
FACE: Fast AES CTR mode Encryption
Techniques based on the
Reuse of Repetitive Data
Jin Hyung Park and Dong Hoon Lee

Center for Information Security Technologies,
Korea University, Seoul, Republic of Korea

jhpark.embedsec.korea@gmail.com,donghlee@korea.ac.kr

Abstract. The Advanced Encryption Standard (AES) algorithm and Counter (CTR)
mode are used for numerous services as an encryption technique that provides
confidentiality. Even though the AES with counter (AES CTR) mode has an advantage
in that it can process multiple data blocks in parallel, its implementation should also
be observed to reduce the computational burden of current services.
In this paper, we propose an implementation method called FACE that can improve the
performance of the AES CTR mode. The proposed method is based on five caches of
frequently occurring intermediate values, so that it reduces the number of unnecessary
computations. Our method can be employed in any AES CTR implementation,
regardless of the platform, environment, or implementation method. There are two
known AES implementation techniques, namely, counter-mode caching and bitslicing.
FACE extends counter-mode caching in order to optimize the previous result and to
maximize the scope of caching. We show that FACE can be applied efficiently to
various implementations (table-based, bitsliced, and AES-NI-based). In particular,
this is the first attempt to combine our extended counter-mode caching with bitsliced
implementations of AES, and is also the first to apply counter-mode caching up to
the round transformations of AES-NI implementation. To prove the efficiency of
our proposed method, we conduct a performance evaluation in various environments,
which we then compare with the previous fastest results. Our bitsliced FACE needs
6.41 cycles/byte on an Intel Core 2, and AES-NI-based FACE records 0.44 cycles/byte
on an Intel Core i7.
Keywords: AES · counter mode · efficient software implementation · AES bitslicing ·
AES-NI

1 Introduction
The number of Internet users has increased rapidly with significant improvements in
network technologies and services such as content delivery and VoIP have also emerged in
response to demand. Because these Internet services are commonly based on usage-pricing
models, service providers should consider a way to protect their service assets from illegal
usage. Although there are several technologies for protecting either assets or information,
most of these are based on providing confidentiality for their contents. On the other
hand, the privacy of users should also be protected while they access the Internet. As
a result, security services such as SSL are now widely adopted in various environments.
The above-mentioned issues can be resolved using a cryptographic algorithm (e.g., AES,
DES) for data confidentiality. However, adopting a cryptographic algorithm for current
services is burdensome because it requires additional computational resources. Therefore,

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 469–499
DOI:10.13154/tches.v2018.i3.469-499

mailto:jhpark.embedsec.korea@gmail.com, donghlee@korea.ac.kr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.469-499

470 FACE

cryptographic algorithms must guarantee proven security and efficiency when employed in
practical environments.

AES [NIS01a] and CTR mode [NIS01b] are used for numerous services (e.g., OMA
DRM, VoIP, IPTV) as an encryption technique that preserves confidentiality. The AES
CTR mode is not only operated as a standalone technique, but is also incorporated within
authenticated encryption schemes, such as the AES GCM [NIS07] and AES CCM [NIS04].
Thus, optimizing the AES CTR mode results in improved performance not only for the
AES CTR, but also the AES GCM and the AES CCM. While researches on improving the
throughput of AES are ongoing, Intel has announced a set of instructions (AES-NI [Gue10])
that accelerate AES computations with dedicated hardware support. ARM also presents a
set of instructions for accelerating AES on ARMv8 as crypto extension. However, AES-NI
and Crypto Extension can be used only with specific processors. Many other processors
(non-Intel, non-AMD, and pre-ARMv8-based) used in embedded devices or lightweight
IoT devices do not yet support these instructions. This is the reason why enhancing the
AES efficiency in software remains an important issue.

This study focuses on maximizing the efficiency of the AES algorithm using the counter
mode. The AES CTR mode is one of the most widely used cryptographic algorithms for
confidentiality, and is usually employed in seamless real-time services. The Open Mobile
Appliance (OMA) Digital Right Management (DRM) v2.0 includes the AES CTR mode in
PDCF format [All08] to protect streaming content such as music or video on mobile devices.
Moreover, IPTV and VoIP services are high-profile Internet services that are usually based
on the Secure Real-time Transfer Protocol (RTP) to protect data confidentiality. Even
though Secure RTP improves security compared to previous versions of RTP, IETF has
also selected the AES CTR mode with consideration for efficiency [BMN+04]. In general,
AES CTR mode is widely adopted in many current applications for the following reasons.
First, its security is proven in [McG02]. In addition, it has many advantages with respect
to efficiency over AES with other operation modes, such as CBC. For example, the AES
CTR mode can be processed in parallel, regardless of encryption or decryption. Moreover,
it does not require the implementation of the AES decryption algorithm. When the services
are deployed in lightweight devices that have relatively limited computational capabilities,
it is even more important to conserve computation resources.

In this paper, we present an efficient implementation method for the AES CTR
mode, called FACE (Fast AES CTR mode Encryption). FACE can be applied to existing
implementation, regardless of platforms and implementation methods. The motive of
our method can be summarized as follows. In the AES CTR mode, while increasing the
number of blocks, the Initial Vector (IV) or counter that is used as an input value adds
1 to its least significant bit. The AES CTR mode encrypts sequentially increased IV
rather than plaintext sequences. The output is XORed with the plaintext to produce a
final ciphertext. We note that there are only small changes in each of the input blocks.
The AES algorithm spreads the small variation in the input over the entire output by
iterating its round transformation. This means that the front-located rounds operate a
many-overlapped input in the AES CTR mode. If these overlapped values are cached and
reused properly, the AES CTR mode can guarantee enhanced performance. Our proposed
method, FACE, maximizes the scope for reuse in the AES CTR mode.

The contributions of our work are as follows.

1. We propose an efficient implementation technique for the CTR mode of AES. The
proposed technique (FACE) extends the counter-mode caching that was first presented
in [BS08] with credit to [Wu07]. Previous counter-mode caching technique only
covered partial data of round transformation. Therefore, in order to show its efficiency,
it has been applied only to table-based implementation. However, FACE can be
employed in any AES CTR implementation, regardless of the platform, environment,
or implementation method, as this technique can cover a round transformation

Jin Hyung Park and Dong Hoon Lee 471

entirely.

2. We show that FACE can be applied efficiently to existing implementation methods
(e.g., table-based, bitsliced, and AES-NI-based implementations). In particular, our
work is the first to combine counter-mode caching with bitsliced implementations
of AES, and is also the first to apply counter-mode caching up to the round trans-
formations of AES-NI implementation. Table-based FACE needs 12 instructions
up to round 2, whereas the existing implementation [Pro] needs 128 instructions.
Further, bitsliced FACE requires 74 instructions up to round 2, whereas [KS09]
requires 618 instructions. AES-NI-based FACE requires 1 intrinsic instruction, 1
memory reference, and 1 arithmetic instruction up to round 2, whereas [Lib] requires
3 intrinsic instructions and 3 memory references. According to the Intel instruction
latency and throughput [Cor18], a briefly calculated throughput (required cycle) for
AES-NI-based FACE is 0.83 up to round 2, whereas for [Lib] it is 3.08.

3. Bitsliced FACE records 6.41 cycles/byte on an Intel Core 2 Q9550, and AES-NI-based
FACE records 0.44 cycles/byte on an Intel Core i7 8700K. Our experimental results
are recorded as the highest throughput ever achieved.

The rest of this paper is organized as follows. In section 2, we show related works
involving attempts to enhance the performance of AES. In section 3, we briefly describe
the AES and CTR mode of operation, as well as the relevant notations. In section 4, we
present the techniques of FACE, which utilize repetitive data. In section 5, we explain
our implementation and give the experimental results of FACE. Then, we compare our
results to those of other software implementations. Section 6 discusses the possibility of
cache-timing attacks. Finally, we conclude this paper in section 7.

2 Related Work
Attempts to improve the efficiency of the AES algorithm can be divided into two categories.
One is to improve the implementation method of the hardware architecture, and another is
to reduce the logic at the software level. The hardware approach has a limited advantage
though, as it is comparatively less applicable than software.

Morioka and Satoh proposed AES implementation [MS04] that applies T-box, which is
a combination of AES transformations (SubBytes, ShiftRows and MixColumns) [DR13].
Rouvroy et al. [RSQL04] suggest a design that combines the key schedule part and the data
path part in a Xilinx FPGA. Sagib et al. [SRHDP03] propose a sequential architecture
and pipeline architecture in FPGA, and Charot et al. [CYW03] implement a single round
as a module in the Altera single-chip FPGA, enabling the degree of pipelining to be
determined flexibly. Although there have been some efforts to improve the algorithm,
most of them were based on a hardware implementation using FPGA. By applying loop
unrolling and pipelining, several FPGA-based AES implementations have achieved a
high throughput [GCVRSPGP10][QSH+09]. However, these hardware-based techniques
have some restrictions, i.e. although hardware implementations commonly offer a high
throughput compared to software designs, it is difficult to update built-in cryptographic
modules—when the improved implementation were announced, if we want to apply this
announced method, the update of implementation may not be as easy as software is—and
these efforts cannot be applied to application software.

Another approach to enhancing the efficiency of AES can be found in improving the
implementation logic in software. A widely known software implementation method is
S-Box with pre-computation, as proposed by the authors of AES. It combines SubBytes,
ShiftRows, and MixColumns, which are parts of the round operation of AES, and generates
a pre-computation look-up table. Consequently, these three transformations can be replaced

472 FACE

by a single lookup operation1. Bertoni et al. [BBF+02] report implementations for smaller
CPUs by modifying the MixColumns transformation. Matsui and Fukuda [MF05] propose
an efficient implementation that covers the Pentium III and Pentium 4. In addition, the
most notable work is the AES implementation that uses the bitsliced method.

Matsui and Nakajima propose a bitslice AES implementation on an Intel Core 2, which
is faster than any previous implementation [MN07]. The reported throughput of 9.2 cycles
per byte is achieved only for a data chunk longer than 2,048 bytes. The bitsliced method
works up to an enhanced performance as high as 7.59 cycles per byte on an Intel Core
2 Q9550 [KS09]. However, these works are not scalable because they can only operate
on designated CPU architecture. Liu and Bass propose a parallel AES implementation
[LB13] that achieves 70 cycles per block, although it requires a 164-core environment,
which is not considered practical. On the other hand, techniques that optimize the number
of calculations using the pre-computation method can be applied on various platforms
regardless of their CPU architectures.

Bernstein and Schwabe [BS08] present a technique that improves the efficiency of the
AES CTR mode, with credit to [Wu07]. Because of the property of the CTR mode, 15
bytes in the counter value of 16 bytes are maintained while processing 256 blocks, but
only one byte changes. In [BS08], the calculation result is saved with the exception of the
part influenced by the changed byte. The saved results are then reused while processing
256 blocks. This technique was first announced by Hongjun Wu, and can be found in the
Crypto++ module [Lib] and in an open-source version of AES [Wu07]. In this paper, we
maximize the reuse of intermediate values in the AES CTR mode. Our method improves
[BS08, Lib, Wu07] and proposes novel techniques.

3 Preliminaries
In this section, we give a brief description of AES and CTR mode, as well as the relevant
notation.

3.1 Description of AES and CTR mode
3.1.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES)[NIS01a] is a symmetric key block cipher
announced by the National Institute of Standards and Technology (NIST) to supersede
DES. It has a fixed block size of 128 bits and supports key sizes of 128, 192, or 256
bits. In accordance with the key sizes, the AES algorithm is categorized into three types:
AES-128, AES-192, and AES-256. Internally, AES uses the SPN structure, and repetitively
performs a round function. The number of rounds is 10 for AES-128, 12 for AES-192,
and 14 for AES-256. The round function is composed of four types of transformations:
SubBytes, ShiftRows, MixColumns, and AddRoundKey. Each transformation operates
on State, which is treated as a 4 × 4 matrix of bytes. The following briefly describes the
four types of transformations of the AES round function.
SubBytes This operation substitutes one byte with another byte according to the S-Box
table in the AES algorithm. In SubBytes, a byte calculation is not affected by other input
bytes because the substitution deals with single bytes independently. Further, the same
S-Box input always produces the same output, regardless of its position and rounds.
ShiftRows This transformation circularly transposes rows of State matrix from right to
left. The amount of transposition is relevant to the row position. There are four rows
in State, and the first row remains fixed. The bytes in the second row circularly change

1Some XOR operations still remain.

Jin Hyung Park and Dong Hoon Lee 473

Input Block (16 Bytes)

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

State

State [0] [1] [2] [3]

MSB LSB

Insertion flow

Figure 1: AES Block-to-State Transformation

IV(Counter)

K
Block Cipher

Encryption

Plaintext0 Ciphertext0 Plaintext1 Ciphertext1 Plaintext i-1 Ciphertext i-1

1st block 2nd block ith block

+ (i – 1)

K
Block Cipher

Encryption
K

Block Cipher

Encryption

Figure 2: CTR Mode Encryption

their positions once, and the third and last rows change positions two and three times,
respectively.
MixColumns While ShiftRows transforms bytes row-by-row, the MixColumns transfor-
mation is performed column-by-column. This operation combines the four bytes in each
column. Each column of State matrix is changed into a new column using matrix multipli-
cation with a constant matrix.
AddRoundKey This transformation simply XORs a given State with round keys. Each
byte of State is XORed with the corresponding byte of the round key.

3.1.2 AES Block-to-State Transformation

To manipulate the internal input and output data, the AES algorithm uses State to form
a series of data into a matrix. The AES data block can be expressed as a matrix of 1 × 16
bytes. State is 128 bits, but is expressed as a 4 × 4 matrix. At the beginning of the
algorithm, the bytes in the input data block are inserted column-by-column into State,
and from top to bottom in each column, as shown in Figure 1. State has four columns,
which we refer to as State[0], State[1], State[2], and State[3], from left to right.

3.1.3 Counter Mode

In the case of counter mode, there is no need to implement a decryption algorithm of the
block cipher. As shown in Figure 2, a 16 byte data block, called a counter, is encrypted
by a block cipher in the place of plaintext. Then, this result and plaintext are merged
by an XOR operation to create ciphertext. An n-bit counter is typically initialized to a
pre-defined value (IV), and is then increased based on a pre-defined rule. The sequence of
counter values must be distinguished from each other. In other words, the counter values
must all have different values.

474 FACE

Table 1: Notation

Notation Description

Xi,j
input (rin) or output (rout) State (ith block, jth round)

(rin / rout is represented by X)
ini ith byte of input data (counter value in CTR mode) block

rki,j byte of round key (key for ith round, jth byte)
Si,j,k byte of State (ith block, jth round, kth byte)
S[k] kth byte of input State

Xi,j [0] 1st column of Xi,j

Xi,j [1] 2nd column of Xi,j

Xi,j [2] 3rd column of Xi,j

Xi,j [3] 4th column of Xi,j

3.1.4 Bitslice Implementation

The bitslice implementation technique was initially proposed by Biham to improve the
software performance of DES [Bih97]. The bitslice technique simulates a hardware imple-
mentation in software, and all operations are expressed as a sequence of Boolean operations.
On x86 processors, this technique is not practical for improving the performance of AES.
However, on an x64 architecture, it is considered an interesting topic. A method to
implement bitslice AES on x64 platforms was first reported in [Mat06]. Until then, 128-bit
XMM registers were of no use, owing to their poor performance caused by treating a
128-bit instruction as two 64-bit operations on the processors (Pentium 4 and Athlon64).
However, with Intel Core 2 processors, bitsliced AES is implemented to fully utilize XMM
instructions [MN07], [KS09].

3.2 Notation
We use the notation described in Table 1 throughout the paper. We denote Xi,j as the
input or output State of the jth round of the ith block. For example, rin3,1 denotes the
input State of the first round in the fourth block. This round function produces rout3,1.
The ith byte of the input data block is denoted by ini and rki,j refers to the jth byte of
the round key corresponding to the ith round. A single byte of State is represented by S[k].
Because the block size of AES is 16 bytes, S[0] indicates the most significant byte (MSB)
and S[15] indicates the least significant byte (LSB) of State. As mentioned above, Xi,j [i]
denotes the ith column of the input or output State from left to right. According to the
AES block-to-state transformation, Xi,j [i] is comprised of S[i ∗ 4], S[i ∗ 4 + 1], S[i ∗ 4 + 2],
and S[i ∗ 4 + 3], where i = 0, 1, 2, 3. We define Si,j,k as the single byte of the particular
State that indicates the kth byte of the jth round of the ith block.

4 Implementation Technique Using Repetitive Data: FACE
In this section, we present our implementation techniques to enhance the efficiency of
AES CTR mode encryption. We reuse the repetitive partial data contained in the output
State or intermediate calculation results of the round function, from round 0 (i.e. initial
whitening. We denoted the initial whitening as ‘round 0’ for generalizing the naming rules
of targets) to round 2. In this paper, we present five types of reuse techniques, which are
briefly described below.

• FACErd0: This technique caches the result-State of an initial whitening (round 0)
and reuses the cached data at the next block. While the overlapping area of the

Jin Hyung Park and Dong Hoon Lee 475

result-State is 15 bytes, we cache and reuse only 12 bytes of the result-State to
minimize the update frequency of the cache. Section 4.1 explains this technique and
its benefit.

• FACErd1: This phase was already introduced in [BS08, Lib, Wu07]. We denote this
technique as FACErd1 and describe it in Section 4.2.

• FACErd1+: In AES round 1, FACErd1 caches and reuses 12 bytes of the result-State.
Originally, the remaining 4 bytes should be recalculated in every block. FACErd1+ is a
technique that generates pre-computation values for these 4 bytes of the result-State,
which are not covered by FACErd1. These values can be generated either before or
during encryption. Section 4.3 explains this technique.

• FACErd2: This technique caches and reuses 16 bytes of State after the MixColumns()
and AddRoundKey() transformations in round 2. Our implementation saves 16
instructions (8 integer + 8 load) more as compared with [BS08, Lib, Wu07]. Section
4.4 gives a detailed explanation of this technique.

• FACErd2+: In AES round 2, FACErd2 caches and reuses 16 bytes of the intermediate
calculation result. Similar to round 1, the remaining part should be recalculated in
every block. Then, this calculated remaining part and the cached data of FACErd2
are merged by XOR operations to complete round 2. FACErd2+ generates pre-
computation values for this remaining calculation result, which is not covered by
FACErd2. These values also can be generated either before or during encryption.
Section 4.5 accounts for this technique.

Existing counter-mode caching method only just deals with partial result of each
round transformation. It is suitable only for table-based implementation to show its
efficiency because the remaining result should be recalculated in every block. However,
FACE can cover a round transformation entirely. FACE can be applied efficiently to existing
implementation methods (table-based and bitsliced) and even to AES-NI.

We elucidate our methods using the general AES model in order to represent each
method convincingly.

4.1 Technique Applied to Initial Whitening (FACErd0)
The input value of the first block is initialized to a pre-defined value (i.e., IV) in the
AES CTR mode. While processing multiple blocks of plaintext, the value of IV increases,
but changes only the last byte of IV in most cases. This means that the only difference
between a given block and the previous block is the last byte, unless the last byte exceeds
0xFF. For example, if IV0 (the input value of the first block) is initialized to {0x00000000,
0x00000000, 0x00000000, 0x00000001}, IV0 and IV1 (the input value of the next block,
which is increased by the counter) have the same value, except in last 1 byte, as in the
example below.
· IV0: 0x00000000 0x00000000 0x00000000 0x00000001
· IV1: 0x00000000 0x00000000 0x00000000 0x00000002

In this case, most bytes do not change until the value of the last byte reaches 0xFF.
We use this property to reuse the result of the operation in initial whitening (round 0).
The process of the initial whitening is as follows:
· Input value = { in0, in1, . . . , in14, in15 }
· Round key0 = { rk0,0, rk0,1, . . . , rk0,14, rk0,15 }
· Output State of initial whitening = { S[0], . . . , S[15] } (S[i] = ini ⊕ rk0,i , for 0 ≤ i ≤ 15)

476 FACE

1ST Block :

Round 0(Initial Whitening)

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10] S[11] S[12] S[13] S[14] S[15]

Initialization Vector

(128 bits Counter Value)

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

Block-to-State

Transformation

Round Key

Round 1

S[12]

S[13]

S[14]

S[15]

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10] S[11] S[12] S[13] S[14] S[15]

1st block’s Counter Value + Interval

2nd Block :

Round 0(Initial Whitening)

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

Block-to-State

Transformation

Round Key

Round 1

S[12]

S[13]

S[14]

S[15]

(a)

: Different Part : Available Part of Cache

Cache

(b)

First Block

State

1 Byte

Difference

Second Block

State

Figure 3: FACErd0: AES initial whitening (round 0) of the first block and the second block
in CTR mode. (a) shows the 1 byte difference between routi,0 and routi+1,0. (b) indicates
the cached part used by FACErd0.

In keeping with the above procedure, the following presents the process for the first
block and the second block in the initial whitening (round 0).
· First block input (IV0) = {in0, in1, . . . , in14, in15}
· Second block input (IV1) = {in0, in1, . . . , in14, in′

15}
· Round key0 = {rk0,0, rk0,1, rk0,2, . . . , rk0,14, rk0,15}
· Initial whitening output State of first block (IV0 ⊕ Round key0) = {S[0], S[1], . . . , S[14], S[15]}
· Initial whitening output State of second block (IV1 ⊕ Round key0) = {S[0], S[1], . . . , S[14], S′[15]}

From results such as IV0 and IV1, we find that the first block output and second block
output differ in the last 1 byte (S[15] and S′[15]). FACErd0 reuses only routi,0[0], routi,0[1],
and routi,0[2] to minimize cache updating. Therefore, while operating 232-1 successive
blocks, ours does not need to update the cache information. Figure 3 indicates the process
for the initial whitening (round 0) and the part of State cached from the round operation
result. FACErd0 can use the same cached information until the last four bytes of IV reach
0xFFFFFFFF after which the cache of FACErd0 should be updated. For example, if the
counter is increased by 1 and the IV value is 0, the block that causes a carry at the 11th

byte of the counter value is the 4,294,967,297th block. In this case, the cached information
can be used while calculating 4,294,967,295 blocks instead of performing XOR operations.
That is, FACErd0 updates the cached data only once throughout the 65.5 GB of plaintext.

4.2 Technique Applied to Round 1 (FACErd1)
The output State of the initial whitening (round 0) is used as the input of round 1. In
round 1, FACErd1 can also cache and reuse data. Figure 4 depicts FACErd1. The feature of
FACErd1 is that rin0,1 and rin1,1 are different only in the last 1 byte, as shown below.

- routi,0 = rini,1
- Comparison between rin0,1 and rin1,1
· S0,1,k = S1,1,k , for 0 ≤ k ≤ 14

Jin Hyung Park and Dong Hoon Lee 477

1ST Block :

Round 1 Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 2

2nd Block :

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

Cache

(a)

First Block

State

4 Byte

Difference

Second Block

State

Round 1 Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 2

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

: Different Part : Available Part of Cache : Correlation of transformation with bytes

Figure 4: FACErd1: The process of AES round 1 and the diffusion of the difference between
the first block and the second block. (a) represents the cached part used by FACErd1.

· S0,1,k 6= S1,1,k , if k = 15

In round 1, the difference in the last 1 byte of the input State affects only routi,1[0]
instead of affecting the whole State. Therefore, as shown in Figure 4, FACErd1 can cache
and reuse the result of round 1 except for routi,1[0]. The following presents the process of
the first block and the second block in round 1.

· rin0,1 = { S0,1,0 , S0,1,1 , . . . , S0,1,14 , S0,1,15 }
· rin1,1 = { S0,1,0 , S0,1,1 , . . . , S0,1,14 , S1,1,15 }

are changed by four transformations to

· rout0,1 = { S′
0,1,0 , S′

0,1,5 , S′
0,1,10 , S′

0,1,15 ,
S′

0,1,4 , S′
0,1,9 , S′

0,1,14 , S′
0,1,3 ,

S′
0,1,8 , S′

0,1,13 , S′
0,1,2 , S′

0,1,7 ,
S′

0,1,12 , S′
0,1,1 , S′

0,1,6 , S′
0,1,11 }

· rout1,1 = { S′
1,1,0 , S′

1,1,5 , S′
1,1,10 , S′

1,1,15 ,
S′

0,1,4 , S′
0,1,9 , S′

0,1,14 , S′
0,1,3 ,

S′
0,1,8 , S′

0,1,13 , S′
0,1,2 , S′

0,1,7 ,
S′

0,1,12 , S′
0,1,1 , S′

0,1,6 , S′
0,1,11 }

- Comparison between rout0,1 and rout1,1
· rout0,1[i] 6= rout1,1[i] , if i = 0
· rout0,1[i] = rout1,1[i] , for 1 ≤ i ≤ 3

478 FACE

1ST Block :

Round 1Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 2

2nd Block :

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

(a)

First Block

State

Second Block

State

Round 1Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 2

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

: Different Part : Byte that using as index: Correlation of transformation with bytes

Lookup Table

0 1 255

Cached

State

Index

in12

in13

in14

in15

in12

in13

in14

in15

State

_in0,0[3]

State

_in1,0[3]

Figure 5: FACErd1+: The process of AES round 1 and FACErd1+. (a) shows how to refer
the pre-computation values.

Thus, we can cache rout0,1[i] (1 ≤ i ≤ 3) and reuse them for the next block. Because
routi,1[1] is changed when S[14] of rini,1 is altered, FACErd1 updates the cached data once
for every 256 (28) blocks.

4.3 Additional Technique Applied to Round 1 (FACErd1+)
In general, the implemented cryptographic algorithm in a real environment comprises
two phases. The first phase is an initialization stage. In this stage, the cryptographic
algorithms accept cryptographic parameters such as a secret-key and IV. In the case of
AES, the secret-key is expanded to the round key as the AES key length, and IV is used
as a counter in CTR mode. The second phase is the encryption/decryption stage. Input
data are encrypted or decrypted using a fixed round key and IV. Once the cryptographic
parameters are initialized, phase 2 can perform encryption or decryption processes using
the same parameters. In many real environments, phase 1 is called only once, but phase 2
is performed several times.

In this section, we propose a technique that generates pre-computation values for
routi,1[0] in phase 1 that are reused for round 1 in phase 2; if the length of the input data
exceeds 256 blocks, pre-computation values can be generated and reused in phase 2. As
mentioned in Section 4.2, most of the result-State of round 1 (routi,1[1], routi,1[2], and
routi,1[3]) are covered by FACErd1. However, routi,1[0] is changed for every block because
the alteration of in15 affects all bytes of routi,1[0]. Figure 7 shows the process of the State
transformation in round 1 while the AES CTR mode operates. As shown in Figure 7,
the factors that determine routi,1[0] are S[0], S[5], S[10], and S[15] of rini,1. As already
shown, S[15] of rini,1 is in15 ⊕ rk0,15. Because the round key remains the same while
working, S[15] of rini,1 is determined by in15. According to the increasing rule that adds

Jin Hyung Park and Dong Hoon Lee 479

1ST Block :

Round 2 Round 1

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 3

2nd Block :

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

(a)

Round 2 Round 1

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 3

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

: Different Part : Available Part of Cache : Correlation of transformation with bytes

S[0]

S[5]

S[10]

S[15]

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ⊗

S[0]

S[5]

S[10]

S[15]

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ⊗

Round

Key

Round

Key

𝟐 ⋅S[0]

𝟏 ⋅ S[0]

𝟏 ⋅ S[0]

𝟑 ⋅ S[0]

[The case of State[0]]

=

𝟑 ⋅S[5]

𝟐 ⋅ S[5]

𝟏 ⋅ S[5]

𝟏 ⋅ S[5]

𝟏 ⋅S[10]

𝟑 ⋅ S[10]

𝟐 ⋅ S[10]

𝟏 ⋅ S[10]

𝟏 ⋅S[15]

𝟏 ⋅ S[15]

𝟑 ⋅ S[15]

𝟐 ⋅ S[15]

Round

Key

𝟐 ⋅S[0]

𝟏 ⋅ S[0]

𝟏 ⋅ S[0]

𝟑 ⋅ S[0]

=

𝟑 ⋅S[5]

𝟐 ⋅ S[5]

𝟏 ⋅ S[5]

𝟏 ⋅ S[5]

𝟏 ⋅S[10]

𝟑 ⋅ S[10]

𝟐 ⋅ S[10]

𝟏 ⋅ S[10]

𝟏 ⋅S[15]

𝟏 ⋅ S[15]

𝟑 ⋅ S[15]

𝟐 ⋅ S[15]

Round

Key

Cache

Figure 6: FACErd2: The diffusion process of the difference between the first block and the
second block in round 2. (a) indicates the MixColumns() and AddRoundKey() transforma-
tions using State[0]. It also shows the available part of the cache.

one to the previous counter value, in15 is changed continuously. However, in10 is altered
only when the value of in11-in15 exceeds 0xFFFFFFFFFF. This means that in0, in5, and
in10 are never changed while processing 1,099,511,627,776 blocks (16 TB). Thus, we can
generate a temporary look-up table that uses in15 as an index. If we create a table that
determines routi,1[0], we need an additional 1 KB (4 × 256) of memory because routi,1[0]
is 4 bytes and in15 changes from 0x00 to 0xFF. Although this table is not the same for
every crypto instance, it can be pre-computed and determined in the initialization stage
because it depends on the secret-key and IV. The initialization stage is performed once
every instance, so we can improve the efficiency in the encryption/decryption stage using
FACErd1+.

Pre-computation values can be used until the change of in15 influences in10, which
occurs when in10 is changed on the next block by [in11-in15] becoming [0xFFFFFFFFFF].
At this time, the pre-computation values must be updated. Updated values can be used
for processing 240 blocks without the need for an additional updating process. Thus, the
efficiency of the calculation is improved.

4.4 Technique Applied to Round 2 (FACErd2)
In round 2, the result-State of round 1 is used as the input of round 2. Now, the difference
in the number of bytes between rin0,2 and rin1,2 is four.
· rin0,2[i] 6= rin1,2[i] , if i = 0
· rin0,2[i] = rin1,2[i] , for 1 ≤ i ≤ 3

Figure 6 describes the round 2 operation for the first and second blocks. At the end
of round 2, the difference in State between rin0,2 and rin1,2 affects the whole byte of the

480 FACE

result-State of round 2. Therefore, rout0,2 and rout1,2 are completely different. However,
as in the other preceding techniques, we can also cache intermediate information in round
2.

The following expresses the MixColumns() and AddRoundKey() transformations using
State[0] as an example. Before the MixColumns() transformation, State[0] is comprised of
{S[0], S[5], S[10], and S[15]} due to the ShiftRows() transformation.

 S′[0]
S′[5]
S′[10]
S′[15]

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⊗
 S[0]

S[5]
S[10]
S[15]

⊕
rk2,0

rk2,1
rk2,2
rk2,3


=

2 · S[0]⊕ 3 · S[5]⊕ 1 · S[10]⊕ 1 · S[15]⊕ rk2,0
1 · S[0]⊕ 2 · S[5]⊕ 3 · S[10]⊕ 1 · S[15]⊕ rk2,1
1 · S[0]⊕ 1 · S[5]⊕ 2 · S[10]⊕ 3 · S[15]⊕ rk2,2
3 · S[0]⊕ 1 · S[5]⊕ 1 · S[10]⊕ 2 · S[15]⊕ rk2,3


Upon processing the MixColumns() transformation, as shown in Figure 6(a), the data

related to S[0] would change in routi,2[0], but the other data do not. Therefore, we can
cache the intermediate calculation result for routi,2[0] as follows:

- Cached part of routi,2[0]:

 3 · S[5]⊕ 1 · S[10]⊕ 1 · S[15]⊕ rk2,0
2 · S[5]⊕ 3 · S[10]⊕ 1 · S[15]⊕ rk2,1
1 · S[5]⊕ 2 · S[10]⊕ 3 · S[15]⊕ rk2,2
1 · S[5]⊕ 1 · S[10]⊕ 2 · S[15]⊕ rk2,3


This technique can be expanded to State[1], State[2] and State[3]. That is, State[1],

State[2], and State[3] have changed parts that are related to S[3], S[2], and S[1] respectively.
Thus FACErd2 caches the rest of the intermediate information, as follows.

- In the case of State[1], cached part of routi,2[1]:

 2 · S[4]⊕ 3 · S[9]⊕ 1 · S[14]⊕ rk2,4
1 · S[4]⊕ 2 · S[9]⊕ 3 · S[14]⊕ rk2,5
1 · S[4]⊕ 1 · S[9]⊕ 2 · S[14]⊕ rk2,6
3 · S[4]⊕ 1 · S[9]⊕ 1 · S[14]⊕ rk2,7



- In the case of State[2], cached part of routi,2[2]:

 2 · S[8]⊕ 3 · S[13]⊕ 1 · S[7]⊕ rk2,8
1 · S[8]⊕ 2 · S[13]⊕ 1 · S[7]⊕ rk2,9
1 · S[8]⊕ 1 · S[13]⊕ 3 · S[7]⊕ rk2,10
3 · S[8]⊕ 1 · S[13]⊕ 2 · S[7]⊕ rk2,11



- In the case of State[3], cached part of routi,2[3]:

 2 · S[12]⊕ 1 · S[6]⊕ 1 · S[11]⊕ rk2,12
1 · S[12]⊕ 3 · S[6]⊕ 1 · S[11]⊕ rk2,13
1 · S[12]⊕ 2 · S[6]⊕ 3 · S[11]⊕ rk2,14
3 · S[12]⊕ 1 · S[6]⊕ 2 · S[11]⊕ rk2,15


FACErd2 can reuse these cached data while processing 255(28-1) consecutive blocks.

The frequency of updates is equal to that of FACErd1 because the alteration of rini,2[1]
affects the cached data.

4.5 Additional Technique Applied to Round 2 (FACErd2+)

In this section, we propose a technique that generates pre-computation values for the
remaining intermediate data, which is not covered by FACErd2. As we mentioned in section
4.3, the pre-computation values for FACErd2+ can also be generated either before or during
encryption (in phase 1 or phase 2, respectively).

As described in section 4.4, routi,2[0] is calculated after the SubBytes() and ShiftRows()
transformations as :

Jin Hyung Park and Dong Hoon Lee 481

1ST Block :

Round 1Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 3

2nd Block :

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

(a)

First Block

State[0]

Second Block

State[0]

Round 1Round 0

SubBytes ShiftRows

MixColumns

AddRoundKey

Round 3

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

: Different Part : Byte that using as index: Correlation of transformation with bytes

Lookup Table

0 1 255

Cached

State

Index

in12

in13

in14

in15

in12

in13

in14

in15

State

_in0,0[3]

State

_in1,0[3]

Round 2

ShiftRows

MixColumns

AddRoundKey

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

Round 2

ShiftRows

MixColumns

AddRoundKey

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

S[12]

S[1]

S[6]

S[11]

[The case of State[0]]

F
A
C
E
r
d
2

F
A
C
E
r
d
2

Figure 7: FACErd2+: The process of AES round 1, round 2, and FACErd2+. (a) shows how
to refer the pre-computation values and how to calculate the result of round 2.

 S′[0]
S′[5]
S′[10]
S′[15]

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⊗
 S[0]

S[5]
S[10]
S[15]

⊕
rk2,0

rk2,1
rk2,2
rk2,3


=

2 · S[0]⊕ 3 · S[5]⊕ 1 · S[10]⊕ 1 · S[15]⊕ rk2,0
1 · S[0]⊕ 2 · S[5]⊕ 3 · S[10]⊕ 1 · S[15]⊕ rk2,1
1 · S[0]⊕ 1 · S[5]⊕ 2 · S[10]⊕ 3 · S[15]⊕ rk2,2
3 · S[0]⊕ 1 · S[5]⊕ 1 · S[10]⊕ 2 · S[15]⊕ rk2,3


Except for the intermediate result that is cached by FACErd2, the remaining data are

2·S[0] for S′[0], 1·S[0] for S′[5], 1·S[0] for S′[10], and 3·S[0] for S′[15]. All of this remaining
data are related to S[0]. Similar situations can be seen in other routi,2[i] (1 ≤ i ≤ 3).
Similarly, the remaining data of routi,2[1], routi,2[2], and routi,2[3] are related to S[3],
S[2], and S[1] respectively. Recall that the SubBytes() and ShiftRows() transformations
do not affect other bytes. Thus, these four bytes (S[0], S[1], S[2], S[3]) are considered to
be the same as rini,2[0]. This means that the remaining intermediate data is determined
by rini,2[0].

According to FACErd1+, routi,1[0] (rini,2[0]) is determined by in15. And the remaining
intermediate data for FACErd2+ is determined by rini,2[0]. In the end, we can generate a
temporary look-up table and use in15 as an index. If we create a pre-computation table
for FACErd2+, we need an additional 4 KB (16 × 256) of memory because the remaining
intermediate data is 4 bytes for each routi,2[i] (0 ≤ i ≤ 3), and in15 changes from 0x00 to
0xFF. FACErd2+ can reuse these cached data while processing 240 consecutive blocks. The
frequency of updates is equal to that of FACErd1+.

5 Evaluations
5.1 Implementation
The proposed method (FACE) can be employed in any AES CTR implementation, regardless
of the platform, environment, or implementation method. We implement FACE by

482 FACE

Table 2: Environments used for evaluation

Test Environment 1 Test Environment 2 Test Environment 3
CPU Intel Core 2 Quad Q9550 Intel Core i7 4770K Intel Core i7 8700K
CPU 2.8 GHz 3.5 GHz 3.7 GHzFrequency
RAM 4 GB 8 GB 16 GB

OS Linux 3.19.0-32 Linux 3.19.0-32 Linux 4.13.0-36
x86_64 x86_64 x86_64

modifying the AES source code contained in the open-source libraries (OpenSSL [Pro] and
Crypto++ [Lib]). OpenSSL provides AES source code for both the table-based and the
bitsliced cases. In particular, bitsliced AES is implemented based on [KS09], which is known
as the fastest bitsliced AES CTR software implementation with one core. We analyzed the
source code of [KS09] and compared it with the bitsliced implementation of OpenSSL. As
a result, we found that the two codes are very similar and almost identical (as OpenSSL
commented on its source code). Moreover, OpenSSL left a record of its own comparison
with [KS09], and OpenSSL shows better performance. We think OpenSSL is more practical
because it supports 192- and 256-bit keys, unlike [KS09]. Thus, we selected OpenSSL as
our comparison target of bitsliced implementation. The AES implementation of Crypto++
supports AES-NI instructions via compiler intrinsics. It provides two encryption interfaces;
one is for processing one 128-bit block per call (which we denoted as “1 x 1”), and the
other is for processing four 128-bit blocks per call (which we denoted as “4 x 1”). To the
best of our knowledge (based on eSTREAM/Crypto++ benchmark and other literature),
AES-NI-based implementation of Crypto++ can be considered the fastest one. Thus,
we selected Crypto++ as our comparison target of AES-NI-based implementation. For
the experiments on AES-NI-based FACE, we prepared two kinds of implementations:
R1 and R2. R1 is an implementation, which leverages FACE up to round 1. R2 is an
implementation, which adopts FACE up to round 2.

For a fair comparison, we did not re-code the existing strategy into our own imple-
mentation. Since the same strategy can record different performance depending on the
quality of code, and consequently, it can be misunderstood that the reason of improvements
comes from the quality of the code we produced. Thus, we opted to adopt an existing
implementation and use it as our own. And then we made only minor modifications to
the existing code in order to apply our strategy. Except for our new strategy, all other
conditions remain the same. This can be confirmed by comparing our target open-source
with the appendix.

The five techniques of FACE can be chosen selectively, with consideration for the
environment in which FACE will be applied. When code size or cache space is an issue,
our techniques can be applied by choosing the most efficient combinations.

As a result of applying FACE to existing implementations, table-based FACE needs
12 instructions up to round 2, whereas the existing implementation [Pro] needs 128
instructions. Considering the cache update process, which occurs once for every 256
blocks, table-based FACE needs 12.4 instructions on average. Bitsliced FACE requires
74 instructions up to round 2, whereas [KS09] requires 618 instructions. As with the
table-based FACE, considering the cache update procedure, bitsliced FACE needs 91.9
instructions on average. AES-NI-based FACE requires 1 intrinsic instruction, 1 memory
reference, and 1 arithmetic instruction (simply, 3 instructions) up to round 2, whereas
[Lib] requires 3 intrinsic instructions and 3 memory references (simply, 6 instructions).
According to the Intel instruction latency and throughput [Cor18], a briefly calculated
throughput (required cycle) for AES-NI-based FACE is 0.83 up to round 2, whereas for [Lib]
it is 3.08. Considering the cache update procedure as it is in other methods, AES-NI-based
FACE requires (simply) 3.02 instructions on average.

Jin Hyung Park and Dong Hoon Lee 483

Table 3: Performance comparison of AES-CTR implementations in cycles/byte

Platform
Implementation

Target
Input (Plaintext) Size

Method 1024 bytes 4096 bytes 20480 bytes 40960 bytes
128 192 256 128 192 256 128 192 256 128 192 256

Test Env 1
Table-based OpenSSL 15.849 18.302 20.710 15.786 18.272 20.680 15.766 18.249 20.665 15.768 18.238 20.659

This Paper 12.452 14.947 17.336 12.407 14.936 17.329 12.394 14.911 17.321 12.399 14.913 17.326

Bitsliced [KS09] 8.014 9.495 10.960 7.811(7.59) 9.251 10.686 7.763 9.195 10.624 7.764 9.192 10.618
This Paper 6.754 8.180 9.607 6.408(6.347) 7.797 9.180 6.364 7.755 9.119 6.360 7.752 9.108

Test Env 2

Table-based OpenSSL 10.562 12.309 14.036 10.553 12.348 14.067 10.529 12.276 14.023 10.528 12.276 14.023
This Paper 8.380 10.085 11.808 8.344 10.064 11.797 8.371 10.067 11.810 8.368 10.071 11.808

Bitsliced [KS09] 5.687 6.745 7.803 5.530 6.554 7.573 5.514 6.491 7.511 5.500 6.482 7.495
This Paper 4.696 5.737 6.787 4.429 5.455 6.476 4.398 5.407 6.425 4.397 5.406 6.422

AES-NI

1 x 1
Crypto++ 2.540 2.957 3.321 2.506 2.896 3.283 2.698 3.083 3.482 2.695 3.080 3.477

This Paper (R1) 1.025 1.267 1.556 1.018 1.253 1.552 1.073 1.301 1.578 1.071 1.294 1.558
This Paper (R2) 0.927 1.160 1.383 0.917 1.146 1.377 1.040 1.188 1.398 1.040 1.189 1.398

4 x 1
Crypto++ 0.730 0.861 0.984 0.704 0.840 0.983 0.688 0.824 0.969 0.684 0.822 0.967

This Paper (R1) 0.634 0.781 0.923 0.623 0.769 0.920 0.621 0.765 0.911 0.620 0.765 0.910
This Paper (R2) 0.592 0.727 0.869 0.580 0.714 0.858 0.578 0.711 0.857 0.578 0.711 0.857

Test Env 3

Table-based OpenSSL 9.374 10.948 12.645 9.223 10.788 12.496 9.083 10.354 11.822 8.716 10.087 11.644
This Paper 7.185 8.741 10.346 7.114 8.726 10.230 7.081 8.408 9.847 6.855 8.203 9.647

Bitsliced [KS09] 5.273 6.108 7.254 5.172 6.074 7.079 5.097 5.999 6.995 5.032 5.879 6.952
This Paper 4.339 5.356 6.278 3.932 4.984 5.987 4.006 4.945 5.873 3.812 4.691 5.571

AES-NI

1 x 1
Crypto++ 1.665 1.871 2.059 1.625 1.847 2.043 1.617 1.832 2.029 1.611 1.807 2.021

This Paper (R1) 0.778 0.867 0.986 0.739 0.827 0.959 0.737 0.822 0.956 0.726 0.819 0.948
This Paper (R2) 0.703 0.786 0.880 0.662 0.775 0.867 0.659 0.732 0.874 0.658 0.733 0.876

4 x 1
Crypto++ 0.551 0.669 0.767 0.547 0.642 0.758 0.537 0.636 0.745 0.531 0.622 0.739

This Paper (R1) 0.513 0.607 0.706 0.494 0.586 0.698 0.483 0.581 0.684 0.473 0.573 0.677
This Paper (R2) 0.450 0.547 0.638 0.441 0.533 0.636 0.442 0.539 0.624 0.434 0.539 0.625

We note that the code used in the experiments is identical, regardless of the test
environment. For example, we do not use additional optimization techniques for the
bitsliced FACE in the test environment 2 and 3 (microarchitectures that provide a 256-bit
AVX instruction set). This is guaranteed because the bitsliced method is implemented
using low-level programming language (Assembly). In conclusion, when implementing
FACE, we do not take advantage of other optimizations that leverage special features of
the test environment.

5.2 Experimental Results
To evaluate our method, FACE, we first verify the proposed technique and its implementa-
tion using test vectors with different input lengths and key lengths. The results show that
the table-based, bitsliced, and AES-NI-based FACE all work correctly. Then, we measure
the throughput of FACE that was employed in table-based, bitsliced, and AES-NI-based
implementations on Intel Core 2 Quad and Core i7 processors. Then, we compare our
results to those of a default implementation contained in the open-source libraries. A
description of the environments used for the evaluation is given in Table 2. All tests were
conducted using only one core.

A comprehensive comparison of the evaluation results is summarized in Table 3. We
measure the throughput using three key lengths (128, 192, and 256 bits), while changing
the size of the input blocks to 1024, 4096, 20480, and 40960 bytes. We also measure the
performance of the base code that FACE leveraged, within the same environments. Since
all the experimental environments can not be the same, all experimental results, except
those recorded in the literature using the same environment, are presented with our own
measuring results in our environments.

In the case of the table-based implementation, our implementation of AES CTR

484 FACE

achieves a performance improvement of 15% − 20%. This result shows that table-based
FACE achieves similar performance to AES CTR, which has lower-level security (e.g., the
performance of table-based FACE-192 ≈ the performance of the default AES-128). We
compared our results with table-based implementation of OpenSSL. However, there exists
an outperformed result, which records 10.57 cycles/byte on Intel Core 2 Quad Q9550
[BS08]. We did not try to apply our strategy to [BS08]. Because our main targets are
bitsliced and AES-NI-based implementations. Additionally, we believe that the table-based
implementation is still not of much interest; it has reached its performance limits, and
also has a security concern. We intended to simply show, using the experiments, that our
proposal can be applied to table-based. It was not our goal to achieve state-of-the-art
results with the table-based implementation.

Bitsliced FACE needs 6.41 cycles/byte for an input size of 4096 bytes and a 128 bit
key length, where the previous work recorded 7.81 cycles/byte in test environment 1. It
appears that the performance of [KS09] (7.81 cpb) is worse than the reported throughput
in [KS09] (7.59 cpb). Our insight into this is that the results of our experiments include key
transformation (a conversion of round keys from a table-based representation to bitslice
form) at the beginning of the encryption phase (the result of [KS09] did not include such
key transformation cost in the encryption phase). Also, for a common usage, [KS09]
implementation of OpenSSL adds more routines to support other key lengths (192 and
256 bits) and employs different byte order. If we exclude the key transformation process,
[KS09] implementation of OpenSSL requires 7.75 cycles/byte according to our experiments.
Bitsliced FACE without key transformation records 6.35 cycles/byte). Further, bitsliced
FACE needs 3.93 cycles/byte, while [KS09] implementation of OpenSSL records 5.17
cycles/byte on a recent Intel Core i7 (Test Environment 3). Our bitsliced implementation
of AES CTR is about 20% faster than those in previous works, and the result of 6.41
cycles/byte for an input size of 4096 bytes is the highest throughput ever achieved in a
PC environment (without AVX or AES-NI). Thanks to the characteristic of FACE that
uses repetitive data, the throughput of FACE increases as the length of the input block
increases. Finally, bitsliced FACE records 6.36 cycles/byte for an input size of 40960 bytes
with a 128-bit key.

Our AES-NI-based FACE needs 0.44 cycles/byte for an input size of 4096 bytes and a
128 bit key length, where AES-NI-based AES CTR implementation of [Lib] recorded 0.54
cycles/byte on Intel Core i7 8700K. Further, AES-NI-based FACE records 0.43 cycles/byte
for an input size of 40960 bytes with a 128-bit key, whereas [Lib] needs 0.53 cycles/byte.
The result of 0.44 cycles/byte is also the highest throughput ever achieved in an AES CTR
implementation with AES-NI.

The speedups shown in our experiments are on the same level as (or even exceed) the
simple theoretical model of simply skipping the first two rounds. FACE targets the first
two rounds of AES. AES-128 has 10 rounds and AES-256 has 14 rounds. If the first two
rounds could be skipped completely, the expectable speedups are up to 20% and 14%,
respectively. Our insight into the reason of speedups, which are shown to be as good
as this kind of simplistic model, can be described briefly as follows. First, FACE can be
considered as completely skipping the first two rounds like the simple theoretical model.
After only 1 XOR operation, the first two rounds are completed, and this cost is equal to
initial whitening. Second, FACE additionally skips several operations; copying input to
local variable, increasing counter value (if the increment is pre-defined, there is no need to
increase counter for every block), and in case of bitslice method, a costly transformation of
input to bitslice form as well as ShiftRows of round 3. Such operations are also included
in the cached value of FACE. Third, FACE has benefits (only for table-based) from the
optimization of compiler due to its simplified high-level PL code, and its assumed benefit
is about 2−3%. Lastly, the improvement of “AES-NI (1 x 1)” is a special case, because
the cost of memory copies and function calls are considerably reduced by FACE compared

Jin Hyung Park and Dong Hoon Lee 485

Table 4: Comparison of key-scheduling performances

Platform Implementation Measurement Target Key Size
Method AES-128 AES-192 AES-256

Test Env 1

Table-based

Cycles OpenSSL 176 197 259
for key setup This Paper 6067 6134 6276

Times OpenSSL 0.062 µs 0.070 µs 0.091 µs
for key setup This Paper 2.147 µs 2.170 µs 2.221 µs

Cycle Overhead 5891 5937 6017
Time Overhead 2.085 µs 2.100 µs 2.130 µs

Bitsliced

Cycles OpenSSL 383 389 478
for key setup This Paper 8901 8908 8992

Times OpenSSL 0.074 µs 0.075 µs 0.083 µs
for key setup This Paper 3.146 µs 3.152 µs 3.177 µs

Cycle Overhead 8518 8519 8514
Time Overhead 3.072 µs 3.077 µs 3.094 µs

Test Env 3

Table-based

Cycles OpenSSL 121 137 172
for key setup This Paper 3643 3662 3724

Times OpenSSL 0.033 µs 0.036 µs 0.050 µs
for key setup This Paper 0.980 µs 0.993 µs 1.010 µs

Cycle Overhead 3522 3525 3552
Time Overhead 0.947 µs 0.957 µs 0.960 µs

Bitsliced

Cycles OpenSSL 242 254 306
for key setup This Paper 5778 5783 5802

Times OpenSSL 0.066 µs 0.069 µs 0.086 µs
for key setup This Paper 1.577 µs 1.591 µs 1.601 µs

Cycle Overhead 5536 5529 5496
Time Overhead 1.511 µs 1.522 µs 1.515 µs

AES-NI

Cycles for key setup
Crypto++ 145 173 212

This Paper (R1) 680 749 783
This Paper (R2) 7568 7628 7618

Times for key setup
Crypto++ 0.039 µs 0.047 µs 0.058 µs

This Paper (R1) 0.184 µs 0.196 µs 0.205 µs
This Paper (R2) 1.994 µs 2.067 µs 2.054 µs

Cycle Overhead (R1) 535 576 571
Cycle Overhead (R2) 7428 7455 7406
Time Overhead (R1) 0.145 µs 0.149 µs 0.147 µs
Time Overhead (R2) 1.955 µs 2.020 µs 1.996 µs

to 4 x 1. It demonstrates that such operations can be a significant burden.
It seems that the performance improvement is modest, but in effect, such an improve-

ment leads to a difference of hundreds of megabytes per second in throughput. Our
experimental results demonstrate that FACE can be applied to any AES CTR implementa-
tion, regardless of the implementation method, and can improve performance in various
environments.

When applying the technique discussed in section 4.3 or 4.5, our proposed method can
create pre-computation values in the initialization stage. This may be an additional burden
in terms of efficiency. Therefore, we measure the processing time and cycle counts for
the initialization to show that the generation of pre-computation values does not require
significant overhead. Table 4 shows the evaluation results of the initialization stage (key
scheduling). The key-schedule process of the bitsliced method includes a transformation
that converts round keys from a table-based representation to a bitslice representation.
All of AES-128, AES-192, and AES-256 require little overhead to generate the temporary
lookup table. Thus, the generation of pre-computation values leads to marginal overhead
with respect to the performance of FACE.

6 Discussion
As cache-timing attacks have become a promising attacks on software-based AES im-
plementations, they have become significant security threats for AES implementations.
Cache-timing attacks on AES exploit the timing variability of data loads from memory
while implementations make heavy use of lookup tables. It seems that our proposed

486 FACE

methods are vulnerable to timing attacks because of the use of pre-computed lookup tables.
We note that the vulnerabilities caused by timing attacks on FACE are dependent on
the adopting implementation method because FACE can be employed in any AES CTR
implementation, regardless of implementation method (i.e. table-based, bitsliced, and
AES-NI-based). If FACE is applied to the table-based method, the result is also vulnerable
to timing attacks. On the other hand, if FACE is applied to the bitsliced method, which
offers timing-attack resistance, the result is also cache-timing-attack resistant. It means
that the vulnerabilities caused by timing attacks on an AES implementation are not
affected by our proposed methods. There are several reasons to explain this.

Several timing attacks against AES make it possible to recover secret information. This
is because the indices of the table in the existing table-based implementation are related
to secret information. In contrast, FACE adds temporary tables for intermediate values
and the indices of our generated tables are independent of secret information. In FACErd0,
FACErd1, and FACErd2, the size of the generated table is extremely small and the indices
of the tables are fixed. The size of tables are 12 bytes for each FACErd0 and FACErd1,
and 16 bytes for FACErd2. Modern cache stores groups of bytes in blocks of fixed sizes,
called cache lines. Common cache line sizes are 32 bytes for a Pentium III, and 64 and
128 bytes for more recent processors. Data is transferred between main memory and cache
in blocks of cache line size. Therefore, all of our generated values in the tables for each
phase (FACErd0, FACErd1, and FACErd2) always share a line in the cache on any cache
line size (cache hit). However, the timing variations, which cause information leakage,
may exist even if loading occurs only within a fixed cache line. Osvik et al. [OST06]
and Bernstein [Ber05] warned that even if secret-dependent accesses are at a finer than
cache line granularity, access to different offsets within cache lines may leak information
due to cache-bank conflicts. Finally, Yarom et al. [YGH17] demonstrated that the first
side-channel attack, which exploits cache-bank conflicts, is feasible on the Sandy Bridge
microarchitecture. Such an attack is viable when a secret-dependent access to cache banks
exists. But in FACE, the indices of the table lookups are always constant as 0 to 2 in the
phase of FACErd0 and FACErd1, and 0 to 3 in the phase of FACErd2 (all content of tables
are used in round operation). In this case, there is no secret-dependent access patterns
when FACE accesses the cache. Currently, cache-bank conflicts are no longer an issue since
the Haswell processors [Cor18].

In the phase of FACErd1+ or FACErd2+, our method generates a larger table (1024 bytes
for FACErd1+, 4096 bytes for FACErd2+). This table might cause a cache miss. However,
the index of the table is merely a part of a counter value that does not need to be secret
(as generally known, keeping the counter value secret adds no security). More precisely,
the lookup index is the last byte of the counter, and it even increases linearly. There is
no secret-dependent access information while loading data from the table. Furthermore,
there is no operation that includes the loaded table value and the secret. In addition, the
index is increased by one if the counter is increased by one. Thus, on FACErd1+ phase,
cache miss caused periodically for every 16 consecutive blocks when only one (64 bytes)
cache line is used (caused for every 4 consecutive blocks on FACErd2+ phase). The timing
variability of data loads from memory due to cache miss would present cyclically, and there
is no secret-dependent timing variability in the data loads from the table while processing
consecutive blocks for each cache miss.

These features show that our approach does not cause additional vulnerabilities to
known timing attacks.

7 Conclusion
The AES CTR mode is used in encryption/decryption operations such as streaming services
that require high-speed processing because it enables parallel processing. Efforts to improve

Jin Hyung Park and Dong Hoon Lee 487

the efficiency of AES CTR mode implementation in software have been realized using
the bitsliced method. Although performance improvements in algorithms for specialized
platforms lack scalability, improvements in the implementation logic of AES can be applied
without depending on operating architectures and implementation methods.

This paper proposed FACE, which can improve the performance of the AES CTR mode
by using repetitive data. FACE reduces the number of unnecessary calculations during the
operation in order to preserve computational resources. To accomplish this, we leverage
that very small changes occur in successive blocks in the AES CTR mode, which can be
cached and reused. FACE can be employed in any AES CTR implementation, regardless of
implementation method (i.e. table-based, bitsliced, and AES-NI-based). As a result, our
experimental results are approximately 15%−20% more efficient than those of previously
reported methods using a single core. In addition, none of the techniques introduced in
this paper are platform specific. Thus, when we apply this technique to implementations
of the AES CTR mode, we can expect to achieve performance improvements regardless
of the platform or environment. Therefore, FACE provides a computational advantage
over high-profile I/O and network services, such as Gigabit ethernet, the Wireless Gigabit
Alliance (WiGig) 1.1 [All10] network, and USB 3.0.

We can consider applying our strategy to CAESAR finalist Deoxys [JNPS16], since
Deoxys also uses a counter in the tweak input while the plaintext remains unchanged. The
caching strategy for Deoxys is slightly more complex than AES because the differences
between successive blocks are caused not only by the round transformation but also by the
tweakey schedule algorithm. Nonetheless, the additional difference is not considerable. For
example, at the end of the first round, the difference is increased only one byte compared
to FACE, and there also exists the characteristic of being repeated. It would be interesting
to verify whether our caching strategy can be applied to other algorithms that have similar
characteristics to the AES CTR mode. This is the subject of our future work to examine
the extendability of our caching strategies.

Acknowledgements
We would like to thank the anonymous reviewers for their valuable and helpful com-
ments in improving the quality of this work. This work was supported by Institute for
Information & communications Technology Promotion(IITP) grant funded by the Korea
government(MSIT) (No. R7117-16-0161, Anomaly Detection Framework for Autonomous
Vehicles).

References
[All08] The Open Mobile Alliance. DRM Content Format Approved Version

2.1.2, 2008.

[All10] WiGig Alliance. Defining the future of multi-gigabit wireless communi-
cations. WiGig White Paper, 2010.

[BBF+02] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti,
and Stefano Marchesin. Efficient software implementation of aes on
32-bit platforms. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 159–171. Springer, 2002.

[Ber05] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[Bih97] Eli Biham. A fast new des implementation in software. In International
Workshop on Fast Software Encryption, pages 260–272. Springer, 1997.

488 FACE

[BMN+04] Mark Baugher, D McGrew, M Naslund, E Carrara, and Karl Norrman.
The secure real-time transport protocol (SRTP). RFC 3711, 2004.

[BS08] Daniel J Bernstein and Peter Schwabe. New aes software speed records.
In International Conference on Cryptology in India, pages 322–336.
Springer, 2008.

[Cor18] Intel Corporation. Intel 64 and IA-32 architectures optimization reference
manual. Order Number: 248966-040, April 2018.

[CYW03] Francois Charot, Eslam Yahya, and Charles Wagner. Efficient modular-
pipelined aes implementation in counter mode on altera fpga. In Interna-
tional Conference on Field Programmable Logic and Applications, pages
282–291. Springer, 2003.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media, 2013.

[GCVRSPGP10] José M Granado-Criado, Miguel A Vega-Rodríguez, Juan M Sánchez-
Pérez, and Juan A Gómez-Pulido. A new methodology to implement the
aes algorithm using partial and dynamic reconfiguration. INTEGRA-
TION, the VLSI journal, 43(1):72–80, 2010.

[Gue10] Shay Gueron. Intel R© advanced encryption standard (AES) new instruc-
tions set. Intel Corporation, 2010.

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.41. CAESAR Finalists, October 2016. https://competitions.cr.
yp.to/caesar-submissions.html.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant
aes-gcm. In Cryptographic Hardware and Embedded Systems-CHES 2009,
pages 1–17. Springer, 2009.

[LB13] Bin Liu and Bevan M Baas. Parallel aes encryption engines for many-core
processor arrays. IEEE transactions on computers, 62(3):536–547, 2013.

[Lib] CRYPTO++ Library. http://www.cryptopp.com.

[Mat06] Mitsuru Matsui. How far can we go on the x64 processors? In Interna-
tional Workshop on Fast Software Encryption, pages 341–358. Springer,
2006.

[McG02] David McGrew. Counter mode security: Analysis and recommendations.
Cisco Systems, November, 2:4, 2002.

[MF05] Mitsuru Matsui and Sayaka Fukuda. How to maximize software per-
formance of symmetric primitives on pentium iii and 4 processors. In
International Workshop on Fast Software Encryption, pages 398–412.
Springer, 2005.

[MN07] Mitsuru Matsui and Junko Nakajima. On the power of bitslice im-
plementation on intel core2 processor. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 121–134. Springer,
2007.

[MS04] Sumio Morioka and Akashi Satoh. A 10-gbps full-aes crypto design with
a twisted bdd s-box architecture. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 12(7):686–691, 2004.

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://www.cryptopp.com

Jin Hyung Park and Dong Hoon Lee 489

[NIS01a] NIST. Advanced Encryption Standard (AES), 2001. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf.

[NIS01b] NIST. Recommendation for Block Cipher Modes of Operation (Meth-
ods and Techniques), 2001. http://csrc.nist.gov/publications/
nistpubs/800-38a/sp800-38a.pdf.

[NIS04] NIST. Recommendation for Block Cipher Modes of Oper-
ation:The CCM Mode for Authentication and Confidentiality,
2004. http://csrc.nist.gov/publications/nistpubs/800-38C/
SP800-38C_updated-July20_2007.pdf.

[NIS07] NIST. Recommendation for Block Cipher Modes of Opera-
tion:Galois/Counter Mode (GCM) and GMAC, 2007. http://csrc.
nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ Track at the RSA
Conference, pages 1–20. Springer, 2006.

[Pro] The OpenSSL Project. http://www.openssl.org.

[QSH+09] Shanxin Qu, Guochu Shou, Yihong Hu, Zhigang Guo, and Zongjue Qian.
High throughput, pipelined implementation of aes on fpga. In Information
Engineering and Electronic Commerce, 2009. IEEC’09. International
Symposium on, pages 542–545. IEEE, 2009.

[RSQL04] Gaël Rouvroy, F-X Standaert, J-J Quisquater, and J-D Legat. Compact
and efficient encryption/decryption module for fpga implementation
of the aes rijndael very well suited for small embedded applications.
In Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004. International Conference on, volume 2, pages 583–587. IEEE,
2004.

[SRHDP03] Nazar Abbas Saqib, Francisco Rodríguez-Henríquez, and Arturo Díaz-
Pérez. Aes algorithm implementation-an efficient approach for sequential
and pipeline architectures. In Computer Science, 2003. ENC 2003.
Proceedings of the Fourth Mexican International Conference on, pages
126–130. IEEE, 2003.

[Wu07] HongJun Wu. Hongjun’s optimized C-code for AES-128 and AES-256.
eSTREAM Project, 2007. http://www.ecrypt.eu.org/stream/
svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/
hongjun/v1/?rev=203#dirlist.

[YGH17] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a
timing attack on openssl constant-time rsa. Journal of Cryptographic
Engineering, 7(2):99–112, 2017.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.openssl.org
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist

490 FACE

A Appendix
A.1 Round Transformation Code of Bitsliced FACE

. type _bsaes_face_encrypt8 , @function

. a l i g n 64
_bsaes_face_encrypt8 :

l e a q . LBS0(% r i p) ,% r11
movdqa (%rax) ,%xmm8
l e a q 16(% rax) ,%rax
movdqa 80(% r11) ,%xmm7
pxor %xmm8,%xmm15
pxor %xmm8,%xmm0
pxor %xmm8,%xmm1
pxor %xmm8,%xmm2
pshufb %xmm7,%xmm15
pshufb %xmm7,%xmm0
pxor %xmm8,%xmm3
pxor %xmm8,%xmm4
pshufb %xmm7,%xmm1
pshufb %xmm7,%xmm2
pxor %xmm8,%xmm5
pxor %xmm8,%xmm6
pshufb %xmm7,%xmm3
pshufb %xmm7,%xmm4
pshufb %xmm7,%xmm5
pshufb %xmm7,%xmm6

_bsaes_face_encrypt8_bits l i ce :
movzbl 44(%rbp) , %ecx
t e s t %cl , %c l
jne . Lctr_face
movdqa %xmm15,%xmm0
movdqa %xmm15,%xmm1
paddd 0(%r11) ,%xmm0
movdqa %xmm15,%xmm2
paddd 16(% r11) ,%xmm1
movdqa %xmm15,%xmm3
paddd 32(% r11) ,%xmm2
movdqa %xmm15,%xmm4
paddd 48(% r11) ,%xmm3
movdqa %xmm15,%xmm5
paddd 64(% r11) ,%xmm4
movdqa %xmm15,%xmm6
paddd 80(% r11) ,%xmm5
paddd 96(% r11) ,%xmm6
movdqa (%rax) ,%xmm8
l e a q 16(% rax) ,%rax
movdqa −16(%r11) ,%xmm7
pxor %xmm8,%xmm15
pxor %xmm8,%xmm0
pxor %xmm8,%xmm1
pxor %xmm8,%xmm2
pshufb %xmm7,%xmm15
pshufb %xmm7,%xmm0
pxor %xmm8,%xmm3
pxor %xmm8,%xmm4
pshufb %xmm7,%xmm1
pshufb %xmm7,%xmm2
pxor %xmm8,%xmm5
pxor %xmm8,%xmm6
pshufb %xmm7,%xmm3
pshufb %xmm7,%xmm4
pshufb %xmm7,%xmm5
pshufb %xmm7,%xmm6
l e a q . LBS0(% r i p) ,% r11
movl %ebx ,%r10d

movdqa 0(% r11) ,%xmm7
movdqa 16(% r11) ,%xmm8
movdqa %xmm5,%xmm9
p s r l q $1 ,%xmm5
movdqa %xmm3,%xmm10
p s r l q $1 ,%xmm3
pxor %xmm6,%xmm5
pxor %xmm4,%xmm3
pand %xmm7,%xmm5

pand %xmm7,%xmm3
pxor %xmm5,%xmm6
p s l l q $1 ,%xmm5
pxor %xmm3,%xmm4
p s l l q $1 ,%xmm3
pxor %xmm9,%xmm5
pxor %xmm10,%xmm3
movdqa %xmm1,%xmm9
p s r l q $1 ,%xmm1
movdqa %xmm15,%xmm10
p s r l q $1 ,%xmm15
pxor %xmm2,%xmm1
pxor %xmm0,%xmm15
pand %xmm7,%xmm1
pand %xmm7,%xmm15
pxor %xmm1,%xmm2
p s l l q $1 ,%xmm1
pxor %xmm15,%xmm0
p s l l q $1 ,%xmm15
pxor %xmm9,%xmm1
pxor %xmm10,%xmm15
movdqa 32(% r11) ,%xmm7
movdqa %xmm4,%xmm9
p s r l q $2 ,%xmm4
movdqa %xmm3,%xmm10
p s r l q $2 ,%xmm3
pxor %xmm6,%xmm4
pxor %xmm5,%xmm3
pand %xmm8,%xmm4
pand %xmm8,%xmm3
pxor %xmm4,%xmm6
p s l l q $2 ,%xmm4
pxor %xmm3,%xmm5
p s l l q $2 ,%xmm3
pxor %xmm9,%xmm4
pxor %xmm10,%xmm3
movdqa %xmm0,%xmm9
p s r l q $2 ,%xmm0
movdqa %xmm15,%xmm10
p s r l q $2 ,%xmm15
pxor %xmm2,%xmm0
pxor %xmm1,%xmm15
pand %xmm8,%xmm0
pand %xmm8,%xmm15
pxor %xmm0,%xmm2
p s l l q $2 ,%xmm0
pxor %xmm15,%xmm1
p s l l q $2 ,%xmm15
pxor %xmm9,%xmm0
pxor %xmm10,%xmm15
movdqa %xmm2,%xmm9
p s r l q $4 ,%xmm2
movdqa %xmm1,%xmm10
p s r l q $4 ,%xmm1
pxor %xmm6,%xmm2
pxor %xmm5,%xmm1
pand %xmm7,%xmm2
pand %xmm7,%xmm1
pxor %xmm2,%xmm6
p s l l q $4 ,%xmm2
pxor %xmm1,%xmm5
p s l l q $4 ,%xmm1
pxor %xmm9,%xmm2
pxor %xmm10,%xmm1
movdqa %xmm0,%xmm9
p s r l q $4 ,%xmm0
movdqa %xmm15,%xmm10
p s r l q $4 ,%xmm15
pxor %xmm4,%xmm0
pxor %xmm3,%xmm15
pand %xmm7,%xmm0
pand %xmm7,%xmm15

Jin Hyung Park and Dong Hoon Lee 491

pxor %xmm0,%xmm4
p s l l q $4 ,%xmm0
pxor %xmm15,%xmm3
p s l l q $4 ,%xmm15
pxor %xmm9,%xmm0
pxor %xmm10,%xmm15
d e c l %r10d
d e c l %r10d

pxor %xmm5,%xmm4
pxor %xmm0,%xmm1
pxor %xmm15,%xmm2
pxor %xmm1,%xmm5
pxor %xmm15,%xmm4
pxor %xmm2,%xmm5
pxor %xmm6,%xmm2
pxor %xmm4,%xmm6
pxor %xmm3,%xmm2
pxor %xmm4,%xmm3
pxor %xmm0,%xmm2
pxor %xmm6,%xmm1
pxor %xmm4,%xmm0
movdqa %xmm6,%xmm10
movdqa %xmm0,%xmm9
movdqa %xmm4,%xmm8
movdqa %xmm1,%xmm12
movdqa %xmm5,%xmm11
pxor %xmm3,%xmm10
pxor %xmm1,%xmm9
pxor %xmm2,%xmm8
movdqa %xmm10,%xmm13
pxor %xmm3,%xmm12
movdqa %xmm9,%xmm7
pxor %xmm15,%xmm11
movdqa %xmm10,%xmm14
por %xmm8,%xmm9
por %xmm11,%xmm10
pxor %xmm7,%xmm14
pand %xmm11,%xmm13
pxor %xmm8,%xmm11
pand %xmm8,%xmm7
pand %xmm11,%xmm14
movdqa %xmm2,%xmm11
pxor %xmm15,%xmm11
pand %xmm11,%xmm12
pxor %xmm12,%xmm10
pxor %xmm12,%xmm9
movdqa %xmm6,%xmm12
movdqa %xmm4,%xmm11
pxor %xmm0,%xmm12
pxor %xmm5,%xmm11
movdqa %xmm12,%xmm8
pand %xmm11,%xmm12
por %xmm11,%xmm8
pxor %xmm12,%xmm7
pxor %xmm14,%xmm10
pxor %xmm13,%xmm9
pxor %xmm14,%xmm8
movdqa %xmm1,%xmm11
pxor %xmm13,%xmm7
movdqa %xmm3,%xmm12
pxor %xmm13,%xmm8
movdqa %xmm0,%xmm13
pand %xmm2,%xmm11
movdqa %xmm6,%xmm14
pand %xmm15,%xmm12
pand %xmm4,%xmm13
por %xmm5,%xmm14
pxor %xmm11,%xmm10
pxor %xmm12,%xmm9
pxor %xmm13,%xmm8
pxor %xmm14,%xmm7
movdqa %xmm10,%xmm11
pand %xmm8,%xmm10
pxor %xmm9,%xmm11
movdqa %xmm7,%xmm13
movdqa %xmm11,%xmm14
pxor %xmm10,%xmm13

pand %xmm13,%xmm14
movdqa %xmm8,%xmm12
pxor %xmm9,%xmm14
pxor %xmm7,%xmm12
pxor %xmm9,%xmm10
pand %xmm10,%xmm12
movdqa %xmm13,%xmm9
pxor %xmm7,%xmm12
pxor %xmm12,%xmm9
pxor %xmm12,%xmm8
pand %xmm7,%xmm9
pxor %xmm9,%xmm13
pxor %xmm9,%xmm8
pand %xmm14,%xmm13
pxor %xmm11,%xmm13
movdqa %xmm5,%xmm11
movdqa %xmm4,%xmm7
movdqa %xmm14,%xmm9
pxor %xmm13,%xmm9
pand %xmm5,%xmm9
pxor %xmm4,%xmm5
pand %xmm14,%xmm4
pand %xmm13,%xmm5
pxor %xmm4,%xmm5
pxor %xmm9,%xmm4
pxor %xmm15,%xmm11
pxor %xmm2,%xmm7
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm15,%xmm9
pxor %xmm7,%xmm11
pxor %xmm2,%xmm15
pand %xmm14,%xmm7
pand %xmm12,%xmm2
pand %xmm13,%xmm11
pand %xmm8,%xmm15
pxor %xmm11,%xmm7
pxor %xmm2,%xmm15
pxor %xmm10,%xmm11
pxor %xmm9,%xmm2
pxor %xmm11,%xmm5
pxor %xmm11,%xmm15
pxor %xmm7,%xmm4
pxor %xmm7,%xmm2
movdqa %xmm6,%xmm11
movdqa %xmm0,%xmm7
pxor %xmm3,%xmm11
pxor %xmm1,%xmm7
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm3,%xmm9
pxor %xmm7,%xmm11
pxor %xmm1,%xmm3
pand %xmm14,%xmm7
pand %xmm12,%xmm1
pand %xmm13,%xmm11
pand %xmm8,%xmm3
pxor %xmm11,%xmm7
pxor %xmm1,%xmm3
pxor %xmm10,%xmm11
pxor %xmm9,%xmm1
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
pxor %xmm13,%xmm10
pand %xmm6,%xmm10
pxor %xmm0,%xmm6
pand %xmm14,%xmm0
pand %xmm13,%xmm6
pxor %xmm0,%xmm6

492 FACE

pxor %xmm10,%xmm0
pxor %xmm11,%xmm6
pxor %xmm11,%xmm3
pxor %xmm7,%xmm0
pxor %xmm7,%xmm1
pxor %xmm15,%xmm6
pxor %xmm5,%xmm0
pxor %xmm6,%xmm3
pxor %xmm15,%xmm5
pxor %xmm0,%xmm15
pxor %xmm4,%xmm0
pxor %xmm1,%xmm4
pxor %xmm2,%xmm1
pxor %xmm4,%xmm2
pxor %xmm4,%xmm3
pxor %xmm2,%xmm5

pshufd $147 ,%xmm15,%xmm7
pshufd $147 ,%xmm0,%xmm8
pxor %xmm7,%xmm15
pshufd $147 ,%xmm3,%xmm9
pxor %xmm8,%xmm0
pshufd $147 ,%xmm5,%xmm10
pxor %xmm9,%xmm3
pshufd $147 ,%xmm2,%xmm11
pxor %xmm10,%xmm5
pshufd $147 ,%xmm6,%xmm12
pxor %xmm11,%xmm2
pshufd $147 ,%xmm1,%xmm13
pxor %xmm12,%xmm6
pshufd $147 ,%xmm4,%xmm14
pxor %xmm13,%xmm1
pxor %xmm14,%xmm4
pxor %xmm15,%xmm8
pxor %xmm4,%xmm7
pxor %xmm4,%xmm8
pshufd $78 ,%xmm15,%xmm15
pxor %xmm0,%xmm9
pshufd $78 ,%xmm0,%xmm0
pxor %xmm2,%xmm12
pxor %xmm7,%xmm15
pxor %xmm6,%xmm13
pxor %xmm8,%xmm0
pxor %xmm5,%xmm11
pshufd $78 ,%xmm2,%xmm7
pxor %xmm1,%xmm14
pshufd $78 ,%xmm6,%xmm8
pxor %xmm3,%xmm10
pshufd $78 ,%xmm5,%xmm2
pxor %xmm4,%xmm10
pshufd $78 ,%xmm4,%xmm6
pxor %xmm4,%xmm11
pshufd $78 ,%xmm1,%xmm5
pxor %xmm11,%xmm7
pshufd $78 ,%xmm3,%xmm1
pxor %xmm12,%xmm8
pxor %xmm10,%xmm2
pxor %xmm14,%xmm6
pxor %xmm13,%xmm5
movdqa %xmm7,%xmm3
pxor %xmm9,%xmm1
movdqa %xmm8,%xmm4
movdqa 48(% r11) ,%xmm7
jnz .

Lenc_addroundkey_forcache
movdqa 64(% r11) ,%xmm7
jmp .

Lenc_addroundkey_forcache

. Lenc_addroundkey_forcache :
pxor 0(%rax) ,%xmm15
pxor 16(% rax) ,%xmm0
pxor 32(% rax) ,%xmm1
pxor 48(% rax) ,%xmm2
pshufb %xmm7,%xmm15
pshufb %xmm7,%xmm0
pxor 64(% rax) ,%xmm3
pxor 80(% rax) ,%xmm4

pshufb %xmm7,%xmm1
pshufb %xmm7,%xmm2
pxor 96(% rax) ,%xmm5
pxor 112(% rax) ,%xmm6
pshufb %xmm7,%xmm3
pshufb %xmm7,%xmm4
pshufb %xmm7,%xmm5
pshufb %xmm7,%xmm6
l e a q 128(% rax) ,%rax
d e c l %r10d

pxor %xmm5,%xmm4
pxor %xmm0,%xmm1
pxor %xmm15,%xmm2
pxor %xmm1,%xmm5
pxor %xmm15,%xmm4
pxor %xmm2,%xmm5
pxor %xmm6,%xmm2
pxor %xmm4,%xmm6
pxor %xmm3,%xmm2
pxor %xmm4,%xmm3
pxor %xmm0,%xmm2
pxor %xmm6,%xmm1
pxor %xmm4,%xmm0
movdqa %xmm6,%xmm10
movdqa %xmm0,%xmm9
movdqa %xmm4,%xmm8
movdqa %xmm1,%xmm12
movdqa %xmm5,%xmm11
pxor %xmm3,%xmm10
pxor %xmm1,%xmm9
pxor %xmm2,%xmm8
movdqa %xmm10,%xmm13
pxor %xmm3,%xmm12
movdqa %xmm9,%xmm7
pxor %xmm15,%xmm11
movdqa %xmm10,%xmm14
por %xmm8,%xmm9
por %xmm11,%xmm10
pxor %xmm7,%xmm14
pand %xmm11,%xmm13
pxor %xmm8,%xmm11
pand %xmm8,%xmm7
pand %xmm11,%xmm14
movdqa %xmm2,%xmm11
pxor %xmm15,%xmm11
pand %xmm11,%xmm12
pxor %xmm12,%xmm10
pxor %xmm12,%xmm9
movdqa %xmm6,%xmm12
movdqa %xmm4,%xmm11
pxor %xmm0,%xmm12
pxor %xmm5,%xmm11
movdqa %xmm12,%xmm8
pand %xmm11,%xmm12
por %xmm11,%xmm8
pxor %xmm12,%xmm7
pxor %xmm14,%xmm10
pxor %xmm13,%xmm9
pxor %xmm14,%xmm8
movdqa %xmm1,%xmm11
pxor %xmm13,%xmm7
movdqa %xmm3,%xmm12
pxor %xmm13,%xmm8
movdqa %xmm0,%xmm13
pand %xmm2,%xmm11
movdqa %xmm6,%xmm14
pand %xmm15,%xmm12
pand %xmm4,%xmm13
por %xmm5,%xmm14
pxor %xmm11,%xmm10
pxor %xmm12,%xmm9
pxor %xmm13,%xmm8
pxor %xmm14,%xmm7
movdqa %xmm10,%xmm11
pand %xmm8,%xmm10
pxor %xmm9,%xmm11
movdqa %xmm7,%xmm13

Jin Hyung Park and Dong Hoon Lee 493

movdqa %xmm11,%xmm14
pxor %xmm10,%xmm13
pand %xmm13,%xmm14
movdqa %xmm8,%xmm12
pxor %xmm9,%xmm14
pxor %xmm7,%xmm12
pxor %xmm9,%xmm10
pand %xmm10,%xmm12
movdqa %xmm13,%xmm9
pxor %xmm7,%xmm12
pxor %xmm12,%xmm9
pxor %xmm12,%xmm8
pand %xmm7,%xmm9
pxor %xmm9,%xmm13
pxor %xmm9,%xmm8
pand %xmm14,%xmm13
pxor %xmm11,%xmm13
movdqa %xmm5,%xmm11
movdqa %xmm4,%xmm7
movdqa %xmm14,%xmm9
pxor %xmm13,%xmm9
pand %xmm5,%xmm9
pxor %xmm4,%xmm5
pand %xmm14,%xmm4
pand %xmm13,%xmm5
pxor %xmm4,%xmm5
pxor %xmm9,%xmm4
pxor %xmm15,%xmm11
pxor %xmm2,%xmm7
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm15,%xmm9
pxor %xmm7,%xmm11
pxor %xmm2,%xmm15
pand %xmm14,%xmm7
pand %xmm12,%xmm2
pand %xmm13,%xmm11
pand %xmm8,%xmm15
pxor %xmm11,%xmm7
pxor %xmm2,%xmm15
pxor %xmm10,%xmm11
pxor %xmm9,%xmm2
pxor %xmm11,%xmm5
pxor %xmm11,%xmm15
pxor %xmm7,%xmm4
pxor %xmm7,%xmm2
movdqa %xmm6,%xmm11
movdqa %xmm0,%xmm7
pxor %xmm3,%xmm11
pxor %xmm1,%xmm7
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm3,%xmm9
pxor %xmm7,%xmm11
pxor %xmm1,%xmm3
pand %xmm14,%xmm7
pand %xmm12,%xmm1
pand %xmm13,%xmm11
pand %xmm8,%xmm3
pxor %xmm11,%xmm7
pxor %xmm1,%xmm3
pxor %xmm10,%xmm11
pxor %xmm9,%xmm1
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
pxor %xmm13,%xmm10
pand %xmm6,%xmm10
pxor %xmm0,%xmm6
pand %xmm14,%xmm0

pand %xmm13,%xmm6
pxor %xmm0,%xmm6
pxor %xmm10,%xmm0
pxor %xmm11,%xmm6
pxor %xmm11,%xmm3
pxor %xmm7,%xmm0
pxor %xmm7,%xmm1
pxor %xmm15,%xmm6
pxor %xmm5,%xmm0
pxor %xmm6,%xmm3
pxor %xmm15,%xmm5
pxor %xmm0,%xmm15
pxor %xmm4,%xmm0
pxor %xmm1,%xmm4
pxor %xmm2,%xmm1
pxor %xmm4,%xmm2
pxor %xmm4,%xmm3
pxor %xmm2,%xmm5

pshufd $147 ,%xmm15,%xmm7
pshufd $147 ,%xmm0,%xmm8
pxor %xmm7,%xmm15
pshufd $147 ,%xmm3,%xmm9
pxor %xmm8,%xmm0
pshufd $147 ,%xmm5,%xmm10
pxor %xmm9,%xmm3
pshufd $147 ,%xmm2,%xmm11
pxor %xmm10,%xmm5
pshufd $147 ,%xmm6,%xmm12
pxor %xmm11,%xmm2
pshufd $147 ,%xmm1,%xmm13
pxor %xmm12,%xmm6
pshufd $147 ,%xmm4,%xmm14
pxor %xmm13,%xmm1
pxor %xmm14,%xmm4
pxor %xmm15,%xmm8
pxor %xmm4,%xmm7
pxor %xmm4,%xmm8
pshufd $78 ,%xmm15,%xmm15
pxor %xmm0,%xmm9
pshufd $78 ,%xmm0,%xmm0
pxor %xmm2,%xmm12
pxor %xmm7,%xmm15
pxor %xmm6,%xmm13
pxor %xmm8,%xmm0
pxor %xmm5,%xmm11
pshufd $78 ,%xmm2,%xmm7
pxor %xmm1,%xmm14
pshufd $78 ,%xmm6,%xmm8
pxor %xmm3,%xmm10
pshufd $78 ,%xmm5,%xmm2
pxor %xmm4,%xmm10
pshufd $78 ,%xmm4,%xmm6
pxor %xmm4,%xmm11
pshufd $78 ,%xmm1,%xmm5
pxor %xmm11,%xmm7
pshufd $78 ,%xmm3,%xmm1
pxor %xmm12,%xmm8
pxor %xmm10,%xmm2
pxor %xmm14,%xmm6
pxor %xmm13,%xmm5
movdqa %xmm7,%xmm3
pxor %xmm9,%xmm1
movdqa %xmm8,%xmm4
movdqa 48(% r11) ,%xmm7

pxor 0(%rax) ,%xmm15
pxor 16(% rax) ,%xmm0
pxor 32(% rax) ,%xmm1
pxor 48(% rax) ,%xmm2
pshufb %xmm7,%xmm15
pshufb %xmm7,%xmm0
pxor 64(% rax) ,%xmm3
pxor 80(% rax) ,%xmm4
pshufb %xmm7,%xmm1
pshufb %xmm7,%xmm2
pxor 96(% rax) ,%xmm5
pxor 112(% rax) ,%xmm6

494 FACE

pshufb %xmm7,%xmm3
pshufb %xmm7,%xmm4
pshufb %xmm7,%xmm5
pshufb %xmm7,%xmm6
l e a q 128(% rax) ,%rax

movdqu 248(% r15) ,%xmm8
movdqa %xmm15,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4344(% r15)
movdqu 264(% r15) ,%xmm8
movdqa %xmm0,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4360(% r15)
movdqu 280(% r15) ,%xmm8
movdqa %xmm1,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4376(% r15)
movdqu 296(% r15) ,%xmm8
movdqa %xmm2,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4392(% r15)
movdqu 312(% r15) ,%xmm8
movdqa %xmm3,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4408(% r15)
movdqu 328(% r15) ,%xmm8
movdqa %xmm4,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4424(% r15)
movdqu 344(% r15) ,%xmm8
movdqa %xmm5,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4440(% r15)
movdqu 360(% r15) ,%xmm8
movdqa %xmm6,%xmm9
pxor %xmm8,%xmm9
movdqu %xmm9, 4456(% r15)
d e c l %r10d
jmp . Lenc_sbox

. a l i g n 16

. Lctr_face :
l e a q . LBS0(% r i p) ,% r11
movl %ebx ,%r10d
l e a q 248(% r15) ,% r8
s h l $4 , %ecx
add %rcx ,% r8
l e a q 4344(% r15) ,% r9
movdqu (%r9) ,%xmm15
movdqu 16(% r9) ,%xmm0
movdqu 32(% r9) ,%xmm1
movdqu 48(% r9) ,%xmm2
movdqu 64(% r9) ,%xmm3
movdqu 80(% r9) ,%xmm4
movdqu 96(% r9) ,%xmm5
movdqu 112(% r9) ,%xmm6
movdqu (%r8) ,%xmm8
pxor %xmm8,%xmm15
movdqu 16(% r8) ,%xmm8
pxor %xmm8,%xmm0
movdqu 32(% r8) ,%xmm8
pxor %xmm8,%xmm1
movdqu 48(% r8) ,%xmm8
pxor %xmm8,%xmm2
movdqu 64(% r8) ,%xmm8
pxor %xmm8,%xmm3
movdqu 80(% r8) ,%xmm8
pxor %xmm8,%xmm4
movdqu 96(% r8) ,%xmm8
pxor %xmm8,%xmm5
movdqu 112(% r8) ,%xmm8
pxor %xmm8,%xmm6
l e a q 272(% rax) ,%rax
d e c l %r10d
d e c l %r10d
d e c l %r10d
d e c l %r10d

. a l i g n 16

. Lenc_sbox :
pxor %xmm5,%xmm4
pxor %xmm0,%xmm1
pxor %xmm15,%xmm2
pxor %xmm1,%xmm5
pxor %xmm15,%xmm4
pxor %xmm2,%xmm5
pxor %xmm6,%xmm2
pxor %xmm4,%xmm6
pxor %xmm3,%xmm2
pxor %xmm4,%xmm3
pxor %xmm0,%xmm2
pxor %xmm6,%xmm1
pxor %xmm4,%xmm0
movdqa %xmm6,%xmm10
movdqa %xmm0,%xmm9
movdqa %xmm4,%xmm8
movdqa %xmm1,%xmm12
movdqa %xmm5,%xmm11
pxor %xmm3,%xmm10
pxor %xmm1,%xmm9
pxor %xmm2,%xmm8
movdqa %xmm10,%xmm13
pxor %xmm3,%xmm12
movdqa %xmm9,%xmm7
pxor %xmm15,%xmm11
movdqa %xmm10,%xmm14
por %xmm8,%xmm9
por %xmm11,%xmm10
pxor %xmm7,%xmm14
pand %xmm11,%xmm13
pxor %xmm8,%xmm11
pand %xmm8,%xmm7
pand %xmm11,%xmm14
movdqa %xmm2,%xmm11
pxor %xmm15,%xmm11
pand %xmm11,%xmm12
pxor %xmm12,%xmm10
pxor %xmm12,%xmm9
movdqa %xmm6,%xmm12
movdqa %xmm4,%xmm11
pxor %xmm0,%xmm12
pxor %xmm5,%xmm11
movdqa %xmm12,%xmm8
pand %xmm11,%xmm12
por %xmm11,%xmm8
pxor %xmm12,%xmm7
pxor %xmm14,%xmm10
pxor %xmm13,%xmm9
pxor %xmm14,%xmm8
movdqa %xmm1,%xmm11
pxor %xmm13,%xmm7
movdqa %xmm3,%xmm12
pxor %xmm13,%xmm8
movdqa %xmm0,%xmm13
pand %xmm2,%xmm11
movdqa %xmm6,%xmm14
pand %xmm15,%xmm12
pand %xmm4,%xmm13
por %xmm5,%xmm14
pxor %xmm11,%xmm10
pxor %xmm12,%xmm9
pxor %xmm13,%xmm8
pxor %xmm14,%xmm7
movdqa %xmm10,%xmm11
pand %xmm8,%xmm10
pxor %xmm9,%xmm11
movdqa %xmm7,%xmm13
movdqa %xmm11,%xmm14
pxor %xmm10,%xmm13
pand %xmm13,%xmm14
movdqa %xmm8,%xmm12
pxor %xmm9,%xmm14
pxor %xmm7,%xmm12
pxor %xmm9,%xmm10
pand %xmm10,%xmm12

Jin Hyung Park and Dong Hoon Lee 495

movdqa %xmm13,%xmm9
pxor %xmm7,%xmm12
pxor %xmm12,%xmm9
pxor %xmm12,%xmm8
pand %xmm7,%xmm9
pxor %xmm9,%xmm13
pxor %xmm9,%xmm8
pand %xmm14,%xmm13
pxor %xmm11,%xmm13
movdqa %xmm5,%xmm11
movdqa %xmm4,%xmm7
movdqa %xmm14,%xmm9
pxor %xmm13,%xmm9
pand %xmm5,%xmm9
pxor %xmm4,%xmm5
pand %xmm14,%xmm4
pand %xmm13,%xmm5
pxor %xmm4,%xmm5
pxor %xmm9,%xmm4
pxor %xmm15,%xmm11
pxor %xmm2,%xmm7
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm15,%xmm9
pxor %xmm7,%xmm11
pxor %xmm2,%xmm15
pand %xmm14,%xmm7
pand %xmm12,%xmm2
pand %xmm13,%xmm11
pand %xmm8,%xmm15
pxor %xmm11,%xmm7
pxor %xmm2,%xmm15
pxor %xmm10,%xmm11
pxor %xmm9,%xmm2
pxor %xmm11,%xmm5
pxor %xmm11,%xmm15
pxor %xmm7,%xmm4
pxor %xmm7,%xmm2
movdqa %xmm6,%xmm11
movdqa %xmm0,%xmm7
pxor %xmm3,%xmm11
pxor %xmm1,%xmm7
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm3,%xmm9
pxor %xmm7,%xmm11
pxor %xmm1,%xmm3
pand %xmm14,%xmm7
pand %xmm12,%xmm1
pand %xmm13,%xmm11
pand %xmm8,%xmm3
pxor %xmm11,%xmm7
pxor %xmm1,%xmm3
pxor %xmm10,%xmm11
pxor %xmm9,%xmm1
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
pxor %xmm13,%xmm10
pand %xmm6,%xmm10
pxor %xmm0,%xmm6
pand %xmm14,%xmm0
pand %xmm13,%xmm6
pxor %xmm0,%xmm6
pxor %xmm10,%xmm0
pxor %xmm11,%xmm6
pxor %xmm11,%xmm3
pxor %xmm7,%xmm0
pxor %xmm7,%xmm1
pxor %xmm15,%xmm6

pxor %xmm5,%xmm0
pxor %xmm6,%xmm3
pxor %xmm15,%xmm5
pxor %xmm0,%xmm15
pxor %xmm4,%xmm0
pxor %xmm1,%xmm4
pxor %xmm2,%xmm1
pxor %xmm4,%xmm2
pxor %xmm4,%xmm3
pxor %xmm2,%xmm5

pshufd $147 ,%xmm15,%xmm7
pshufd $147 ,%xmm0,%xmm8
pxor %xmm7,%xmm15
pshufd $147 ,%xmm3,%xmm9
pxor %xmm8,%xmm0
pshufd $147 ,%xmm5,%xmm10
pxor %xmm9,%xmm3
pshufd $147 ,%xmm2,%xmm11
pxor %xmm10,%xmm5
pshufd $147 ,%xmm6,%xmm12
pxor %xmm11,%xmm2
pshufd $147 ,%xmm1,%xmm13
pxor %xmm12,%xmm6
pshufd $147 ,%xmm4,%xmm14
pxor %xmm13,%xmm1
pxor %xmm14,%xmm4
pxor %xmm15,%xmm8
pxor %xmm4,%xmm7
pxor %xmm4,%xmm8
pshufd $78 ,%xmm15,%xmm15
pxor %xmm0,%xmm9
pshufd $78 ,%xmm0,%xmm0
pxor %xmm2,%xmm12
pxor %xmm7,%xmm15
pxor %xmm6,%xmm13
pxor %xmm8,%xmm0
pxor %xmm5,%xmm11
pshufd $78 ,%xmm2,%xmm7
pxor %xmm1,%xmm14
pshufd $78 ,%xmm6,%xmm8
pxor %xmm3,%xmm10
pshufd $78 ,%xmm5,%xmm2
pxor %xmm4,%xmm10
pshufd $78 ,%xmm4,%xmm6
pxor %xmm4,%xmm11
pshufd $78 ,%xmm1,%xmm5
pxor %xmm11,%xmm7
pshufd $78 ,%xmm3,%xmm1
pxor %xmm12,%xmm8
pxor %xmm10,%xmm2
pxor %xmm14,%xmm6
pxor %xmm13,%xmm5
movdqa %xmm7,%xmm3
pxor %xmm9,%xmm1
movdqa %xmm8,%xmm4
movdqa 48(% r11) ,%xmm7
jnz . Lenc_addroundkey
movdqa 64(% r11) ,%xmm7
jmp . Lenc_addroundkey

. Lenc_addroundkey :
pxor 0(%rax) ,%xmm15
pxor 16(% rax) ,%xmm0
pxor 32(% rax) ,%xmm1
pxor 48(% rax) ,%xmm2
pshufb %xmm7,%xmm15
pshufb %xmm7,%xmm0
pxor 64(% rax) ,%xmm3
pxor 80(% rax) ,%xmm4
pshufb %xmm7,%xmm1
pshufb %xmm7,%xmm2
pxor 96(% rax) ,%xmm5
pxor 112(% rax) ,%xmm6
pshufb %xmm7,%xmm3
pshufb %xmm7,%xmm4
pshufb %xmm7,%xmm5
pshufb %xmm7,%xmm6

496 FACE

l e a q 128(% rax) ,%rax
d e c l %r10d
j l . Lenc_done
jmp . Lenc_sbox

. a l i g n 16

. Lenc_done :
pxor %xmm5,%xmm4
pxor %xmm0,%xmm1
pxor %xmm15,%xmm2
pxor %xmm1,%xmm5
pxor %xmm15,%xmm4
pxor %xmm2,%xmm5
pxor %xmm6,%xmm2
pxor %xmm4,%xmm6
pxor %xmm3,%xmm2
pxor %xmm4,%xmm3
pxor %xmm0,%xmm2
pxor %xmm6,%xmm1
pxor %xmm4,%xmm0
movdqa %xmm6,%xmm10
movdqa %xmm0,%xmm9
movdqa %xmm4,%xmm8
movdqa %xmm1,%xmm12
movdqa %xmm5,%xmm11
pxor %xmm3,%xmm10
pxor %xmm1,%xmm9
pxor %xmm2,%xmm8
movdqa %xmm10,%xmm13
pxor %xmm3,%xmm12
movdqa %xmm9,%xmm7
pxor %xmm15,%xmm11
movdqa %xmm10,%xmm14
por %xmm8,%xmm9
por %xmm11,%xmm10
pxor %xmm7,%xmm14
pand %xmm11,%xmm13
pxor %xmm8,%xmm11
pand %xmm8,%xmm7
pand %xmm11,%xmm14
movdqa %xmm2,%xmm11
pxor %xmm15,%xmm11
pand %xmm11,%xmm12
pxor %xmm12,%xmm10
pxor %xmm12,%xmm9
movdqa %xmm6,%xmm12
movdqa %xmm4,%xmm11
pxor %xmm0,%xmm12
pxor %xmm5,%xmm11
movdqa %xmm12,%xmm8
pand %xmm11,%xmm12
por %xmm11,%xmm8
pxor %xmm12,%xmm7
pxor %xmm14,%xmm10
pxor %xmm13,%xmm9
pxor %xmm14,%xmm8
movdqa %xmm1,%xmm11
pxor %xmm13,%xmm7
movdqa %xmm3,%xmm12
pxor %xmm13,%xmm8
movdqa %xmm0,%xmm13
pand %xmm2,%xmm11
movdqa %xmm6,%xmm14
pand %xmm15,%xmm12
pand %xmm4,%xmm13
por %xmm5,%xmm14
pxor %xmm11,%xmm10
pxor %xmm12,%xmm9
pxor %xmm13,%xmm8
pxor %xmm14,%xmm7
movdqa %xmm10,%xmm11
pand %xmm8,%xmm10
pxor %xmm9,%xmm11
movdqa %xmm7,%xmm13
movdqa %xmm11,%xmm14
pxor %xmm10,%xmm13
pand %xmm13,%xmm14
movdqa %xmm8,%xmm12

pxor %xmm9,%xmm14
pxor %xmm7,%xmm12
pxor %xmm9,%xmm10
pand %xmm10,%xmm12
movdqa %xmm13,%xmm9
pxor %xmm7,%xmm12
pxor %xmm12,%xmm9
pxor %xmm12,%xmm8
pand %xmm7,%xmm9
pxor %xmm9,%xmm13
pxor %xmm9,%xmm8
pand %xmm14,%xmm13
pxor %xmm11,%xmm13
movdqa %xmm5,%xmm11
movdqa %xmm4,%xmm7
movdqa %xmm14,%xmm9
pxor %xmm13,%xmm9
pand %xmm5,%xmm9
pxor %xmm4,%xmm5
pand %xmm14,%xmm4
pand %xmm13,%xmm5
pxor %xmm4,%xmm5
pxor %xmm9,%xmm4
pxor %xmm15,%xmm11
pxor %xmm2,%xmm7
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm15,%xmm9
pxor %xmm7,%xmm11
pxor %xmm2,%xmm15
pand %xmm14,%xmm7
pand %xmm12,%xmm2
pand %xmm13,%xmm11
pand %xmm8,%xmm15
pxor %xmm11,%xmm7
pxor %xmm2,%xmm15
pxor %xmm10,%xmm11
pxor %xmm9,%xmm2
pxor %xmm11,%xmm5
pxor %xmm11,%xmm15
pxor %xmm7,%xmm4
pxor %xmm7,%xmm2
movdqa %xmm6,%xmm11
movdqa %xmm0,%xmm7
pxor %xmm3,%xmm11
pxor %xmm1,%xmm7
movdqa %xmm14,%xmm10
movdqa %xmm12,%xmm9
pxor %xmm13,%xmm10
pxor %xmm8,%xmm9
pand %xmm11,%xmm10
pand %xmm3,%xmm9
pxor %xmm7,%xmm11
pxor %xmm1,%xmm3
pand %xmm14,%xmm7
pand %xmm12,%xmm1
pand %xmm13,%xmm11
pand %xmm8,%xmm3
pxor %xmm11,%xmm7
pxor %xmm1,%xmm3
pxor %xmm10,%xmm11
pxor %xmm9,%xmm1
pxor %xmm12,%xmm14
pxor %xmm8,%xmm13
movdqa %xmm14,%xmm10
pxor %xmm13,%xmm10
pand %xmm6,%xmm10
pxor %xmm0,%xmm6
pand %xmm14,%xmm0
pand %xmm13,%xmm6
pxor %xmm0,%xmm6
pxor %xmm10,%xmm0
pxor %xmm11,%xmm6

Jin Hyung Park and Dong Hoon Lee 497

pxor %xmm11,%xmm3
pxor %xmm7,%xmm0
pxor %xmm7,%xmm1
pxor %xmm15,%xmm6
pxor %xmm5,%xmm0
pxor %xmm6,%xmm3
pxor %xmm15,%xmm5
pxor %xmm0,%xmm15
pxor %xmm4,%xmm0
pxor %xmm1,%xmm4
pxor %xmm2,%xmm1
pxor %xmm4,%xmm2
pxor %xmm4,%xmm3
pxor %xmm2,%xmm5

movdqa 0(% r11) ,%xmm7
movdqa 16(% r11) ,%xmm8
movdqa %xmm1,%xmm9
p s r l q $1 ,%xmm1
movdqa %xmm2,%xmm10
p s r l q $1 ,%xmm2
pxor %xmm4,%xmm1
pxor %xmm6,%xmm2
pand %xmm7,%xmm1
pand %xmm7,%xmm2
pxor %xmm1,%xmm4
p s l l q $1 ,%xmm1
pxor %xmm2,%xmm6
p s l l q $1 ,%xmm2
pxor %xmm9,%xmm1
pxor %xmm10,%xmm2
movdqa %xmm3,%xmm9
p s r l q $1 ,%xmm3
movdqa %xmm15,%xmm10
p s r l q $1 ,%xmm15
pxor %xmm5,%xmm3
pxor %xmm0,%xmm15
pand %xmm7,%xmm3
pand %xmm7,%xmm15
pxor %xmm3,%xmm5
p s l l q $1 ,%xmm3
pxor %xmm15,%xmm0
p s l l q $1 ,%xmm15
pxor %xmm9,%xmm3
pxor %xmm10,%xmm15
movdqa 32(% r11) ,%xmm7
movdqa %xmm6,%xmm9
p s r l q $2 ,%xmm6
movdqa %xmm2,%xmm10
p s r l q $2 ,%xmm2
pxor %xmm4,%xmm6
pxor %xmm1,%xmm2
pand %xmm8,%xmm6
pand %xmm8,%xmm2
pxor %xmm6,%xmm4
p s l l q $2 ,%xmm6
pxor %xmm2,%xmm1
p s l l q $2 ,%xmm2
pxor %xmm9,%xmm6
pxor %xmm10,%xmm2
movdqa %xmm0,%xmm9
p s r l q $2 ,%xmm0

movdqa %xmm15,%xmm10
p s r l q $2 ,%xmm15
pxor %xmm5,%xmm0
pxor %xmm3,%xmm15
pand %xmm8,%xmm0
pand %xmm8,%xmm15
pxor %xmm0,%xmm5
p s l l q $2 ,%xmm0
pxor %xmm15,%xmm3
p s l l q $2 ,%xmm15
pxor %xmm9,%xmm0
pxor %xmm10,%xmm15
movdqa %xmm5,%xmm9
p s r l q $4 ,%xmm5
movdqa %xmm3,%xmm10
p s r l q $4 ,%xmm3
pxor %xmm4,%xmm5
pxor %xmm1,%xmm3
pand %xmm7,%xmm5
pand %xmm7,%xmm3
pxor %xmm5,%xmm4
p s l l q $4 ,%xmm5
pxor %xmm3,%xmm1
p s l l q $4 ,%xmm3
pxor %xmm9,%xmm5
pxor %xmm10,%xmm3
movdqa %xmm0,%xmm9
p s r l q $4 ,%xmm0
movdqa %xmm15,%xmm10
p s r l q $4 ,%xmm15
pxor %xmm6,%xmm0
pxor %xmm2,%xmm15
pand %xmm7,%xmm0
pand %xmm7,%xmm15
pxor %xmm0,%xmm6
p s l l q $4 ,%xmm0
pxor %xmm15,%xmm2
p s l l q $4 ,%xmm15
pxor %xmm9,%xmm0
pxor %xmm10,%xmm15
movdqa (%rax) ,%xmm7
pxor %xmm7,%xmm3
pxor %xmm7,%xmm5
pxor %xmm7,%xmm2
pxor %xmm7,%xmm6
pxor %xmm7,%xmm1
pxor %xmm7,%xmm4
pxor %xmm7,%xmm15
pxor %xmm7,%xmm0
. byte 0 xf3 , 0 xc3

. s i z e _bsaes_face_encrypt8 ,.−
_bsaes_face_encrypt8

. type _bsaes_const , @object

. a l i g n 64
_bsaes_const :
.MYFIX1:
. quad 0 x 0 0 0 0 f f 0 0 0 0 f f 0 0 0 0 , 0

x f f 0 0 0 0 0 0 0 0 0 0 0 0 f f

. . .

A.2 Round Transformation Code of AES-NI-based FACE
A.2.1 Code for 1 x 1

s t a t i c i n l i n e void FACE_AESNI_Enc_Block(__m128i ∗block ,
word32 ∗ subkeys ,
unsigned i n t rounds)

{
unsigned i n t i ;
const __m128i∗ skeys = (const __m128i∗) (subkeys) ;

unsigned char ∗ l o c = ((unsigned char ∗) b lock) + 1 5 ;

498 FACE

i f (! (∗ l o c))
{

∗block = _mm_xor_si128(∗ block , skeys [0]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [1]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [2]) ;

rd2 = _mm_xor_si128 (∗ block , rd2p_cache [0]) ;
rd2p_cache_ptr = rd2p_cache + 1 ;

}
e l s e
{

∗block = _mm_xor_si128 (∗ rd2p_cache_ptr , rd2) ;
i f (++rd2p_cache_ptr == rd2p_cache_ptr_end)
{

rd2p_cache_ptr = rd2p_cache + 1 ;
}

}

∗block = _mm_aesenc_si128 (∗ block , skeys [3]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [4]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [5]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [6]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [7]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [8]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [9]) ;

i f (rounds > 10)
{

∗block = _mm_aesenc_si128 (∗ block , skeys [1 0]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [1 1]) ;

}

i f (rounds > 12)
{

∗block = _mm_aesenc_si128 (∗ block , skeys [1 2]) ;
∗block = _mm_aesenc_si128 (∗ block , skeys [1 3]) ;

}

∗block = _mm_aesenclast_si128 (∗ block , skeys [rounds]) ;
}

A.2.2 Code for 4 x 1

s t a t i c i n l i n e void FACE_AESNI_Enc_4_Blocks(__m128i ∗block0 ,
__m128i ∗block1 ,
__m128i ∗block2 ,
__m128i ∗block3 ,
word32 ∗ subkeys ,
unsigned i n t rounds)

{
unsigned i n t i ;
const __m128i∗ skeys = (const __m128i∗) (subkeys) ;
__m128i rk = skeys [0] ;

unsigned char ∗ l o c = ((unsigned char ∗) block0) + 1 5 ;

i f (! (∗ l o c))
{

∗block0 = _mm_xor_si128(∗ block0 , rk) ;
∗block1 = _mm_xor_si128(∗ block1 , rk) ;
∗block2 = _mm_xor_si128(∗ block2 , rk) ;
∗block3 = _mm_xor_si128(∗ block3 , rk) ;

rk = skeys [1] ;
∗block0 = _mm_aesenc_si128 (∗ block0 , rk) ;
∗block1 = _mm_aesenc_si128 (∗ block1 , rk) ;
∗block2 = _mm_aesenc_si128 (∗ block2 , rk) ;
∗block3 = _mm_aesenc_si128 (∗ block3 , rk) ;

rk = skeys [2] ;
∗block0 = _mm_aesenc_si128 (∗ block0 , rk) ;
∗block1 = _mm_aesenc_si128 (∗ block1 , rk) ;
∗block2 = _mm_aesenc_si128 (∗ block2 , rk) ;
∗block3 = _mm_aesenc_si128 (∗ block3 , rk) ;

Jin Hyung Park and Dong Hoon Lee 499

rd2 = _mm_xor_si128 (∗ block0 , rd2p_cache [0]) ;
rd2p_cache_ptr = rd2p_cache + 4 ;

}
e l s e
{

∗block0 = _mm_xor_si128 (∗ rd2p_cache_ptr++, rd2) ;
∗block1 = _mm_xor_si128 (∗ rd2p_cache_ptr++, rd2) ;
∗block2 = _mm_xor_si128 (∗ rd2p_cache_ptr++, rd2) ;
∗block3 = _mm_xor_si128 (∗ rd2p_cache_ptr++, rd2) ;

i f (rd2p_cache_ptr == rd2p_cache_ptr_end)
{

rd2p_cache_ptr = rd2p_cache + 4 ;
}

}

f o r (i =3; i<rounds ; i ++)
{

rk = skeys [i] ;
∗block0 = _mm_aesenc_si128 (∗ block0 , rk) ;
∗block1 = _mm_aesenc_si128 (∗ block1 , rk) ;
∗block2 = _mm_aesenc_si128 (∗ block2 , rk) ;
∗block3 = _mm_aesenc_si128 (∗ block3 , rk) ;

}

rk = skeys [rounds] ;
∗block0 = _mm_aesenclast_si128 (∗ block0 , rk) ;
∗block1 = _mm_aesenclast_si128 (∗ block1 , rk) ;
∗block2 = _mm_aesenclast_si128 (∗ block2 , rk) ;
∗block3 = _mm_aesenclast_si128 (∗ block3 , rk) ;

}

	Introduction
	Related Work
	Preliminaries
	Description of AES and CTR mode
	Notation

	Implementation Technique Using Repetitive Data: FACE
	Technique Applied to Initial Whitening (FACErd0)
	Technique Applied to Round 1 (FACErd1)
	Additional Technique Applied to Round 1 (FACErd1+)
	Technique Applied to Round 2 (FACErd2)
	Additional Technique Applied to Round 2 (FACErd2+)

	Evaluations
	Implementation
	Experimental Results

	Discussion
	Conclusion
	Appendix
	Round Transformation Code of Bitsliced FACE
	Round Transformation Code of AES-NI-based FACE

