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Introduction



Motivating Example: Schnorr Signature Scheme

• One of the simplest and most widely-used digital
signature schemes

• Most notable variant: (EC)DSA
• Secure in ROM if the discrete logarithm problem (DLP) is
hard

• Relies on an ephemeral random value known as nonce
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Nonce in Schnorr Signatures

Alice Bob

Message Alice’s Secret key

Verify

Alice’s Public key

0/1

Signed Message

Sign

• k is called nonce. It satisfies

k ≡ s︸︷︷︸
public

+ h︸︷︷︸
public

d mod n.

• k should NOT be reused/exposed
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Risk of biased/leaky nonce

Alice

Message Alice’s Secret key

Signed Message
Adversary000101 ・・・

Bias

• But what if k is slightly biased ?

; Adversary could bypass the (EC)DLP and steal the secret d
by solving the hidden number problem (HNP)!
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Nonce: very sensitive!
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Our Contribution

1. Optimized a statistical attack framework, known as
Bleichenbacher’s attack, against nonces in Schnorr-like
signatures

2. New fault attacks against recent, high-speed Schnorr-like
signature scheme, qDSA, to obtain a few bits of nonces

3. Implemented a full secret key recovery attack against
Schnorr-like signatures

• Over 252-bit group
• Only 2 or 3-bit nonce leaks
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We set new records!

# Leaked bits of Nonces

1 2 3 4 5

384-bit – – – – [DMHMP14]
252-bit – – – – –
160-bit [AFG+14] [LN13] [NS02] – –

Table 1: Comparison with previous published records

• Orange: Bleichenbacher’s attack
• Others: Lattice attack
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Optimizing Bleichenbacher’s Attack



Bleichenbacher’s Nonce Attack

• Originally proposed 18 years ago [Ble00], recently revisited
by De Mulder et al. (CHES’13) and Aranha et al.
(ASIACRYPT’14)

• Idea: quantify the nonce bias by defining “bias function”
Bn(K) ∈ [0, 1] and find the peak of it

• Bn(K) = 0 if nonce is uniformly distributed over Z/nZ.
• Bn(K) ≈ 1 if nonce is biased.

• Most important & costly phase is so-called range
reduction of integers h

• Necessary to detect the bias peak correctly and efficiently
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Range Reduction Problem

Given: S signatures (h1, . . . , hS)

Find: sufficiently many (say L) linear combinations

h′j = ωj,1h1 + . . .+ ωj,ShS for 1 ≤ j ≤ L

such that
• Small h′j < L

• Sparse coefficients Ω :=
∑

i |ωj,i| s.t. |Bn(K)|Ω > 1/
√
L

Looks like knapsack?
Difference: find many linear combinations instead of a single

exact knapsack solution
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Our Approach: Schroeppel-Shamir Algorithm

• Previous approaches are not optimal if the nonce bias is
small:/ BKZ (De Mulder et al.): Coefficients are not sparse enough./ S&D (Aranha et al.): Requires many inputs, huge memory

space.

• We applied Schroeppel-Shamir knapsack algorithm [SS81]
• Mentioned by Bleichenbacher, but never examined in the
literature

• Advantages:, Highly space-efficient, Highly parallelizable with Howgrave-Graham–Joux’s variant
(EUROCRYPT’10, [HGJ10])
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How HGJ–SS Helps

1. Split the inputs
into four lists;
sort.

2. Search for LC’s of
2 whose top
consecutive bits
coincide with
some fixed value;
sort.

3. Take differences
between values
in two lists.
→ Get small LC’s
of 4 per round!
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Complexity

Algorithm Time Space & # Sigs.

HGJ–SS (1 round) Õ(S4/3) O(S2/3)

S&D (2 rounds) Õ(S) O(S)

• Well-balanced time-space trade-offs

• HGJ–SS still terminates within a reasonable time frame
due to parallelization
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Fault Attacks on qDSA Signature



qDSA Signature over Curve25519

• qDSA: recent, high-speed variant of Schnorr signature by
Renes and Smith (ASIACRYPT’17, [RS17])

• Can be instantiated with Curve25519 Montgomery curve
• Signature generation computes

k ← H(M ||d′) // nonce
±R← Ladder(k,±P = (X : Z)) = ±[k]P

• Attack idea:

• Curve25519: E(Fp) ∼= Z/8Z× Z/nZ
• By injecting a fault to the base point, we perturb it to
non-prime/low-order points on Curve25519.

±R̃← Ladder(k,±P̃ = (X̃ : Z)) = ±[k]P̃
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Observation

P

x

y

E

7 EC-Schnorr/ECDSA uses y-coordinate ; perturbed point
P̃ is not likely on the original curve anymore

3 qDSA makes use of x-only arithmetic ; perturbed point
±P̃ is necessarily on the curve or its twist!
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Fault Attacks on Curve25519 Base Point

1. Random semi-permanent fault against (program) memory
; Can obtain 3-LSBs of nonce

2. Instruction skipping fault against base point initialization; Can obtain 2-LSBs of nonce
• Verified using ChipWhisperer-Lite against AVR XMEGA

Countermeasure: multiply nonces by LCM of the the curve
cofactor and the twist cofactor (i.e. “cofactor-killing”)

Ladder : (8k,±P̃ = (X̃ : Z)) 7→ ±[8k]P̃
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Record-breaking Implementation of
Nonce Attack



Result: Attack on 2-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

16.7 days 11.7 years 15GB 226 26-bit

• Input: simulated 245 faulty qDSA signatures, out of which
226 instances (with h <252−19) were fed into
Bleichenbacher’s attack

• Highly parallelized: 256 threads used (16 nodes × 16 vCPU)
• Recovered remaining bits of the secret key < 6 hours
• Estimation shows S&D would require at least 235 inputs
≈ 2TB RAM!
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Result: Attack on 3-bit Leak

Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)

• The attack would be feasible using a small laptop!
• Attacking with S&D is possible
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Wall clock time CPU-time Memory # Sig # MSB

HGJ–SS 4.25 hours 238 hours 2.8GB 223 23-bit
S&D 0.75 hours 0.75 hours 128GB 230 21-bit

• 56 threads used (2 CPUs × 14 cores/CPU × 2 threads/core)
• The attack would be feasible using a small laptop!
• Attacking with S&D is possible and faster , but requires
much more signatures and RAM
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Wrap-up

Contribution 1: Optimizing Bleichenbacher’s attack

• Overcame the memory barrier of previous approach by
applying knapsack algorithm.

Contribution 2: Fault attacks on qDSA over Curve25519

• Discovered yet another situation where adversary could
learn partial information of nonces.

• Cofactor-killing is crucial when using x-only arithmetic.

Contribution 3: Implementation

• First large-scale parallelization of Bleichenbacher
• Set new records!
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Thank you!
Dank je!

GitHub: https://github.com/security-kouza/
new-bleichenbacher-records

[Fre]
By Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe
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