
New Bleichenbacher Records: Fault Attacks on
qDSA Signatures
CHES 2018

Akira Takahashi1 Mehdi Tibouchi1,2 Masayuki Abe1,2

September 12, 2018
1Kyoto University

2NTT Secure Platform Laboratories

1

Outline

Introduction

Contribution 1. Optimizing Bleichenbacher’s Attack

Contribution 2. Fault Attacks on qDSA Signature

Contribution 3. Record-breaking Implementation of Nonce
Attack

Wrap-up

2

Introduction

Motivating Example: Schnorr Signature Scheme

• One of the simplest and most widely-used digital
signature schemes

• Most notable variant: (EC)DSA
• Secure in ROM if the discrete logarithm problem (DLP) is
hard

• Relies on an ephemeral random value known as nonce

3

Motivating Example: Schnorr Signature Scheme

• One of the simplest and most widely-used digital
signature schemes

• Most notable variant: (EC)DSA

• Secure in ROM if the discrete logarithm problem (DLP) is
hard

• Relies on an ephemeral random value known as nonce

3

Motivating Example: Schnorr Signature Scheme

• One of the simplest and most widely-used digital
signature schemes

• Most notable variant: (EC)DSA
• Secure in ROM if the discrete logarithm problem (DLP) is
hard

• Relies on an ephemeral random value known as nonce

3

Motivating Example: Schnorr Signature Scheme

• One of the simplest and most widely-used digital
signature schemes

• Most notable variant: (EC)DSA
• Secure in ROM if the discrete logarithm problem (DLP) is
hard

• Relies on an ephemeral random value known as nonce

3

Nonce in Schnorr Signatures

Alice Bob

Message Alice’s Secret key

Verify

Alice’s Public key

0/1

Signed Message

Sign

• k is called nonce. It satisfies

k ≡ s︸︷︷︸
public

+ h︸︷︷︸
public

d mod n.

• k should NOT be reused/exposed

4

Nonce in Schnorr Signatures

Alice Bob

Message Alice’s Secret key

Verify

Alice’s Public key

0/1

Signed Message

101101 ・・・

• k is called nonce. It satisfies

k ≡ s︸︷︷︸
public

+ h︸︷︷︸
public

d mod n.

• k should NOT be reused/exposed

4

Nonce in Schnorr Signatures

Alice Bob

Message Alice’s Secret key

Verify

Alice’s Public key

0/1

Signed Message

101101 ・・・

• k is called nonce. It satisfies

k ≡ s︸︷︷︸
public

+ h︸︷︷︸
public

d mod n.

• k should NOT be reused/exposed

4

Nonce in Schnorr Signatures

Alice Bob

Message Alice’s Secret key

Verify

Alice’s Public key

0/1

Signed Message

101101 ・・・

• k is called nonce. It satisfies

k ≡ s︸︷︷︸
public

+ h︸︷︷︸
public

d mod n.

• k should NOT be reused/exposed 4

Risk of biased/leaky nonce

Alice

Message Alice’s Secret key

Signed Message
Adversary000101 ・・・

Bias

• But what if k is slightly biased ?

; Adversary could bypass the (EC)DLP and steal the secret d
by solving the hidden number problem (HNP)!

5

Risk of biased/leaky nonce

Alice

Message Alice’s Secret key

Signed Message
Adversary101101 ・・・

Leak

• But what if k is slightly biased or partially leaked?

; Adversary could bypass the (EC)DLP and steal the secret d
by solving the hidden number problem (HNP)!

5

Risk of biased/leaky nonce

Alice

Message Alice’s Secret key

Signed Message
Adversary101101 ・・・

Leak

• But what if k is slightly biased or partially leaked?
; Adversary could bypass the (EC)DLP and steal the secret d

by solving the hidden number problem (HNP)!

5

Nonce: very sensitive!

5

Our Contribution

1. Optimized a statistical attack framework, known as
Bleichenbacher’s attack, against nonces in Schnorr-like
signatures

2. New fault attacks against recent, high-speed Schnorr-like
signature scheme, qDSA, to obtain a few bits of nonces

3. Implemented a full secret key recovery attack against
Schnorr-like signatures

• Over 252-bit group
• Only 2 or 3-bit nonce leaks

6

Our Contribution

1. Optimized a statistical attack framework, known as
Bleichenbacher’s attack, against nonces in Schnorr-like
signatures

2. New fault attacks against recent, high-speed Schnorr-like
signature scheme, qDSA, to obtain a few bits of nonces

3. Implemented a full secret key recovery attack against
Schnorr-like signatures

• Over 252-bit group
• Only 2 or 3-bit nonce leaks

6

Our Contribution

1. Optimized a statistical attack framework, known as
Bleichenbacher’s attack, against nonces in Schnorr-like
signatures

2. New fault attacks against recent, high-speed Schnorr-like
signature scheme, qDSA, to obtain a few bits of nonces

3. Implemented a full secret key recovery attack against
Schnorr-like signatures

• Over 252-bit group
• Only 2 or 3-bit nonce leaks

6

We set new records!

Leaked bits of Nonces

1 2 3 4 5

384-bit – – – – [DMHMP14]
252-bit – – – – –
160-bit [AFG+14] [LN13] [NS02] – –

Table 1: Comparison with previous published records

• Orange: Bleichenbacher’s attack
• Others: Lattice attack

7

We set new records!

Leaked bits of Nonces

1 2 3 4 5

384-bit – – – – [DMHMP14]
252-bit – – 3 – –
160-bit [AFG+14] [LN13] [NS02] – –

Table 1: Comparison with previous published records

• Orange: Bleichenbacher’s attack
• Others: Lattice attack

7

We set new records!

Leaked bits of Nonces

1 2 3 4 5

384-bit – – – – [DMHMP14]
252-bit – 3 3 – –
160-bit [AFG+14] [LN13] [NS02] – –

Table 1: Comparison with previous published records

• Orange: Bleichenbacher’s attack
• Others: Lattice attack

7

Optimizing Bleichenbacher’s Attack

Bleichenbacher’s Nonce Attack

• Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES’13) and Aranha et al.
(ASIACRYPT’14)

• Idea: quantify the nonce bias by defining “bias function”
Bn(K) ∈ [0, 1] and find the peak of it

• Bn(K) = 0 if nonce is uniformly distributed over Z/nZ.
• Bn(K) ≈ 1 if nonce is biased.

• Most important & costly phase is so-called range
reduction of integers h

• Necessary to detect the bias peak correctly and efficiently

8

Bleichenbacher’s Nonce Attack

• Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES’13) and Aranha et al.
(ASIACRYPT’14)

• Idea: quantify the nonce bias by defining “bias function”
Bn(K) ∈ [0, 1] and find the peak of it

• Bn(K) = 0 if nonce is uniformly distributed over Z/nZ.
• Bn(K) ≈ 1 if nonce is biased.

• Most important & costly phase is so-called range
reduction of integers h

• Necessary to detect the bias peak correctly and efficiently

8

Bleichenbacher’s Nonce Attack

• Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES’13) and Aranha et al.
(ASIACRYPT’14)

• Idea: quantify the nonce bias by defining “bias function”
Bn(K) ∈ [0, 1] and find the peak of it

• Bn(K) = 0 if nonce is uniformly distributed over Z/nZ.
• Bn(K) ≈ 1 if nonce is biased.

• Most important & costly phase is so-called range
reduction of integers h

• Necessary to detect the bias peak correctly and efficiently

8

Bleichenbacher’s Nonce Attack

• Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES’13) and Aranha et al.
(ASIACRYPT’14)

• Idea: quantify the nonce bias by defining “bias function”
Bn(K) ∈ [0, 1] and find the peak of it

• Bn(K) = 0 if nonce is uniformly distributed over Z/nZ.
• Bn(K) ≈ 1 if nonce is biased.

• Most important & costly phase is so-called range
reduction of integers h

• Necessary to detect the bias peak correctly and efficiently

8

Range Reduction Problem

Given: S signatures (h1, . . . , hS)

Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that
• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution

9

Range Reduction Problem

Given: S signatures (h1, . . . , hS)
Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that

• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution

9

Range Reduction Problem

Given: S signatures (h1, . . . , hS)
Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that
• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution

9

Range Reduction Problem

Given: S signatures (h1, . . . , hS)
Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that
• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution

9

Range Reduction Problem

Given: S signatures (h1, . . . , hS)
Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that
• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution

9

Our Approach: Schroeppel-Shamir Algorithm

• Previous approaches are not optimal if the nonce bias is
small:/ BKZ (De Mulder et al.): Coefficients are not sparse enough./ S&D (Aranha et al.): Requires many inputs, huge memory

space.

• We applied Schroeppel-Shamir knapsack algorithm [SS81]
• Mentioned by Bleichenbacher, but never examined in the
literature

• Advantages:, Highly space-efficient, Highly parallelizable with Howgrave-Graham–Joux’s variant
(EUROCRYPT’10, [HGJ10])

10

Our Approach: Schroeppel-Shamir Algorithm

• Previous approaches are not optimal if the nonce bias is
small:/ BKZ (De Mulder et al.): Coefficients are not sparse enough./ S&D (Aranha et al.): Requires many inputs, huge memory

space.

• We applied Schroeppel-Shamir knapsack algorithm [SS81]

• Mentioned by Bleichenbacher, but never examined in the
literature

• Advantages:, Highly space-efficient, Highly parallelizable with Howgrave-Graham–Joux’s variant
(EUROCRYPT’10, [HGJ10])

10

Our Approach: Schroeppel-Shamir Algorithm

• Previous approaches are not optimal if the nonce bias is
small:/ BKZ (De Mulder et al.): Coefficients are not sparse enough./ S&D (Aranha et al.): Requires many inputs, huge memory

space.

• We applied Schroeppel-Shamir knapsack algorithm [SS81]
• Mentioned by Bleichenbacher, but never examined in the
literature

• Advantages:, Highly space-efficient, Highly parallelizable with Howgrave-Graham–Joux’s variant
(EUROCRYPT’10, [HGJ10])

10

Our Approach: Schroeppel-Shamir Algorithm

• Previous approaches are not optimal if the nonce bias is
small:/ BKZ (De Mulder et al.): Coefficients are not sparse enough./ S&D (Aranha et al.): Requires many inputs, huge memory

space.

• We applied Schroeppel-Shamir knapsack algorithm [SS81]
• Mentioned by Bleichenbacher, but never examined in the
literature

• Advantages:, Highly space-efficient, Highly parallelizable with Howgrave-Graham–Joux’s variant
(EUROCRYPT’10, [HGJ10])

10

How HGJ–SS Helps

1. Split the inputs
into four lists;
sort.

2. Search for LC’s of
2 whose top
consecutive bits
coincide with
some fixed value;
sort.

3. Take differences
between values
in two lists.
→ Get small LC’s
of 4 per round!

11

How HGJ–SS Helps

1. Split the inputs
into four lists;
sort.

2. Search for LC’s of
2 whose top
consecutive bits
coincide with
some fixed value;
sort.

3. Take differences
between values
in two lists.
→ Get small LC’s
of 4 per round!

11

How HGJ–SS Helps

1. Split the inputs
into four lists;
sort.

2. Search for LC’s of
2 whose top
consecutive bits
coincide with
some fixed value;
sort.

3. Take differences
between values
in two lists.
→ Get small LC’s
of 4 per round! 11

Complexity

Algorithm Time Space & # Sigs.

HGJ–SS (1 round) Õ(S4/3) O(S2/3)

S&D (2 rounds) Õ(S) O(S)

• Well-balanced time-space trade-offs

• HGJ–SS still terminates within a reasonable time frame
due to parallelization

12

Complexity

Algorithm Time Space & # Sigs.

HGJ–SS (1 round) Õ(S4/3) O(S2/3)

S&D (2 rounds) Õ(S) O(S)

• Well-balanced time-space trade-offs
• HGJ–SS still terminates within a reasonable time frame
due to parallelization

12

Fault Attacks on qDSA Signature

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:

• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve

• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:

• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:

• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:

• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:
• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ

• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:
• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃

13

Observation

P

x

y

E

7 EC-Schnorr/ECDSA uses y-coordinate ; perturbed point
P̃ is not likely on the original curve anymore

3 qDSA makes use of x-only arithmetic ; perturbed point
±P̃ is necessarily on the curve or its twist!

14

Observation

P
P̃

x

y

E

7 EC-Schnorr/ECDSA uses y-coordinate ; perturbed point
P̃ is not likely on the original curve anymore

3 qDSA makes use of x-only arithmetic ; perturbed point
±P̃ is necessarily on the curve or its twist!

14

Observation

±P
x

y

E

E/± 1

7 EC-Schnorr/ECDSA uses y-coordinate ; perturbed point
P̃ is not likely on the original curve anymore

3 qDSA makes use of x-only arithmetic ; perturbed point
±P̃ is necessarily on the curve or its twist! 14

Observation

±P±P̃
x

y

E

E/± 1

7 EC-Schnorr/ECDSA uses y-coordinate ; perturbed point
P̃ is not likely on the original curve anymore

3 qDSA makes use of x-only arithmetic ; perturbed point
±P̃ is necessarily on the curve or its twist! 14

Fault Attacks on Curve25519 Base Point

1. Random semi-permanent fault against (program) memory
; Can obtain 3-LSBs of nonce

2. Instruction skipping fault against base point initialization; Can obtain 2-LSBs of nonce
• Verified using ChipWhisperer-Lite against AVR XMEGA

Countermeasure: multiply nonces by LCM of the the curve
cofactor and the twist cofactor (i.e. “cofactor-killing”)

Ladder : (8k,±P̃ = (X̃ : Z)) 7→ ±[8k]P̃

15

Fault Attacks on Curve25519 Base Point

1. Random semi-permanent fault against (program) memory
; Can obtain 3-LSBs of nonce

2. Instruction skipping fault against base point initialization; Can obtain 2-LSBs of nonce
• Verified using ChipWhisperer-Lite against AVR XMEGA

Countermeasure: multiply nonces by LCM of the the curve
cofactor and the twist cofactor (i.e. “cofactor-killing”)

Ladder : (8k,±P̃ = (X̃ : Z)) 7→ ±[8k]P̃ 15

Record-breaking Implementation of
Nonce Attack

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)
• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)

• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)

• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)

• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)

• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)
• Recovered remaining bits of the secret key < 6 hours

• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)
• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!

16

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)

• The attack would be feasible using a small laptop!
• Attacking with S&D is possible

17

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)

• The attack would be feasible using a small laptop!
• Attacking with S&D is possible

17

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)
• The attack would be feasible using a small laptop!

• Attacking with S&D is possible

17

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)
• The attack would be feasible using a small laptop!
• Attacking with S&D is possible

17

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)
• The attack would be feasible using a small laptop!
• Attacking with S&D is possible and faster

17

Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)
• The attack would be feasible using a small laptop!
• Attacking with S&D is possible and faster , but requires
much more signatures and RAM

17

Wrap-up

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack

• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519

• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519

• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519

• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519
• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519
• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519
• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519
• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation
• First large-scale parallelization of Bleichenbacher

• Set new records!

18

Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack
• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519
• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation
• First large-scale parallelization of Bleichenbacher
• Set new records!

18

Thank you!
Dank je!

GitHub: https://github.com/security-kouza/
new-bleichenbacher-records

[Fre]
By Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe

18

https://github.com/security-kouza/new-bleichenbacher-records
https://github.com/security-kouza/new-bleichenbacher-records

References I

Diego F. Aranha, Pierre-Alain Fouque, Benoit Gérard,
Jean-Gabriel Kammerer, Mehdi Tibouchi, and
Jean-Christophe Zapalowicz.
GLV/GLS decomposition, power analysis, and attacks on
ECDSA signatures with single-bit nonce bias.
In T. Iwata and P. Sarkar, editors, ASIACRYPT 2014, volume
8873 of LNCS, pages 262–281. Springer, 2014.

Daniel Bleichenbacher.
On the generation of one-time keys in DL signature
schemes.
Presentation at IEEE P1363 working group meeting, 2000.

19

References II

Elke De Mulder, Michael Hutter, Mark E Marson, and Peter
Pearson.
Using Bleichenbacher’s solution to the hidden number
problem to attack nonce leaks in 384-bit ECDSA: extended
version.
Journal of Cryptographic Engineering, 4(1):33–45, 2014.

Freepik.
Icons made by Freepik from Flaticon.com is licensed by CC
3.0 BY.
http://www.flaticon.com.

20

http://www.flaticon.com

References III

Nick Howgrave-Graham and Antoine Joux.
New generic algorithms for hard knapsacks.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 235–256. Springer, 2010.

Mingjie Liu and Phong Q. Nguyen.
Solving BDD by enumeration: An update.
In CT-RSA 2013, volume 7779 of LNCS, pages 293–309.
Springer, 2013.

Phong Q. Nguyen and Igor E. Shparlinski.
The insecurity of the digital signature algorithm with
partially known nonces.
Journal of Cryptology, 15(3), 2002.

21

References IV

Joost Renes and Benjamin Smith.
qDSA: Small and secure digital signatures with
curve-based Diffie-Hellman key pairs.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT
2017, volume 10625 of LNCS, pages 273–302. Springer, 2017.

Richard Schroeppel and Adi Shamir.
A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems.
SIAM Journal on Computing, 10(3):456–464, 1981.

22

	Introduction
	Contribution 1. Optimizing Bleichenbacher's Attack
	Contribution 2. Fault Attacks on qDSA Signature
	Contribution 3. Record-breaking Implementation of Nonce Attack
	Wrap-up

