

Side-Channel Attacks on Post-Quantum Signature Schemes based on Multivariate Quadratic Equations

Aesun Park¹, Kyung-Ah Shim^{2*}, Namhun Koo², and Dong-Guk Han¹

¹Department of Financial Information Security, Kookmin University, Seoul, Republic of Korea ²Division of Mathematical Modeling, National Institute for Mathematical Sciences, Daejeon, Republic of Korea

11. Sep. 2018

UOV Variants Signature schemes

SCA on UOV Variants Signature schemes

Signature generation on Rainbow

Secret maps : S, \mathcal{F}, T

- \succ Linear map S
- > Matrix-vector product over a field
- Random values

 \geq

- \succ Linear map T
- Solving the linear equations > Matrix-vector product over a field

Basic operations **Basic** operations **Basic** operations **Basic** operations

Signature generation on Rainbow

* Rainbow generates different signatures for the same message.

Same Input (message) → **Different** Output (signature)

Signature generation on Rainbow

Applicability of Power Analysis

> Power analysis uses the position where the **fixed secret** value and **the random public** value are computed.

The methods for efficiency can be vulnerable to PA.

Side Channel Analysis Design Academy

Experimental setup

Environment		
Target chip	Atmel AVR XMEGA128	
Sampling	7.38 MS/s	
Algorithm	Matrix-vector product over $GF(2^8)$	
Attack system		
ChipWhisperer-Lite, 500 traces		
Implementation		
8-bit implementation		

To reduce the number of times y is loaded.

multiplication each loaded y by the i-th column.

- Matrix-vector product over a field
- It is hard to compute X'
 - \rightarrow to compute the intermediate value is difficult

 $\checkmark x'_8 = x_8, x'_7 = x_7, x'_6 = x_6, x'_5 = x_5$

signature

50

Sub-attack 3

- Recovery *F* and *T* using algebraic KRAs
 - > (Assume) general form T, recovery S
- ♦ $S^{-1} \circ \mathcal{P} = \mathcal{F} \circ T \iff \mathcal{P} \circ \tilde{T} = \mathcal{F}$; certain places with zero coefficients in $\mathcal{F}^{(k)}$ are known
 - $\succ \quad \text{Let } \boldsymbol{\mathcal{P}} = S^{-1} \circ \boldsymbol{\mathcal{P}}, \tilde{T} = T^{-1}$
 - > Where $\mathcal{F}^{(k)}$ is the k-th component of the central map \mathcal{F} .
- ♦ Find an equivalent key (\mathcal{F}', T') s.t $\mathcal{P} = \mathcal{F}' \circ T'$

> The equivalent key \mathcal{F}' and \mathbf{T}' have the form the figures.

No. equations	No. variables
$v_1 o_1 o_2$ (linear equations)	$(v_1 + o_1)o_2$

 $\mathcal{F}^{(k)} = \tilde{T}^T \cdot \mathbf{P}^{(k)} \cdot \tilde{T}$ $\forall 1 \le k \le m$

> Rainbow($\mathbb{F}, v_1, o_1, o_2$) = Rainbow(GF(2⁸), 36, 21, 22)

- ✓ 0.46 milliseconds
- ✓ Intel Xeon E5-2687W CPU 3.1 GHz with 256GB RAM

Attack 1 = sub-attack 1 + sub-attack 2

CPA on Rainbow implementation with Equivalent keys in CHES 2012

Similar attack: CPA on UOV implementation with equivalent key

Attack 2 = sub-attack 1 + sub-attack 3

Hybrid attack on Rainbow implementation with random linear maps

Other MQ-signature schemes

- ✤ UOV-like single layer schemes.
 - [INDOCRYPT 2017] Lifted UOV (LUOV)
 - > LUOV is submitted to NIST for Post-Quantum Cryptography Standardization.
 - > LUOV uses the form of the equivalent key proposed in CHES 2012.

- * Rainbow-like multi-layered schemes.
 - ► Rainbow and HiMQ-3
 - > affine-substitution (quadratic)-affine (ASA) structure
 - > $GF(2^n), n > 1$

Attack 1

Countermeasures

- UOV-like single layer schemes
 - \triangleright Use the *T* that is removed the relation between the signature value and the intermediate value.
- Rainbow-like multi-layered schemes
 - focus on implementing a secure matrix-vector product against PA
 - Message randomization

> Overhead: 2*m* field multiplications and a field inversion

Conclusion

- Our contributions
 - > CPA on Rainbow and UOV implementation with equivalent keys in CHES 2012
 - Hybrid attack on Rainbow implementation with random linear maps
 - > Our attacks can **apply to other MQ-signature schemes**.
 - Countermeasure against first-order CPA

Further work

- More efficient countermeasures
- Security analysis against high-order and fault injection attacks

