
Extending Glitch-Free Multiparty Protocols
to Resist Fault Injection Attacks

Okan Seker1∗, Abraham Fernandez-Rubio2†, Thomas Eisenbarth1,3 and
Rainer Steinwandt4

1 University of Lübeck, Germany
{okan.seker,thomas.eisenbarth}@uni-luebeck.de

2 Intel
abraham.fernandez.rubio@intel.com

3 Worcester Polytechnic Institute, USA
4 Florida Atlantic University, USA

rsteinwa@fau.edu

Abstract. Side channel analysis and fault attacks are two powerful methods to analyze
and break cryptographic implementations. At CHES 2011, Roche and Prouff applied
secure multiparty computation to prevent side-channel attacks. While multiparty
computation is known to be fault-resistant as well, the particular scheme used for
side-channel protection does not currently offer this feature. This work introduces
a new secure multiparty circuit to prevent both fault injection attacks and side-
channel analysis. The new scheme extends the Roche and Prouff scheme to make
faults detectable. Arithmetic operations have been redesigned to propagate fault
information until a new secrecy-preserving fault detection can be performed. A
new recombination operation ensures randomization of the output in the case of a
fault, ensuring that nothing can be learned from the faulty output. The security of
the new scheme is proved in the ISW probing model, using the reformulated t-SNI
security notion. Besides the new scheme and its security proof, we also present an
extensive performance analysis, including a proof-of-concept, software-based AES
implementation featuring the masking technique to resist both fault and side-channel
attacks at the same time. The performance analysis for different security levels are
given for the ARM-M0+ MCU with its memory requirements. A comprehensive
leakage analysis shows that a careful implementation of the scheme achieves the
expected security level.
Keywords: Secure multiparty computation · Side-channel analysis · Fault attacks ·
Polynomial Masking · ARM

1 Introduction
Physical attacks are a common threat to cryptosystems if the adversary has physical
access to the implementation. A wide range of such attacks has been shown to circumvent
security assumptions and reveal cryptographic keys, often with little effort, especially
if no special precautions were taken during implementation. Two commonly considered
classes of physical attacks are fault injection attacks and passive side-channel attacks. Fault
attacks require a fault to be induced into the (secret) state. The resulting faulty output can
then reveal information about the state and the key [BDL97,BECN+06]. Similarly, data
∗A significant part of the work was performed while the author was working at Worcester Polytechnic

Institute, USA.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 394–430
DOI:10.13154/tches.v2018.i3.394-430

mailto:okan.seker@uni-luebeck.de,thomas.eisenbarth@uni-luebeck.de
mailto:abraham.fernandez.rubio@intel.com
mailto:rsteinwa@fau.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.394-430


Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 395

derived from power [KJJR11], sound [GST14], or electromagnetic emanation [GMO01] of
a target implementation is measured in a side-channel analysis to learn information about
the secret state. Another studied class of physical attacks are probing attacks. Ishai et
al. [ISW03] construct a generic countermeasure for probing attacks, which has also been
analyzed in the context of side-channels [DDF14,BDF+17].

Due to the effectiveness of physical attacks, countermeasures to both fault and side-
channel attacks have been studied extensively. A common technique to prevent fault
induction is error detection through adding redundancy. Often, reliable error detection
requires the duplication of computation in space or time [BECN+06], especially for
symmetric ciphers, to achieve the desired error detection ratio. For asymmetric ciphers,
lower overheads are often possible [Sha99,Gir06]. Another technique proposed by Genkin
et al. [GIP+14] uses algebraic manipulation detection (AMD) codes to protect sensitive
variables. The idea is to compute a proof that the output is correct. However, this
approach requires generating a MAC tag for each gate. Other branches of fault prevention
are infective countermeasures, which aim at randomizing the secret state if an error occurs.
Lomné et al. [LRT12] introduce an infective countermeasure using multiplicative random
masking. Gierlichs et al. [GST12] present the idea of dummy rounds. However, these
countermeasures were broken by Bastellini et al. [BG13]. The second scheme was improved
by Tupsamudre et al. [TBM14]. The updated scheme has been analyzed in [BG16], showing
that getting the countermeasure right and efficient is difficult.

To counteract side-channel analysis, one popular and effective countermeasure is to use
secret shares, referred to as masking [CJRR99] in the SCA literature. The idea consists
of splitting a sensitive variable x into n shares, such that x can be recovered from d+ 1
(n ≥ d+ 1) shares, while no information can be recovered from fewer than d+ 1 shares. A
basic example is the Boolean masking introduced by Ishai et al. [ISW03]. This approach
based on sharing the sensitive variable x such that x = x1 ⊕ . . . ⊕ xn where n − 1 of
the shares are uniformly distributed. Therefore, x can be reconstructed using n shares,
but no information can be gained form less than n shares. Also, AES implementations
protected by first and second order Boolean masking schemes are given in [SP06,RDP08].
Later, Rivain and Prouff enhanced the Boolean masking schemes to work on any finite
field [RP10] and implemented AES efficiently and securely in software using provable
secure operations.

Earlier masking schemes were considered secure under specific security models such
as [OMPR05, CB08], however, they would still leak detectable information under the
presence of glitches in the hardware [MME10,MPO05]. Due to these facts, glitch resistance
masking schemes were introduced. The Threshold Implementations (TI) are defined by
Nikova et al. [NRS09] and then generalized by [BGN+14,RBN+15]. Gross et al. [GMK16]
introduced domain-oriented masking. While the scheme had the same level of security as
TI, it has lower implementation cost, since it has lower randomness cost.

Another approach uses polynomial masking schemes based on Shamir’s secret shar-
ing [Sha79]. This novel idea was employed by Roche and Prouff [RP11,RP12] and Goubin
and Martinelli [GM11] (which is shown to be flawed in [CPR13]) using secure multi-party
computations (SMC) defined by Ben-Or et al. [Ben88] and Gennaro et al. [GRR98]. The
SMC proposed by Ben-Or et al. [Ben88] is both t-private and t-resilient, i.e. it guar-
antees that some subset of t parties can neither learn nor modify results. Roche and
Prouff adopted the t-private property to achieve side-channel protection through glitch-free
SMC [RP11,RP12]. It is known that the t-resilient property can be used to thwart fault
attacks [RP12,GSF14], but this property has never been analyzed in that context.

To achieve both fault and side-channel resistance, two countermeasures can be combined.
However, while the interactions between the countermeasures have not been studied in
much depth, combining ad-hoc methods can have adverse effects [REB+08, LFZD14].
Furthermore, overheads are huge and become larger for combined methods. Nevertheless,



396 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

resistance against both attacks is important, since attacks can be combined to have greater
effects on partially protected implementations [RLK11,LRT12]. So far, the amount of
research in this area is scarce. Ishai et al. extended private circuits [ISW03] to private
circuits II by adding redundancy via encodings [IPSW06]. Therefore they were able to
generate a circuit which resists both SCA and tampering attacks. Depending on the fault
model, they defined two different encodings. Therefore they managed to detect faults by
means of invalid encodings. Schneider et al. [SMG16] proposed a combined side-channel
and fault countermeasure using TI and error detecting codes [MS77]. While their proposal
is fairly efficient, the fault coverage depends on the fault distribution. The scheme does
not by itself ensure the randomness of the output. The SCA resistance of scheme relies
on security of a TI. Another countermeasure is introduced by De Cnudde et al. [DCN16]
which enhanced private circuits II with TI. The idea is the same as private circuits II which
forwards the valid inputs unless a faulty encoding is detected. A recent countermeasure
introduced by Reparaz et al. [RMB+17] builds on doing computations on shared values
and MAC tags. The side channel resistance of the scheme relies on the secret sharing while
fault resistance of the scheme relies on the MAC-tag shares.

Our contribution. This work examines the fault-resistance of the glitch-free secure
multiparty circuits proposed by Roche and Prouff [RP11, RP12] and proposes a new
combined protection scheme for both side-channel and fault attacks with its security proof
in the ISW probing model [ISW03].

We start with analyzing the fault behavior of the operations, namely affine transforma-
tion and squaring of a secret share, addition of two secret shares, and multiplication of two
secret shares. It is shown that, while most parts of the glitch-free SMCs can be naturally
extended to detect faults, the multiplication operation makes faults undetectable. The
circuits become vulnerable to fault attacks. We propose a new multiplication circuit that
properly maintains fault information and thus allows for the composition of glitch-free
fault-detecting SMCs in which errors are propagated by the algebraic operations. Thus,
the fault information will be detectable until the end of the circuit. Therefore, we eliminate
the cost of fault detection. We introduce a new recombination operation which randomizes
the output, if an error occurred anywhere in the circuit, ensuring that the attacker cannot
learn anything from the output.

We are able to construct arbitrary fault-resistant circuits using the basic arithmetic
operations and a new recombination-fault detection operations. As a result, the attacker
gets random outputs at the end of the cryptographic operations. Our scheme differs from
previous proposals, as it does not have the same requirement of n ≥ 3d+ 1 to detect d
cheaters in an (n, d)-secret sharing scheme. Instead, our scheme can detect up to ε errors,
where n > 2d+ ε with very high probability. In fact, the detection probability is 1 after
the first operation on faulty shares, but can slightly decrease, depending on the number of
subsequent additions and multiplications. Even in the worst case, if only one of the inputs
of the operations is faulty, the faulty output can always be detectable. Moreover, we provide
a secrecy-preserving fault detection operation to increase the fault detection capabilities
of the users as an option. This operation provides a trade-off between performance and
security. It can be used securely (i.e., without leaking sensitive information) and therefore,
perfect fault detection can be achieved.

To be able to prove the security against probing attacks, we follow the t-SNI security
notions and give the formal proof of our schemes. First, we reformulate the t-SNI security
notions to cover arbitrary (n, d)-secret sharing schemes. Then, we show that each operation
defined in this paper satisfies t-probing security. Since, the new multiplication scheme is
an extension of the one used in [RP12], the first formal security proof of the multiplication
scheme [RP12] is provided within this work. Moreover, we introduce a refresh masking
operation for polynomial masking to construct complete t-SNI algorithms.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 397

To analyze the fault detection properties of our scheme we use Coverage [SMG16] and
define a new security notion Propagation, which states the probability of detecting faults
using output shares if the input shares are faulty. We give a theoretical analysis of the
proposed scheme using the new security notion. Moreover, we examine the fault resistance
of the scheme by a simulation written in SAGE.

Implementation and leakage analysis of the original scheme have been performed in
hardware [MM13]. Grosso et al. [GSF14] analyze its performance and present several
methods for speeding up polynomial masking. To the best of our knowledge, however,
there are no software implementations of the scheme tested under a comprehensive leakage
assessment. Thus, we propose a practical C implementation tested on a popular ultra-
low power architecture, the ARM Cortex M0+ core. Our analysis goes beyond the
implementation itself by demonstrating its level of side-channel resistance and measuring
its performance. The implementation provides multiple masking schemes easily portable
to higher orders. However, by precomputing and inserting different public shares and
corresponding Vandermonde matrices in the code, other orders of masking can be employed
without modification of the operations and functions. To show the side-channel resistance
of our implementation, we address a full leakage analysis including higher order moments
on the SMC multiplication. High assurance of the mask quality is ensured through utilizing
a built-in true random number generator available on the MCU. These tests enable us to
see the relation between processed sensitive variables and side-channel leakage, the results
show how they are statistically independent.

The code has also more advanced constant-time features: we present different types of
field multiplication, some of which rely on input-dependent table accesses and thus give
better performance. However, we also present true constant-time multiplication, which
is slower, but is constant-time even on systems featuring caches. All of these different
schemes execute in constant time regardless of the selected version of field operations. To
that end, the code features a fully constant execution flow with constant memory accesses
and is available as open source.1

2 Background
In this section, we describe Shamir’s secret sharing and the multiparty circuit con-
structed in [RP12]. Also, we introduce the adversary models, namely, the ISW probing
model [ISW03], the additive fault model and the re-formulation of t-SNI security notion.

2.1 Shamir’s Secret Sharing and Secure Multiparty Computations

Shamir’s secret sharing scheme [Sha79] allows players to split a secret using a polynomial. In
the protocol, the trusted dealer generates a random polynomial, F (x) = f0+f1x+. . .+fdxd
to share a secret f0. The secret value is shared by evaluating F (x) for n distinct and
nonzero public points (α0, . . . , αn−1). The shared representation of f0 is shown as F =
(F (α0), . . . , F (αn−1)) and throughout the paper, we denote them as secret shares or secret
states. The secret reconstruction is done by polynomial interpolation using at least shares
of d+ 1 players.

The most important feature of the polynomial masking is that, we can reconstruct all
coefficients of F (x). Let A = (f0, f1, . . . , fn−1) be the coefficient vector of polynomial F (x),
then the relation between coefficients and secret shares can be formalized as VAT = FT
where V is the n× n Vandermonde matrix V = (αij)i,j=0,...,n−1. The coefficients of F (x)

1The code has been made publicly available at https://github.com/vernamlab/Robust-AES.

https://github.com/vernamlab/Robust-AES


398 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

can be calculated as follows:

fj =
n−1∑
i=0

F (αi)λji , where V
−1 = (λji )i,j=0,...,n−1. (1)

Remark that in a valid secret sharing scheme fd+1 = . . . = fn−1 = 0. This fact is used
in the following sections to detect faults.

Secure Multiparty Computations with secret sharing schemes (denoted by (n, d)-SMC)
allow us to split a sensitive variable into shares in such a way that neither the shares nor
the computations on them reveal any critical information. Relying on this fact, Roche and
Prouff proposed SMC as multiparty circuit (MPC) to counteract higher-order side-channel
analyses, even in the presence of glitches, and showed how to apply it to AES [RP12].
Moradi et al. [MM13] provided a first implementation of this scheme in hardware, as
well as a practical side-channel analysis of their implementation. Similarly, Grosso et
al. [GSF14] examined the performance of existing masking schemes in software for low-
power microcontrollers. Both works concluded that the scheme comes with a significant
overhead, even when compared to other side-channel protection schemes. The latter work
proposed the usage of packed secret sharing to make the scheme more efficient for higher
protection orders. They expanded SMC into a (n, d)-multiparty circuit using a sequence
of sub-circuits.

2.2 The ISW Probing Model
Ishai et al. [ISW03] introduced how to build secure circuits against an adversary that can
probe a portion of intermediate variables of the circuit. To prove the security of a circuit in
the ISW probing model, any t probes should be perfectly simulatable without knowledge of
the original variables in the circuit. If any set of t probed variables is perfectly simulated
by ≤ t input shares, which are independently uniformly distributed elements from the
field, then knowledge of the original circuit variables is not required to simulate t probes
and no set of t probed variables brings any additional information. Next, we recall t-NI
and t-SNI security notions originally defined by in [BBD+15] as they were restated by
Coron et al. [CGPZ16].

Definition 1 (t-NI Security). Let G be a gadget which takes as input n shares (xi)1≤i≤n
and as outputs n shares (yi)1≤i≤n. The gadget G is said to be t-NI secure if for any set
of t probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
t+ |O| < n, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t+ |O|, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

Definition 2 (t-SNI Security). Let G be a gadget which takes as input n shares (xi)1≤i≤n
and as outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set
of t probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
t+ |O| < n, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

The main difference between the t-NI security notion and the stronger t-SNI security
notion is that the size of the input subset does not depend on the size of the set of
output shares O. The t-SNI security notion ensures the security of a construction with
n ≥ t + 1, while the t-NI security notion enables a secure construction with n ≥ 2t + 1.
As shown in [DDF14], the probing adversary can be reduced to the t-threshold-probing
model. Security in the t-threshold-probing model implies security in the noisy leakage model.
Furthermore, the recent study by Barthe et al. [BDF+17] shows that security in the probing



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 399

model for a serial implementation implies security in the bounded leakage model for the
corresponding parallel implementation.

The t-SNI security notion becomes the standard way of proving the security against
probing attacks. However, we cannot use the security notion directly. The notion is
specialized for Boolean masking where (n − 1)-tuples of n intermediate variables are
uniformly distributed. On the other hand, an (n, d)-secret sharing corresponds to n
intermediate variables such that every d-tuple of them is uniformly distributed and
independent of any sensitive variable instead of (n− 1)-tuple. Therefore, we extend the
definition to cover (n, d)-SMC and through the paper we focus on the modified version of
the security notion defined as follows:

Definition 3 (t-SNInd Security). Let G be a gadget which takes as input n shares (xi)1≤i≤n
and as outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNInd secure if for any set
of t probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
t+ |O| < d+ 1, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t, such
that the t intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

Clearly, the original definition corresponds to t-SNInn−1 in our notation. We show
that it is possible to construct t probes as well as a set of output shares O such that
t+ |O| < d+ 1, using a subset of input shares with at most t elements. The elements in
the subset will be uniformly distributed and be independent from the shared secret value.
It should be noted that, the set of probed variables and the output shares can be perfectly
simulated by d-tuple of random variables. Therefore, the modified security notion will be
equivalent to the original definition and the perfect t-probing security defined by Carlet et
al. [CPRR15] as well as Lemma 1 in [RP10].

2.3 The Additive Fault Model
Different types of fault models have been introduced in the literature. The models range
from bit level faults to data path faults or control flow faults. Briefly, bit level faults can be
summarized as reset (change a wire value to zero), set (change a wire value to one) or toggle
(flipping the wire value) attacks [IPSW06]. More general faults, such as data path targeted
faults can be classified according to distribution of the injected faults. An attacker can
sample the injected faults from a uniform distribution or from a biased distribution, where
one set of faults is significantly more probable then the set or remaining faults [SMG16].
Moreover, an extreme case of this idea is used by Reparaz et al. [RMB+17] and it gives
the attacker full control of the faults and defined as known-value faults. Depending on the
security models, the distribution of the faults is combined with the number of injections
or number of wires to inject the fault. For example, known-value faults can be used with
limited number of wires to inject the faults or a uniform fault model can be used to injects
faults to all wires [RMB+17].

Before stating the fault model, we introduce the notation that we use in the following
sections. Throughout the paper, we denote the secret values as f0 and g0 from a fixed
finite field F and the nonzero public points as (α0, . . . , αn−1). To generate corresponding
(n, d)-secret sharing schemes, the trusted dealer generates two random polynomials F (x) =
f0 ⊕ f1x ⊕ . . . ⊕ fdxd ∈ F[x] and G(x) = g0 ⊕ g1x ⊕ . . . ⊕ gdxd ∈ F[x]. After evaluating
the polynomials at the public points, the dealer distributes the secret share of the i+ 1th
player as F (αi) and G(αi). For simplicity, we denote the share indices as subscripts, such
as F (αi) := Fi. Therefore, the sets (F0, . . . , Fn−1) and (G0, . . . , Gn−1) represent the sets
of the secret states of f0 and g0 respectively. Moreover, through the paper, a valid secret
sharing means when we perform a polynomial interpolation to the set (F0, . . . , Fn−1),
the deg(F (x)) will be less then or equal to d. Similarly, an invalid secret sharing means
deg(F (x)) > d.



400 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

In our model, we address data targeted faults on the secret state only. As studied in
most of the works, fault injections on the control flow are excluded from the model and
need to be prevented by other means. The attack model is similar to known-value faults
defined in [RMB+17] or the extreme case of a biased fault model in [SMG16]. It can be
described as blindly-chosen, non-adaptive, and additive faults. That is, the attacker can
pre-calculate a set of faults and induce single or multiple faults from this set to the secret
states. The attacker can target any instance of the operation, can choose the specific
elements from the secret states, and can inject multiple faults in one clock cycle. More
precisely, the logical effect of a fault σ to a share (Fi) will be Fi ⊕ σ and the faulty state
denoted by F ′i . Therefore, the additive fault model describes a wide class of errors that
can be observed in practice, such as flipping one bit of Fi. Using this model, we eliminate
cases like limitation of Hamming weight or selecting faults from a distribution. Faults on
randomness are also allowed due to the additive fault property: Adding a blindly-chosen
fault to an unknown random value results in an unknown random value.

Since the computations continue with the faulty state F ′i , the degree of the polynomial
generated by the faulty state (denoted by F ′(x)) is greater than d with a high probability, so
we can detect the faults by checking the degree of the secret sharing polynomial. Therefore
the effect of multiple fault injections in one clock cycle will be the same in our analysis.
The advantage of the additive model is that we can clearly define the relation between the
secret state and the secret sharing polynomial using the Vandermonde representation. To
examine this relation, we use the matrix representation of Equation 1.

V −1 ·



F0
...

Fi−1
Fi

...
Fn−1


︸ ︷︷ ︸
Secret states.

=



f0
...
fd

0
...
0


︸ ︷︷ ︸

The coefficients
of F (x).

Fault Injection−−−−−−−−−→ V −1 ·



F0
...

Fi−1

F ′i
...

Fn−1


︸ ︷︷ ︸
Faulty states.

=



f ′0
...
f ′d
f ′d+1
...

f ′n−1


︸ ︷︷ ︸

The coefficients
of F ′(x).

(2)

According to the additive fault model, the relation between F ′(x) and F (x) can be
summarized as F ′(x) = F (x)⊕∆(x), where ∆(x) is the polynomial generated by faults
i.e. interpolated by the points, (0, . . . , 0, σ, 0, . . . , 0). For an (n, d)-secret sharing scheme,
faults are undetectable if and only if the degree of ∆(x) is smaller than or equal to d, i.e.,
the coefficients of the terms of degree d+ 1, . . . , n− 1 are zero. We refer to these terms as
error detection terms.

3 SMC as a Fault Injection Countermeasure
Another important feature of secure multiparty computation schemes is that they can be
used to detect faults. Depending on the number of faulty shares, errors are detectable,
undetectable, or correctable. To be able to correct faults on d shares, previously proposed
schemes require at least 3d+ 1 shares [Ben88]. Furthermore, robust multiplication requires
cheater detection at the input and the output of every multiplication, which is a very
costly operation [GRR98].

Fault injection countermeasures are less concerned with the correction of errors. The
main goal is usually to detect faults and to ensure nothing can be learned from a faulty
output. Therefore, our aim is to preserve faults and detect them only once the output
is produced. To be able to detect the faults without conducting additional operations,
we need to observe the propagation of the faulty state for each SMC component. In this
section, we discuss the preservation of the faulty state and show the vulnerabilities of the



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 401

computations. Remark that, in the following analysis, we assume that at least one of the
input polynomials is faulty, i.e. deg(F (x)) > d or deg(G(x)) > d.

• Affine transformation of a secret (Affine): An affine transformation L(x) =
ax⊕ b with a 6= 0 can be computed on the secret value by applying L to secret shares
locally; also each player Pi computes its component by L(Fi). If deg(F (x)) > d,
then clearly deg(L(F (x))) > d as well. L(x) changes the faults only in magnitude
while the localization of the faults is preserved. Moreover, the behavior of the faulty
state is the same if the faults are injected during the computation of the affine
transformation.

• Addition of two secrets (Add): Two secret values f0 ⊕ g0 can be added by
pairwisely adding shares. Each player Pi computes Fi ⊕Gi. According to our fault
model, if only one polynomial is faulty, i.e. has a degree greater than d, then the
degree of the resulting polynomial will be also greater than d and therefore the
faults are propagated. However, an attacker can inject faults to both polynomials
in different or in the same shares. In these cases, there is a probability that faults
can become undetectable. The error detection terms can be zero if corresponding
coefficients of F (x) and G(x) are equal, that is:

fd+1 ⊕ gd+1 = . . . = fn−1 ⊕ gn−1 = 0.

As we assumed, deg(F (x)) > d and deg(G(x)) > d, fi 6= 0 and gj 6= 0 for at least
one i, j ∈ {d+ 1, . . . , n− 1}. So, Pr[(fi ⊕ gi = 0)d+1≤i<n] ≈ (1/|F|)d+ε. 2

• Efficient squaring operation (Sqrk): Efficient squaring operations can be used
to eliminate costly multiplications in GF(2m) [RP12]. Squaring can be defined as
ηk(y) = y2k and requires two conditions on public points αi :

1. αi 6= 0 for i = 0, . . . , n− 1.
2. For every αi there exists αj such that α2

i = αj .

Each player calculates the operation on its share locally by ηk(Fi). The family of
shares (ηk(Fi))i=0,...n−1 is a valid secret share of f2k

0 . However, communication
between players is needed to do the reordering of the secret shares. Faulty shares
are preserved as in the affine transformation.

• Multiplication of two secrets (Mult): The multiplication of two secret values
f0 · g0 requires communication between players. An efficient algorithm was proposed
by Gennaro et al. [GRR98], simplifying the original SMC multiplication proposed by
Ben-Or et al. [Ben88]:

1. Each player Pi computes Hi = Fi ·Gi.
2. Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = H(αi),

and sends the value Qi(αj) to player Pj . In this step, faults in F (x) and G(x)
spread to all shares and they become undetectable, since Qi(x) is a degree d
polynomial.

3. Each player Pi computes its secret share by Qi =
∑n−1
j=0 λ

0
jQj,i and gets a valid

(n, d)-secret sharing of the faulty secret value.

The shares calculated in step 1 cannot be used as a valid secret sharing because of
two main problems: (1) the polynomial is a degree 2d polynomial. (2) It is not a

2The exact probability can be calculated as (1/|F∗|) · (1/|F|)d+ε−1.



402 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

random polynomial [Ben88]. In step 2 and 3, degree reduction and randomization
are done in order to generate a proper (n, d)-secret sharing of f0g0. As a result, the
output shares are always be a valid secret sharing and an adversary can inject faults
without detection.
Remark 1. Castagnos et al. [CRZ13] suggested an improvement of the SMC multipli-
cation by using the connection between Reed-Solomon codes [Ber68] and Shamir’s
secret sharing scheme. Although Reed-solomon codes provide extensions and gener-
alization of the sharing [MS81], the improved secure multiplications have the same
undetectable fault problem. The improvement focuses on the randomization part of
the multiplication scheme (or encoding procedure as stated in [CRZ13]). The output
is produced by the Re-encoding algorithm ( [CRZ13], Algorithm 3). The output of
the algorithm is always a valid secret state. Therefore, a faulty input will always
result in a valid secret sharing and faults become undetectable.

4 Error Preserving Multiparty Computation
The error-preserving multiparty computation scheme below differs significantly from other
proposals, such as robust SMC. Unlike, e. g., [GRR98,GIP+14], detecting errors after
each operation is not convenient in many cryptographic implementations, as it can reveal
critical information. The basic ideas of our scheme are as follows:

• Error Detection Only: Our scheme does neither try to correct errors, nor detect
where the error occurred. As in most application scenarios, the scheme only aims
at detecting the errors and ensures that the attacker cannot learn anything from a
faulty output.

• Fault Detection Without Leaking Information: The scheme aims to eliminate
the leakages that can occur during the detection and keep the fault detection
probability as one.

• Error-Preserving Computation: Once an errors occurs, it will spread through
the state and remain part of the state. The advantage of this is that error detection
can be performed once an output is produced.

• Infective Computation: If an error occurs, it is important to ensure the output
does not reveal information to the attacker. We show that the randomization property
of the secret sharing together with the redundant error detection coefficients ensure
random outputs of faulty parts of the state if an error occurs.

Most of these goals can be achieved with the SMC described in [RP12] in a straight-
forward manner. However, the multiplication is difficult to construct in such a way that
error detection is not performed once for each multiplication on each input and output.
Instead, we propose a new multiplication engine that, in addition to the shared inputs
and outputs, also uses additional shared error detection coefficients. The main advantage
of error detection coefficients is that they add redundancy while only introducing minor
overhead. In summary, all circuits can be represented by a classic SMC addition, our
updated SMC multiplication, and a new recombination step. SMC squaring and affine
transformation can still be used as before, as they do not influence the fault propagation.

4.1 Error Preserving Multiplication (EPMult)
Multiplication is the most critical SMC operation. Even without error detection, multipli-
cation is the reason why n > 2d is required, since the product of two degree-d polynomials
is of degree-2d, To achieve error detection, more shares are needed. In fact, we show



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 403

𝐹1 𝐺1 𝐹2 𝐺2 𝐹3 𝐺3

𝐻2𝐻1 𝐻3

Q1
′ Q2

′ Q3
′

𝑸′1 𝑸′2 𝑸′3

𝐹0 𝐺0

𝐻0

Q0
′

𝑸′0

𝑃0 𝑃1 𝑃2 𝑃4

Figure 1: Detailed visualization of (4,1)-SMC Multiplication. Dashed lines show the
communications between players (Pi). The shares of error detection terms of H(x), F (x),
and G(x) are forwarded to shares of f0g0 during the randomization step. Thus, each Q′i
contains a share of error detection terms of F (x), G(x), or H(x).

that to detect ε errors, a total of n > 2d+ ε shares are needed. A representation of the
(4,1)-error preserving multiplication can be seen in Figure 1.

In the new scheme, the error propagation is achieved by using the error detection terms
of input polynomials and the intermediate polynomial H(x). A step-by-step description of
our new multiplication scheme that can resist ε faults can be introduced as follows:

1. Each player Pi locally computes Hi = Fi ·Gi.

2. Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = Hi and
evaluates the polynomial for the public points Qi(αj) (denoted by Qi,j). The main
difference in our scheme occurs in this step: Pi also calculates a share of error
detection coefficients (denoted by Ei,j) of Hi or Gi ⊕ Fi with the corresponding
Vandermonde element. The resulting Q′i,j = Qi,j ⊕ Ei,j is sent to player Pj for
j = 0, . . . , n− 1 and j 6= i. Ei,j is defined as follows:

Ei,j =


λn−j

i

λ0
i
Hi if 0 ≤ j < ε

λn−j
i

λ0
i

(Fi ⊕Gi) if ε ≤ j < ε+ d

0 if ε ≤ j ≤ n− 1

. (3)

3. In the third step, each player calculates its share by Q′i =
∑n−1
j=0 λ

0
iQ′j,i.

Remark 2. The 11th line in the Algorithm 1 corresponds to the error propagation. Without
it, the EPMult corresponds to the SMC-Multiplication defined by Gennaro et al. [GRR98]
and applied by Roche and Prouff [RP12]. The advantage of Ei,j is that it ensures the
propagation of error detection terms as faults to the output by using only the local
information. Therefore, the first ε+ d players implicitly get an error detection coefficient
of H(x) or F (x)⊕G(x). For example, player Pi (0 ≤ i < ε) calculates its share Q′i by:

Q′i =
n−1∑
j=0

λ0
iQ′j,i =

n−1∑
j=0

λ0
i (Qj,i ⊕ Ej,i)

=
[
λ0

0Q0,i ⊕ λn−i
0 H0

]
⊕ . . .⊕

[
λ0

n−1Qn−1,i ⊕ λn−i
n−1Hn−1

]
=

[
λ0

0Q0,i ⊕ . . .⊕ λ0
n−1Qn−1,i

]︸ ︷︷ ︸
=Qi in Section 3 SMC mult.

⊕
[
λn−i

0 H0 ⊕ . . .⊕ λn−i
n Hn−1

]︸ ︷︷ ︸
=hn−i−1 by Equation (1)

= Qi ⊕ hn−i−1.



404 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Algorithm 1 Error Preserving Multiplication (EPMult)
Input: Shares of f0 as (Fi)0≤i<n and shares of g0 as (Gi)0≤i<n.
Output: Shares of f0g0 as (Qi)0≤i<n.
1: for i = 0 to n− 1 do
2: Hi ← FiGi
3: end for
4: for i = 0 to n− 1 do
5: (ri,1, . . . , ri,d)← F2m . Coefficients of the random polynomial.
6: for j = 0 to n− 1 do
7: Qi,j ← Hi . referred to as Q0

j,i.
8: for k = 1 to d do . Evaluate the polynomial.
9: Qi,j ← Qi,j ⊕ ri,kαkj . referred to as Qkj,i.
10: end for
11: Qi,j ← Qi,j ⊕ Ei,j . Add a share of an error detection term.
12: Qj ← Qj ⊕ λ0

iQi,j . referred to as Qj,i.
13: end for
14: end for
15: return (Q0, . . . ,Qn−1)

The propagation of the faults within the output shares can be summarized as follows:

Q′i =


Qi ⊕ hn−i−1 if 0 ≤ i < ε

Qi ⊕ gn−i−1 ⊕ fn−i−1 if ε ≤ i < ε+ d

Qi if ε+ d ≤ i < n

,

where hi, gi and fi represent ith degree the coefficients of H, G and F , respectively.
Remark that, (hi)2d<i<n = 0 and (fi ⊕ gi)d<i<n = 0 for valid secret sharing schemes.

4.2 Fault Detection Operation (FDect)
In order to maintain the error detection probability as one, faults need to be detected
before each multiplication and addition. Detection can be performed according to the
Vandermonde representation. However, this operation can leak sensitive information.
Therefore, we add a randomization step to provide the confidentiality of the secret value.

1. Randomization: This step adds a random degree-d polynomial to the shared secret,
thereby masking the secret value, but not deleting fault information.

(a) A random degree d polynomial R(x) is generated, the value R(αi) is sent
(denoted by Ri) to player Pi.

(b) Each player calculates the new share by simply adding the random share to
their own share.

FRi
= Fi ⊕Ri for i = 0, . . . n− 1.

2. Detection: Error detection coefficients are reconstructed in the natural way as
given in Equation (1):

fj =
n−1∑
i=0

λjiFRi
for j = d+ 1, . . . , n− 1.

The randomized share of a player (denoted by FRi) corresponds to a secret sharing of a
random value. Therefore, the reconstruction cannot leak information about the real secret



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 405

value. Moreover, FR(x) = F (x) ⊕R(x), and we know that deg(Ri(x)) ≤ d. Therefore,
if F (x) is faulty, i.e. deg(F (x)) > d, then deg(FR(x)) > d, and fault detection can be
achieved easily in the detection step by reconstructing and checking the error detection
terms. The details and security features of the operation can be found in Appendix A.1.
Remark 3. While in-circuit fault detection is an option, our aim is not to give any error
message or stop the execution. The scheme outputs the faulty ciphertext even if the fault
is detected. The degree of the polynomial is used as a fault flag. The output can then be
randomized using this flag.

4.3 Recombination Operation (ReComb) and Infective Computation
In order to avoid costly fault detection operations, we first propose a recombination opera-
tion which detects the faults when the output is produced. We explain the infectiousness
of the faults while introducing a recombination algorithm.

The recombination operation is composed of two main steps, re-sharing and recon-
struction. The main idea is to share the secret variable while adding randomized error
detection terms. The first part can be seen as a modified version of EPMult using a different
Ei,j . The inputs of the operation are secret shares Fi for 0 ≤ i < n and a random vector
(r0, . . . , rε+d−1) where ri ∈ GF(28) \ 0. The outputs are the secret value f0 and a fault
decision.

1. Re-Sharing: Players share the secret value as in the second part of the EPMult,
the only difference is that we update Ei,j as follows:

ERi,j =

rj
λ

n−(j−1)
i

λ0
i

Fi if 0 ≤ j < d+ ε

0 if d+ ε ≤ j ≤ n− 1
.

The adversary is still able to get information from the output, so we ensure the
randomization of the secret value by using fresh random values.

(a) Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = Fi
and evaluates the polynomial for the public shares Qi(αi) (denoted by Qi,j)
and sends the value Q′i(x) = Qi(x)⊕ ERi,j to player Pj .

(b) Each player calculates its new share Q′i by
∑n−1
j=0 λ

0
iQ′j,i.

Remark 4. As in the EPMult, the first ε+ d players implicitly get the randomized
error detection coefficient of F (x).

Q′i =
{
Qi ⊕ rifn−i−1 if 0 ≤ j < ε+ d

Qi if ε+ d ≤ j < n
.

Reconstruction: In the last step, the secret value and error detection coefficients are
reconstructed using Equation (1):

fj =
n−1∑
i=0

λjiQ
′
i for j = d+ 1, . . . , n− 1 and 0.

Clearly, if F is faulty, then at least one of the error detection terms is non-zero. In
the second step, the secret value is randomized by these terms, and, therefore, the output
is randomized in case of fault injections. Thus, infective computation is achieved. The
details and security features of the operation can be found in Appendix A.2.



406 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

5 Security Analysis
Previously proposed schemes that combined countermeasures against side channel analysis
and fault injection have different security claims depending on their used adversarial models.
The SCA security of works like [IPSW06] are based on the ISW transformation [ISW03],
while others [SMG16,DCN16] are based on Threshold implementations. Both the ISW
transformation and TI can achieve tth-order security. However, it was recently shown Moos
et al. [MMSS18] that TI and derived schemes can have security issues due to the insufficient
refreshing in higher order variants and thus require special care during implementation.
There are bigger differences in the fault resistance properties of the proposed schemes. For
example, in [IPSW06] security against reset attacks and set, reset and toggle attacks are
formally proven. In [SMG16] authors defined a notion called Coverage to quantify the fault
coverage of their scheme. They analyzed the fault resistance of the scheme using this notion.
Similarly, in [RMB+17] the authors examined the conditions where faults are undetectable.
In this section, we discuss the security features of our combined countermeasure under
specific attack models. We formally prove the t-probing security of individual operations
and analyze the side channel resistance of a combination of operations. Then a similar
discussion in [SMG16,RMB+17] will be done to explain the fault resistance of our scheme.
First we define a new notion called Propagation, which states the probability of detecting
faults using output shares if the input shares are faulty. Then we examine the conditions
where faults are undetectable for each individual operation and for a combination of
operations.

5.1 Side Channel Resistance
In this section, we formally prove the t-probing security of the error preserving multiplication
scheme defined in Section 4.1. The following theorem shows the security of EPMult.

Theorem 1 (t-SNInd of EPMult). Let (Fi)0≤i<n and (Gi)0≤i<n be the input shares of the
Error Preserving Multiplication operation, and let (Qi)0≤i<n be the output shares. For
any set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such that
t1 + t2 < d + 1, there exist two subsets I and J of indices with |I| ≤ t1 and |J | ≤ t1,
such that those t1 intermediate variables as well as the output shares Q|O can be perfectly
simulated from F|I and G|J .

Proof. In the first part of the proof, we construct the sets of the input share indices I
and J depending on the intermediate variables that are probed. We denote U as the
intersection of I and J . We divide the probes into 2 groups.

• Group 1: If Fi or Gi is probed, add i to I or J , respectively. If Hi, Q0
i,j or Ei,j is

probed, add i to I and J .

• Group 2: If ri,j or Qki,j where k ∈ {1, . . . , d} is probed, add i to I and J .

According to our selection, we add at most one index to I and J for each probe and,
therefore, |I| ≤ t1 and |J | ≤ t1.

1. The simulations of the probed variables in group 1 are straightforward. Since i ∈ I
(i ∈ J resp.), we can perfectly simulate Fi (Gi resp.), because Fi and Gi are known
values. Similarly, we can simulate Hi and Q0

i,j , since i ∈ I and i ∈ J . Finally, since
the elements λi of the inverse Vandermonde matrix are public variables, we can
simulate Ei,j as defined in Equation (3).

2. If Qki,j is probed, we need to consider two cases:



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 407

Algorithm 2 Mask Refreshing (RefreshM)
Input: Shares of f0 as (Fi)0≤i<n.
Output: Shares of f0 as (Ci)0≤i<n.
1: (r1, . . . , rd)← F2m . Coefficients of the random polynomial.
2: for j = 0 to n− 1 do
3: for k = 1 to d do . Evaluate the polynomial.
4: Qj ← Qj ⊕ rkαkj . referred to as Qkj .
5: end for
6: Cj ← Fj ⊕Qj
7: end for
8: return (C0, . . . , Cn−1)

• If ri,k is also probed, we leave ri,k as in the real circuit, therefore, we can
simulate Qki,j as Hi ⊕ ri,kαkj where αj is a public value.
• If ri,k is not probed, it does not enter into the computations of Qki,j , therefore,
we can perfectly simulate Qki,j with a random value.

3. If Qj,i is probed, we need to consider two cases as in the previous step:

• If all the values ri,k for 1 ≤ k ≤ d are probed, we can perfectly simulate the
values Qki,j , and hence Qj,i can be simulated. Remark that, the λ0

i is an element
of the inverse Vandermonde matrix so it is a public value.
• If at least ri,k for 1 ≤ k ≤ d is not probed, that means ri,k does not enter into
the computation of Qj,i, therefore Qj,i can be simulated by a random value.

Now we explain how to simulate output shares Qi for all i ∈ O where O is an arbitrary
subset of [1, n] with t2 elements such that t1 + t2 < d + 1. Clearly, using t1 probes,
we can observe at most t1 intermediate variables of Qi, where Qi can be written as:
Qi =

∑n−1
j=0 λ

0
iQj,i. Since t1 + t2 < d+ 1, at least one intermediate variable of Qi is not

probed. Therefore, we can simulate Qj,i with j /∈ U by generating a random degree d
polynomial and evaluating it for αi. Hence, we can simulate Qi for each i ∈ O.

We show that any set of t1 intermediate variables and any subset of t2 output shares
can be perfectly simulated by at most d independent and uniformly distributed variables.
Therefore, we can say that EPMult is secure in the d-probing model which is followed by
security in the noisy leakage and bounded moment leakage models [DDF14,BDF+17].

Next, we give the security notion of SMC-addition, affine transformation, and efficient
squaring. These operations perform sharewise computations. Therefore, they can be
computed using affine gadgets as defined in [BBD+15]. As stated in [BBD+15], an
algorithm is said to be t-NI if all gadgets are t-NI and every non-linear usage of a secret
state is guarded by t-SNI (or t-SNInd as in our re-formulation) refreshing gadgets. Moreover,
it is sufficient to make the algorithm t-SNI, if every input or the output of a t-NI algorithm
is processed by a t-SNI gadget. The mask refreshing operation denoted by RefreshM can
be defined as in Algorithm 2. RefreshM ensures the independence of the inputs of the
EPMult operation and we can implement an arbitrary function with t-SNInd security.

The following theorem provides the security of our RefreshM operation. We provide
the proof in Appendix A.3.

Theorem 2 (t-SNInd of RefreshM). Let (Fi)0≤i<n be the input shares of RefreshM and
let (Ci)0≤i<n be the output shares. For any set of t1 intermediate variables and any subset
|O| ≤ t2 of output shares such that t1 + t2 < d+ 1, there exist a subset I of indices with
|I| ≤ t1, such that those t1 intermediate variables as well as the output shares C|O can be
perfectly simulated from F|I .



408 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

5.2 Fault Resistance
First, we discuss the resistance capabilities of the systems using fault detection operations.
As given in Section 3, affine transformation and efficient squaring operations can be
listed as fault preserving, while addition and multiplication are fault preserving with high
probability. Therefore, fault detection operations should be used before all multiplication
and addition operations to ensure perfect fault detection. However, depending on the
circuit and the number ε, this number can be decreased. Therefore, an optimal point
between performance and security can be achieved. The advantage of using fault detection
operations is that it can be carried out without leaking sensitive information.

Next, we discuss the fault resistance features of the proposed scheme without using
the fault detection operation. The fault detection mechanism relies on the degree of the
polynomial generated by the secret state. We illustrate the methodology with the following
example: Assume (4, 1)-secret sharing (F0, . . . , F3) is used to share a secret. Clearly, the
secret sharing polynomial deg(F (x)) ≤ 1. Assume the fault, denoted by σ, is injected
to the second share. After the injection, the secret sharing polynomial F ′(x) becomes a
polynomial generated by the points (F0, F1 ⊕ σ, F2, F3). Remark that, as stated by the
additive fault model, the relation between polynomials can be seen as F ′(x) = F (x)⊕∆(x).
Error polynomial ∆(x) has one nonzero point and three zero points. In other words ∆(x)
is generated by the points (0, σ, 0, 0). Clearly these points belong to an at least degree-3
polynomial. Hence, we can detect the fault by looking at the degree of the polynomial
resulting F ′(x). Clearly, the only way of generating undetectable faults is arranging ∆(x)
as a degree-1 polynomial.

Using this motivation, we introduce the following lemma which constitutes a basis of
our error detection method.

Lemma 1. Let (Fi)i=0...,n−1 ∈ F represent an (n, d)-secret sharing of f0 ∈ F with n =
d+ε+1 and ∆(x) represents the polynomial generated by the faults. If k faults are injected
to secret states, generating an error polynomial degree greater than d is,

Pr[deg(∆(x)) > d] =
{

1 k ≤ d+ ε

1− |F|
k−ε−1
|F|k−1 k > d+ ε

.

Proof. Let α0, . . . , αn−1 ∈ F be public evaluation points and F (x) = f0⊕f1x⊕ . . .⊕fdxd ∈
F[x] be the secret sharing polynomial. Without loss of generality, assume there exist k
faults in the first k secret shares and let us denote the corresponding error polynomial by
∆(x) = δ0⊕ δ1x⊕ . . .⊕ δd+1x

d+1⊕ . . .⊕ δd+εx
d+ε ∈ F[x]. From Equation (2), the relation

between faulty shares and coefficients of F (x) and ∆(x) can be seen as follows:

V −1



F0 ⊕ σ0
...

Fk−1 ⊕ σk−1
Fk
...

Fn−1


︸ ︷︷ ︸

Faulty state

= V −1



F0
...

Fk−1
Fk
...

Fn−1


︸ ︷︷ ︸

Points of F (x)

⊕V −1



σ0
...

σk−1
0
...
0


︸ ︷︷ ︸

Points of ∆(x)

=



f0
...
fd
0
...
0


⊕



δ0
...
δd
δd+1
...

δn−1



where V = (αij) is the n× n Vandermonde matrix. As seen in the above equation ∆(x),
is the polynomial generated by the points (σ0, . . . , σk−1, 0, . . . , 0), i.e. it has n − k zero
points and ,therefore, it generates at least a degree n− k polynomial.

Assume that k ≤ d+ ε. Since n = d+ ε+ 1, it is clear that n− k ≥ d+ 1. Therefore,
deg(∆(x)) > d with probability 1 and faults are always detectable.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 409

Assume k > d+ ε. Then we need to focus on the Vandermonde representation of the
secret shares. Using V −1

i,j = λij , we can form a system of linear equations for error detection
terms of ∆(x):

σ0λ
n−1
0 ⊕ . . .⊕ σk−1λ

n−1
k−1 = δn−1

σ0λ
n−2
0 ⊕ . . .⊕ σk−1λ

n−2
k−1 = δn−2

...
σ0λ

n−ε
0 ⊕ . . .⊕ σk−1λ

n−ε
k−1 = δd−ε

To arrange ∆(x) as degree d polynomial, the above equations should be solved for δi = 0
for i = (d + 1, d + 2, . . . , d + ε). The parameters of this homogeneous system of linear
equations are k unknowns and ε equations. Since k > ε, the number of non-trivial solutions
for this system is |F|k−ε − 1. Therefore, Pr[deg(∆(x)) ≤ d] = |F|k−ε−1

|F|k−1 . Hence,

Pr[deg(∆(x)) > d] = 1− |F|
k−ε − 1
|F|k − 1 .

Next, we can state the following theorem, to clarify our fault detection properties.
Remark that the following theorem was already proven in [YO13, Sec. 4.1].

Theorem 3. Let F ′(x) be the faulty secret sharing polynomial. If deg(F ′(x)) > d, the
faults can be detectable.

Using this theorem and the notation given by Schneider et al. [SMG16], we can define
the fault coverage of our scheme. Let F ′(x) be the faulty secret sharing polynomial, then
the probability of a set of faults to be undetectable is defined as our fault coverage:

Coverageε = 1− Pr[deg(F ′(x)) ≤ d].

Assume the number of injected faults to the system is k, in the first multiplication,
faults are propagated with probability 1 if k ≤ ε as given in Lemma 1. However, we cannot
use Lemma 1 as the fault coverage for a set of operations, since faults can be injected
in different instances or one fault can spread to a large number of shares. As a result,
faults become unstable and potentially undetectable. In a sequence of operations, faults
can become undetectable after an SMC addition or multiplication. In the following, we
perform the security analysis and derive the probability of undetectable faults in SMC
multiplication.

Corollary 1 (Propagationε(EPMult)). Let (Fi)0≤i<n ∈ F and (Gi)0≤i<n ∈ F be the
input shares of the Error Preserving Multiplication operation and let (Qi)0≤i<n be the
output shares. And let us denote the sets of faulty indices as kF and kG respectively, with
k = |kF ∪ kG|. If the fault is detectable using both of the set of input shares (Fi)0≤i<n and
(Gi)0≤i<n, the faults can be detectable using output shares (Qi)0≤i<n with the following
probability:

Propagationε(EPMult) =
{

1− 1
qd+k k ≤ ε

1− 1
qd

(
1

(q+1)e + 1
qk

)
k > ε

, where |F∗| is denoted by q.

Proof. Assume there exists 2 sets of faults within the input shares (Fi)0≤i<n and (Gi)0≤i<n,
such that if ith share Fi (resp. Gi) is faulty, then σFi 6= 0 (resp. σGi 6= 0) otherwise
σFi = 0 (resp. σGi = 0). And clearly, kF = {i|σFi 6= 0} and kG = {i|σGi 6= 0}. The



410 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

polynomial H(x) is generated by the shares Fi ·Gi for 0 ≤ i < n and the faults in Hi can
be calculated as follows:

Hi = [Fi ⊕ σiF ] · [Gi ⊕ σiG ] = FiGi ⊕ FiσiG ⊕GiσiF ⊕ σiF σiG︸ ︷︷ ︸
The fault in Hi denoted by σHi

.

Remark that Ei,j is used to propagate the faults. The faults in (Qi)0≤i<n become
undetectable if and only if the following equations, which correspond to the partial sums
in step 3, hold:

n−1∑
j=0

λ0
iEi,j = 0 for 0 ≤ i < ε+ d. (4)

From the definition of Ei,j we know that the variables correspond to shares error
detection terms of F (x)⊕G(x) or H(x). Hence, faults become undetectable if and only if
error detection terms are zero, i.e. the following equations hold:

1. fd+1 ⊕ gd+1 = . . . = f2d ⊕ g2d = 0. Remark that we assumed the fault is detectable
using both of the sets of input shares (Fi)0≤i<n and (Gi)0≤i<n, therefore, at least
one fi 6= 0 and gi 6= 0 where i ∈ {d+ 1, . . . , 2d}. Therefore,

Pr[(fi ⊕ gi = 0)d<i≤2d] = 1
q

(
1

q + 1

)d−1
≈ 1
qd
.

2. h2d+1 = . . . = h2d+ε+1 = 0. In other words deg(H(x) ≤ 2d). And deg(H(x) ≤ 2d) if
and only if

(a) The polynomial generated by σHi
’s is at most a degree 2d polynomial or

(b) σHi
= 0 for i = 0, . . . , n− 1.

From Lemma 1, the probability of condition (a) is:

Pr[deg(H(x)) ≤ 2d] =
{

0 k ≤ ε
(q+1)k−ε−1
(q+1)k−1 ≈

1
(q+1)ε k > ε

.

And the probability of condition (b) is:

Pr[(σHi
= 0)0≤i<n] ≈ 1

qk
.

Using the conditions listed above we can calculate the probability of the Equation (4)
to be hold is:

Pr

(
n−1∑
j=0

λ0
iEi,j = 0)0≤i<ε+d

 =
{ 1
qd+k k ≤ ε
1
qd

(
1

(q+1)ε + 1
qk

)
k > ε

.

Therefore,

Propagationε(EPMult) =
{

1− 1
qd+k k ≤ ε

1− 1
qd

(
1

(q+1)ε + 1
qk

)
k > ε

.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 411

Using propagation probabilities of individual operations, we can analyze the fault
resistance of a composition of operations. The following theorem formally analyzes the
fault resistance properties of a combination of operations. The main idea of the theorem is
to examine the propagation of fault indices and calculate the individual Propagationε.

Theorem 4. Let A1, . . . , At be a sequence of operations and let us denote the sets of
faulty indices of Aj as kF j and kGj respectively, with kj = |kF j ∪ kGj |. Without loss of
generality let’s assume that the fault is detectable using the inputs of Ai where 1 ≤ i ≤ t.
Then, Propogationε can be calculated as follows:

Propogationε(A1, . . . , At) =
t∏
j=i

Propogationkj
ε (Aj).

Proof. First, let us categorize operations into to two sets depending on the number of
inputs as follows: A1 = {Affine, Sqr, RefreshM, FDect}3 and A2 = {EPMult, Add}. Since
a fault is detectable using the inputs of Ai, we know that the degree of the secret sharing
polynomial is greater than d and ki > 0 from Theorem 3. First, we analyze propagation of
the number of faulty indices in three cases:

• Case 1: ki+1 = ki if Ai+1 ∈ A1 and Propagationε(A ∈ A1) = 1.

– Ai+1 ∈ {Affine, Sqr}, then the magnitude of faults is changed however the
number of faulty indices is preserved, as explained in Section 3.

– Ai+1 ∈ {RefreshM, FDect}. Since RefreshM and FDect can be seen as additions
with a valid (i.e degree-d) secret sharing, the number of faulty indices are
preserved with their magnitudes.

• Case 2: 0 ≤ ki+1 ≤ ki if Ai+1 = Add, The number of fault indices can be decreased
depending on the magnitudes and the indices of the faults. As explained in Section 3
Propagationε(Add) = (1/q)d+ε.

• Case 3: 0 ≤ ki+1 ≤ ε + d if Ai+1 = EPMult, then the number of faulty indices
changes depending of the Equation (4) in Corollary 1.

Using these discussions we analyzed the propagation of the number of faulty indices of
each operation. Depending on the operation and number of fault indices we can calculate
Propogationε of operations individually. Hence, the following equation holds:

Propogationε(A1, . . . , At) =
t∏
j=i

Propogationkj
ε (Aj). (5)

Remark 5. In Theorem 4 we assumed that faults are injected before the ith operation.
The attacker can inject additional faults into the scheme, which can change the number
of faulty indices. However, the propagation of faulty indices of individual operations
works as analyzed in Theorem 4 and the propagation of faults can be calculated using the
Equation (5) for a composition of individual operations in the presence of faults.

The infective computation property of our scheme is based on the Propogationε. As
given in Section 4.3, the infective property of our scheme is provided by ERi,j . If a fault is
detectable using input shares (Fi)0≤i<n, then fi ≤ 0 for at least one i ∈ {d+ 1, . . . , n− 1}

3We excluded the ReComb operation from the analysis, since it can only be the last operation. The case
where a fault is detectable using the inputs of ReComb is already explained in Section 4.3.



412 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Table 1: Number of operations in Gennaro et al. [GRR98] and EPMult in Section 4.1, where
Mul., Add. and Rand. represents the field multiplication, field addition, and randomness
requirements respectively.

Gennaro et al. [GRR98] EPMult Overhead
step 1 step 2 step 3 step 1 step 2 step 3

Mul. n n2d n2 n n2d+ n(ε+ d) n2 n(ε+ d)
Add. - n2d (n− 1)n - n2d+ n(ε+ 2d) (n− 1)n n(ε+ 2d)
Rand. - nd - - nd - -

from Theorem 3. As a result, the output shares are randomized by at least one nonzero
coefficient and a random value. Therefore, the infective computation is achieved.

The analyzed fault model considers faults on intermediate states only. However, it has
been shown that faulting the control flow, e.g. the number of rounds of a cipher, is also
sufficient for key recovery [CT05,DMN+12]. We consider such attacks out of the scope of
this work. Indeed, such attacks might not be a concern for fully unrolled circuits, but other
implementation styles would require additional protection of the control flow to prevent
such attacks.

5.3 Resistance Against Combined Attacks
After describing the side channel and fault resistance of our scheme, a natural question
arises: what will be the security properties if an attacker is able to mount SCA and FA
together? In this section we focus on two attacks described in [CFGR10]. Due to the
infective properties of our scheme, the attacker will not be able to collect useful faulty
ciphertexts. Secondly, even if the attacker successfully chooses ε faults in such a way that
the shared values are fixed to a predefined value, the attacker should probe d+ 1 variables
to recover the secret, which is not possible in our model. Therefore, the combined attacks
as defined in [CFGR10] are naturally eliminated by the scheme. Another advantage of the
scheme is that our fault model is defined as blindly-chosen and non-adaptive. Therefore,
the attacker cannot observe the secret states and forge a fault to inject. The model
inherently creates a timing limitation which eliminates rushing adversary [RMB+17]. As a
result, Propagation probabilities are not affected by probing d variables. Moreover, fault
injections targeting randomness sources to disable masking could be a serious threat to
the system. In our model, the faults on randomness would change the randomness in a
way the attacker cannot control, thereby keeping the side channel protection intact.

5.4 Performance Analysis
Next we analyze the performance of our scheme in terms of basic operations such as field
multiplications, field additions and randomness requirements, and compare the perormance
to related work. Table 1 compares the SMC multiplication of Gennaro et al. [GRR98] to
the EPMult defined in Section 4.1 in terms of field additions (XOR), multiplications, and
required fresh randomness. As shown in Table 1, performance overhead is only introduced
in the second step, while calculating the Ei,j . The additional costs of adding Ei,j are
n(ε+ d) field multiplications and n(ε+ 2d) field additions. Except this overhead, both
schemes have identical cost: each player generates a random degree-d polynomial and
sends the corresponding values to the other players, requiring nd random values and n2

polynomial evaluations, where each evaluation costs d field multiplications and d additions.
An overview of the computational cost for the SMC operations described in Sections 3

and 4.1 is provided in Table 2. The table lists the required number of field multiplications,
additions, and the randomness requirements for every secure operation of an (n,d) masking
scheme. Besides the arithmetic operations, the scheme requires the recombination and



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 413

Table 2: Number of field multiplications, additions, and randomness requirements for the
SMC operations.

EPMult Sqrk Add Affine RefreshM
Field Mul. n2(d+ 1) + n(ε+ d+ 1) nk - n nd

Field Add n2(d+ 1) + n(ε+ 2d− 1) - n n nd

Randomness nd - - - d

Table 3: Recombination Operation and Fault Detection Operation
Recombination Fault Detection

Re-Sharing Reconstruction Randomization Detection
Mul. n2(d+ 1) + n(2ε+ 2d+ 1) n(ε+ d+ 1) n(d+ 1) n(ε+ d)
Add. n2(d+ 1) + n(ε+ d− 1) (n− 1)(ε+ d+ 1) n(d+ 2) (n− 1)(ε+ d)
Rand. ε+ d+ nd - d+ 1 -

fault detection operations. The costs for both are listed in Table 3. A single recombination
is more costly than an error preserving multiplication; however, only one recombination
operation per secret value is needed, keeping the contribution to the overall cost small.
The total overhead of the fault detection operation depends on the sequence of operations
and security level of the implementation. In the first step, (d + 1) random values are
needed to generate a random polynomial. The evaluation of the polynomial for all players
costs n2d field multiplications and n2d field additions. Thus, the cost is small compared
to the multiplication, allowing for frequent checks of the state.

Using the above performance analysis, we compare our results with other side channel
countermeasures and one other combined side-channel fault countermeasure in Table 2. We
consider the total number of field multiplications and additions of the side-channel protected
scheme by Roche and Prouff [RP11], the scheme by Rivain and Prouff [RP10] and combined
side-channel fault countermeasure (CAPA) by Reparaz et al. [RMB+17]. Remark that, our
work and [RP11] operate on polynomial masking while [RMB+17] and [RP10] use Boolean
masking, hence d = n − 1. The only comparable numbers corresponds to a combined
countermeasure are given in Table 1 in [RMB+17]. For CAPA, the number of operations
shown in Table 2 include the computations required for public values, output calculations
and MAC check functionalities [RMB+17]. While some operations like addition and square
transformation cost more in [RMB+17], the secure multiplication is the bottleneck of our
scheme when applied for higher order masking.

Table 4: Performance Comparison of Secure Operations in terms o ffield operations; field
additions are shown in normal font while the number Field Multiplications are in bold font.

SMC Multiplication SMC Square SMC Addition

Our Work n2(d+ 1) + n(ε+ d+ 1) n -
n2(d + 1) + n(ε + 2d − 1) - n

Roche-Prouff [RP11] n2(d+ 1) + n n -
n2(d + 1) − n - n

CAPA [RMB+17] 8n 2n -
11n + 4n(n − 1) + 1 2n2 + 3n + 1 2n

Rivain-Prouff [RP10] n2 n -
2n(n − 1) - n



414 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Algorithm 3 Exp254((Fi)0≤i<n)
Input: Shares of f0 as (Fi)0≤i<n.
Output: Shares of f254

0 as (Yi)0≤i<n.
1: (Zi)0≤i<n = Sqr1((Fi)0≤i<n) . z ← f2

0
2: (Zi)0≤i<n = RefreshM((Zi)0≤i<n)
3: (Yi)0≤i<n = EPMult((Zi)0≤i<n, (Fi)0≤i<n) . y ← f3

0
4: (Wi)0≤i<n = Sqr2((Yi)0≤i<n) . w ← f12

0
5: (Wi)0≤i<n = RefreshM((Wi)0≤i<n)
6: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Wi)0≤i<n) . y ← f15

0
7: (Yi)0≤i<n = Sqr4((Yi)0≤i<n) . y ← f240

0
8: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Wi)0≤i<n) . y ← f252

0
9: (Yi)0≤i<n = EPMult((Yi)0≤i<n, (Zi)0≤i<n) . y ← f254

0
10: return (Y0, . . . , Yn−1)

6 Side-Channel and Fault Resistant AES Implementation
The AES block cipher consists of multiple rounds of operations on its state. The iterations
include three linear layers: MixColumns, ShiftRows, and AddRoundKey and one non-linear
layer named SubBytes. In order to protect these functions from leaking information about
the data they are processing, they must be designed to work on shares of the secret variables.
These operations are known as secure or SMC addition(Add), multiplication(EPMult),
squaring(Sqrk), and affine transformation(Affine); furthermore, the secure operations
are composed of simpler field addition, multiplication, and squaring. The details of the
simpler operations can be found in the appendices. Also, even though it is not an operation
itself, a reliable source of randomness is fundamental. Thus, our implementation is built
bottom-up, the field operations and randomness represent the building blocks, and more
complex functions are layered on top of them

6.1 SMC Operations
The linear layers can be implemented in a straightforward manner with computations
done locally. The MPC implementation of SubBytes consists of squarings and multiplica-
tions [RP12]. As explained in Section 3, faults injected during this part remain undetected
in the previous scheme [RP12], which makes the SubBytes vulnerable. The SubBytes
layer consists of two main stages.

• The power function x→ x254 over GF(28), denoted by Exp254(x), can be calculated
using the Algorithm 3. Using Theorem 1 and Theorem 2, we can prove the t-SNInd
security of the Exp254(x) operation, as already proven in [BBD+15].

Theorem 5 (t-SNInd of Exp254). Let (Fi)0≤i<n be the input shares of Exp254, and
let (Yi)0≤i<n be the output shares. For any set of t1 intermediate variables and any
subset |O| ≤ t2 of output shares such that t1 + t2 ≤ d, there exist two subsets I and
J of indices with |I| ≤ t1, such that those t1 intermediate variables as well as the
output shares Y|O can be perfectly simulated from F|I .

• The second part of the SubBytes operation is the GF(2)-affine transformation and
it is denoted by τ(y) [RP12]:

τA(y) = 0x63 ⊕ (0x05 · y)⊕ (0x09 · y2)⊕ (0xf9 · y4)⊕ (0x25 · y8)
⊕ (0xf4 · y16)⊕ (0x01 · y32)⊕ (0xb5 · y64)⊕ (0x8f · y128).



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 415

Table 5: The number of SMC operations in one round of AES.
Exp254 τ(y) MixColumns AddRoundKey ShiftRows

EPMult 16× 4 - - - -
Sqr1 16× 7 16× 7 - - -
Add - 16× 7 12 16× 1 -
Affine - 16× 8 16 - -
RefreshM 16× 2 - - - -

Table 6: Total number of operations for different (n, d)-scenarios for one round of AES-128.
ε = 0 ε = 1 ε = 2 ε = 3

(3,1) [GRR98] (3,1) (4,1) (6,2) (5,1) (6,1)
Field Mul. 2448 2640 4288 10656 6320 8736
Field Add 1428 2196 3696 10152 5580 7848
Randomness 192 192 256 768 320 384

Using the EPMult, we are able to compute the output of SubBytes securely while the
probability of generating undetectable faults is 2−12 in the worst case for a (4, 1)-MPC
where all the shares are faulty. To further break down the SMC design into its fundamental
components, Table 5 shows the total number of SMC operations in one round of AES-128.

Based on these results, we provide the performance analysis and cost of different (n, d)-
SMC schemes. The analysis is performed by using the total number of field multiplications,
additions, and randomness requirements for one round of AES-128 as seen in Table 5 and
Table 2. Results are shown in Table 6.

Next, we analyze first-order side-channel resistant AES-128 implementations. Using
(4,1)-SMC, we are able to extend the first-order side-channel implementation of Roche and
Prouff [RP12] to a combined first-order side-channel and fault resistant implementation.
The extension increases the number of field multiplications by 62%, additions by 68%,
and randomness requirements by 33%. Since the error detection coefficients are used for
error propagation, our scheme is more efficient than simple duplication. Moreover, we can
increase the side-channel resistance of the system to second order by using (6,2)-SMC.
The cost of this implementation requires 148% more field multiplications and also 164%
more additions, since it heavily depends on n and ε. On the other hand, the randomness
requirement increases by 200%, because the cost of it is proportional to n and d. Also,
as Table 6 shows, (4,1), (5,1), and (6,1)-SMCs have the same side-channel resistance and
have the first, second, and third order fault resistance, respectively. The number of field
multiplications and additions is nearly proportional to half of the fault resistance order.
Therefore, we can conclude that increasing the order of fault resistance costs less than the
increase of the side-channel resistance.

6.2 Software implementation
Up to this point, we have only discussed the theoretical performance results; the next
section describes the performance results in terms of execution time of the whole encryption
and its building blocks. The overall encryption execution timings for the (3,1) and (5,2)
schemes are shown in Table 7. As a reference, we consider the 32-bit C implementation
of AES in OpenSSL 1.0.1g, compiled for the ARM Cortex-M0+ and run at core clock
frequency of 4 MHz. The execution time for this unmasked encryption is 481.5 µs. Table
7 shows its corresponding code and data size. Even though full unrolling is disabled, the
code and data size is significantly larger, however, the execution time is 1090X faster than
the fastest masked encryption in Table 7.

SMC multiplication is the bottleneck of the algorithm and in turn it relies on the field
multiplication. The execution time can also be reduced by running at higher frequencies



416 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Table 7: AES-128 encryption execution time, code and RW-data size depending on the
GF(28) operations variations. I:Instruction Only, M:Mixed, L:LUT, E:Exp-Log.

(3,1) (5,2) unmasked
GF(28) mult. I M E I M E -
GF(28) sqr. I L L I L L -

Encryption [GRR98] 1.45M 1.11M 0.52M 8.04M 6.48M 2.90M -
Our scheme 1.75M 1.37M 0.64M 9.21M 7.47M 3.4M -

Code Size (kB) 3.4 3.3 3.3 3.6 3.4 3.5 7.2
RW-data (B) 12 524 780 32 544 800 12
RO-data (B) 224 224 224 224 224 224 870

Table 8: Execution time for GF(28) and SMC operations in µs with the CPU running at 4
MHz. I:Instruction Only, M:Mixed, E: Exp-Log

(3,1) (4,1) (5,1) (5,2) (6,2)
I M E I M I M I M E I M

GF(28) mult. 54.5 44.5 17.5 54.5 44.5 54.5 44.5 54.5 44.5 17.5 54.5 44.5
GF(28) sqr. 13.8 1.5 1.5 13.8 1.5 13.8 1.5 13.8 1.5 1.5 13.8 1.5

getrn() 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
SMC add. 15.2 15.2 15.2 18.2 18.2 21.2 21.2 21.2 21.2 21.2 24.2 24.2

Mult [GRR98] 1.2k 1.0k 0.48k 2.1k 1.7k 3.2k 2.7k 9.1k 7.5k 3.4k 13k 10.8k
EPMult 1.4k 1.1k 0.54k 2.4k 2k 3.8k 3.2k 9.8k 8.1k 3.7k 13.5k 11.2k

but the performance would remain the same, however, power consumption would increase.
Table 7 details the amount of code and RW-data according to selected combinations of
field operations, noted that other combinations are also possible to produce different code
and data sizes.

Table 8 summarizes the execution timings corresponding to the different versions of
field operations and the SMC multiplication. Based on Table 5, these building block
operations represent the key elements to boost the performance of the masking scheme,
that is the reason to look for faster methods to perform field arithmetic.

The only comparable implementation was presented in [GSF14] and features, according
to its Figure 2, an approximate number is 4.5 million cycles for a (5,2) scheme. Our
fastest second order implementation takes 11.6 million cycles which is nearly 2.6X slower.
The comparison is based on the graphs in Figure 2 of [GSF14]. We surmise that part
of the performance degradation is due to different platform features and the fact that
our implementation is of constant time and performs on-the-fly mask generation. It also
suggests that significant performance gains can be achieved through further optimizations
of our proof-of-concept implementation.

Hardware Implementation The proposed scheme is also well-suited for hardware imple-
mentation, due to its glitch-resistance. A proof-of-concept implementation of the Roche
and Prouff scheme was analyzed by Moradi and Mischke [MM13]. Their reference imple-
mentation introduces a rather high overhead, in area but also in lost performance. Our
scheme will increase this overhead due to the fault resistance, as quantified in Section 5.4,
mainly due to the increased number of shares. It should be noted that the reference
implementation in [MM13] has parallel hardware, but still performs serialized processing
of all shares. However, parallel processing of shares can be secure [BDF+17] and would
provide a significant performance boost over the fully serialized implementation in [MM13].

6.3 Side Channel Analysis
Leakage Detection. The test vector leakage assessment (TVLA) test was proposed by
Gilbert et al. [GGJR+11] and has become a widely used method to assess the leakage



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 417

time (micro seconds)

0 2000 4000 6000 8000 10000 12000 14000

t 
s
ta

ti
s
ti
c

-40

-30

-20

-10

0

10

20

30

40

Figure 2: Leakage analysis with disabled masking after 12,000 traces.

resistance of embedded implementations [BGN+14, LMW14, STE17]. The test checks
whether side-channel traces depend on the sensitive variables and it is designed only for
side-channel leakage detection instead of fully recovering the secret key.

The leakage tests are conducted by generating two different sets of side-channel traces.
The sets can be collected by making the device-under-test (DUT) process either a fixed
input or a random input under the same conditions. To prevent false-positive leakage
detection, it is recommended to collect the traces following a random pattern in which
either a random input or a fixed input is fed to the DUT. After collecting the traces,
means (µf , µr) and standard deviations (σf , σr) for two sets are calculated. For ease of
computation, we apply the moving average technique introduced in [DCE16], which uses
moving average instead of central average. Therefore, it is faster, more reliable, and more
robust to environmental noise. Welch’s t-test is executed as in Equation (6) where nf and
nr denote the number of traces for fixed and random sets respectively.

t = µf − µr√
(σ2

f/nf ) + (σ2
r/nr)

. (6)

The goal of this test is to show that the trace of a secret data is statistically indis-
tinguishable from the trace of a random data. Remark that the test assumes no other
information and thus it can be used to detect the leakage through the entire algorithm.

Higher-Order t Test. To demonstrate the effectiveness of our implementation, an initial
t-test was performed with a switched-off masking on a small set of samples and later with
the masking enabled on a much larger set of measurements. To disable the masking scheme,
during the sharing of the input operands, the highest-degree coefficient was hardcoded to
0x1.

Figure 2 shows the intense leakage spread around three different points in time.
They correspond to the initial three field multiplications that are done within the SMC
multiplication. The peaks are generated because there is an immediate relationship between
the operands and their corresponding shares. The shares for the fixed operands are always
the same and thus consume an approximately equal amount of power on every execution
so, when compared to the power consumption of random operands, a huge difference is
revealed after just 12,000 traces.

After demonstrating the effectiveness of the t-test, results corresponding to (3,1)-EPMult
and (5,2)-EPMult are displayed in Figure 3. While (3,1)-EPMult executed with a 4 MHz
clock, (5,2)-EPMult’s clock was switched to 16 MHz, due to its execution length with 4
MHz clock would turn the trace collection impractical.



418 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Figure 3: HO t-test for (3,1)-EPMult and (5,2)-EPMult with Exp-Log GF(28) multiplication
using 250.000 traces.

0 0.5 1 1.5 2 2.5

Number of traces ×10
5

-4

-3

-2

-1

0

1

2

3

4

t

0 0.5 1 1.5 2 2.5

Number of traces ×10
5

-6

-4

-2

0

2

4

6

t

Figure 4: First order t growth for (3,1)-EPMult and (5,2)-EPMult with Exp-Log GF(28)
multiplication. The black lines show the evolution of the maximum and minimum first-order
t values over the number of traces. The stars mark how the index of the last maximum
value grew over the number of traces. The circles mark the last minimum values.

For all subplots in Figure 3 are showing analysis results for 1st through 5th order. As
the figure shows, the level of leakage is contained within the acceptable boundaries. Also,
Figure 4 shows the t growth over the number of samples for the first-order t-test.

Multivariate t Test. SMC hardware implementations process their shares in parallel,
therefore, the power consumption reflects the processing demand of all of them simultane-
ously. In our single-threaded software implementation, the operations on every share or
pair of shares are performed sequentially. As a result, the power consumption at certain
intervals may only be related to a single share or pair of shares being processed [SM15].
The multivariate t-test combines a sample from a particular point in time to other samples
at different intervals of time. The objective is to identify if there is a relationship between
the processing of the sets of shares that occur at different points in time.

Figure 5 shows the results of the multivariate analysis on relevant sections of the
(3,1)-EPMult. Each of the plots belongs to the combination of the points in the section
where the first pair of shares is processed and those of the sections where the remaining
pairs are processed. Although the Exp-Log field multiplication uses table look-ups, the
result in Figure 5 does not show any evidence of leakage derived from the memory accesses.

The multivariate analysis is a useful tool to reveal potential sources of interdependent
side-channel leakage that otherwise would be hidden from the regular t-test. However, the
time execution and memory constraints are significant factors to constrain the extension of
the analysis to certain sections. Remark that for all of the multivariate analysis subplots,
the horizontal axis does not represent time since the analysis itself requires the combination
of traces at different points.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 419

Figure 5: Multivariate t-test for sections of the (3,1)-EPMult based on Exp-Log GF(28)
multiplication. Share-1 vs Share-1 shows the multivariate t-test results of all combinations
of points during the first GF(28) multiplication. Share-1 vs Share-2 shows the results of the
multivariate t-test for the combination of points from the first field multiplication to the
second one. Share-1 vs Share-3 corresponds to the multivariate t-test analog to the previous
case. Share-1 vs Other shows the results of multivariate t-test of the points during the first
field multiplication combined with all the points of a section close to the end of EPMult.

Table 9: Probabilities of generating undetectable faults for EPMult.
k = 1 k = 2 k = 3 k = 4

(4,1) 1.54× 10−5 1.54× 10−5 1.53× 10−5 1.53× 10−5

(5,1) 1.54× 10−5 6.03× 10−8 6.01× 10−8 5.98× 10−8

(6,1) 1.54× 10−5 6.03× 10−8 2.37× 10−10 2.35× 10−10

(6,2) 6.03× 10−8 6.03× 10−8 6.01× 10−8 6.01× 10−8

6.4 Fault Analysis
Next, we present experimental results of fault injection on the proposed scheme on the
simulation in SAGE. As given in Section 5, faults can be undetectable in a sequence of
operations. As the only non-linear operation of AES, we focused on SubBytes operation.

We start with the Exp254 operation to our analyses. First, we do the theoretical
analyses on EPMult and Exp254. In Table 9 and in Table 10, one can see the probabilities
of generating undetectable faults for EPMult and Exp254, respectively. For these analyses,
we assumed that inputs polynomials are faulty. That is, for EPmult, the faults are
detectable using (Fi)(0≤i<n) and (Gi)(0≤i<n) in Algorithm 1. And for Exp254, the faults
are detectable using (Fi)(0≤i<n) in Algorithm 3. Note that, k is defined as the number
of faulty shares as in Corollary 1. As seen both tables, the probabilities slightly changes,
depending on the conditions listed in Corollary 1. Also, even if we used a sequence of
operations, the generating undetectable faults for Exp254 mostly depend on the last
multiplication (line 9 in Algorithm 3). Notice that, the faults in the initial input shares
spread to first ε+ d shares of both inputs of EPMult operations within Exp254. Therefore,
the number of faulty shares after the first EPMult is calculated as max(n, 2(ε+ d)).

In the second part, we verify the theoretical analyses with the experimental results.
We look the fault detection capabilities of Exp254 and τa ◦ Exp254. The experimental
setup can be summarized as follows:

1. Select a secret variable x ∈ GF(28) and create an (n, d)-sharing of x as (Fi)(0≤i<n).



420 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Table 10: Probabilities of generating undetectable faults for Exp254.
k = 1 k = 2 k = 3 k = 4

(4,1) 1.53× 10−5 1.53× 10−5 1.53× 10−5 1.53× 10−5

(5,1) 5.98× 10−8 5.98× 10−8 5.98× 10−8 5.98× 10−8

(6,1) 2.34× 10−10 2.34× 10−10 2.34× 10−10 2.34× 10−10

(6,2) 6.03× 10−8 6.01× 10−8 6.01× 10−8 6.01× 10−8

Table 11: Probabilities of generating undetectable faults for Exp254 and τA ◦Exp254 using
SAGE simulation.

# Secret Shares / # Fault Injections
k = 1 k = 2 k = 3 k = 4

216 / 28 28 / 216 28 / 216 28 / 216

(4,1) 1.45× 10−5 1.52× 10−5 3.04× 10−7 2.88× 10−5

(5,1) 2.40× 10−7 6.01× 10−8 6.01× 10−8 1.20× 10−7

(6,1) 0 0 0 0
(6,2) 0 0 1.20× 10−7 1.26× 10−5

2. Select k faults σi ∈ GF(28) \ {0} and inject the faults to the first k shares of x.

3. Do fault detections on the output of Exp254((Fi)0≤i<n) and the output of τa ◦
Exp254((Fi)0≤i<n).

For example in the (4, 1) case, even if faults spread to all shares, the probability of
generating undetectable errors at most 2−12, as expected. In each multiplication, faults
are spread to k′ ≤ ε+ d shares and these shares become input for another multiplication.
Therefore, Propogationε changes for each multiplication. As seen in Table 11, if we
increase n, the probability of undetectable faults decreases with respect to the conditions
in Corollary 1. In these experiments, we maximize the attackers capabilities to simulate
the real-world settings, and efficiently analyze the fault model and detection capabilities of
our scheme. Remark that, for an (n, d)-scheme with k faults, the total number of secret
shares is (28)d+1 and the total number of all possible faults is (28)k.

The number of undetectable faults are same in Exp254 and τa ◦Exp254. Therefore, we
can conclude that τa does not produce undetectable faults. And if the fault is detectable
using the output of Exp254, the attacker should inject another fault to τA to generate
undetectable faults. Moreover, in some experiments, all faults become detectable even if
the propagation probability is not 1. Although we perform the experiments with maximized
number of faults, randomness is added in the nature of multiplication. Therefore, the
numbers are not exact values, but rather upper bounds.

7 Conclusion
Fault and side-channel attacks have become a real threat to cryptographic systems if
the adversary can observe and interact with the physical implementation. In this work,
we propose a new secure multiparty computation to achieve both fault and side-channel
resistance. It is shown that the proposed schemes can be used to perform addition, affine
transformation, multiplication, and squaring while resisting both well-defined fault and
side-channel adversaries. One advantage of the proposed scheme is a reduced overhead, as
only an extra operation within the error preserving multiplication is needed.

We define a new multiplication engine in such a way that, once a fault occurs, infor-
mation about the error remains as a part of the shares. The error propagates through
the algebraic operations with high probability. It will be detectable even after further



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 421

computations on the shares. This gives implementers the choice to perform error detection
regularly (for higher detection rates at a higher overhead) or only implicitly during recom-
bination at the end of the circuit. The error detection method is based on the degree of
the secret sharing polynomial, which increases when errors occur. After the initial increase,
additional levels of logic operations can result in a loss of degree for faulty states, leaving
a small probability of undetected errors. A secrecy-preserving fault detection operation
is defined to perform the detection. Also the idea of forwarding faults allows us to delay
any error detection as late as the final recombination step. We introduce a recombination
gate which is used for both fault detection and reconstruction of the secret. Hence, fault
detection can be carried out when the output is produced. Moreover, the recombination
gate features another desired property: Infective Computation. If an error occurs, our
scheme ensures that attackers cannot learn anything since the output is random.

Security properties of our scheme are given using ISW probing model and a formal
analysis of fault resistance. Every scheme used in the paper, including fault detection
operation and recombination operation is proven to be secure in ISW probing model
using the reformulated t-SNI security notion. Also, the first formal security proof of the
multiplication scheme [RP12] is proven within this work, since the previous scheme can be
seen as a subset of our scheme. Fault detection of our scheme is examined using notion
of Propagation. The error-detection capacities of each operations are formally given by
analysing the undetectable faults for each operation.

We propose a practical C implementation AES-128, tested on a popular ultra-low power
architecture, the ARM Cortex M0+ core. We also measure its performance and demonstrate
its level of side-channel resistance by addressing a full leakage analysis including higher
order moments on the SMC multiplication. Also, to show the fault resistance capabilities
of the proposed scheme, we perform the experiments on the SubBytes operation which
can be considered as the most to vulnerable part of AES. The implementation provides
multiple masking schemes with different types of field operations and is easily portable to
higher orders. Different masking orders with different field operations executed in constant
time. The code provides a fully constant execution flow with constant memory accesses.

Acknowledgments
This work is supported by the National Science Foundation, under grant CNS-1618837.

References
[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. Cryptology ePrint
Archive, Report 2015/506, 2015.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations
of Masking Schemes and the Bounded Moment Leakage Model, pages 535–566.
Springer International Publishing, Cham, 2017.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. In Walter Fumy, editor,
Advances in Cryptology EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer Berlin Heidelberg, 1997.



422 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–
382, Feb 2006.

[Ben88] Ben-Or, Michael and Goldwasser, Shafi and Wigderson, Avi. Completeness
Theorems for Non-cryptographic Fault-tolerant Distributed Computation.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.

[Ber68] E.R. Berlekamp. Algebraic coding theory. McGraw-Hill series in systems
science. McGraw-Hill, 1968.

[BG13] Alberto Battistello and Christophe Giraud. Fault analysis of infective AES
computations. In Fault Diagnosis and Tolerance in Cryptography (FDTC),
2013 Workshop on, pages 101–107. IEEE, 2013.

[BG16] Alberto Battistello and Christophe Giraud. A note on the security of CHES
2014 symmetric infective countermeasure. In Constructive Side-Channel
Analysis and Secure Design – COSADE 2016, 2016.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-Order Threshold Implementations. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology ASIACRYPT 2014, volume
8874 of Lecture Notes in Computer Science, pages 326–343. Springer Berlin
Heidelberg, 2014.

[CB08] D. Canright and Lejla Batina. A Very Compact “Perfectly Masked” S-Box for
AES, pages 446–459. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[CFGR10] C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet. Passive and active
combined attacks on aes combining fault attacks and side channel analysis.
In 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages
10–19, Aug 2010.

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster Evaluation of SBoxes via Common Shares, pages 498–514. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In Michael
Wiener, editor, Advances in Cryptology – CRYPTO 99, volume 1666 of Lecture
Notes in Computer Science, pages 398–412. Springer Berlin Heidelberg, 1999.

[CPR13] Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use
of shamir’s secret sharing against side-channel analysis. In Stefan Mangard,
editor, Smart Card Research and Advanced Applications, pages 77–90, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Algebraic decomposition for probing security. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, pages 742–763, 2015.

[CRZ13] Guilhem Castagnos, Soline Renner, and Gilles Zémor. High-order Masking by
Using Coding Theory and Its Application to AES, pages 193–212. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 423

[CT05] Hamid Choukri and Michael Tunstall. Round reduction using faults. Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), 5:13–24, 2005.

[DCE16] A. Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, Faster, and
More Robust T-Test Based Leakage Detection, pages 163–183. Springer
International Publishing, Cham, 2016.

[DCN16] Thomas De Cnudde and Svetla Nikova. More efficient private circuits ii
through threshold implementations. In International Workshop on Fault
Diagnosis and Tolerance in Cryptography 2016. IEEE, 2016.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage., pages 423–440. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[DMN+12] J. M. Dutertre, A. P. Mirbaha, D. Naccache, A. L. Ribotta, A. Tria, and
T. Vaschalde. Fault round modification analysis of the advanced encryption
standard. In 2012 IEEE International Symposium on Hardware-Oriented
Security and Trust, pages 140–145, June 2012.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, 2011.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits Resilient to Additive Attacks with Applications to Secure
Computation. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC ’14, pages 495–504, New York, NY, USA, 2014. ACM.

[Gir06] Christophe Giraud. An RSA implementation resistant to fault attacks and to
simple power analysis. Computers, IEEE Transactions on, 55(9):1116–1120,
2006.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret
sharing scheme. In Cryptographic Hardware and Embedded Systems–CHES
2011, pages 79–94. Springer, 2011.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
Cryptology ePrint Archive, Report 2016/486, 2016.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded Systems
CHES 2001, pages 251–261. Springer, 2001.

[GR16] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? Cryptology ePrint Archive, Report 2016/264, 2016.

[GRR98] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography.
In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing, pages 101–111. ACM, 1998.

[GSF14] Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking
vs. multiparty computation: How large is the gap for AES? Journal of
Cryptographic Engineering, 4(1):47–57, 2014.



424 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In Progress in Cryptology–LATINCRYPT 2012, pages
305–321. Springer, 2012.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Advances in Cryptology–CRYPTO 2014,
pages 444–461. Springer Berlin Heidelberg, 2014.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private
Circuits II: Keeping Secrets in Tamperable Circuits. In Serge Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, pages 308–327, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks, pages 463–481. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27,
2011.

[LFZD14] Pei Luo, Yunsi Fei, Liwei Zhang, and A Adam Ding. Side-channel power
analysis of different protection schemes against fault attacks on AES. In
ReConFigurable Computing and FPGAs (ReConFig), 2014 International
Conference on, pages 1–6. IEEE, 2014.

[LMW14] Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-Level
Masking under a Path-Based Leakage Metric, pages 580–597. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[LRT12] Victor Lomné, Thomas Roche, and Adrian Thillard. On the Need of Random-
ness in Fault Attack Countermeasures-Application to AES. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2012 Workshop on, pages 85–94.
IEEE, 2012.

[MM13] Amir Moradi and Oliver Mischke. On the simplicity of converting leakages
from multivariate to univariate. In Cryptographic Hardware and Embedded
Systems-CHES 2013, pages 1–20. Springer, 2013.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced
Power Analysis Collision Attack, pages 125–139. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[MMSS18] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-resistant masking revisited - or why proofs in the robust probing
model are needed. Cryptology ePrint Archive, Report 2018/490, 2018.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
Attacking Masked AES Hardware Implementations, pages 157–171. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory
of error correcting codes. Elsevier, 1977.

[MS81] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes.
Commun. ACM, 24(9):583–584, September 1981.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 425

[NRS09] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware imple-
mentation of non-linear functions in the presence of glitches. In Information
Security and Cryptology–ICISC 2008, pages 218–234. Springer, 2009.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rij-
men. A Side-channel Analysis Resistant Description of the AES S-box. In
Proceedings of the 12th International Conference on Fast Software Encryption,
FSE’05, pages 413–423, Berlin, Heidelberg, 2005. Springer-Verlag.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology–
CRYPTO 2015, pages 764–783. Springer LNCS, 2015.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block Ciphers
Implementations Provably Secure Against Second Order Side Channel Analysis,
pages 127–143. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[REB+08] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne, and
Israel Koren. Can knowledge regarding the presence of countermeasures against
fault attacks simplify power attacks on cryptographic devices? In Defect
and Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE International
Symposium on, pages 202–210. IEEE, 2008.

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined Fault and
Side-Channel Attack on Protected Implementations of AES. In Emmanuel
Prouff, editor, Smart Card Research and Advanced Applications, volume
7079 of Lecture Notes in Computer Science, pages 65–83. Springer Berlin
Heidelberg, 2011.

[RMB+17] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,
Ventzislav Nikov, and Nigel Smart. Capa: The spirit of beaver against physical
attacks. Cryptology ePrint Archive, Report 2017/1195, 2017.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Mask-
ing of AES, pages 413–427. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[RP11] Thomas Roche and Emmanuel Prouff. Higher-order glitches free imple-
mentation of the AES using secure multi-party computation protocols. In
Cryptographic Hardware and Embedded Systems–CHES 2011, pages 63–78.
Springer, 2011.

[RP12] Thomas Roche and Emmanuel Prouff. Higher-order glitch free implementation
of the AES using secure multi-party computation protocols. Journal of
Cryptographic Engineering, 2(2):111–127, 2012.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[Sha99] Adi Shamir. Method and apparatus for protecting public key schemes from
timing and fault attacks, November 23 1999. US Patent 5,991,415.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - a clear
roadmap for side-channel evaluations. Cryptology ePrint Archive, Report
2015/207, 2015.



426 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

Algorithm 4 Fault Detection Operation
Input: Shares of f0 as (Fi)0≤i<n.
Output: Fault Decision.
1: (r0, . . . , rd)← F2m . Coefficients of the random polynomial.
2: for i = 0 to n− 1 do . Randomization.
3: FRi

← Fi
4: for k = 0 to d do . Evaluate the polynomial.
5: Ri ← Ri ⊕ rkαkj . Referred to as Rki
6: end for
7: FRi

← FRi
⊕Ri

8: end for
9: Fault Detection using the set of secret shares: (FRi

)0≤i<n . Detection.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI – Towards Com-
bined Hardware Countermeasures Against Side-Channel and Fault-Injection
Attacks. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology – CRYPTO 2016: 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
302–332. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES, pages
208–225. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[STE17] A. Shahverdi, M. Taha, and T. Eisenbarth. Lightweight side channel resistance:
Threshold implementations of simon. IEEE Transactions on Computers,
66(4):661–671, April 2017.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying
Fault Invariant with Randomization. In Lejla Batina and Matthew Robshaw,
editors, Cryptographic Hardware and Embedded Systems CHES 2014, volume
8731 of Lecture Notes in Computer Science, pages 93–111. Springer Berlin
Heidelberg, 2014.

[YO13] Maki Yoshida and Satoshi Obana. Detection of Cheaters in Non-interactive
Polynomial Evaluation. Cryptology ePrint Archive, Report 2013/032, 2013.

A Security Proofs
Before going into the proofs of fault detection operation and recombination operation, we
need to clarify that the detection parts are excluded from the proofs to make definitions
compatible. As given in Equation 2, the detection mechanism requires all shares. However,
during fault detection we already mask the sensitive variable.

A.1 Fault Detection Operation
Theorem 6 (t-SNInd of Fault Detection Operation). Let (Fi)0≤i<n be the input shares
of Fault Detection Operation and let (FRi

)0≤i<n be the output shares. For any set of t1
intermediate variables and any subset |O| ≤ t2 of output shares such that t1 + t2 < d+ 1,
there exists a subset I of indices with |I| ≤ t1, such that those t1 intermediate variables as
well as the output shares FR|O can be perfectly simulated from F|I .

Proof. The proof is very similar to the proof of Theorem 2. For every probed variable Fi,
FRi , or Rdi add i to I. Clearly, we add at most one index to I and, therefore, |I| ≤ t1.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 427

Algorithm 5 Recombination Operation
Input: Shares of f0 as (Fi)0≤i<n and non-zero random values (r0, . . . , rε+d−1).
Output: f0 and Fault Decision.
1: for i = 0 to n− 1 do . Re-Sharing
2: (ri,1, . . . , ri,d)← F2m . Coefficients of the random polynomial.
3: for j = 0 to n− 1 do
4: Qi,j ← Fi . referred by Q0

j,i.
5: for k = 1 to d do . Evaluate the polynomial.
6: Qi,j ← Qi,j ⊕ rkαkj . referred to as Qkj,i.
7: end for
8: Qi,j ← Qi,j ⊕ ERi,j . Add a share of an error detection term.
9: Qj ← Qj ⊕ λ0

iQi,j . referred to as Qj,i.
10: end for
11: end for
12: Reconstruction using the set of secret shares: (Qi)0≤i<n . Reconstruction.

1. If Rki is probed, we can perfectly simulate it with a random value, since it does not
depend on any variable.

2. If FR is probed, we can simulate it as Fi ⊕Ri. Note that, Ri can be simulated as in
the first step.

Therefore, we are able to simulate all the probed variables. Now, we consider the
simulation of output variables. We need to show that FRi for i ∈ O can be simulated from
F|I . If i ∈ I, we can simulate FRi

as explained above. We now examine the simulation of
output variables FRi , where i /∈ I. That means, Rdi is not probed and is not involved in
computation of FRi

. Hence, we can perfectly simulate FRi
by a random value.

A.2 Recombination Operation
Theorem 7 (t-SNInd of Recombination Operation). Let (Fi)0≤i<n be the input shares of
the Recombination Operation and let (Qi)0≤i<n be the output shares. For any set of t1
intermediate variables and any subset |O| ≤ t2 of output shares such that t1 + t2 < d+ 1,
there exists a subset I of indices with |I| ≤ t1, such that those t1 intermediate variables as
well as the output shares Q|O can be perfectly simulated from F|I .

Proof. As stated in Section 4.3, the recombination operation can be seen as a modified
version of EPMult, therefore, the proof is built on the same structure as in the proof of
Theorem 1 in Section 5.

In the first part of the proof, we construct the sets of input share indices I depending
on the intermediate variables that are probed. If Fi, ri,j , F kj,i or ERi,j is probed, add i to I

• Group 1: If Fi or F0
i,j or ERi,j is probed, add i to I.

• Group 2: If ERi,j or rj is probed, add i to I.

• Group 3: If ri,j or Qki,j where k ∈ {1, . . . , d} is probed, add i to I and J .

According to our selection, we add at most one index to I and J for each probe and,
therefore, |I| ≤ t1 and |J | ≤ t1.

1. The simulations of the probed variables in group 1 are straightforward. Since i ∈ I,
we can perfectly simulate Fi. Similarly, Q0

i,j , since i ∈ I.



428 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

2. Since the elements λi of the inverse Vandermonde matrix are public variables, we can
simulate ERi,j as defined in Equation (3). In fact we let rj for j ∈ {0, . . . , ε+ d+ 1}
as in the real circuit.

3. If Qki,j is probed, we need to consider two cases:

• If ri,k is also probed, we let ri,k as in the real circuit, therefore, we can simulate
Qki,j as Fi ⊕ ri,kαkj where αj is a public value.

• If ri,k is not probed, it does not enter into the computations of Qki,j , therefore,
we can perfectly simulate Qki,j with a random value.

4. If Qj,i is probed, we need to consider two cases as in the previous step:

• If all the values ri,k for 1 ≤ k ≤ d are probed, we can perfectly simulate the
values Qki,j , and hence Qj,i can be simulated. Note that, λ0

i is an element of
the inverse Vandermonde matrix so it is a public value.
• If at least ri,k for 1 ≤ k ≤ d is not probed, that means ri,k does not enter into
the computation of Qj,i, therefore, Qj,i can be simulated by a random value.

Now we explain how to simulate output shares Qi for all i ∈ O where O is an arbitrary
subset of [1, n] with t2 elements such that t1 + t2 < d + 1. Clearly, using t1 probes,
we can observe at most t1 intermediate variables of Qi, where Qi can be written as:
Qi =

∑n−1
j=0 λ

0
iQj,i. Since t1 + t2 < d+ 1, at least one intermediate variable of Qi is not

probed. Therefore, we can simulate Qj,i with j /∈ U by generating a random degree d
polynomial and evaluating it for αi. Hence, we can simulate Qi for each i ∈ O.

A.3 RefreshM Algorithm
Proof. The proof is relatively straight forward. For every probed variable Fi, Ci, or Q|
add i to I. Clearly, we add at most one index to I and, therefore, |I| ≤ t1.

1. If rk or Qkj probed, we let the variables as in the circuit and perfectly simulate them.

2. if Ci is probed, we can perfectly simulate the variable by Fi ⊕Qi, by letting Qi as
in the real circuit.

Therefore, we are able to simulate all the probed variables. Now, we consider the simulation
of output variables. We need to show that Ci for i ∈ O can be simulated from F|I . If i ∈ I,
we can simulate Ci as explained above. We now examine the simulation of output variables
Ci, where i /∈ I. That means, Qj is not probed and is not involved in the computation of
Ci. Hence, we can perfectly simulate Ci by a random value.

B Implementation Details
B.1 Target Platform
Due to the rapid development environment and the omnipresence of ARM cores in embedded
applications, we employed the NUCLEO-L053R8 board from STMicroelectronics to test
our robust implementation. It features a 32-bit ARM Cortex-M0+ microcontroller labelled
STM32L053R8T6. It can reach a clock frequency of up to 32 MHz and it is equipped with
a hardware random-number generator (RNG) capable of generating one 32-bit random
number every 40 cycles. The RNG must run at 48MHz. Internal Phase-Locked Loop
circuits (PLLs) can be used to match this frequency.



Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth and Rainer Steinwandt 429

Algorithm 6 GF(28) Multiplication (instructions only).
// z = h · v
for (i = 0 ; i < 8 ; i+ +) do

mask = −((h >> i)&1); . (1)
z = z ̂(mask & v); . (2)
mask = −((v >> 7)&1); . (3)
v <<= 1; . (4)
v ̂= mask & 0x1b; . (5)

end for
return z

Algorithm 7 GF(28) Multiplication (mixed).

// z = h · v
for (i = 0 ; i < 8 ; i+ +) do

mask = −((h >> i)&1); . (1)
z = z ̂(mask & v); . (2)
v = secondOp[v]; . (3, 4, 5)

end for
return z

A particular feature of this development board is that it provides two contact points to
measure the actual current consumption of the ARM chip. We took advantage of it to
place a low-value resistor between the pins to measure the voltage drop for our side-channel
analysis. The code was initially sketched in mbed and later migrated to ARM MDK-Lite
(KEIL uVision 5.21), however, the code is architecture-independent.

B.2 Field Multiplication
This is a heavily used operation across the implementation. Even a small performance
variation in this operation significantly affects the whole algorithm, thus it is very important
to optimize this operation and consider different trade-offs. The following paragraphs
briefly describe the four variations that are available in the implementation code. The
slowest version of the multiplication is based on instructions only, with the minimum
memory usage and in constant time. The result of the field multiplication is returned after
8 iterations, as given in the Algorithm 6.

A second version of this operation is a trade-off function that combines a precomputed
256-byte look-up table (LUT) and instructions. The only difference from the previous
version is that the LUT contains all possible computations of v based on items 3, 4, and 5
from instruction only-multiplication Algorithm 6 as those three lines of code only depend
on operand v.

The best time-memory trade-off field multiplication [GR16], known as the Exp-Log
multiplication, is derived from the logarithm property vh = glogg(v)+logg(h). An appropriate
generator g must be selected to precompute the logarithm and exponentiation tables so
the multiplication is reduced to three table look-ups and logical and arithmetic operations,
especially required to check if any of the operands is zero.

Ultimately, the fastest instance of this operation is based on two pre-computed 4-kB
LUTs. To generate the tables, one of the operands is split into its most-significant nibble
and least-significant nibble v = vm24 +vl, then every possible permutation of each nibble is
multiplied times all possible permutations of the other operand vh = vmh24 + vlh but only
the most-significant nibble multiplication is reduced modulo the irreducible polynomial. To
get the result of the field multiplication, only two look-ups and one addition are required,



430 Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

however, this method is very expensive in terms of memory usage and thus kept outside
our performance analysis.

B.3 Field Squaring
The implementation code features two ways of performing field squaring. The first one,
as in the multiplication case, is based on instructions only; the second one is simply a
256-byte LUT of all possible square values of the input.

The following pseudo-code describes in detail the algorithm of the code-only field
squaring which can be conducted in a single line of C code.

y2 = (y&0x01)⊕ ((y&0x02) << 1)⊕ ((y&0x04) << 2)⊕ ((y&0x08) << 3)
⊕ (−((y&0x10) >> 4)&0x1b)⊕ (−((y&0x20) >> 5)&0x6c)
⊕ (−((y&0x40) >> 6)&0xab)⊕ (−((y&0x80) >> 7)&0x9a).


	Introduction
	Background
	Shamir's Secret Sharing and Secure Multiparty Computations
	The ISW Probing Model
	The Additive Fault Model

	SMC as a Fault Injection Countermeasure
	Error Preserving Multiparty Computation
	Error Preserving Multiplication (EPMult)
	Fault Detection Operation (FDect) 
	Recombination Operation (ReComb) and Infective Computation

	Security Analysis
	Side Channel Resistance
	Fault Resistance
	Resistance Against Combined Attacks
	Performance Analysis

	Side-Channel and Fault Resistant AES Implementation
	SMC Operations
	Software implementation
	Side Channel Analysis
	Fault Analysis

	Conclusion
	Security Proofs
	Fault Detection Operation
	Recombination Operation
	RefreshM Algorithm

	Implementation Details
	Target Platform
	Field Multiplication
	Field Squaring


