
11 September 2018

Standard Lattice-Based Key
Encapsulation on Embedded Devices

James Howe†, Tobias Oder‡, Markus Krausz‡, and Tim
Güneysu‡∗.

†University of Bristol, UK; ‡Ruhr-Universität Bochum, Germany;
and ∗DFKI, Germany.

11 September 2018

Outline

Post-quantum cryptography and LWE

Motivation

Introduction to Frodo

Microcontroller design

Hardware design

Results and performance analysis

11 September 2018

Motivation

NIST have started a post-quantum standardisation “competition”.

The call suggests future rounds will likely involve:
I Evaluations on constrained devices, such as smart cards,
I as well as comparisons of the schemes in hardware.

Why focus on lattice-based / Frodo?
I Extremely versatile and theoretically sound.
I Probably the most secure lattice candidate.
I Less implementations than ideal lattice

schemes; has larger keys and no NTT.
I Frodo is ideal for long-term security and

constrained (hardware) platforms.

11 September 2018

Frodo: Take off the ring!

The design philosophy of FrodoKEM [ABD+] combines:

Conservative yet practical post-quantum constructions.

Security derived from cautious parameterizations of the well-studied
learning with errors problem.

Thus, close connections to conjectured-hard problems on generic,
“algebraically unstructured” lattices.

Parameter selection is far less constrained than vs ideal lattice schemes.

11 September 2018

Frodo: Why should we take off the ring?

These qualities are appealing for practitioners;

Many IoT use cases require long-term, efficient cryptography.

Post-quantum cryptography is becoming essential.

Microcontrollers and FPGAs will play a role in future technologies.

Suitable for use cases such as satellite communications and V2X.

11 September 2018

Frodo: key encapsulation from standard lattices

Algorithm 1 The FrodoKEM encapsulation (shortened)

1: procedure ENCAPS(pk = seedA||b)
2: Choose a uniformly random key µ← U({0, 1}lenµ)
3: Generate pseudo-random values seedE||k||d← G(pk||µ)
4: Sample error matrix S′,E′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, ·)
5: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
6: Compute C1 ← S′A + E′

7: Sample error matrix E′′ ← Frodo.SampleMatrix(seedE, m̄, n̄, Tχ, ·)
8: Compute C2 ← S′B + E′′ + Frodo.Encode(µ)
9: Compute ss← F (c1||c2||k||d)

10: return ciphertext c1||c2||d and shared secret ss
11: end procedure

11 September 2018

Frodo: key encapsulation from standard lattices

FrodoKEM is comprised of a number of key modules:

Matrix-matrix multiplication, up to sizes 976.

Uniform and “Gaussian” error generation.

Random oracles via cSHAKE for CCA security.

A massive design challenge was to balance memory utilisation, whilst not
deteriorating the performance too much to not overexert the limited computing
capabilities of the embedded devices.

11 September 2018

FrodoKEM on constrained devices

FrodoKEM has a number of design options we cover:

Both sets of parameters;
I FrodoKEM-640 aims to match AES-128 security.
I FrodoKEM-976 aims to match AES-192 security.

PRNG from AES and cSHAKE modules.

We focus on FrodoKEM, rather than the previous
key exchange scheme FrodoCCS [BCD+16].

11 September 2018

FrodoKEM on ARM

Contribution overview:

Optimized memory allocation that makes the implementation small enough
to fit on embedded microcontrollers.

An assembly multiplication routine that speeds up our implementation,
realizing a performance that fits the requirements of common use-cases.

Utilises constant runtime to protect against simple side-channel analysis.

FrodoKEM-640 has a total execution time of 836 ms, running at 168 MHz.

11 September 2018

FrodoKEM on ARM

pack pack

S'A+E'

S'B+E''

AddEncode

Sample

S'

Gen

A

Sample

E'

Sample

E''

b

unpack

V

CB'

c1 c2

µ

B

Figure: FrodoKEM encaps flowchart.

We analysed the memory occupancy
during each operation.

Wherever possible, reusing already
allocated memory.

This minimised the memory usage for
all designs.

Memory usage for AES versions much
simpler than for cSHAKE versions.

11 September 2018

Results and Comparisons
Clear difference between AES and cSHAKE implementations.
Due to more efficent AES [SS16], cSHAKE needs load/save from RAM.
Outperforms other Frodo design, but much slower than Kyber / NewHope.

Table: Cycle counts for our full microcontroller implementations (at 168 MHz).

Implementation Platform Security Level Cycle counts
FrodoKEM-640-AES Cortex-M4 128 bits 140,398,055
FrodoKEM-976-AES Cortex-M4 192 bits 315,600,317

FrodoKEM-640-cSHAKE Cortex-M4 128 bits 310,131,435
FrodoKEM-976-cSHAKE Cortex-M4 192 bits 695,001,098

FrodoKEM-640-cSHAKE [pqm] Cortex-M4 128 bits 318,037,129
KyberNIST-768 [pqm] Cortex-M4 192 bits 4,224,704

NewHopeUSENIX-1024 [AJS16] Cortex-M4 255 bits 2,561,438
ECDH scalar multiplication [DHH+15] Cortex-M0 pre-quantum 3,589,850

11 September 2018

Results and Comparisons

Despite being slower, cSHAKE requires less memory than AES.

Our memory optimisations save between 30-40% compared to PQM4.

Versus the referenced designs we also save 66% in peak stack usage.

Table: Stack usage in bytes for our microcontroller implementations.

FrodoKEM-AES FrodoKEM-cSHAKE FrodoKEM-cSHAKE [pqm]
Operation n = 640 n = 976 n = 640 n = 976 n = 640 % Savings
Keypair 23,396 35,484 22,376 33,800 36,536 39%
Encaps 41,292 63,484 37,792 57,968 58,328 35%
Decaps 51,684 63,628 48,184 58,112 68,680 30%

11 September 2018

FrodoKEM on FPGA

Contribution overview:

Proposes a generic LWE multiplication core which computes vector-matrix
multiplication and error addition.

Generates future random values in parallel, minimising delays between
vector-matrix multiplications.

Hybrid pre-calculated / on-the-fly memory management is used, which
continuously updates previous values.

Ensures constant runtime by parallelising other modules with multiplication.

FrodoKEM-640 has a total execution time of 60 ms, running at 167MHz.

11 September 2018

FrodoKEM on FPGA

Figure: An overview of our FPGA design of FrodoKEM Encapsulation.

11 September 2018

Results and Comparisons
Competes with NewHope area consumption, but much slower performance.
Huge savings in BRAM compared to LWE Encryption [HMO+16].

Table: FPGA consumption and performance of our proposed designs, benchmarked on Artix-7.

Cryptographic Operation LUT/FF Slice DSP BRAM MHz Ops/sec
FrodoKEM-640 Keypair 6621/3511 1845 1 6 167 51
FrodoKEM-640 Encaps 6745/3528 1855 1 11 167 51
FrodoKEM-640 Decaps 7220/3549 1992 1 16 162 49
FrodoKEM-976 Keypair 7155/3528 1981 1 8 167 22
FrodoKEM-976 Encaps 7209/3537 1985 1 16 167 22
FrodoKEM-976 Decaps 7773/3559 2158 1 24 162 21

cSHAKE∗ 2744/1685 766 0 0 172 1.2m
Error+AES Sampler∗ 1901/1140 756 0 0 184 184m

NewHopeUSENIX Server [OG17] 5142/4452 1708 2 4 125 731
NewHopeUSENIX Client [OG17] 4498/4635 1483 2 4 117 653

LWE Encryption [HMO+16] 6078/4676 1811 1 73 125 1272

11 September 2018

Conclusions

We show that hardware significantly minimises the performance distance
between standard and ideal lattice-based KEM, able to utilise less than
2000 slices and remain practical.

Memory optimisations for microcontrollers show 66% savings vs reference
design and 40% vs optimised PQM4 design.

It would be interesting to see results for Frodo on FPGA with increased
multipliers. As well as how it performs vs. other NIST PQC candidates.

11 September 2018

Conclusions

Our results show the efficiency of FrodoKEM and help to assess the
practical performance of a possible future post-quantum standard.

11 September 2018

Although rings are still good to use, unless you’re Gollum...

Thank you for listening. Any questions?

11 September 2018

References I
Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Chris Peikert, Ananth Raghunathan, Douglas Stebila, Karen Easterbrook, and Brian
LaMacchia.
FrodoKEM Learning With Errors key encapsulation.
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf.
Accessed: 2018-04-13.

Erdem Alkim, Philipp Jakubeit, and Peter Schwabe.
NewHope on ARM cortex-M.
In International Conference on Security, Privacy, and Applied Cryptography Engineering, pages
332–349. Springer, 2016.

Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila.
Frodo: Take off the ring! practical, quantum-secure key exchange from LWE.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1006–1018. ACM, 2016.

https://frodokem.org/files/FrodoKEM-specification-20171130.pdf

11 September 2018

References II
Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar, Ana Helena Sánchez,
and Peter Schwabe.
High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Des. Codes Cryptography, 77(2-3):493–514, 2015.

James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu, and K. Beeden.
Lattice-based encryption over standard lattices in hardware.
In Proceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June
5-9, 2016, pages 162:1–162:6. ACM, 2016.

Tobias Oder and Tim Güneysu.
Implementing the NewHope-simple key exchange on low-cost FPGAs.
Progress in Cryptology–LATINCRYPT, 2017, 2017.

pqm4 - post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.
Accessed: 2018-04-12.

https://github.com/mupq/pqm4

11 September 2018

References III

Peter Schwabe and Ko Stoffelen.
All the AES you need on Cortex-M3 and M4.
In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography - SAC 2016 - 23rd
International Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers,
volume 10532 of Lecture Notes in Computer Science, pages 180–194. Springer, 2016.

	anm0:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

