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Motivating Example: Schnorr Signature Scheme

- One of the simplest and most widely-used digital
signature schemes

- Most notable variant: (EC)DSA

- Secure in ROM if the discrete logarithm problem (DLP) is
hard

- Relies on an ephemeral random value known as nonce
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Risk of biased/leaky nonce
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Risk of biased/leaky nonce

Alice
M deZ/nZ
=
Message Alice's Secret key

i /]\ Leak l (h, s)
S |

k=[heiter - JsZ/mZ| == D Adversary

Signed Message

- But what if & is slightly biased or partially leaked?
~» Adversary could bypass the (EC)DLP and steal the secret d
by solving the hidden number problem (HNP)!



Nonce: very sensitive!
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Our Contribution

1. Optimized a statistical attack framework, known as
Bleichenbacher’s attack, against nonces in Schnorr-like
signatures

2. New fault attacks against recent, high-speed Schnorr-like
signature scheme, qDSA, to obtain a few bits of nonces

3. Implemented a full secret key recovery attack against
Schnorr-like signatures
-+ Over 252-bit group
- Only 2 or 3-bit nonce leaks



We set new records!

# Leaked bits of Nonces

1 2 3 4 5
384-hbit - - - -  [DMHMP14]
252-bit - - - - -
160-bit [AFGT14] [LN13] [NS02] - -

Table 1: Comparison with previous published records

- Orange: Bleichenbacher's attack
- Others: Lattice attack
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# Leaked bits of Nonces

1 2 3 4 5
384-hbit - - - -  [DMHMP14]
252-bit = 7 v = =
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Table 1: Comparison with previous published records

- Orange: Bleichenbacher's attack
- Others: Lattice attack
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Bleichenbacher’'s Nonce Attack

- Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES'13) and Aranha et al.
(ASIACRYPT'14)

- ldea: quantify the nonce bias by defining “bias function”
B, (K) € [0,1] and find the peak of it

- B,(K) = 0if nonce is uniformly distributed over Z/nZ.
- Bn(K) =~ 1if nonce is biased.

- Most important & costly phase is so-called range

reduction of integers h
- Necessary to detect the bias peak correctly and efficiently
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Range Reduction Problem

Given: S signatures (hy,...,hg)
Find: sufficiently many (say L) linear combinations

h;:wj71h1+...+wj75h5 for 1<;<L

such that
- Small A} < L
- Sparse coefficients Q :== )", |w;4| St. |Bn(K)|* > 1/VL

Looks like knapsack?
Difference: find many linear combinations instead of a single
exact knapsack solution



Our Approach: Schroeppel-Shamir Algorithm

- Previous approaches are not optimal if the nonce bias is
small:

& BKZ (De Mulder et al.): Coefficients are not sparse enough.
& s&D (Aranha et al.): Requires many inputs, huge memory
space.
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Our Approach: Schroeppel-Shamir Algorithm

- Previous approaches are not optimal if the nonce bias is
small:

& BKZ (De Mulder et al.): Coefficients are not sparse enough.
& s&D (Aranha et al.): Requires many inputs, huge memory
space.

- We applied Schroeppel-Shamir knapsack algorithm [SS81]
- Mentioned by Bleichenbacher, but never examined in the
literature
- Advantages:
© Highly space-efficient

® Highly parallelizable with Howgrave-Graham-Joux’s variant
(EUROCRYPT'10, [HGJ10])

10
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How HGJ-SS Helps

1.

3.

Split the inputs
into four lists;
sort.

Search for LC's of
2 whose top
consecutive bits
coincide with
some fixed value;
sort.

Take differences
between values

in two lists.

— Get small LC's
of 4 per round!

Sort

£w R Sort £ R

Y

o Dl

5/4 e

Sort Sort

Collect sums s.t. top (a + 1) bits are equal to ¢ mod 2%

AW A

D + 1

h§2) + h'(,Z)

Sort Sort

Search short differences

1 1) 2 (2
W= [n" 4+~

n



Complexity

Algorithm Time Space & # Sigs.

HGJ-SS (1 round) O(S%/3) 0O(5%?)
S&D (2 rounds)  O(S) 0(S)

- Well-balanced time-space trade-offs
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Complexity

Algorithm Time Space & # Sigs.

HGJ-SS (1 round) O(S*3) 0O(5%/3)

S&D (2 rounds)  O(S) O(S)

- Well-balanced time-space trade-offs

+ HGJ-SS still terminates within a reasonable time frame
due to parallelization

12



Fault Attacks on qDSA Signature




qDSA Signature over Curve25519

- DSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT'17, [RS17])
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qDSA Signature over Curve25519

- DSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT'17, [RS17])

- Can be instantiated with Curve25519 Montgomery curve

- Signature generation computes

k < H(M]||d") /] nonce
+R + Ladder(k,£P = (X : Z)) = £[k|P

- Attack idea:
-+ Curve25519: E(F,) = Z/8Z x Z/nZ
- By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

+R + Ladder(k,+P = (X : Z)) = +[k]P

13
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X EC-Schnorr/ECDSA uses y-coordinate ~» perturbed point
P is not likely on the original curve anymore
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Fault Attacks on Curve25519 Base Point

1. Random semi-permanent fault against (program) memory
~» Can obtain 3-1LSBs of nonce
2. Instruction skipping fault against base point initialization

~ Can obtain 2-LSBs of nonce
- Verified using ChipWhisperer-Lite against AVR XMEGA
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Fault Attacks on Curve25519 Base Point

1. Random semi-permanent fault against (program) memory

~» Can obtain 3-LSBs of nonce
2. Instruction skipping fault against base point initialization

~ Can obtain 2-LSBs of nonce
- Verified using ChipWhisperer-Lite against AVR XMEGA

Countermeasure: multiply nonces by LCM of the the curve
cofactor and the twist cofactor (i.e. “cofactor-killing”)

Ladder : (8k,+P = (X : Z)) — +[8k]P 15



Record-breaking Implementation of
Nonce Attack
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Wall clock time  CPU-time  Memory #Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

- Input: simulated 2% faulty gDSA signatures, out of which
226 instances (with h <2°2-19) were fed into
Bleichenbacher’s attack

- Highly parallelized: 256 threads used (16 nodes x 16 vCPU)
- Recovered remaining bits of the secret key < 6 hours

- Estimation shows S&D would require at least 23% inputs
~ 2TB RAM!
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Result: Attack on 3-bit Leak

Wall clock time CPU-time  Memory #Sig # MSB
HGJ-SS  4.25 hours 238 hours 2.8GB 223 23-bit

2

S&D 0.75 hours 0.75 hours 128GB 2 21-bit

- 56 threads used (2 CPUs x 14 cores/CPU x 2 threads/core)
- The attack would be feasible using a small laptop!

- Attacking with S&D is possible and faster, but requires
much more signatures and RAM
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Contribution 1: Optimizing Bleichenbacher’s attack
- Overcame the memory barrier of previous approach by
applying knapsack algorithm.
Contribution 2: Fault attacks on qDSA over Curve25519

- Discovered yet another situation where adversary could
learn partial information of nonces.
- Cofactor-killing is crucial when using z-only arithmetic.

Contribution 3: Implementation

- First large-scale parallelization of Bleichenbacher
- Set new records!



Thank you!
Dank je!

GitHub: https://github.com/security-kouza/
new-bleichenbacher-records

By Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe


https://github.com/security-kouza/new-bleichenbacher-records
https://github.com/security-kouza/new-bleichenbacher-records
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