Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt

September 9, 2018 CHES 2018 - Amsterdam

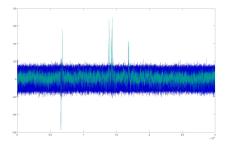
Physical Attacks on Embedded Systems

Physical Attacks on Embedded Systems

Physical Attacks on Embedded Systems

- Side Channel Attacks,
- Fault Injection,
- Probing,
- Glitches, . . .

Physical Attacks on Embedded Devices



- Side Channel Attacks,
- Fault Injection,
- Probing,
- Glitches,...

How to Protect Implementations?

Side Channel Contermeasures:

- Private Circuits
- Boolean & Polynomial Masking
- Threshold Implementations

Fault Injection Countermeasures

- Redundancy in time and space
- Error detection
- Infective computation

How to Protect Implementations?

Side Channel Contermeasures:

- Private Circuits
- Boolean & Polynomial Masking
- Threshold Implementations

Combined Countermeasures

- Private Circuits II [IPSW06],
- ParTI [SMG16],
- CAPA [RMB⁺17].

Fault Injection Countermeasures

- Redundancy in time and space
- Error detection
- Infective computation

Table of Contents

Introduction & Motivation

- Shamir's Secret Sharing
- Secure Multiparty Computations
- 2 Error Preserving SMC
 - Error Preserving Multiplication
 - Fault Propagation
- 3 Security and Performance
 - Security Analysis
 - Performance Analysis
- Application to AES

5 Conclusion

Shamir's Secret Sharing [Sha79]

•
$$F(x) = f_0 + f_1 x + \ldots + f_d x^d$$
,

2 Evaluating F(x) for *n* nonzero public points $(\alpha_0, \ldots, \alpha_{n-1})$,

3 Secret shares of
$$f_0$$
 is : $\mathcal{F} = (F(\alpha_0), \dots, F(\alpha_{n-1}))$ or $\mathcal{F} = (F_0, \dots, F_{n-1})$.

Shamir's Secret Sharing [Sha79]

•
$$F(x) = f_0 + f_1 x + \ldots + f_d x^d$$

2 Evaluating F(x) for *n* nonzero public points $(\alpha_0, \ldots, \alpha_{n-1})$,

3 Secret shares of
$$f_0$$
 is : $\mathcal{F} = (F(\alpha_0), \dots, F(\alpha_{n-1}))$ or $\mathcal{F} = (F_0, \dots, F_{n-1})$.

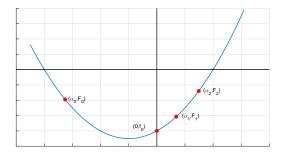
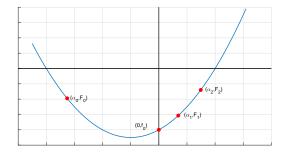
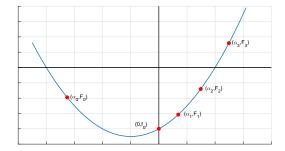


Figure: Shamir's Secret Sharing.

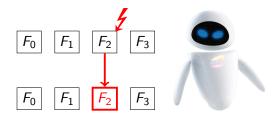
$$F(x) = f_0 + f_1 x + f_2 x^2 \Longleftrightarrow \{F_0, F_1, F_2\}$$



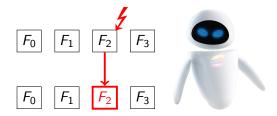
 $F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 \iff \{F_0, F_1, F_2, F_3\} \text{ s.t. } f_3 = 0.$



$$\{F_0,F_1,F_2,F_3\} \Longrightarrow f_3 = 0.$$



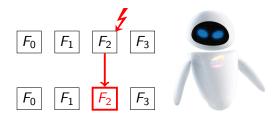
$$\{F_0,F_1,F_2,F_3\} \Longrightarrow f_3 = 0.$$



Error Detection:

• The Effect of of FI: $\{F_0, F_1, F_2, F_3\} \Longrightarrow f_3 \neq 0$.

$$\{F_0,F_1,F_2,F_3\} \Longrightarrow f_3 = 0.$$



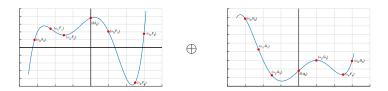
Error Detection:

- The Effect of of FI: $\{F_0, F_1, F_2, F_3\} \Longrightarrow f_3 \neq 0.$
- $\{F_0,\ldots,F_{n-1}\} \Longrightarrow f_{d+1} = \ldots = f_{n-1} = 0.$
- Error detection terms: $f_{d+1}, f_{d+2}, \ldots, f_{n-1}$.

SMC Operations

Secret States:

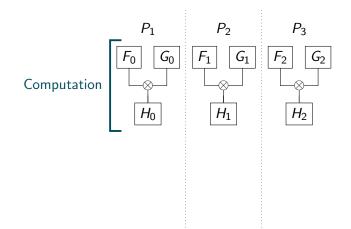
Shares of f_0 as $(F_i)_{0 \le i < n}$ and shares of g_0 as $(G_i)_{0 \le i < n}$.



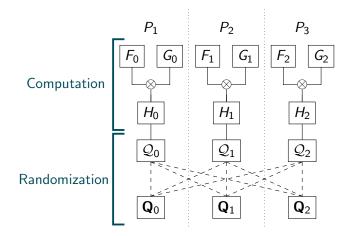
Addition of two Shares: $[F_i \oplus G_i]_{0 \le i < n}$

- Affine transformation of a secret $L(f_0)$.
- Efficient squaring operation $f_0^{2^k}$.

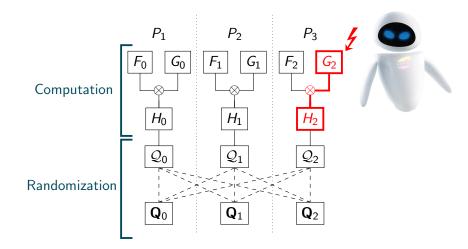
Multiplication of Two Secrets [GRR98]



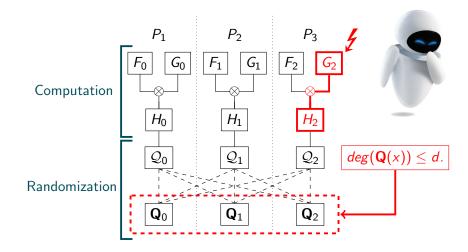
Multiplication of Two Secrets [GRR98]



Multiplication of Two Secrets Under FA



Multiplication of Two Secrets Under FA



How to Protect Implementations?

How to Protect Implementations?

• Error Detection Only:

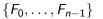
deg(Output) > d.

How to Protect Implementations?

• Error Detection Only:

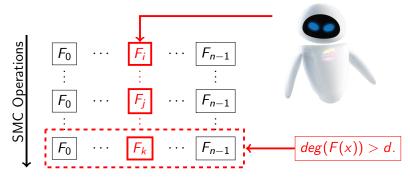
deg(Output) > d.

• Fault Detection Without Leaking Information:



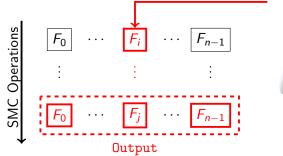
How to Protect Implementations?

• Error-Preserving Computation.



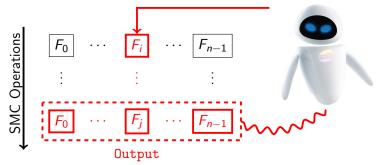
How to Protect Implementations?

• Infective Computation.

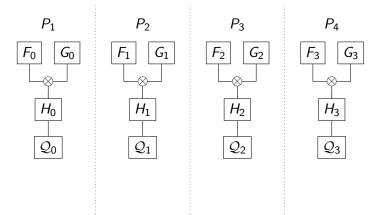


How to Protect Implementations?

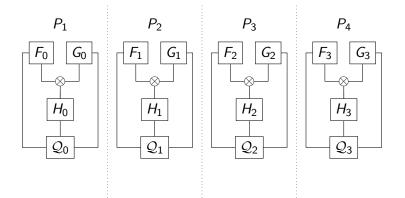
• Infective Computation.



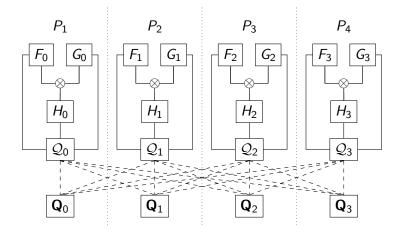
- Shares of f_0 as $(F_i)_{0 \le i < n}$ and shares of g_0 as $(G_i)_{0 \le i < n}$.
- Error detection terms: $(f_i, g_i)_{d < i < n} \& (h_j)_{2d < j < n}$.



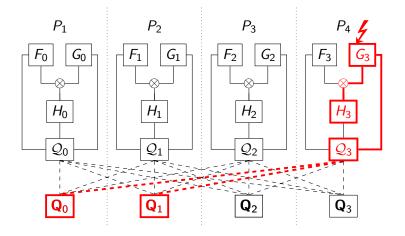
- Shares of f_0 as $(F_i)_{0 \le i < n}$ and shares of g_0 as $(G_i)_{0 \le i < n}$.
- Error detection terms: $(f_i, g_i)_{d < i < n} \& (h_j)_{2d < j < n}$.



- Shares of f_0 as $(F_i)_{0 \le i < n}$ and shares of g_0 as $(G_i)_{0 \le i < n}$.
- Error detection terms: $(f_i, g_i)_{d < i < n} \& (h_j)_{2d < j < n}$.



- Shares of f_0 as $(F_i)_{0 \le i < n}$ and shares of g_0 as $(G_i)_{0 \le i < n}$.
- Error detection terms: $(f_i, g_i)_{d < i < n} \& (h_j)_{2d < j < n}$.



Propogation of Error Detection Terms

1 The update of Q_i and the utilization of *error detection terms*:

•
$$\mathcal{Q}_i(\alpha_j) \leftarrow \mathcal{Q}_i(\alpha_j) \oplus \mathbb{E}_{i,j}$$
 for $j = 0, \dots, n-1$.

 $\mathsf{E}_{i,j} \leftarrow \mathsf{A}$ share of error detection term of H or $F \oplus G$

Propogation of Error Detection Terms

1 The update of Q_i and the utilization of *error detection terms*:

•
$$\mathcal{Q}_i(\alpha_j) \leftarrow \mathcal{Q}_i(\alpha_j) \oplus \mathbb{E}_{i,j}$$
 for $j = 0, \dots, n-1$.

 $\mathsf{E}_{i,i} \leftarrow \mathsf{A}$ share of error detection term of H or $F \oplus G$

Fault propagation within Q_i.

$$\mathbf{Q}_i \leftarrow \sum_{j=0}^{n-1} \lambda_i^0 \mathcal{Q}_{j,i}$$

Propogation of Error Detection Terms

1 The update of Q_i and the utilization of *error detection terms*:

•
$$\mathcal{Q}_i(\alpha_j) \leftarrow \mathcal{Q}_i(\alpha_j) \oplus \mathbb{E}_{i,j}$$
 for $j = 0, \dots, n-1$.

 $\mathsf{E}_{i,j} \leftarrow \mathsf{A}$ share of error detection term of H or $F \oplus G$

2 Fault propagation within \mathbf{Q}_i .

$$\mathbf{Q}_{i} \leftarrow \sum_{j=0}^{n-1} \lambda_{i}^{0} \mathcal{Q}_{j,i} = \begin{cases} \mathbf{Q}_{i} \oplus h_{n-i-1} & \text{if } 0 \leq i < \varepsilon \\ \mathbf{Q}_{i} \oplus g_{n-i-1} \oplus f_{n-i-1} & \text{if } \varepsilon \leq i < \varepsilon + d \\ \mathbf{Q}_{i} & \text{if } \varepsilon + d \leq i < n \end{cases}$$

Security in Probing Model

t-SNI Security [CGPZ16]:

The standard way of proving the security against probing attacks.

Security in Probing Model

t-SNI Security [CGPZ16]:

The standard way of proving the security against probing attacks.

t-SNIⁿ Security:

- [t probes & \mathcal{O}] should be simulatable by I.
 - * \mathcal{O} with $t + |\mathcal{O}| \leq d$ and $|I| \leq t$.
 - * *d* shares are uniformly distributed.
 - \rightarrow *t* probes brings no information to the adversary.

Security in Additive Fault Model

Error Propagation:

 $Propagation_{\varepsilon} := Pr[deg(\texttt{Ouput}) > d \mid deg(\texttt{Input}) > d].$

- Propagation_{ε}(Affine, Sqr) = 1.
- Propagation_{ε}(Add, EPMult) \approx 1.

The Cost of an EPMult

Table: Number of operations in Gennaro et al. [GRR98] and EPMult.

	[GRR98]			EPMult			Overhead
	step 1	step 2	step 3	step 1	step 2	step 3	Overneau
Mul.	п	n²d	n ²	п	$n^2d + n(\varepsilon + d)$	n ²	$n(\varepsilon + d)$
Add.	-	n²d	(n-1)n	-	$n^2d + n(\varepsilon + 2d)$	(n-1)n	$n(\varepsilon + 2d)$
Rand.	-	nd	-	-	nd	-	-

The Cost of an EPMult

Table: Number of operations in Gennaro et al. [GRR98] and EPMult.

							\frown
	[GRR98]			EPMult			Overhead
	step 1	step 2	step 3	step 1	step 2	step 3	
Mul.	п	n²d	n ²	n	$n^2d + n(\varepsilon + d)$ $n^2d + n(\varepsilon + 2d)$	n ²	$n(\varepsilon + d)$
Add.	-	n²d	(n-1)n	-	$n^2d + n(\varepsilon + 2d)$	(n - 1)n	$n(\varepsilon + 2d)$
Rand.	-	nd	-	-	nd	-	- /
							\smile

*Exp*254

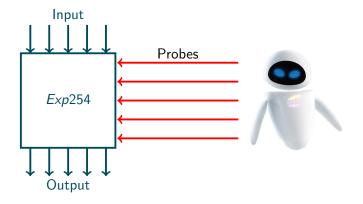
$Sbox(x) = \tau_A \circ Exp254(x)$ where Exp254(x) requires:

• 4 EPMult, 3 Sqr_k, and 2 RefreshM.

Exp254

 $Sbox(x) = \tau_A \circ Exp254(x)$ where Exp254(x) requires:

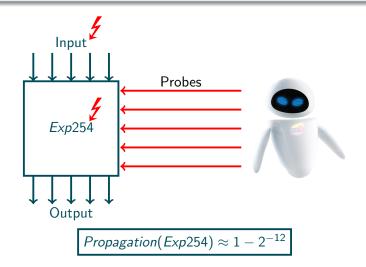
• 4 EPMult, 3 Sqr_k, and 2 RefreshM.



Exp254

 $Sbox(x) = \tau_A \circ Exp254(x)$ where Exp254(x) requires:

• 4 EPMult, 3 Sqr_k, and 2 RefreshM.



The New Multiplication Engine

- Information about the fault remains as a part of the shares.
- The error propagates through the algebraic operations.
- Delay any error detection as late as the final recombination step.

The New Multiplication Engine

- Information about the fault remains as a part of the shares.
- The error propagates through the algebraic operations.
- Delay any error detection as late as the final recombination step.

The Fault Detection and Recombination Gate

- For both fault detection and reconstruction.
- Infective Computation.

Security properties

- ISW probing model.
- *t*-SNI security of the scheme [RP12].
- Fault detection of our scheme is examined using the notion of *Propagation*.

Security properties

- ISW probing model.
- *t*-SNI security of the scheme [RP12].
- Fault detection of our scheme is examined using the notion of *Propagation*.

A proof-of-concept C implementation AES-128

- $\bullet\,$ Ultra-low power architecture, the ARM Cortex M0+ core
- full leakage analysis including higher order moments,
- fully constant execution flow with constant memory accesses.

The code has been made publicly available at https://github.com/vernamlab/Robust-AES.

Thank you! okan.seker@uni-luebeck.de

its.uni-luebeck.de vernam.wpi.edu

Conclusion

Recombination Operation

