 of cipher no.
2 are independent, yet they are shuffled with the same permutation PL1

4 . We define
the recycle factor of shuffling frs as the number of repetitions of a permutation in
different cipher iterations, i.e. frs = 1 implies no recycling. Recycled shuffling can
reduce the randomness cost of a certain layer i from (#executions) ∗ |Li| ∗ dlog2(|Li|)e to
(#executions/frs) ∗ |Li| ∗ dlog2(|Li|)e.

We note that only recycled shuffling implies an overhead due to storage units and
store/fetch instructions, while partitioned and merged shuffling simply use less randomness.
The overhead relates to the recycle factor of shuffling, i.e. reusing the same permutation
results in frs extra store/fetch instructions and a memory unit to store the random number.
On the application of RRS to the AES cipher. Assume that the countermea-
sure designer focuses on the first two layers of the AES cipher, namely KeyAddition
(ka) and Sbox (sb). The standard way to shuffle them would require two permuta-
tions on 16 independent operations, i.e. PKA

16 and PS
16, costing 128 random bits per

round, resulting in 1280 bits for 10 rounds of AES. Alternatively, the designer can
opt to partition both layers with partition factor fp = 4, i.e. split {ka1, . . . , ka16}
and {sb1, . . . , sb16} into {ka1, . . . , ka4}, {ka5, . . . , ka8}, {ka9, . . . , ka12}, {ka13, . . . , ka16}
and {sb1, . . . , sb4}, {sb5, . . . , sb8}, {sb9, . . . , sb12}, {sb13, . . . , sb16} respectively. Thus, the
cost is reduced to 640 bits (PKA

4 and PS
4 for 50% RNG reduction). In a similar fash-

ion, the designer can merge the KeyAddition and Sbox layers into a single layer, i.e.
L = {kasb1, . . . , kasb16}, reducing again the cost to 640 bits (PKA,S

16 for 50% RNG re-
duction). Finally, any generated permutations on KeyAddition, Sbox can be recycled in
subsequent AES executions, reducing RNG even further, at the penalty of extra storage.
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Figure 7: Initial, partitioned, merged and recycled shuffle is applied to the layered cipher
structure in Figures (a) - (d). Dashed-line boxes indicate the operations and layers that
are shuffled with the same permutation. The arrows indicate the information flow between
layers.
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Table 5: Reduced Randomness shuffling schemes analyzed in the context of single-layer
and two-layer horizontal attacks, with/without direct permutation leakage.

Case No. of layers
attacked

Direct permutation
leakage exploited

Partition
factor fp

Merge
factor fm

Recycle
factor frs

No RRM (D1) 1 no 1 1 1
Partitioned (D2) 1 no 2 1 1

Partitioned, merged (D3) 2 no 2 2 1
Partitioned, merged,

recycled (D4) 2 no 2 2 2
Partitioned, merged,

recycled,
direct perm. leakage (D5) 2 yes 2 2 2

4.2 RRS Noise Amplification
As expected, reducing the randomness cost of shuffling has a direct impact on the noise
amplification effect of the countermeasure, offering an interesting randomness-security
tradeoff for the designer. Similarly to Section 3.3, we evaluate the variants of RRS via the
mutual information framework and consider an adversary that can exploit horizontally more
than a single cipher layer. We perform our evaluation on the layered cipher structure used
previously, where the adversary attempts to recover any part of the key k = (k0, k1, k2, k3)
that is related to the 4 independent operations of L1 and L2. To that end, he may exploit
the leakage from both layers as well as direct leakage from the permutations used to shuffle
these layers. Below, we introduce the random variable notation that describes shuffling in
the noisy leakage model.

• The adversary can observe the leakage vector after every cipher layer, namely LL1

and LL2 . The leakage variables Li depend on the layer permutations PL1
n and PL2

n ,
thus it holds that LL1

i = Lid (X
P
L1
i

) + noise and LL2
i = Lid (Y

P
L2
i

) + noise, where
noise represents additive Gaussian noise N (0,σ2).

• The adversary can observe the direct permutation leakage of every shuffled layer,
namely L′L1 and L′L2 . For layer permutations PL1

n and PL2
n , it holds that L′L1

i =
Lid (PL1

i ) + noise and L′L2
i = Lid (PL2

i ) + noise, where noise represents additive
Gaussian noise N (0,σ2).

To analyze the tradeoff between the MI level and the randomness cost, we perform the
MI-based evaluation for several versions of the RRS and attack options. The cases are
demonstrated in Table 5. The evaluation uses the formula by Charvillon et al. [VMKS12],
which we update in order to account for the partitioned, merged and recycled shuffling
with factors fp, fm and frs respectively.

MI(Kt; L) = H[Kt] +
∑

kt∈Kt

Pr[kt] ·
∫

l∈Lη

Pr[l|kt] · log2Pr[kt|l] dl where

Pr[kt|l] = Pr[l|kt]∑
k∗t∈Kt

Pr[l|k∗t ] and Pr[l|kt] =
∑

p∈Pθ

Pr[l′|p]∑
p∗∈Pθ Pr[l

′|p∗] · Pr[l|kt, p]

In the formula above, we assume that the adversary attacks a certain key part Kt, where
t ∈ {0, 1, 2, 3}. We also note that the adversary in general exploits η-dimensional leakage
vectors L, L′ and performs summations over the set of θ-dimensional permutations. In the
following analysis we show how parameters η and θ relate to the particular RRS variant
used as well as the adversary’s horizontal capabilities (i.e. the number of layers attacked).
The results of the MI-based evaluation are visible in Figures 8a,8b.

In Table 5, case D1 , the adversary attacks a standard shuffling scheme where no
randomness reduction is performed. We assume again the reduced block cipher structure
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(a) MI evaluation for partitioned and merged
RRS schemes on 2 layers, without direct per-
mutation leakage (cases D1, D2, D3).

(b) MI evaluation with and without direct per-
mutation leakage, for parameters fp = 2, fm =
2, frs = 2 (cases D4, D5).

Figure 8: RRS MI evaluation

with two layers, k = 4 independent operations per layer and a two 4-dimensional permuta-
tions PL1

4 , PL2
4 for shuffling them. The adversary attacks a single layer, i.e. he focuses

solely on the 4-dimensional leakages LL1 observed in layer L1. Disregarding layer L2
implies integration over 4-dimensional leakages, i.e. parameter η = k = 4. In addition, the
permutation that the adversary needs to consider in the attack is 4-dimensional, resulting
in parameter θ = k = 4. Continuing, case D2 evaluates a single-layer attack on an RRS
scheme where both L1 and L2 layers use partitioned shuffling with factor fp = 2. In
this case, the adversary evaluates by focusing on the 2-dimensional leakages of layer L1,
which are shuffled by a 2-dimensional permutation PL1

2 . In other words, it holds that
η = θ = k/fp = 2. The MI curve of D2 is shifted to the right of curve D1, so we show that
reducing the number of available permutations via partitioned shuffling is detrimental to
the noise amplification stage.

Case D3 evaluates a two-layer attack on an RRS scheme that combines partitioned
and merged shuffling with factors fp = 2 and fm = 2. Specifically, layers L1 and L2 are
merged and shuffled together with permutation P(L1,L2)

2 . The adversary takes advantage
of this fact and targets both layers in order to extract more information horizontally. The
attack uses leakage vectors (LL1 , LL2), so η = (#no_attacked_layers) ∗ (k/fp) = 4 and
the only permutation in place is P(L1,L2)

2 , thus θ = k/fp = 2. The MI curve of D3 is shifted
to the right of curve D2, showing that merged shuffling can improve the effectiveness of
multi-layer horizontal attacks and it is detrimental to the MI level.

Last, we compare partitioned, merged and recycled shuffling (case D4) with equiva-
lent shuffling that can observe the repeated direct permutation leakage. Specifically, in
both cases, the adversary exploits horizontally two partitioned layers that use the same
permutation, i.e. η = 4 and θ = 2. Note however, that in case D5 the adversary can
also observe the repeated direct permutation leakage, i.e. he has access to L′L1

j for all
executions j = 1, . . . , frs, while D4 assumed equiprobable permutations. As a result, in
case D5, the adversary can reduce the noise level of the direct permutation leakage by
computing L′L1 ∼ N (µL1 , (1/frs) ∗Σ), where Σ a diagonal covariance matrix. Figure 8b
shows how exploiting the direct permutation leakage enhances the attack.
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5 Conclusions & Future Directions
In this work, we have performed an in-depth investigation of low-randomness alternatives
to standard masking and shuffling, namely RRM and RRS. The first core outcome is that
RRM and RRS can offer effective tradeoffs between randomness cost and security. A
designer of side-channel countermeasures can now rely on the MI-based evaluation and
provide optimized and flexible protection that reduces the randomness cost.

The second core outcome of this work is demonstrating the importance of horizontal
exploitation in masking and shuffling. We have shown that univariate (or partially
horizontal) evaluations provide us with only a part of the whole picture and may lure the
evaluator into a false sense of security. By examining the multivariate adversarial model,
we exploit a larger quantity of the available leakage and provide a more complete security
evaluation.

Last, this work has demonstrated the necessity of noise-based analysis as a complement
to formal methods. We maintain that a sound evaluation approach is to start from a
provably secure scheme and enhance it with a noise-based analysis in order to provide a
more holistic view.

With regards to future work, we note that multivariate evaluation techniques are still at
a nascent stage when it comes to real-world devices. In fact, research efforts concentrate on
a fairly high abstraction layer, i.e. they only consider leaky cipher operations, disregarding
many peculiarities of the hardware and physical layers. Future research needs to strive
towards closing the gap between theoretical and applied evaluations and improve the
attacks that are able to exploit horizontally RRM and RRS.

Moreover, a long-term vision is research towards unifying several side-channel and
fault injection countermeasures under the MI framework. Based on this unification, the
countermeasure designer will possess a plethora countermeasure options at his disposal,
which he can combine and tweak in order to maximize side-channel and fault injection
security w.r.t. a given budget in clock cycles, silicon area or power/energy consumption.
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