
New Bleichenbacher Records:
Fault Attacks on qDSA Signatures

Akira Takahashi1, Mehdi Tibouchi1,2 and Masayuki Abe1,2

1 Kyoto University, Japan, takahashi.akira.58s@kyoto-u.jp
2 NTT Secure Platform Laboratories, Japan, {tibouchi.mehdi,abe.masayuki}@lab.ntt.co.jp

Abstract. In this paper, we optimize Bleichenbacher’s statistical attack technique
against (EC)DSA and other Schnorr-like signature schemes with biased or partially
exposed nonces. Previous approaches to Bleichenbacher’s attack suffered from very
large memory consumption during the so-called “range reduction” phase. Using a
carefully analyzed and highly parallelizable approach to this range reduction based on
the Schroeppel–Shamir algorithm for knapsacks, we manage to overcome the memory
barrier of previous work while maintaining a practical level of efficiency in terms of
time complexity.
As a separate contribution, we present new fault attacks against the qDSA sig-
nature scheme of Renes and Smith (ASIACRYPT 2017) when instantiated over
the Curve25519 Montgomery curve, and we validate some of them on the AVR
microcontroller implementation of qDSA using actual fault experiments on the
ChipWhisperer-Lite evaluation board. These fault attacks enable an adversary to
generate signatures with 2 or 3 bits of the nonces known.
Combining our two contributions, we are able to achieve a full secret key recovery on
qDSA by applying our version of Bleichenbacher’s attack to these faulty signatures.
Using a hybrid parallelization model relying on both shared and distributed memory,
we achieve a very efficient implementation of our highly scalable range reduction
algorithm. This allows us to complete Bleichenbacher’s attack in the 252-bit prime
order subgroup of Curve25519 within a reasonable time frame and using relatively
modest computational resources both for 3-bit nonce exposure and for the much
harder case of 2-bit nonce exposure. Both of these computations, and particularly
the latter, set new records in the implementation of Bleichenbacher’s attack.
Keywords: Digital Signature · Fault Attack · Bleichenbacher’s Nonce Attack ·
Schroeppel–Shamir Algorithm · qDSA · Curve25519

1 Introduction
1.1 Attacks on Nonces in Schnorr-like Signatures
Attacks on the nonces of (EC)DSA [Gal13] and other Schnorr-like signature schemes
[Sch91] have been of interest to cryptanalysts over the last couple of decades. Since
the knowledge of the nonces directly translates to the secret key, it is well known that
the nonces should never be revealed or repeated. However, the nonces in Schnorr-like
signatures are even more sensitive; in fact, it is possible to recover the secret key using
only partial information of nonces. Perhaps the most famous example is the lattice attack
initiated by Howgrave-Graham and Smart in [HGS01]. In a nutshell, the idea of lattice
attacks is as follows: given d Schnorr-like signatures of different messages with some least
significant bits (LSB) of the nonces exposed, preprocess signature pairs to make the nonces
biased in their the most significant bits (MSB) and construct a (d+ 1)-dimension lattice

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 331–371
DOI:10.13154/tches.v2018.i3.331-371

mailto:takahashi.akira.58s@kyoto-u.jp
mailto:tibouchi.mehdi@lab.ntt.co.jp,abe.masayuki@lab.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.331-371

332 New Bleichenbacher Records

L containing a hidden vector c depending on the secret key. The signatures themselves
provide another vector v ∈ Zd+1 which is very close to c; under suitable conditions, c
is highly likely to be the closest vector to v in L. As a result, if the dimension d+ 1 is
small enough to make the closest vector problem in L tractable, it is possible to compute
c and hence the secret key. See, e.g., [NT12] for more comprehensive description. The
lattice attack is a very powerful technique because it requires relatively few signatures
as input and works very efficiently in practice if many bits of the nonces are exposed.
Since its first introduction, there have been a number of works on the lattice attack,
such as [NS02, NS03, NNTW05, BvdPSY14, BFMT16]. The largest group size and the
smallest nonce exposure broken by lattice attacks in published literature so far have been
160-bit DSA signatures with 2-bit nonce exposure, broken by Liu and Nguyen [LN13], and
256-bit SM2 signatures with 3-bit nonce exposure, attacked by Liu, Chen and Li [LCL13].
However, if the number of exposed bits and the resulting bias is small, the lattice attacks
are generally impractical due to the large lattice dimension, or because the hidden vector
c does not necessarily coincide with the closest vector.

Prior to lattice attacks, Bleichenbacher presented a purely statistical attack technique
against biased nonces at the IEEE P1363 meeting in 2000 [Ble00]. This approach had
never been formally published until a few years ago, when it was revisited in a few
papers [DMHMP14, AFG+14]. The main idea of Bleichenbacher’s attack is to define a
“bias function” based on a Fourier notion of bias, and to search for a candidate value of the
secret key corresponding to the peak of this bias function. An advantage of Bleichenbacher’s
attack over lattice attacks is that it can in principle deal with arbitrarily small biases and
even work with non-uniformly biased inputs. On the negative side, Bleichenbacher’s method
requires many signatures as input, and therefore suffers from a large space complexity due
to its “range reduction” phase, where one has to find sufficiently many small and sparse
linear combinations of signature values before computing the bias peak. For example,
[AFG+14] took a very straightforward approach to range reduction, which they call sort-
and-difference, and successfully carried out a full key recovery of ECDSA over 160-bit curve
using 1-bit bias. However, their approach needed 233 signatures as input and consumed
1TB of memory, which remains an unusually large memory requirement for academic
cryptanalytic experiments even to this day. Hence, Bleichenbacher’s attack against groups
of large order and small biases (e.g., 256-bit curve and 2-bit bias) has appeared intractable.

1.2 Montgomery Curve, Curve25519, qDSA
Elliptic curve cryptography is widely deployed nowadays since it offers relatively short
key length to achieve a good security level. The most commonly-known instance is a
signature scheme such as ECDSA. Most elliptic curve-based signature schemes operate in
the group of rational points of an elliptic curve defined over a finite field, and their security
relies on the hardness of the elliptic curve discrete logarithm problem (ECDLP). Moreover,
elliptic curves are used to achieve efficient key exchange protocols; for example, X25519
is specified in RFC7748 [LHT16] as a function that computes the scalar multiplication
efficiently in the elliptic curve-based Diffie-Hellman key exchange (ECDHKE) [DH76]. The
underlying curve used for X25519 is called Curve25519 [Ber06], which is one of the most
famous instances of a Montgomery curve [Mon87]. Interestingly, Montgomery curves offer
extremely fast scalar multiplication due to its x-only arithmetic; however, it is not endowed
with a group law in the usual sense, which is typically required in curve-based signature
schemes. As a result, fast implementations of signature schemes using Curve25519 have
usually avoided the x-only arithmetic, and relied on the twisted Edwards form of that
curve instead (which has a fast group law in the usual sense, but does not benefit from the
simplicity of the Montgomery ladder); this is in particular the approach taken by EdDSA
[BDL+12]. It was not until the quotient Digital Signature Algorithm (qDSA) [RS17] was
proposed by Renes and Smith last year that one could reuse the scalar multiplication

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 333

algorithm and the public key of X25519-based ECDHKE for signatures without modifying
the format at all. The qDSA is a high-speed, high-security signature scheme that relies on
x-only arithmetic and can be instantiated with Montgomery curves (such as Curve25519)
or Kummer surfaces. At a high-level, it closely resembles Schnorr signatures and is proved
secure in the random oracle model as well. Due to its efficiency and its compatibility with
X25519, the qDSA is expected to be deployed in real-world constrained embedded systems,
such as IoT devices. Some improvements to the signature generation and verification of
qDSA have been recently proposed by [FFAL17].

1.3 Our Contributions
In this work, the following main results are achieved:

• Sections 4&5. Our first contribution is the optimized range reduction algorithm in
Bleichenbacher’s attack which overcomes the memory barrier of previous work while
maintaining a practical level of efficiency in terms of time complexity. We designed
the range reduction algorithm based on Howgrave-Graham–Joux’s version [HGJ10]
of Schroeppel–Shamir algorithm [SS81], which was originally proposed as a knapsack
problem solver. The idea of making use of Schroeppel–Shamir was mentioned by
Bleichenbacher himself, but it has never been formally evaluated in the literature.
Our approach has two merits: first, it has a lower space complexity, and therefore
requires fewer input signatures than the previous methods did in order to perform
the same level of range reduction. Second, our algorithm can be parallelized in
a very straightforward fashion with low communication overhead. Note that this
contribution is independent of the second one, since Bleichenbacher’s attack applies
not only to qDSA, but to any Schnorr-like signatures generated from biased or
partially exposed nonces.
We first recall Bleichenbacher’s attack framework in Section 4; Section 5 describes
our approach to the range reduction in detail and presents the theoretical results
on the lower bound for the amount of input signatures for the algorithm to work
correctly within Bleichenbacher’s framework, including performance comparison with
previous nonce attack techniques.

• Section 3. As a separate contribution, we show that qDSA is yet another victim
of the attacks against nonces. We propose two fault attack techniques against the
qDSA instantiated with Curve25519 in order to induce 3-bit and 2-bit bias in its
nonces. Our fault injection methods perturb the base point of Curve25519 to a point
of non-prime order, so that its scalar multiplication by nonce reveals the few least
significant bits (LSB) of it. The LSB obtained due to faults can be simply exploited
to create bias in the most significant bits (MSB) of nonces. We describe those two
attacks and straightforward countermeasures in Section 3.

• Section 6. Combining our two contributions, we are able to achieve a full secret
key recovery1 on qDSA by applying our version of Bleichenbacher’s attack to these
faulty signatures. Using a hybrid parallelization model relying on both shared and
distributed memory, we achieve a very efficient implementation of our highly scalable
range reduction algorithm. This allows us to complete Bleichenbacher’s attack in
the 252-bit prime order subgroup of Curve25519 within a reasonable time frame and
using relatively modest computational resources both for 3-bit nonce exposure and

1To be precise, the secret signing key consists of two 256-bit values d and d′, and we only recover d.
However, d′ is only used to make the scheme deterministic; signatures generated with a different d′ still
pass validation. Therefore, recovering d is sufficient to forge signatures on any message, although those
signatures are distinct from those produced by the legitimate owner of the secret key. See the discussion
in Section 2.2.

334 New Bleichenbacher Records

for the much harder case of 2-bit nonce exposure. To the best of our knowledge, an
attack against 252-bit group with such small exposures of the nonces has never been
addressed before. Hence, both of these computations, and particularly the latter, set
new records in the implementation of Bleichenbacher’s attack. Section 6 describes
those implementation techniques and provides our experimental results in detail.

We stress that the complete attack, especially in the 2-bit bias case, is not entirely
practical, as it both requires a large number of faulty signatures, and targets a slightly
modified version of the qDSA reference implementation. Nevertheless, it showcases a
number of interesting optimizations of Bleichenbacher’s attack in a concrete setting, and
also has the valuable takeaway that clearing cofactors in qDSA signature generation (or
indeed, any Schnorr-like signature using x-only arithmetic) is a simple and important
security measure.

1.4 Related Work
Bleichenbacher’s nonce attack against DSA was first proposed in [Ble00] and his own early
experimental results include a full key recovery on 160-bit DSA given a nonce leakage of
log 3 ≈ 1.58 bits for 222 signatures2 and 1 bit exposure for 224 signatures [Ble05]. De Mulder
et al. revisited his method in [DMHMP14] and successfully performed a key recovery
attack against ECDSA over NIST P-384 and brainpoolP384r1 using 4000 signatures with
5 bits of the nonces known. After that, Aranha et al. [AFG+14] utilized Bleichenbacher’s
method to attack ECDSA over SECG P160 R1 with 233 signatures of 1-bit biased nonces.

Recovering the secret key from the signatures knowing partial bits of the nonces reduces
to an instance of the hidden number problem (HNP) of Boneh and Venkatesan [BV96].
Howgrave-Graham and Smart first developed lattice attacks in [HGS01] to recover the
DSA secret key over a 160-bit group using 30 signatures with 8 bits of the nonces known.
Nguyen and Shparlinski in [NS02, NS03] later analyzed the lattice attacks in detail and
presented the experimental results of the attack against 160-bit DSA using 100 signatures
with only 3 bits of the nonces known. The largest group size and the smallest nonce
exposure broken by lattice attacks in published literature so far have been 160-bit DSA
signatures with 2-bit nonce exposure, broken by Liu and Nguyen [LN13], and 256-bit
SM2 signatures with 3-bit nonce exposure, attacked by Liu, Chen and Li [LCL13]. Side-
channel analysis and fault attacks have been often utilized in conjunction with lattice
attacks to obtain the partial information of nonces. Such concrete attacks appear e.g.,
in [NNTW05, BvdPSY14, BFMT16].

The first fault attack was discovered by Boneh, DeMillo and Lipton, which is often
referred to as the Bellcore attack [BDL97]. This attack was against an implementation
of RSA based on the Chinese Remainder Theorem. Various fault injection techniques
and countermeasures are described in [BCN+06]. In [FLRV08], Fouque et al. proposed a
fault attack targeting the base point on non-twist-secure Montgomery curves. The idea of
exploiting the low order points on Curve25519, upon which one of our fault attacks relies,
was recently explored by Genkin, Valenta and Yarom [GVY17] in the context of attack
against ECDH.

2This record was reportedly achieved by “clever meet-in-the-middle techniques” [NS02, §1.3]. Since
there is no available publication of this attack by Bleichenbacher, we were not able to verify the original
range reduction method in detail.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 335

2 Preliminaries
2.1 Notations
In order to avoid confusion, we denote an index by an italic i and the imaginary unit by a
roman i. A variant of big-O notation Õ will be used meaning that logarithm factors are
omitted.

We denote b-LSB/MSB of an integer k by LSBb(k) and MSBb(k), respectively, assuming
that k is represented as a fixed-length binary string. (The bit-length is typically 252-bit in
this paper.) In Section 5, we will often use the binary representation of (τ + 1)-bit integer
η, which is denoted as follows:

η = ητ+1‖ . . . ‖η1 =
τ+1∑
i=1

ηi2i−1

where ηi ∈ {0, 1} for i = 1, . . . , τ +1. Moreover, we define a new notation η[a:b] to represent
the substring of η and its corresponding value:

η[a:b] := ηa‖ . . . ‖ηb =
a∑
i=b

ηi2i−b

where 1 ≤ b ≤ a ≤ τ + 1.

2.2 The quotient Digital Signature Algorithm
The quotient Digital Signature Algorithm (qDSA) is a variant of Schnorr signature scheme
that operates on Kummer varieties and offers a key pair compatible with X25519-based
Diffie–Hellman key exchange protocols [RS17]. We briefly recall the x-only arithmetic of
Montgomery curves discovered in [Mon87] and the qDSA signature scheme instantiated with
Curve25519 [Ber06], the most widely-known Montgomery curve. For more comprehensive
introduction to Montgomery curves and Montgomery’s ladder, see, e.g., [CS17] or [BL17].

Montgomery Curves and Their Arithmetic

Let p be a prime. A Montgomery curve defined over the finite field Fp is an elliptic curve
defined by an affine equation

EA,B/Fp : By2 = x3 +Ax2 + x,

where the coefficient A and B are in Fp such that A2 6= 4 and B 6= 0.
Using the projective representation (X : Y : Z), where x = X/Z and y = Y/Z, we have

the projective model

EA,B/Fp : BY 2Z = X3 +AX2Z +XZ2.

Note that the point at infinity O = (0 : 1 : 0) is the only point where Z = 0.
Montgomery observed that the arithmetic in the above model does not involve y-

coordinates. Namely, let P = (XP : YP : ZP) and Q = (XQ : YQ : ZQ) be two distinct
points on EA,B , the point addition and doubling are defined as follows:

XP+Q = ZP−Q[(XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ)]2

ZP+Q = XP−Q[(XP − ZP)(XQ + ZQ)− (XP + ZP)(XQ − ZQ)]2

X[2]P = (XP + ZP)2(XP − ZP)2

Z[2]P = 4XPZP ((XP − ZP)2 + ((A+ 2)/4)(4XPZP))

336 New Bleichenbacher Records

where XP+Q/ZP+Q, XP−Q/ZP−Q and X[2]P /Z[2]P are the x-coordinates of P +Q, P −Q
and [2]P , respectively.

Montgomery also proposed the algorithm, known as Montgomery’s ladder, which
efficiently computes the x-coordinate of the scalar multiplication [k]P using only the
point addition and doubling operations above. Therefore, it suffices to consider the
points mapped into a one-dimensional projective space P1(Fp), which is simply the x-line.
Formally speaking, let EA,B/〈±1〉 be the Kummer line of EA,B and P = (X : Y : Z) an
elliptic curve point, if the quotient map x : EA,B → EA,B/〈±1〉 ∼= P1(Fp) is defined as

x : P 7→ ±P =
{

(X : Z) if P 6= O

(1 : 0) if P = O

then the Montgomery’s ladder efficiently computes the scalar multiplication on P1:

Ladder : (k,±P) 7→ ±[k]P.

We omit the details of Ladder algorithm here. What readers should keep in mind is that
it does not involve y-coordinates at all to compute the scalar multiplication.

qDSA Signature Generation

Algorithm 1 qDSA signature generation
Input: (d, d′) ∈ {0, 1}2×256: secret key, xQ: compressed point of the public key ±Q =
±[d]P , M ∈ {0, 1}∗: message to be signed, D: domain parameters

Output: a valid signature (xR, s)
1: k ← H(d′||M) mod n
2: ±R = (XR : ZR)← Ladder(k,±P)
3: xR ← Compress(±R)
4: h← H(xR||xQ||M) . ensure LSB1(h) = 0
5: s← k − hd mod n
6: return (xR, s)

Algorithm 1 specifies the signature generation algorithm of qDSA. Here the domain
parameters are

D := (p,A,B, P, n,H)

where p is a large prime such that log2 p ≈ 252, A,B ∈ Fp are coefficients that determine
a Montgomery elliptic curve EA,B/Fp, P ∈ EA,B(Fp) is a base point of prime order n, and
H : {0, 1}∗ → {0, 1}512 is a cryptographic hash function. The qDSA also uses the function
Compress : P1(Fp)→ Fp to compress a projective point as follows:

Compress : ±P = (X : Z) 7→ xP = Zp−2 ·X.

The value k at line 1 in Algorithm 1 is typically called nonce. From the line 5, the nonce
obviously satisfies the following congruence relation:

k ≡ s+ hd mod n. (1)

Note that d′ is only used as a seed and does not get involved in the verification at all.
Hence, knowing d allows an attacker to generate a valid signature on arbitrary messages,
even though the forged signatures are distinct from legitimate ones. In this paper, we will
refer to d as the secret key for convenience.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 337

Curve25519 Parameter Set

In the qDSA instance equipped with Curve25519, the parameters are specified as follows:

• p = 2255 − 19.

• (A,B) = (486662, 1).

• Base point ±P = (9 : 1) of prime order n, where n is slightly over 2252.

• Cofactor is 8 and EA,B(Fp) ∼= Z/8Z× Z/nZ.

• Cofactor of the quadratic twist of EA,B is 4.

2.3 Knapsack Problem
Although there exist several variants, we refer to the computational 0–1 knapsack problem
as the knapsack problem. It can be stated as follows: given a set of S positive integers
{h0, . . . , hS−1} with some target value T , find the set of coefficients ωi ∈ {0, 1} such that
T =

∑S−1
i=0 ωihi.

3 Fault Attacks on qDSA
In this section, we describe several variants of a fault attack targeting the base point of
scalar multiplication in qDSA signatures.

Our basic attack strategy is as follows. The qDSA signing algorithm uses the Mont-
gomery ladder to compute the scalar multiplication R = [k]P (up to sign), where k is the
sensitive nonce value associated with the signed message; and the point R (or rather, its
x-coordinate xR) is output as part of the signature. Here, the correct base point P is a
generator of the cyclic subgroup of order n in EA,B(Fp) ∼= Z/8Z× Z/nZ.

Suppose that we can inject a fault into the device computing qDSA signatures so as to
replace the point P by a different, faulty point P̃ still on EA,B , but with a different order,
say 8n. Then, even without knowing the exact value of P̃ , one can deduce information
on k from the signature element xR. For example, if xR corresponds to a point of exact
order n, we can show that k must be a multiple of 8: in other words, we obtain leakage
information on the 3 least significant bits of k. As discussed in Section 3.3 below, such
a bias can be turned into a bias on the most significant bits, which is enough to apply
Bleichenbacher’s attacks.

In the following sections, we describe several variants of this general approach, with
a particular focus on how these attacks can be carried out in practice against practical
implementations of qDSA. We also describe concrete fault attack experiments against a
barely modified version of Renes and Smith’s 8-bit AVR implementation of qDSA, on
the XMEGA128D4 microcontroller of the ChipWhisperer-Lite low-cost side-channel and
glitch attack evaluation board [OC14]. Before delving into those details, however, two
preliminary remarks are in order.

First, we point out that our attack is rather novel in the sense that it relies on the new
and unique structure of the qDSA signature scheme.

• On the one hand, the attack depends in a crucial way on the use of x-only arithmetic.
Indeed, if we perturb a point P given by two coordinates, the resulting faulty point
P̃ will end up with overwhelming probability on a completely different curve among
many possible choices, and even in a setting where the scalar multiplication by k
still makes sense (as in the differential fault attack of Biehl et al. [BMM00]), the
information on the curve on which P̃ lies is lost in the signature, which contains

338 New Bleichenbacher Records

only the x-coordinate of R̃ = [k]P̃ . This makes our strategy inapplicable to those
settings.

• On the other hand, implementations using x-only arithmetic roughly divide into two
families. Older, careless ones, tend to fall prey to the much simpler twist fault attack
of Fouque et al. [FLRV08], in which case our strategy does apply, but is more complex
and costly than necessary. Conversely, modern, careful implementations such as
X25519 [Ber06] and other Diffie–Hellman implementations based on SafeCurves [BL],
usually clear cofactors: in the description above, this means that the scalar k would
be 8 times a uniformly random element of {0, . . . , n− 1}, and hence learning its 3
least significant bits would provide no information. That countermeasure thwarts
our attack, even setting aside the fact that a few bits of leakage on Diffie–Hellman
keys is much less of a security issue than nonce leakage in Schnorr-like signatures.
Interestingly, the authors of qDSA apply that “clamping” technique to their secret
keys [RS17, §3.3], but not to the nonces used in signature generation, which lets us
carry out our attack.

Incidentally, the first point also explains why our attack applies to the genus 1 instantiation
of qDSA (using Curve25519), but does not readily extend to the genus 2 instantiation
(using the Gaudry–Schost Kummer surface). Indeed, the base point on the Kummer
surface is represented by two coordinates, and injecting a fault will typically yield a point
outside the surface, which prevents the attack for the same reason.

A second issue that should perhaps be stressed is that one can certainly consider much
simpler fault attacks than our own on an unprotected implementation of qDSA: it is both
easier and more effective to directly perturb the generation of the nonce k. For example,
that generation typically ends with what essentially amounts to a copy of the final value
into the array containing k (in the public qDSA implementations, this is done in the
group_scalar_get64 function). That array copy is a loop, and exiting the loop early
results in a nonce with most of its bits equal to zero. It is then possible to recover the full
secret key with as few as two signatures generated with those highly biased nonces, using
e.g. the lattice attack of Howgrave-Graham and Smart [HGS01]. Note that this applies
regardless of whether nonces are generated deterministically as in qDSA or probabilistically
as in ECDSA.

However, the sensitivity of the nonce in Schnorr-like signature is very well-known, and
one therefore expects a serious implementation that may be exposed to fault attacks to
take appropriate countermeasures to protect against it (such as using double loop counters
in the final array copy to check that the copy has completed successfully). On the contrary,
our attack strategy is novel, and targets a part of the scalar multiplication that does not
normally lead to serious attacks, as discussed above. It is thus much more likely to be left
unprotected in real-world settings. Thus, we think that pointing out the corresponding
threat is important, especially as qDSA is a scheme geared towards embedded devices
(the target platforms of the accompanying implementations are AVR ATmega and ARM
Cortex M0 microcontrollers [RS17, §7]).

3.1 Random Semi-Permanent Fault on the Base Point
Turning now to our attacks, we first describe a simple fault attack in a model that closely
follows the strategy sketched at the beginning of this section.

Attack model. We suppose that the fault attacker is able to modify the base point P
(represented by its x-coordinate on the quotient EA,B/〈±1〉 ∼= P1) to a “somewhat random”
faulty point P̃ , and then obtain several signatures computed with that faulty base point.
We do not assume that the attacker knows the faulty point P̃ once the fault is injected.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 339

Realization of the model. Such a model can easily be realized in implementations where
the representation of the base point is first loaded into memory (say at device startup) and
then used directly whenever exponentiations are computed. This is a relatively common
implementation pattern for embedded implementations of elliptic curve cryptography (for
example, the micro-ecc library [Mac] works that way). It is then possible to induce a
faulty base point either with faults on program flow at first load time (using e.g. clock or
voltage glitches) so that some part of the corresponding array remains uninitialized/random,
or with faults on memory (using e.g. optical attacks [SA02]) so as to change some bit
patterns within the existing array for P .

We note however that the model is more difficult to realize against the microcontroller
implementations described in the original qDSA paper [RS17], due to the fact that the
base point is recomputed before each signature generation. It may be possible to achieve
a similar effect as above by carrying out a fault attack on program memory, so that e.g.
the instruction that writes the byte 0x09 into the lowest-order byte of the base point is
modified to write another byte instead (the same every time), but this presumably requires
a significantly higher level of precision in the targeting of laser beams or x-rays.

Description of the fault attack. Suppose for simplicity that the fault attack yields a
faulty base point P̃ whose x-coordinate x̃ is uniformly random in Fp (we will see later on
that the attack also works for values x̃ that are not anywhere close to uniform).

In that case, we first observe that with probability close to 1/2, x̃ is the abscissa of
an actual point on the curve EA,B, and it is otherwise the abscissa of a point on the
quadratic twist of EA,B. More precisely, excluding x̃ = 0 (which corresponds to the
point of order 2 both on the curve and its twist), the first case happens with probability
exactly (4n− 1)/p and the second one with probability (p− 4n)/p, both of which are in
[1/2 − 2−128, 1/2 + 2−128]. From a signature generated with this faulty P̃ , it is easy to
distinguish between the two cases, since we get the x-coordinate of R̃ = [k]P̃ , which will
correspond to a point on EA,B when P̃ itself is on the curve, and on the twist when P̃
itself is on the twist.

If we get a point on the twist, we reject it by injecting another fault on the base point
(restarting the device if necessary), because the smaller cofactor of the twist (i.e. cofactor
4) would result in a less efficient attack. We also reject faulty base points P̃ that yield a
value R̃ of order at most 8 in the signature (in which case P̃ itself must have been of order
at most 8 since k < n); such exceptional points happen only with negligible probability
anyway.

After this rejection, we know that P̃ is on EA,B, and has order 8n, 4n, 2n or n; its
abscissa x̃ is uniformly distributed among the 4n− 4 values in Fp corresponding to such
points. Moreover, 2n− 2 of these values correspond to points of exact order 8n. Therefore,
with probability 1/2, P̃ is of exact order 8n, and again, it is easy to check that from
generated signatures: simply compute [4n](±R̃) = ±[4nk]P̃ . If P̃ is of order less than
8n, this is always the point at infinity, whereas if it has order exactly 8n, this is the
non-identity point of order 2 whenever k < n is odd.

We can thus carry out another rejection step by generating e.g. 4 signatures with the
faulty base point P̃ , and injecting another fault if for all of these signatures [4n](±R̃) is
the point at infinity. This always rejects points of order at most 4n, and also rejects points
of order 8n with probability 2−4.

Overall, after M fault injections on average, where:

M = p

4n− 4 · 2 ·
1

1− 2−4 ≈ 4.27 (2)

we obtain a faulty base point P̃ of order exactly 8n.

340 New Bleichenbacher Records

Once such a point P̃ is obtained, we claim that we can easily learn the 3 least significant
bits of k for a constant fraction of the signatures generated with it.

Indeed, for each such signature, we can compute, up to sign, the point:

R′ = [n](±R̃) = ±[nk]P̃ ,

which has order dividing 8. If it is the point at infinity or the point of exact order 2, both
of which are equal to their inverses, we can directly obtain that k ≡ 0 (mod 8) and k ≡ 4
(mod 8) respectively. In other words, if R′ is the point at infinity, we get LSB3(k) = 000,
and if R′ is the point of order 2, then LSB3(k) = 100. However, the points of exact order 4
and 8 are not invariant under [±1], so if R′ is such a point, we cannot hope to learn 3 full
bits of k; for example, if R′ is of order 4, we only obtain k ≡ 2 or 6 (mod 8), but it is not
possible to distinguish between both cases since we only get R′ up to sign.

To obtain many signatures for which the 3 least significant bits of k are known, it then
suffices to generate signatures with the faulty base point P̃ and only keep those which
satisfy that the point R′ above is either the point at infinity or the point of order 2. This is
the case whenever k is divisible by 4; thus, we keep a quarter of the generated signatures.

Once sufficiently many signatures have been collected, they can be used to carry out
Bleichenbacher’s attack as described in the following sections (see in particular Section 6.2
for concrete numbers of signatures, attack timings and memory consumption). A trivial
but important point to note is that known LSBs by themselves do not translate into
significant bias in the sense used in Bleichenbacher’s attack (i.e. a large value for the bias
function defined in Section 4.1). To achieve large bias, we first need to apply an affine
transformation on signatures that map the partially known nonces k to values with their
MSBs equal to zero (in this case, the 3 MSBs, since we have knowledge of 3 bits of k).
This simple but crucial preprocessing step is described in Section 3.3 below.

Attack with a non-uniform faulty point. We have described the attack in the case when
the fault injection yields a point P̃ with uniformly random abscissa x̃ in Fp. However,
uniformity is far from crucial. The only important condition that should be satisfied is
that the fault should result with significant probability in a point P̃ of exact order 8n.

Heuristically, this is expected to happen for essentially any “naturally occurring” subset
of Fp of size much larger than 8. For example, consider the “fault on program memory”
scenario alluded to above, in which the attacker is able to replace the correct base point of
abscissa x = 9 by another base point P̃ whose abscissa x̃ is a random integer still contained
in a single byte (i.e. uniform between 0 and 255). The distribution is then very far from
uniform in Fp, but one can easily check that 119 such values x̃ correspond to a point on
EA,B (and not its twist) with order at least n, and among them, 65 correspond to a point
of order exactly 8n. This means that the same attack can be carried out as above in that
setting. The only change is the expected number of faults to inject, which instead of the
estimate of Eq. (2) is slightly reduced to:

M = 256
65 ·

1
1− 2−4 ≈ 4.20.

It is a bit difficult to justify the heuristic above in a rigorous way, but arithmetic
techniques can be used to prove partial results in that direction. It follows from the
character sum estimates of Kohel and Shparlinki [KS00] that if x̃ is picked uniformly at
random in an interval of length > p1/2+ε, then it corresponds to a point on EA,B of exact
order 8n with probability 1/4 + O(p−ε). As a result, a fault attack inducing a value x̃
of that form works identically to the one where x̃ is uniform over Fp, and the expected
required number of faults is very close to the one given by Eq. (2).

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 341

1 void ladder_base(
2 ecp *r, const group_scalar *n
3) {
4 ecp base;
5 fe25519 basex;
6
7 fe25519_setzero(&base.X);
8 fe25519_setone(&base.Z);
9 base.X.v[0] = 9;
10 fe25519_copy(&basex, &base.X);
11
12 ladder(r, &base, &basex, n);
13 }

(a) Montgomery ladder entry point

1 void ladder_base_modified(
2 ecp *r, const group_scalar *n
3) {
4 ecp base;
5 fe25519 basex;
6
7 fe25519_setone(&base.X);
8 fe25519_setone(&base.Z);
9 base.X.v[0] = 9;
10 fe25519_copy(&basex, &base.X);
11
12 ladder(r, &base, &basex, n);
13 }

(b) Modified, functionally equivalent version

Figure 1: Initialization of the base point in qDSA’s Montgomery ladder.

3.2 Instruction Skipping Fault on Base Point Initialization
Although the fault model of the previous attack seems quite natural, it is difficult to realize
against the implementations of qDSA described in the original paper [RS17], due to the
fact that the representation of the base point P of Curve25519 is not stored in memory in
a permanent way, but reconstructed every time a signature computation is carried out.

We now describe a fault attack that can easily be realized in practice on a very
slightly modified version of the AVR ATmega implementation of qDSA distributed by the
authors of the original paper. We also argue that the corresponding slight modification is
plausible enough, and we mount the attack in practice on an XMEGA128 target using the
ChipWhisperer-Lite low-cost side-channel and glitch attack evaluation board [OC14].

Attack model. The attack model is quite simple: the attacker injects a suitably synchro-
nized fault upon signature generation that causes the reconstructed base point P to be
incorrectly computed. The abscissa is set to x̃ = 1 every time instead of the correct x = 9,
and the signature is generated using the corresponding faulty base point P̃ . Note that this
point P̃ is of exact order 4.

In addition, we also assume that the attacker obtains a side-channel trace of the faulty
execution of the signing algorithm. In that sense, the attack we will describe is a so-called
combined attack, that uses both faults and side-channels. We note however that this is
not particularly restrictive: the synchronization of fault injection is typically carried out
by waveform matching of side-channel traces anyway, so using the collected traced for
additional purposes doesn’t really strengthen the attack model.

Realization of the model. The entry point for the Montgomery ladder implementation
used in the qDSA source code is the ladder_base function reproduced in Fig. 1(a). Its main
goal is to initialize the base point P and then call the ladder proper. More precisely, P is
represented by its image in EA,B/〈±1〉 ∼= P1, with projective coordinates (X : Z) = (9 : 1).
To set P as such, the code first sets the X component (given by an array of 32 bytes) to 0
using the fe25519_setzero function, then the Z component to 1 with fe25519_setone,
and finally modifies the least significant byte to 9.

The idea of our attack is to uses glitches to skip the execution of that last step. On
a platform like 8-bit AVR microcontrollers, this is relatively straightforward using clock

342 New Bleichenbacher Records

glitches.
Doing so on the unmodified code of Fig. 1(a) results in a faulty base point P̃ which

maps to (0 : 1) on P1 however: this is the point of exact order 2 on EA,B, instead of a
point of order 4 as desired. We can still obtain nonce leakage using that faulty base point,
but only on a single bit of the nonce. That leakage is not quite sufficient to deduce a
practical attack.

Suppose however that the code was written as in Fig. 1(b). The only change is
that the X component of the base point is first set using fe25519_setone instead of
fe25519_setzero. Of course, when executed correctly, the modified code is exactly
functionally equivalent to the original one. However, skipping the instruction that changes
the lowest order byte of X now results in a faulty base point P̃ which maps to (1 : 1) on
P1: this is a point of order 4 as required.

That change might seem artificial, but there are plausible reasons why one might want
to do it in practice. Most importantly, the function fe25519_setzero is almost never
used elsewhere in the qDSA library code (there is exactly one other occurrence of it).
Since reducing code size is a major concern for embedded implementations, removing that
rarely used function and replacing its two uses by fe25519_setone (and adapting the
code accordingly) makes sense. When compiling with avr-gcc 4.8.2, the change results in
a code size reduction of 33 bytes, which can certainly justify such a change when program
memory is at a premium.

Description of the combined attack. Since we are able to obtain signatures generated
with the faulty base point P̃ of order 4, the attack proceeds mostly as before. According
to the description of qDSA, signatures will then contain ±R̃ = ±[k]P̃ , which is of order
4 when k is odd, of order 2 when k ≡ 2 (mod 4), and the point at infinity when k ≡ 0
(mod 4). In particular, we get LSB2(k) = 10 when ±R̃ is of order 2, and LSB2(k) = 00
when it is the point at infinity.

This should thus yield 2 LSBs of leakage on the nonce k whenever k is odd (i.e. for
half of the generated signatures). After collecting sufficiently many such signatures and
applying the affine transformation of Section 3.3 to obtain biased MSBs, we can then
apply Bleichenbacher’s attack. Concrete parameters, timings and memory consumption
are provided in Section 6.1.

That simple description omits an important implementation detail that slightly com-
plicates the attack, however. Namely, the point ±R̃ ∈ P1 in signatures is represented in
“affine coordinate” by a single element xR of Fp, and the point at infinity does not really
have a well-defined representation in those terms. This is not an issue for correct executions
of the qDSA algorithm, since the point at infinity happens with negligible probability;
however, it is crucial in our specific attack setting. We therefore need to examine how
xR is computed from the projective representation (XR : ZR) output by the Montgomery
ladder.

In the qDSA implementation, xR is computed by first inverting ZR using Fermat’s
little theorem, and then multiplying the result by XR. In other words, the code computes:

xR ← Compress((XR : ZR)) = Zp−2
R ·XR.

In the case of our faulty point ±R̃, we have:

(X
R̃

: Z
R̃

) =
{

(Lk : 0) when k ≡ 0 (mod 4)
(0 : Lk) when k ≡ 2 (mod 4)

where in both cases Lk ∈ Fp is a large, typically full-size value depending only on k. In
both cases, we therefore get:

x
R̃

= Zp−2
R̃
·X

R̃
= 0

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 343

Figure 2: The ChipWhisperer-Lite evaluation board, connected to its XMEGA microcon-
troller target.

and as a result, it is not possible to distinguish between the two cases just from the value
included in the signature.

However, from an implementation perspective again, there is a clear difference between
the two cases. When k ≡ 0 (mod 4), the value Z

R̃
for which the device computes the

base field exponentiation Zp−2
R̃

is 0, whereas in the other case, it is a large, random-
looking element Lk in Fp. This difference should translate in a marked difference in
power consumption and other side-channel emanations during the computation of this
exponentiation operation!

Using side-channel leakage in addition to the fault, we are therefore able to distinguish
between the two cases, and carry out the attack as expected.

Concrete glitch attack experiments. We successfully carried out the attack above on
the implementation of qDSA for 8-bit AVR microcontroller platform [Ren17b], with the
tweak of Fig. 1(b). The cryptographic code was otherwise left entirely untouched, except
for the insertion of a trigger in the signing algorithm (before the call to the ladder_base
function) in order to facilitate the synchronization of injected faults. That synchronization
should be doable directly in hardware from the acquired waveform (using e.g. oscilloscope
SAD triggers) when using a more costly setup, but a manual software trigger comes in
handy in our low-cost setting. Note that the qDSA implementation itself does not claim
security against faults or physical attacks in general; however, conducting the attack on a
real-world target allows us to confirm the validity of the fault model.

The attack was conducted on the ChipWhisperer-Lite side-channel and glitch attack
evaluation board [OC14], which comes with an AVR XMEGA128D4 microcontroller target
(Fig. 2). In order to use the accompanying software, we wrapped the qDSA code into a
program running on the XMEGA target that can sign messages using the SimpleSerial
serial console protocol supported by ChipWhisperer-Capture. The program supports
several single character serial commands (followed by hexadecimal arguments), including
in particular:

• k〈32-byte hex string〉: generate fresh key pair with the provided seed;

• p〈16-byte hex string〉: sign the provided message and return the first 32 bytes of
the signatures (the rest of the 80-byte signature can be displayed with additional
commands if necessary);

344 New Bleichenbacher Records

Figure 3: Power trace of the device starting from the call to ladder_base: correct
execution (orange) and faulty one with glitch at offset 202 (red). Sampling rate is 4× the
clock frequency.

• x: reset the program;

and other miscellaneous commands for e.g. signature verification. Once a key pair has
been generated, a typical interaction on the serial console looks as follows (where the
inputs are in blue and the outputs in black):

p8e230ea468bc5990f6a6820b5cb5f4b7
r614573B5BDB6E65F402BDBF2AFE3F67FCCD3F73B31680F16255EDF1B123B0658
z50
p3ae597975ad7c7574ee260cc14d724a1
rCAF7C938F5C180CB04E81586C2E6D0368D4CF0AB5C1A983BEA2FE1A0F2AA9C31
z50

where the blue lines ask for signatures on the provided messages, and the replies starting
with r give with first 32 bytes of the computed signature (corresponding to the abscissa
xR). The lines starting with z signal the end of the response (and 50 indicates that the
entire signatures are 0x50 = 80 bytes long).

We then use the glitch module of ChipWhisperer-Capture to generate clock glitches
at selected positions during the execution of the program. After some trial and error, we
find that XORed-in rectangular clock glitches of width 5% of the clock frequency, inserted
at 2.5% of the corresponding clock cycles cause reliably reproducible misbehavior of the
microcontroller. We then increment the position at which the glitch is inserted (as an offset
from the trigger located right before the call to ladder_base in the signing algorithm),
and observe the results on the serial console. At offset 202 clock cycles, we finally observe
the required fault:

p3ae597975ad7c7574ee260cc14d724a1
r00
z50

which we can confirm corresponds to skipping the assignment on step 9 of Fig. 1(b). The
power trace corresponding to the first few hundred cycles after the trigger is reproduced in
Fig. 3, both for the correct execution and for the faulty one. One can clearly see a spike
on the faulty trace when the glitch is injected, and how the skipped instruction results in
a shift to the left of the trace of the faulty execution compared to the correct one after
that point.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 345

Figure 4: Power traces of the device around 130 cycles after the call to compress: blue
(resp. red) traces correspond to R̃ of order 2 (resp. at infinity).

The fault is very reliably reproducible: in several hundred attempts at injecting the
glitch, the assignment instruction was skipped 100% of the time, resulting in the same
response

r00

as expected.
To finish validating the combined attack, we then check that it is indeed easy to

distinguish between the case when R̃ is of order 2 on curve, and when it is the point at
infinity. To do so, we plot corresponding power traces at a later point during the execution
of the program, within the base field exponentiation used to compute the modular inverse
of the coordinate Z

R̃
.

Fig. 4 shows two sets of several traces corresponding to faulty signatures of random
messages. The traces in blue all correspond to the case when R̃ is of order 2, and the traces
in red to the case when it is the point at infinity. It is visually clear that the two sets of
traces are easy to distinguish from each other, and that one can construct a very accurate
distinguisher even from a small number of samples around that part of the execution.

3.3 Preprocessing Signatures for Bleichenbacher’s Attack
Both of the attacks described above allow us to obtain multiple qDSA signatures for which
a few LSBs of the nonces k are known. We would like to use those signatures with partial
nonce exposure to retrieve the secret key d.

This problem can be seen as an instance of Boneh and Venkatesan’s hidden number
problem (HNP) [BV96]: given sufficiently many equations of the form (1), in which the
pair (h, s) is known, and partial information on k is also given, recover d. Note that in
our setting, the pair (h, s) is indeed known, since s is directly part of the signature, and
h can be recomputed as h = H(xR‖xQ‖M) (where xR is again part of the signature; in
particular, it is the faulty abscissa x

R̃
in the case of faulty signatures).

The HNP algorithm used in this paper is essentially due to Bleichenbacher, and relies
on a search for heavy Fourier coefficients. However, those heavy Fourier coefficients only
reveal the secret key in an HNP instance where the most significant bits of nonces k are
constant (say identically zero). Thus, our instance with known LSBs of k needs to be
preprocessed in order to be amenable to Bleichenbacher’s attack. This preprocessing stage,
which is folklore, proceeds as follows.

346 New Bleichenbacher Records

Suppose that in our setting, the b least significant bits of nonces are known, i.e. r := k
mod 2b is known for each nonce k. Subtracting r from Eq. (1) and dividing by 2b, we get:

(k − r)2−b ≡ (s− r)2−b + hd2−b mod n.

Now define k′ := (k − r)2−b, s′ := (s− r)2−b, and h′ := h2−b, where all computations are
carried out in Z/nZ. The previous equation can be rewritten as:

k′ ≡ s′ + h′d mod n

where MSBb(k′) is the all zero bit string and k′ is uniformly distributed on
[
0,
⌊
(n− 1)/2b

⌋]
.

Hence, we get an equation of the correct form to apply Bleichenbacher’s attack. To simplify
the discussion in subsequent sections, we discard the signatures with 2252 ≤ h′ < n; such
an exceptional case happens only with negligible probability anyway.

In the rest of this paper, we assume that S signatures are generated with either of the
fault attacks, and preprocessed as above by the attacker. For simplicity, we omit the prime
symbols and refer to {(hi, si)}S−1

i=0 as the set of preprocessed signatures, and {ki}S−1
i=0 as

the biased nonces satisfying{
ki ≡ si + hid mod n
MSBb(ki) = 0...0

for 0 ≤ i ≤ S − 1.

3.4 Possible Countermeasures
Before turning to the description of Bleichenbacher’s attack and of our optimizations thereof,
we first mention a few countermeasures that can be applied to qDSA implementations in
order to thwart the attacks of this section.

Since our attacks all target the base point in the Montgomery ladder computation,
using generic techniques to protect that value should prevent the attack. Concrete ways of
doing so include:

• carrying out consistency checks of proper execution when copying the value into
memory (e.g. double loop counters);

• writing the value twice if it is reconstructed every time, so that a single instruction
skip fault cannot corrupt it;

• computing a CRC checksum of the base point and checking that it gives the expected
result before releasing a generated signature, etc.

Rather than these generic countermeasures, however, one could recommend instead to
slightly modify the signing algorithm in a way that completely prevents attacks based on
the existence of points of small order. Namely, instead of carrying out scalar multiplication
by the nonce k, use 8k (or if using a curve E other than Curve25519, use α · k, where α is
the least common multiple of the cofactors of E and its twist), and adjust the verification
algorithm accordingly. This ensures that, even if the base point is tampered with somehow,
the adversary will not be able to map the result of the scalar multiplication to a non-identity
element of a subgroup of small order. This thwarts the attacks of this section in particular.

4 Bleichenbacher’s Nonce Attack
In this part, we recall the Bleichenbacher’s attack method. We also formulate the conditions
required for the range reduction phase, which is by far the most costly phase in the attack.
Note that Bleichenbacher’s attack applies in principle to any Schnorr-like signatures with

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 347

arbitrarily biased nonces, including (EC)DSA [Gal13], EdDSA [BDL+12], and ElGamal
[ElG85], as long as they provide publicly available pairs (h, s) such that Eq. (1) holds.

Algorithm 2 specifies the high-level procedures of the attack. The step-by-step guide
will be provided in the following subsections.

Algorithm 2 Bleichenbacher’s nonce attack framework
Input:
{(hi, si)}S−1

i=0 - the set of preprocessed Schnorr-like signatures with b-bit biased nonces
S - number of input signatures
L - number of linear combinations to be found

Output: ` most significant bits of d
1: Range Reduction
2: Find L = 2` reduced signatures {(h′j , s′j)}L−1

j=0 , where (h′j , s′j) = (
∑
i ωj,ihi,

∑
i ωj,isi)

is a pair of linear combinations with the coefficients ωj,i ∈ {−1, 0, 1}, such that
[C1] Small: 0 ≤ h′j < L

[C2] Sparse: |Bn(K)|Ω > 1/
√
L, where Ω :=

∑
i |ωj,i|

for 0 ≤ j ≤ L− 1

3: Bias Computation
4: Z =: (Z0, . . . ZL−1)← (0, . . . , 0)
5: for j = 0 to L− 1 do
6: Zh′

j
← Zh′

j
+ e2πis′j/n

7: end for
8: W ← iFFT(Z) = (Bn(Kw0), Bn(Kw1), . . . , Bn(KwL−1)), where wm = mn/L with
m ∈ [0, L− 1]

9: Find the value m such that |Bn(Kwm)| is maximal
10: return MSB`(bwmc)

4.1 Bias Definition and Properties
We first formalize the bias of random variables in the form of discrete Fourier transform.
Let us recall the definition of the bias presented at [Ble00] and its basic properties.

Definition 1. Let X be a random variable over Z/nZ. The bias Bn(X) is defined as

Bn(X) = E(e2πiX/n) = Bn(X mod n).

where E(X) represents the mean. Likewise, the sampled bias of a set of points V = {vi}L−1
i=0

in Z/nZ is defined by

Bn(V) = 1
L

L−1∑
i=0

e2πivi/n.

The bias as defined above satisfies the following properties. See [DMHMP14] for the
proof.

Lemma 1. Let X and Y be random variables.

(a) If X follows the uniform distribution over the interval [0, n) ∩ Z, then Bn(X) = 0.

(b) If X and Y are independent, then Bn(X + Y) = Bn(X)Bn(Y).

348 New Bleichenbacher Records

(c) Bn(−X) = Bn(X), where Bn(X) denotes the complex conjugate of Bn(X).

(d) If X follows the uniform distribution over the interval [0, T) ∩ Z with T ∈ [1, n] ∩ Z,
then |Bn(X)| = 1

T

∣∣∣ sin(πT/n)
sin(π/n)

∣∣∣ and |Bn(X)| is real-valued with 0 ≤ |Bn(X)| ≤ 1.

The following claim is useful for approximating the bias value when the nonces are
b-bit biased.

Corollary 1. Let K be a random variable. If K follows the uniform distribution over
the integer interval

[
0,
⌊
(n− 1)/2b

⌋]
∩ Z for some positive integer b, then the bias value

|Bn(K)| satisfies

|Bn(K)| → 2b

π
· sin

(
π/2b

)
as n→∞

Proof. Since
⌊
(n− 1)/2b

⌋
= (n − 1)/2b − δ, with 0 ≤ δ < 1, we obtain the following by

applying Lemma 1-(d):

|Bn(K)| = 1
(n− 1)/2b − δ + 1

∣∣∣∣∣ sin
(
π
(
(n− 1)/2b − δ + 1

)
/n
)

sin (π/n)

∣∣∣∣∣
= 2b/π

1− (1 + 2bδ − 2b)/n ·
π/n

|sin (π/n)| ·
∣∣sin (π/2b − π(1/2b + δ − 1)/n

)∣∣
→ 2b

π
· sin

(
π/2b

)
as n→∞.

In this paper, we focus on the case of b = 2 and b = 3; if n is sufficiently large, Corollary 1
gives the approximate bias values |Bn(K)| ≈ 0.9003 for b = 2, and |Bn(K)| ≈ 0.9745 for
b = 3, respectively.

4.2 Range Reduction
The main idea of Bleichenbacher’s attack is finding a secret key candidate that leads to
the peak bias value: given a set of preprocessed pairs {(hi, si)}S−1

i=0 with biased nonces,
we would like to find the candidate w ∈ Z/nZ such that its corresponding set of nonce
candidates Kw := {si + hiw}S−1

i=0 shows a significant nonzero sampled bias. If w is equal
to the true secret, i.e., w = d, we obtain a set of genuine biased nonces K = {ki}S−1

i=0
and its sampled bias |Bn(K)| is close to 1, which we call the peak; if the guess is wrong,
i.e., w 6= d, the sampled bias can be approximated by 1/

√
S, which we call noise. Since

Schnorr-like signatures allow anyone to compute a pair (h, s) that holds Eq. (1), we thus
have a way to determine the secret value d by evaluating |Bn(Kw)| for all w ∈ Z/nZ in a
brute force way.

Reduce h s.t.

0 ≤ h′ < L

w

|Bn(Kw)|

1√
S

d

w

|Bn(K′w)|

1√
L

n
L

|Bn(K)|Ω

d

Figure 5: The effect of range reduction

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 349

Condition 1: Small Linear Combinations. However, checking all possible w ∈ Z/nZ is
computationally infeasible if n is large. Here a range reduction in Algorithm 2 plays an
important role to avoid this problem. Bleichenbacher’s observation is as follows: one can
broaden the peak of the bias value by reducing the size of h values, so that it suffices to
find a candidate close to d, instead of the exact solution. [DMHMP14] and [AFG+14]
examined his approach more concretely; they showed that by taking linear combinations
modulo n of the original (hi, si) pairs in a way that h′j values are bounded by some L, as
in the condition [C1], the width of the peak broadens to approximately n/L, and therefore
the peak area can be detected by evaluating the sampled bias of L-evenly-spaced values of
w in [0, n− 1]3. Fig. 5 illustrates this situation intuitively.

Condition 2: Sparse Linear Combinations. Now let us look into the sparsity condition
[C2]. Unfortunately, the range reduction has a negative side effect: the more dense the
linear combinations become, the shorter the height of the peak gets. More concretely, [C2]
can be shown as follows. Let us assume that ki = si + hid mod n and a range reduction
algorithm constructs the pair of linear combinations (h′j , s′j) = (

∑
i ωj,ihi,

∑
i ωj,isi),

where ωj,i ∈ {−1, 0, 1} (we will omit the index j for simplicity). Then its corresponding
nonce becomes k′ =

∑
i ωiki. Let Ki be a random variable (which corresponds to

a nonce ki) uniformly distributed on the interval
[
0,
⌊
(n− 1)/2b

⌋]
and let us assume

that Ki1 and Ki2 are independent if i1 6= i2. Then applying (b) and (c) of Lemma 1,
Bn(K0) = Bn(K1) = . . . = Bn(KS−1) and

Bn

(∑
i

ωiKi

)
= Bn

(∑
i+

Ki+ −
∑
i−

Ki−

)
= Bn

(∑
i+

Ki+

)
·Bn

(∑
i−

Ki−

)

=
∏
i+

Bn (Ki+) ·
∏
i−

Bn (Ki−) =
∏
i+

Bn (Ki+) ·
∏
i−

Bn (Ki−)

where i+ ∈ {i | ωi = 1} and i− ∈ {i | ωi = −1}. Hence taking the absolute value, we
obtain ∣∣∣∣∣Bn

(∑
i

ωiKi

)∣∣∣∣∣ = |Bn(K)|Ω

where Ω :=
∑
i |ωi|. This means that the height of the peak diminishes as the sum of

coefficients Ω for the linear combination increases. Since the noise is approximately 1/
√
L

and the peak value needs to serve as a distinguisher, we obtain the condition [C2] for the
peak not to vanish.

In summary, finding small and sparse linear combinations for sufficiently small L (i.e.,
small enough for the FFT to be tractable) is the key to performing Bleichenbacher’s attack
efficiently. Let us briefly review the previous range reduction algorithms.

Sort-and-difference

We present the sort-and-difference algorithm conducted by [AFG+14] as the most straight-
forward instance of a range reduction algorithm. It simply works as shown below:

1. Sort the list4 {(hi, si)}S−1
i=0 in ascending order by the hi values.

2. Take the successive differences to create a new list {(h′j , s′j)}S−2
j=0 := {(hi+1−hi, si+1−

si)}S−2
i=0 .

3Rigorously speaking, [DMHMP14] only proved that the peak width broadens to n/2L, but [AFG+14]
empirically confirmed that checking L-evenly-spaced points is sufficient to detect the peak in practice.

4We will often refer to an ordered set as a list

350 New Bleichenbacher Records

3. Repeat.

With this approach, they successfully performed the key recovery attack against ECDSA
on 160-bit curve with 1-bit nonce bias.

As a theoretical contribution, they analytically proved that approximately (1− e−2γ)S
signatures are obtained such that h′j < 2logn−logS+γ after the first application of sort-and-
difference, where γ ∈ Z is a parameter. However, because the h′ values are not uniformly
random and independently distributed anymore, their experimental result showed that the
ratio (1− e−2γ) does not hold after the second iterations and the actual ratio drops as the
algorithm iterates, i.e., the number of reduced signatures such that h′j < 2logn−ι(logS−γ)

after ι rounds is less than (1− e−2γ)ιS.
As a consequence, the sort-and-difference required S = 233 input signatures to satisfy

[C1] and [C2] for their attack setting. Their implementation consumed nearly 1TB of
RAM, and therefore attacking groups of larger order with small nonce biases was thought
to be out of reach due to its huge memory consumption.

Lattice Reduction

De Mulder et al. in [DMHMP14] proposed to use lattice reduction to carry out the range
reduction. They used the BKZ algorithm applied in lattices of dimension around 128 to
mount Bleichenbacher’s attack against 384-bit ECDSA with 5-bit nonce bias, using a total
of about 4000 signatures as input.

The idea of using lattice reduction for range reduction may seem quite natural indeed:
after all, range reduction is about finding very short and sparse linear combinations from
a large list {hi}S−1

i=0 of integers, which seems closely related to the problem of finding very
short vectors in the lattice generated by the rows of the following matrix:κ 0 h0

. . .
...

0 κ hS−1


for a suitable scaling constant κ. Indeed, any vector in that lattice is of the form
(κω0, . . . , κωS−1,

∑
i ωihi), and it is thus short when all the ωi’s have a small absolute

value and the linear combination
∑
i ωihi is also short.

However, two problems arise when trying to apply that approach to more demanding
parameters than the ones considered by De Mulder et al., particularly when the bias is
significantly smaller.

First, the conditions above do not really capture the sparsity of the linear combinations,
which is of paramount importance for small biases, since the bias function decreases
exponentially with the number of non zero coefficients. To get acceptably sparse linear
combinations, one is led to start with a lattice of small dimension, constructed from
a random subset of the hi’s of size at most equal to the desired weight of the linear
combination. This in turns makes short vectors in that lattice no longer very short.

Second, although the coefficient ωi’s tend to be relatively small, they are not constrained
to lie in {−1, 0, 1} as in the previous description, and as a result it is no longer true that
the bias of linear combinations is given by |Bn(K)|Ω, Ω =

∑
|ωi|, when the original nonces

have b-bit bias. In fact, the bias can be computed explicitly, and it is smaller than this
value in general. In particular, if one of the ωi’s is a multiple of 2b, it is easy to check that
the bias becomes exponentially small. Since for small b it is not usually feasible to avoid
the appearance of such a coefficient, the linear combinations given by lattice reduction are
typically not useful.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 351

4.3 Bias Computation
Now let wm = mn/L, with m ∈ [0, L− 1], be an L-evenly-spaced secrete key candidate
in [0, n− 1] and Kwm := {s′j + h′jwm}

L−1
j=0 be a set of candidate nonces. Assuming that L

reduced signatures have been obtained by a range reduction phase, the sampled bias is

Bn(Kwm) = 1
L

L−1∑
j=0

e2πi(s′j+h
′
jwm)/n

=
L−1∑
t=0

 1
L

∑
{j|h′

j
=t}

e2πis′j/n


︸ ︷︷ ︸

Zt

e2πitm/L.

Thus, by constructing the vector Z := (Z0, . . . , ZL−1), the sampled biases Bn(Kwm) for
m ∈ [0, L−1] can be computed all at once using the inverse Fast Fourier Transform (iFFT).
Note that (i)FFT only takes Õ(L) time and O(L) space complexities. Finally, recalling
that the peak width has now broadened to n/L via range reduction, the algorithm picks
the candidate wm that leads to the largest sampled bias, so we can expect that wm shares
its `-MSB with the secret d.

4.4 Recovering Remaining Bits
As De Mulder et al. observed in [DMHMP14, §3.4], the remaining bits of the secret can
be iteratively recovered as follows. Let λ be the bit-length of the secret d. Once `-MSB of
the secret is recovered, i.e. we know dHi := MSB`(d) but not dLo := d − dHi2λ−`, Eq. (1)
can be rewritten as follows:

ki ≡ si + hid mod n

≡ si + hi
(
dHi2λ−` + dLo

)
mod n

≡ si + hidHi2λ−` + hidLo mod n.

Hence defining si := si + hidHi2λ−`, Algorithm 2 can proceed with the attack to recover
the `-MSB of dLo, except that this time the FFT table is constructed in the following
way: let n′ := 2λ−` be the upper bound of dLo and w′m = mn′/L be a L-evenly-spaced
candidate in [0, n′ − 1], then the sampled bias is

Bn(Kw′m
) = 1

L

L−1∑
j=0

e2πi(s′j+h
′
jw
′
m)/n

=
L−1∑
t=0

 1
L

∑
{j|bh′jn′/nc=t}

e2πis′j/n


︸ ︷︷ ︸

Zt

e2πitm/L.

As such, we only need to reduce the h values so that 0 ≤ h′j < Ln/n′ ≈ L2, which should
be much faster than the first round. By repeating the above operations, we can iteratively
recover the `-bit of the secret key d per each round.

5 Optimization and Parallelization of Bleichenbacher’s At-
tack

As we discussed in the previous section, the range reduction is the most costly phase
in Bleichenbacher’s attack framework and the previous approaches to it are basically

352 New Bleichenbacher Records

memory-bound. In this section, we present our approach to range reduction to overcome
this memory barrier while maintaining a practical level of efficiency in terms of time
complexity.

5.1 Our Approach: Using Schroeppel–Shamir Algorithm
We begin with an intuitive discussion on the nature of the problem of finding small
and sparse linear combinations (we call it the range reduction problem for convenience).
Interestingly, Bleichenbacher mentioned in [Ble00] the use of Schroeppel–Shamir algorithm,
which was originally proposed as a knapsack problem solver in [SS81], would save memory
in the range reduction phase, though there has been no concrete evaluation made on it
until today. Let us develop his idea more concretely. The range reduction problem can
be indeed regarded as a variant of the knapsack problem (as defined in Section 2.3) in a
broad sense; instead of searching for the exact knapsack solutions, we would like to find
sufficiently many sparse patterns of coefficients that lead to the linear combination smaller
than a certain threshold value. With this in mind, we can transform Schroeppel–Shamir’s
knapsack problem solver into a range reduction algorithm. However, applying the original
Schroeppel-Shamir algorithm introduces large priority queues (or min-heaps) to store
partial linear combinations, which are not cache-friendly and moreover make it hard to
optimize and parallelize the algorithm in practice. Hence, our approach is specifically
inspired by the optimized version due to Howgrave-Graham and Joux, which replaced
the priority queues with simple lists. Though their algorithm is intended for solving the
knapsack problem, we observe that it happens to have two desirable characteristics in
the context of Bleichenbacher’s attack: modest space complexity and compatibility with
large-scale parallelization. The interested reader is invited to refer to [HGJ10, §3] to
become familiar with their approach in knapsack-specific setting. Fig. 6 and Fig. 7 depict
how Schroeppel–Shamir algorithm and its variant by Howgrave-Graham–Joux would serve
as a range reduction at a high level.

In a nutshell, the range reduction transformed from Howgrave-Graham–Joux’s algorithm
works as follows:

1. Split a set of S = 2α+2 input signatures into 4 lists L(1),R(1),L(2), and R(2) of size
S/4 = 2α,

2. Create the list A(r), for each r ∈ {1, 2}, that consists of linear combinations of two
(η(r), ζ(r)) = L(r)[i]+R(r)[j] = (h(r)

i +h(r)
j , s

(r)
i +s(r)

j) such that η(r)’s top consecutive
(α+ 1) bits coincide with a certain value c mod 2α, and

3. Sort A(1) and A(2) and search for the short differences between elements from them
such that they are β-bit smaller than the original h values, where β is a parameter.

That is, it first collects the linear combinations of two to make sure that the collision
happens in the top consecutive bits when taking differences, so that the resulting linear
combinations of four are expected to be much smaller with good probability. We give the
concrete procedures of our range reduction in Algorithm 3. Note that it invokes Algorithm
4 inside as a subroutine that collects the linear combinations of two such that their top
consecutive (α+ 1) bits coincide with a given value.

5.2 Analysis
We first show how to choose the appropriate parameter β so that the resulting number of
reduced signatures approximately remains S and the space usage is stable in each round.
We also evaluate the space and time complexity of Algorithm 3.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 353

Figure 6: Overview of the Schroeppel–Shamir-based range reduction algorithm directly
transformed from their original version

354 New Bleichenbacher Records

Figure 7: Overview of the Schroeppel–Shamir-based range reduction algorithm transformed
from Howgrave-Graham–Joux’s variant

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 355

Algorithm 3 Parallelizable Schroeppel–Shamir-based range reduction
Input:
1: sigs := {(hi, si)}S−1

i=0 - the set of preprocessed Schnorr-like signatures with biased
nonces
λ - bit-length of h, e.g., λ = 252 for qDSA signatures
ι - number of iterations
β - number of bits to be reduced per round

Output: sols := {(h′j , s′j)}L−1
j=0 - a set of reduced signatures such that h′j < 2λ−ιβ

2: C ← S/4 = 2α
3: τ ← λ
4: L← cardinality of sigs
5: for ρ = 1 to ι do
6: Split sigs into 4 lists: L(1),R(1),L(2),R(2) of size L′ = L/4
7: Sort L(1) and L(2) in descending order by h values
8: Sort R(1) and R(2) in ascending order by h values
9: Create empty lists sols, A(1), and A(2)

10: for c = 0 to C − 1 do
11: Call Algorithm 4 on L(1),R(1), and c, push the result into a list A(1)

12: Call Algorithm 4 on L(1),R(1), and c+ C, push the result into a list A(1)

13: Call Algorithm 4 on L(2),R(2), and c, push the result into a list A(2)

14: Call Algorithm 4 on L(2),R(2), and c+ C, push the result into a list A(2)

15: . A(r) is a list of (η(r), ζ(r)) = L(r)[i] +R(r)[j] = (h(r)
i + h

(r)
j , s

(r)
i + s

(r)
j)

16: Sort A(1) and A(2) in ascending order by η values
17: i← 0
18: j ← 0
19: while Neither A(1)[i] nor A(2)[j] is at the end do
20: if η(1)[i] > η(2)[j] then
21: (h′, s′)← A(1)[i]−A(2)[j] = (η(1)[i]− η(2)[j], ζ(1)[i]− ζ(2)[j])
22: Increment j
23: else
24: (h′, s′)← A(2)[j]−A(1)[i] = (η(2)[j]− η(1)[i], ζ(2)[j]− ζ(1)[i])
25: Increment i
26: end if
27: if h′ < 2τ−β then
28: Push (h′, s′) to sols
29: end if
30: end while
31: end for
32: τ ← τ − β
33: sigs← sols
34: L← cardinality of sigs
35: end for
36: return sols

356 New Bleichenbacher Records

Algorithm 4 Collecting linear combinations of two routine
Input:
1: L - list of signatures sorted in descending order by h values

R - list of signatures sorted in ascending order by h values
c - target value in a (α+ 1)-bit binary format
τ - current bit-length upper bound of h values

Output: A - list of linear combinations of two (η, ζ) = L[i] +R[j] = (hi + hj , si + sj)
such that the value corresponding to the top consecutive (α+ 1) bits of η is equal to c,
i.e., η[τ+1:τ−α+1] = c

2: i← 0
3: j ← 0
4: Create an empty list A
5: while Neither L[i] nor R[j] is at the end do
6: (η, ζ)← L[i] +R[j] = (hi + hj , si + sj)
7: if η[τ+1:τ−α+1] > c then
8: Increment i
9: else if η[τ+1:τ−α+1] < c then
10: Increment j
11: else
12: Push (η, ζ) to A
13: Peek at the value ηL, where (ηL, ζL) := L[i+ 1] +R[j]
14: Peek at the value ηR, where (ηR, ζR) := L[i] +R[j + 1]
15: if ηL[τ+1:τ−α+1] = c and ηR[τ+1:τ−α+1] 6= c then
16: Increment i
17: else if ηL[τ+1:τ−α+1] 6= c and ηR[τ+1:τ−α+1] = c then
18: Increment j
19: else
20: k ← 1
21: if ητ−α = 0 then
22: while ηL[τ+1:τ−α+1] = c do
23: Push (ηL, ζL) to A
24: Increment k
25: (ηL, ζL)← L[i+ k] +R[j]
26: end while
27: Increment j
28: else
29: while ηR[τ+1:τ−α+1] = c do
30: Push (ηR, ζR) to A
31: Increment k
32: (ηR, ζR)← L[i] +R[j + k]
33: end while
34: Increment i
35: end if
36: end if
37: end if
38: end while
39: return A

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 357

Theorem 1. Suppose β ≥ (1 + ε) · α for some ε > 0, so that in particular, 2α−β = o(1).
If h’s are uniformly distributed in the interval [0, 2λ − 1]5, then, after the first round
of Algorithm 3, the expected cardinality of sols, which we denote by L, satisfies L =(
4/3 + o(1)

)
· 24α−β.

Proof. We first show that the expected cardinality of A(1) and A(2) is C = 2α after the
line 14. Second, we evaluate the probability that a (τ − β)-bit-bounded linear combination
of four, which consists of items in A(1) and A(2), can be found.

Before the first round, τ = λ is the bit-length upper bound of h. Since h’s are uniformly
distributed in [0, 2τ − 1], the values corresponding to the top α-bits of them, i.e. bh/2τ−αc,
are uniformly distributed in [0, C − 1].

Let η = hi + hj be an integer represented as (τ + 1)-bit string. Then the value
corresponding to its top (α+ 1)-bits is bη/2τ−αc = η[τ+1:τ−α+1] (see Section 2.1 for the
definition of the notation). Recalling that the sum of two uniform distributions follows a
triangular distribution,

Pr
[⌊
η/2τ−α

⌋
= c
]

= Pr
[
η[τ+1:τ−α+1] = c

]
=


(c+ 1)/C2 if 0 ≤ c ≤ C − 1,
2/C − (c+ 1)/C2 if C ≤ c ≤ 2C − 1,
0 otherwise.

We can make the distribution above uniform by considering the modulo C, i.e., by ignoring
ητ+1:

Pr
[⌊
η/2τ−α

⌋
≡ c mod C

]
= Pr

[
η[τ :τ−α+1] = c

]
=
{

1/C if 0 ≤ c ≤ C − 1,
0 otherwise.

This corresponds to calling Algorithm 4 twice on c and c+ C. There are L′ × L′ possible
linear combinations of two between L and R. Since L′ = L/4 = S/4 = C when ρ = 1, the
cardinality of the list A is estimated as follows:

|A| = L′2 · Pr
[
η[τ :τ−α+1] = c

]
= C.

Now let us find the expected number of (τ − β)-bit-bounded linear combinations of four.
We would like to compute the following probability:

κc = Pr
[
|η(1) − η(2)| < 2τ−β

∣∣∣η(1)
[τ :τ−α+1] = η

(2)
[τ :τ−α+1] = c

]
= Pr

[
η

(1)
τ+1 = η

(2)
τ+1

∣∣∣η(1)
[τ :τ−α+1] = η

(2)
[τ :τ−α+1] = c

]
× Pr

[
|η(1)

[τ−α:1] − η
(2)
[τ−α:1]| < 2τ−β

∣∣∣η(1)
[τ :τ−α+1] = η

(2)
[τ :τ−α+1] = c

]
For notational simplicity, we will omit the condition event η(1)

[τ :τ−α+1] = η
(2)
[τ :τ−α+1] = c in

the rest of the proof.
First, we compute the probability that η(1)

τ+1 and η(2)
τ+1 coincide:

Pr
[
η

(1)
τ+1 = η

(2)
τ+1

]
= Pr

[
η

(1)
τ+1 = 0

]
· Pr

[
η

(2)
τ+1 = 0

]
+ Pr

[
η

(1)
τ+1 = 1

]
· Pr

[
η

(2)
τ+1 = 1

]
=
(
c+ 1
C

)2
+
(

1− c+ 1
C

)2
.

5 Although the assumption here indeed holds for plain Schnorr signatures, we remark that this is not
actually the case for qDSA since it ensures hash values to be even (see [RS17, §2.4]). However, one can
trivially make them uniformly distributed over a narrower range by using the filtering technique discussed
in Section 5.5.

358 New Bleichenbacher Records

Second, we compute the following probability:

Pr
[
|η(1)

[τ−α:1] − η
(2)
[τ−α:1]| < 2τ−β

]
We can consider three cases for the above, which are visualized in Fig. 8.

Therefore, it can be computed as follows:

Pr
[
|η(1)

[τ−α:1] − η
(2)
[τ−α:1]| < 2τ−β

]
= Pr

[
η

(1)
[τ−α:τ−β+1] = η

(2)
[τ−α:τ−β+1]

]
+
β−α∑
i=1

Pr
[
η

(1)
[τ−α:τ−β+i+1] = η

(2)
[τ−α:τ−β+i+1]

]
×(

Pr
[
η

(1)
[τ−β+i:τ−β+1] = 10...0 ∧ η(2)

[τ−β+i:τ−β+1] = 01...1 ∧ η(1)
[τ−β:1] < η

(2)
[τ−β:1]

]
+ Pr

[
η

(1)
[τ−β+i:τ−β+1] = 01...1 ∧ η(2)

[τ−β+i:τ−β+1] = 10...0 ∧ η(1)
[τ−β:1] > η

(2)
[τ−β:1]

])

= 1
2β−α +

β−α∑
i=1

2
2β−α−i

(
1
2i ·

1
2i ·

1
2

)
= 1

2β−α
β−α∑
i=0

1
2i = 2

2β−α −
1

22(β−α) .

Summing up, we obtain the probability κc:

κc =
(

2
2β−α −

1
22(β−α)

)
·

{(
c+ 1
C

)2
+
(

1− c+ 1
C

)2
}
.

Note in particular that, since the second factor is bounded between 1/2 and 1, we have
κc = Θ

(
1/2β−α

)
independently of c.

Now there are L′4/C2 = C2 possible linear combinations between A(1) and A(2), for
each c ∈ [0, C − 1], we obtain an expected Lc linear combinations of four that are (τ − β)-
bit-bounded, where Lc = C2 ·κc. Not all of these linear combinations are necessarily found
by Algorithm 3, however: the algorithm can miss such a linear combination when a sum
on one side collides with two consecutive sums on the other side. Such a double collision
happens with probability O(κ2

c), however, so the expected number L(found)
c of small linear

combinations found by the algorithm satisfies:

L(found)
c = C2 ·

(
κc −O(κ2

c)
)

=
(
1−O(1/2β−α)

)
· Lc.

As a result, the expected cardinality L of sols is given by L =
∑
c L

(found)
c =

(
1 −

O(1/2β−α)
)
·
∑
c Lc, where the sum is easy to evaluate:

C−1∑
c=0

Lc = C2
(

2
2β−α −

1
22(β−α)

)C−1∑
c=0

{(
c+ 1
C

)2
+
(

1− c+ 1
C

)2
}

= C2
(

2
2β−α −

1
22(β−α)

)(
2
3C + 1

3C

)
= 4

324α−β + 2
3
(
22α−β − 25α−2β − 23α−2β−1) .

As a result, we obtain L =
(
4/3 + o(1)

)
· 24α−β as required.

Now we can directly derive the following claim.

Corollary 2. After the first round of Algorithm 3, L ≈ S if β = β0 := 3α− log 3.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 359

Figure 8: Three cases where a small linear combination of four such that h′ = |η(1)−η(2)| <
2τ−β is found in Algorithm 3

360 New Bleichenbacher Records

Table 1: Experimental results on the number of reduced signatures L after ρ rounds of
the range reduction by Algorithm 3, when α = 15 and S = 2α+2 = 131072

1 2 3 4 5
β = 3α− 1.59 131343 132807 138622 160763 180003
β = 3α− 1.58 130447 128226 120601 93524 34272

Proof. Indeed, with that choice of β, we have:

L =
(4

3 + o(1)
)
· 24α−β0 =

(4
3 + o(1)

)
· 2α+log 3 =

(
4 + o(1)

)
· 2α =

(
1 + o(1)

)
· S.

After the first round, the above result does not hold strictly because h’s are not
perfectly uniform anymore. However, we empirically confirmed that approximately S
reduced signatures can be constantly obtained in practice when β is sufficiently close to
β0. We first generated 217 Schnorr signature pairs (h, s) over a group of 252-bit order,
and then made Algorithm 3 reduce them for 5 times, i.e., the parameters were as follows:
S = 217, λ = 252, and ι = 5. Since 1.58 < log 3 < 1.59, we conducted the reduction
experiments with β = 3α− 1.58 and β = 3α− 1.59 respectively, and measured the amount
of reduced signatures after each iteration. Table 1 gives the experimental results. As a
consequence, we actually managed to get more than S signatures after every round when
β = 3α − 1.59, which is slightly below β0; on the other hand, the number of reduced
signatures L decreased per iteration when β = 3α− 1.58 > β0. These results show that
choosing β such that β ≤ β0 is indeed sufficient to maintain L ≈ S even after the first
round (if the choice of β ends up with more than S reduced signatures, then we can simply
interrupt the for loop as soon as the cardinality of sols reaches S, which of course makes
the range reduction end faster). In what follows, we will assume that β is equal to or
slightly smaller than β0 to make the space usage stable.

Lemma 2. The space complexity of Algorithm 3 is O(S) if β = β0.

Proof. The space usage of Algorithm 3 is bounded by the size of sigs,A(1),A(2) and sols,
all of which have cardinality O(S) if β = β0.

Lemma 3. The time complexity of Algorithm 3 is Õ(S2) if β = β0.

Proof. We assume L ≈ S from Corollary 2. At the line 7 and 8, it takes time O(S logS)
to sort the lists with a standard sorting algorithm such as quick sort. Collecting the linear
combinations of two by Algorithm 4 takes O(S) from the line 11 to 14. Since A(1) and
A(2) have the cardinality of L′2/C = S/4, sorting at the line 16 takes O(S logS) and going
through them in the while loop requires O(S) steps for each c. We finally obtain Õ(S2) by
taking the summation from c = 0 to c = C − 1.

Table 2 gives the performance comparison between Algorithm 3 (with β = β0) and the
sort-and-difference assuming that both algorithms take the same input size S. Note that
we evaluated 2 rounds of sort-and-difference for a fair comparison, since each iteration of it
only constructs linear combinations of two, while our Schroeppel–Shamir-based algorithm
constructs the linear combinations of four per round. Our approach can reduce more bits
than the sort-and-difference per each equivalent round using the same amount of inputs;
in other words, in order to reduce the same amount of bits, it takes less space complexity,
and therefore requires fewer input signatures.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 361

Table 2: Complexities and the number of reduced bits

Algorithm Time Space Bits reduced

Ours (1 round) Õ(S2) O(S) 3α− log 3
Sort-and-difference (2 rounds) Õ(S) O(S) 2(α+ 2− γ)

5.3 Parallelization

On the negative side, our algorithm takes more time complexity than the sort-and-difference.
However, the large-scale parallelization of Algorithm 3 can compensate for it in practice.
A careful reader may note that the procedure inside the for loop beginning at the line 10,
which we call a job denoted by Jc with c ∈ [0, C − 1], is completely self-contained; in fact,
a distributed-memory parallel computing allows us to implement the algorithm within a
simple master-worker paradigm. That is, the master node simply broadcasts the sorted
input data (L(1),R(1),L(2), R(2)) and distributes the jobs {J0, . . . , JC−1} evenly to worker
nodes, so the workers can focus on their own small set of jobs independently, i.e., without
communicating with other workers. In Section 6, we will revisit the parallelization setting
and describe concrete implementation techniques.

5.4 Lower Bounds for the Amount of Signatures

As we observed in Section 4, a range reduction algorithm needs to output small and sparse
linear combinations as specified in [C1] and [C2] of Bleichenbacher’s attack framework
(Algorithm 2). Suppose h’s are λ-bit integers, nonces are b-bit biased and the number
of iterations is fixed to ι. Then, using (λ, b, ι) as parameters, we can derive the lower
bound for the number of input signatures for our range reduction algorithm to satisfy
those conditions.

Theorem 2. Under the heuristic assumption that the h’s in sigs behave like uniformly
random values before ι-th round, Algorithm 3 satisfies [C1] and [C2] after the ι-th round
if β = β0 and S = 2α+2 > 2αSS+2, where

αSS = max
{
λ− 2 + ι log 3

1 + 3ι , 2 · 4ι
(
log π − b− log sin(π/2b)

)}
.

Proof. From Corollary 2, we assume L = S. Since after ι rounds of range reduction, we
get linear combinations such that h′ < 2λ−ιβ0 . Hence, to satisfy [C1],

2λ−ιβ0 ≤ S ⇐⇒ λ− ιβ0 ≤ logS = α+ 2

⇐⇒ α ≥ λ− 2 + ι log 3
1 + 3ι .

Algorithm 3 constructs linear combinations of four per each round, i.e., it creates
h′ = |η(1) − η(2)| = |h(1)

i1
+ h

(1)
j1
− h

(2)
i2
− h

(2)
j2
| and its corresponding nonce becomes

k′ = |k(1)
i1

+ k
(1)
j1
− k(2)

i2
− k(2)

j2
|.

Recalling the discussion in Section 4.2, we can approximate the resulting bias as follows:
let X,Y ,Z and W be random variables (which correspond to nonces k(1)

i1
, k

(1)
j1
, k

(2)
i2

and
k

(2)
j2

, respectively) uniformly distributed on the interval
[
0,
⌊
(n− 1)/2b

⌋]
, and let us assume

that they are independent. Then applying (b) and (c) of Lemma 1, Bn(X) = Bn(Y) =

362 New Bleichenbacher Records

Bn(Z) = Bn(W) and

Bn(X + Y −Z −W) = Bn(X + Y) ·Bn(Z + W)
= Bn(X) ·Bn(Y) ·Bn(Z) ·Bn(W)
= |Bn(X)|4.

This means that each iteration approximately reduces the bias by raising it to the fourth
power6. Therefore, the condition [C2] can be rewritten as follows:

|Bn(X)|4
ι

> 1/
√
S︸ ︷︷ ︸

size of noise

.

Applying Corollary 1, we obtain(
2b

π
sin(π/2b)

)4ι

> 1/
√
S = 1/

√
2α+2

⇐⇒ 4ι
(
b− log π + log sin(π/2b)

)
+ 1

2 (α+ 2) > 1

⇐⇒ α > 2 · 4ι
(
log π − b− log sin(π/2b)

)
.

Putting all together, we obtain the lower bound αSS.

5.5 Data-(Time, Space) Trade-off
In practice, adversaries who can perform the fault attack are allowed to generate as many
signatures as they want and filter out ones with relatively large h. That is, let f be
the number of bits to be filtered, then one can heuristically get S signatures such that
h < 2λ−f by generating 2f · S faulty signatures, assuming that h is uniformly distributed
in [0, 2λ − 1]. With this setting, the condition [C1] is relaxed as follows:

2λ−f−ιβ0 ≤ S ⇐⇒ λ− f − ιβ0 ≤ logS = α+ 2

⇐⇒ α ≥ λ− f − 2 + ι log 3
1 + 3ι .

This clearly improves the lower bound obtained in Theorem 2 in exchange for spending
more time on the initial signature generation. Let α′SS be the new lower bound, then

α′SS = max
{
λ− f − 2 + ι log 3

1 + 3ι , 2 · 4ι
(
log π − b− log sin(π/2b)

)}
.

Now we only need to pass Bleichenbacher’s attack at least S′ := 2α′SS+2 signatures.
Let TGen be the time spent on signature generation, and TAtk and SAtk be the time and
space required for Bleichenbacher’s attack with our range reduction (i.e., Algorithm 2 &
3), respectively. Then, we obtain the following estimates for each:

TGen = O(2f · S′),

TAtk = Õ(S′2),
SAtk = O(S′).

Thus, the parameter f gives us the flexibility and it can be determined depending on the
precise context; for example, if we are allowed to generate significantly many signatures,
but can only utilize relatively limited computational resources, then f should be increased
so as to obtain the appropriate lower bound α′SS, and vice versa. We make use of this
technique to attack 2-bit bias in Section 6.1.

6This is where we use the heuristic assumption. Note that it holds in practice as confirmed in [AFG+14,
§3.2] for the sort-and-difference algorithm.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 363

Table 3: Estimates for the minimum required number of signatures and the optimal
complexities of reduction algorithms and a lattice attack when λ = 252. The estimates
omit the subexponential factors; note however, that those factors are the same for sort-
and-difference and our algorithm, and are worse for a lattice attack.

Algorithm ι S Time Space

b = 2
Ours 3 227.5 255.0 227.5

Sort-and-difference (γ = 1) 6 237.0 237.0 237.0

Lattice attack – 27.2 258.8 258.8

b = 3
Ours 4 221.7 243.4 221.7

Sort-and-difference (γ = 1) 8 229.1 229.1 229.1

Lattice attack – 26.5 243.3 243.3

5.6 Performance Comparison
We apply the settings of our attack — the qDSA on Curve25519 with its 2- or 3-LSB
of the nonces known via fault attacks — to the bound obtained in Theorem 2 in order
to give concrete performance estimates of our range reduction algorithm. We also found
the optimal number of iterations ι for both cases such that αSS is minimized. Table 3
summarizes the result. It includes the comparison with the sort-and-difference used by
[AFG+14] and with a lattice attack in combination with the SVP algorithm by [BDGL16].
Note that the estimates for the sort-and-difference are too optimistic because they are based
on the assumption that the ratio (1− e−2γ)ι holds even after the first iteration; indeed,
unlike our algorithm, it is not true in practice as we reviewed in Section 4. We actually
encountered such a situation and acquired less resulting signatures than theoretically
estimated (see Section 6.2).

6 Implementation Results
We implemented the Bleichenbacher’s attack incorporating the reduction technique de-
scribed in Algorithm 3. In this section, we summarize the implementation details and
our experimental results. The source code of the programs used in this section is publicly
available [TT18].

Tools. We artificially (i.e., using the parallel computing facilities described below) gen-
erated faulty qDSA signatures by modifying the C reference implementation [Ren17a].
The attack program was written in C++ and the multiprecision integer arithmetic was
mostly handled by GMP library [Gt16], except that the reduction phase only made use
of the built-in C integer type uint64_t for further optimization; in fact, we do not need
to handle the full-fledged big integers there since our reduction algorithm only requires
the evaluation of the top β-bit and the following few bits, as Fig. 8 depicts. The bias
was computed with FFTW [FJ05]. The large-scale parallelization was achieved with the
combination of Open MPI [GFB+04] and OpenMP [Ope08].

Hybrid shared/distributed-memory parallelization. We describe how the large-scale
parallelization of Algorithm 3 was achieved in practice. We implemented the attack using
hybrid shared-memory and distributed-memory parallel programming technique. The
former was handled by OpenMP and the latter was by MPI.

We utilized the following two parallel computing facilities during the experiments:

364 New Bleichenbacher Records

1. a dual Xeon E5-2697 v3-based workstation (2 CPUs × 14 cores/CPU × 2 threads/-
core), and

2. virtual machine instances on a distributed cluster (16 virtual machine nodes × 16
vCPU/node).

In particular, the much larger second facility is a distributed-memory system that consists
of a set of independent nodes, each of which has its own shared-memory multiprocessing
environment. (And although the first system is a single workstation with a single memory
space, MPI also made it appear as though it consisted of two separate nodes running
distinct multithreaded processes).

As a parallel programming paradigm, we employed a simple master-worker scheme
(see, e.g., [HW11, Chapter 5] for details). Let t be the number of available shared-memory
threads within a node and N be the number of distributed-memory nodes, where N is
a power of 2 for simplicity. Moreover, we assume that each node is assigned a unique
identifier I ∈ [0, N − 1]. Then our parallelization strategy is summarized as follows:

1. Make the master process load and sort the input data.

2. Map one MPI worker process per node.

3. Broadcast the data, partition the set of jobs {J0, . . . , JC−1} intoN subsets J0, . . . ,JN−1,
where JI := {JN ·i+I}C/N−1

i=0 , and assign node I a subset JI7.

4. Make each worker spawn a team of t OpenMP threads and process the assigned jobs.

5. Gather the results (i.e., subsets of sols) into the master.

To achieve these, calling a few basic MPI collective communication routines — MPI_Bcast,
MPI_Gather, and MPI_GatherV — is sufficient. Each routine was called only once per
round before/after the for loop and it only took a few minutes to broadcast and gather the
data in both experiments below. Considering the time spent on the whole range reduction
operations, our implementation introduces negligibly low communication overhead due to
the parallelization.

Scalability. Although our range reduction algorithm is highly space-efficient, multi-
threading in a shared-memory environment requires extra space for storing the lists A(1)

and A(2), whose expected cardinalities are C = S/4, for each thread (see the proof of
Theorem 1). On the other hand, the amount of distributed-memory nodes N divides the
cardinality of sols stored in each node. Therefore, the space needed for each node can be
roughly estimated as follows:

S︸︷︷︸
L(1),R(1),L(2),R(2)

+ 2tC︸︷︷︸
A(1),A(2)

+ S/N.︸ ︷︷ ︸
(partial) sols

Recalling the fact that our implementation broadcasts and gathers the data between
nodes only once, it is advisable to scale distributed-memory nodes instead of shared-memory
threads to save the memory space. In the era of cloud computing, it is safe to say that
preparing many distributed nodes with moderate memory capacity is not very difficult
for well-funded adversaries. Hence, our range reduction algorithm is highly scalable in
practice. In the following subsection, we will present the actual memory usage in virtual
distributed-memory nodes on the cluster machine (i.e., N=16 and t=16).

7This job scheduling is necessary for equalizing the cardinalities of partial sols due to the non-uniform
number of small linear combinations found in each job (see L

(found)
c in Theorem 1).

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 365

Table 4: Implementation results of the attack against qDSA signatures with nonces of
2-bit bias

Wall clock time CPU-time Memory ι S Peak #Recovered MSB
400.7 hours 11.7 years 15GB 3 226 0.0012 26-bit

Table 5: Implementation results of the attack against qDSA signatures with nonces of
3-bit bias

Wall clock time CPU-time Memory ι S Peak #Recovered MSB
Ours 4.25 hours 238 hours 2.8GB 4 223 0.0016 23-bit
S&D 0.75 hours 0.75 hours 128GB 8 230 0.0014 21-bit

1 2 3 4 5 6 7
·107

0.0005

0.001

0.0015

w

|Bn (K ′w) |

Figure 9: Detected sampled biases after reducing the signatures with 2-bit biased nonces
3 times

366 New Bleichenbacher Records

6.1 Attack against 2-bit Bias

We first present our main result: the key recovery attack against qDSA instantiated with
Curve25519 using 2-bit biased nonces. We artificially generated faulty qDSA signatures
based on the fault attack described in Section 3.2; in addition, we preprocessed them
to make 2-MSB of nonces biased as described in Section 3.3. Due to the computational
resources available to us, we had to filter the signature pairs by h values to trade the time
and space complexity for the data complexity, following the discussion in Section 5.5. More
concretely, setting f = 19, we initially generated nearly 245 preprocessed signatures and
only kept ones with h < 2252−19, so that we obtained S = 226 signatures to be processed
by Bleichenbacher’s attack. The whole signature generation phase took about 5 days using
the cluster. Accordingly, we only had to reduce 252− 19− 26 = 207-bit in total during
the range reduction phase, which allowed us to set the parameter β = 69 slightly below
β0 = 3× 24− log 3.

The recovery of the first MSBs was conducted with the virtual machine instances; the
range reduction jobs were distributed to 16 distributed-memory MPI processes, all of
which spawned 16 shared-memory OpenMP threads. The measured experimental results
are summarized in Table 4. We observed that the detected bias peak after 3 rounds of
reduction matches the theoretical estimate, i.e. |Bn(K)|43 ≈ 0.0012 from Corollary 1. The
detected sampled biases are plotted in Fig. 9. (It only displays the selected noise points for
simplicity; we actually computed the sampled biases at L-evenly-spaced points in n, where
L ≈ 226, and detected the only one peak point that showed the significant bias value.)
The FFT table preparation and sampled bias computation finished within a few minutes.

Though the total wall clock time was over two weeks, we expect much better performance
on a dedicated cluster. Due to the uneven resource allocation of virtual instances, which
are used by many people and therefore out of our control, some nodes were significantly
slower than others, and the fastest node completed their jobs within only 7 days, which
is equivalent to 4.8 CPU-years in total. As a matter of fact, we did not observe such a
difference when we parallelized the range reduction on the Xeon workstation. Thus, we
stress that this synchronization overhead is not because of our range reduction algorithm,
but rather a specific problem in virtual machines.

After the 26-MSB of the secret key was successfully recovered, we iteratively recovered
the following bits as in Section 4.4, using the 2 nodes (i.e., 56 threads in total) of the Xeon
workstation for the range reduction. Consequently, the whole process below took less than
6 hours in total. We took a small security margin and only assumed that the 24-MSB was
recovered in the previous phase, following the advice by [AFG+14] and [DMHMP14]. We
used Algorithm 3 until we recovered the 189-MSB and lastly used the sort-and-difference
to recover the 216-MSB; at this stage, we do not need to reduce many bits anymore,
and therefore the sort-and-difference is more convenient since it only constructs linear
combinations of two and does not diminish the sampled bias peak very much, which allows
us to detect the peak area more precisely. Finally, we directly computed the bias without
range reduction and recovered 241-MSB, with which a simple exhaustive search could be
easily done to obtain the remaining unknown bits.

Performance estimate of better-equipped adversaries. Since we filtered signatures by
h’s top 19 bits and only used S = 226 as input, what we have computed corresponds to
the timings TGen of 245 and TAtk of 252, and the space SAtk of 226. Thus, we can infer that
a better-equipped adversary, say one with access to 32 cores × 32 nodes with 96GB RAM
for each, could perform a key recovery within about 3 months even without filtering at all,
from the estimate in Table 3. This should be a more favorable attack setting in a situation
where the adversary is only allowed to generate fewer faulty signatures.

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 367

6.2 Attack against 3-bit Bias

Next, we describe the experimental results of the attack against qDSA signatures with
3-bit biased nonces. We artificially generated 223 faulty signatures (without filtering) based
on the attack in Section 3.1 and preprocessed them to make the 3-MSB of nonces biased
as described in Section 3.3. The program was executed in the Xeon workstation and we
parallelized the range reduction with 28 shared-memory OpenMP threads × 2 MPI nodes.

The measured experimental results are given in Table 5. We also performed the attack
using the sort-and-difference, which is abbreviated as S&D. The attack was completed much
faster than the case of 2-bit bias since now we are allowed to iterate the range reduction 4
times, and therefore the amount of bits reduced per round is much less. Moreover, the
CPU-time was almost 10 days and the memory consumption was considerably lower then
that of the sort-and-difference. This result implies that the attack against 3-bit bias would
even be feasible using a small laptop for daily use. We omit the recovery of the following
bits since the procedure is the same as the previous experiment on 2-bit bias.

It also turned out that the sort-and-difference (with γ = 1) is even exploitable against
3-bit bias and the CPU-time was a lot shorter than our algorithm, which is as expected.
In a situation where an adversary is allowed to generate more than 1 billion 3-bit biased
signatures, the use of sort-and-difference should be a better option. However, it should be
pointed out that the resulting number of signatures after 8 rounds was only 225.8, which is
significantly less than the estimated amount, i.e., (1− e−2γ)8 · 230 ≈ 228.3. This instability
could be an obstacle when attacking the signatures over a larger group, since it demands
higher γ or more input signatures than the theoretical bound, both of which would lead to
more memory usage than expected.

7 Conclusion
In this paper, we have proposed fault attack techniques against the qDSA signature scheme
to induce a few bits bias in the nonces. Furthermore, we designed a highly-parallelizable
and space-efficient range reduction algorithm for the Bleichenbacher’s nonce attack, based
on Howgrave-Graham and Joux’s variant of Schroeppel–Shamir algorithm. We have
presented the first complete experimental results on the full key recovery of a signature
scheme implementation based on a 252-bit curve with 2-bit and 3-bit biased nonces, and
thus have set new records in the application of Bleichenbacher’s attack.

Acknowledgements
We are indebted to Adi Shamir for suggesting crucial ideas for this work, including, in
particular, the application of the Schroeppel–Shamir algorithm. We would like to also
thank Samuel Neves, Tatsuaki Okamoto, Tsuyoshi Takagi, and anonymous reviewers for
valuable comments and suggestions.

References
[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoit Gérard, Jean-Gabriel Kam-

merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decom-
position, power analysis, and attacks on ECDSA signatures with single-bit
nonce bias. In T. Iwata and P. Sarkar, editors, ASIACRYPT 2014, volume
8873 of LNCS, pages 262–281. Springer, 2014.

368 New Bleichenbacher Records

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, SODA, pages 10–24. SIAM, 2016.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract). In
EUROCRYPT ’97, volume 1233 of LNCS, pages 37–51. Springer, 1997.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. High-speed high-security signatures. Journal of Cryptographic
Engineering, 2(2):77–89, 2012.

[Ber06] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 207–228. Springer, 2006.

[BFMT16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Ti-
bouchi. Side-channel analysis of weierstrass and koblitz curve ECDSA on
android smartphones. volume 9610 of LNCS, pages 236–252. Springer, 2016.

[BL] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for
elliptic-curve cryptography. http://safecurves.cr.yp.to.

[BL17] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Mont-
gomery ladder. In Joppe W. Bos and Arjen K. Lenstra, editors, Topics
in Computational Number Theory Inspired by Peter L. Montgomery, pages
82–115. Cambridge University Press, 2017.

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in DL sig-
nature schemes. Presentation at IEEE P1363 working group meeting,
2000. Available from http://grouper.ieee.org/groups/1363/Research/
contributions/Ble2000.tif.

[Ble05] Daniel Bleichenbacher. Experiments with DSA. Rump session
at CRYPTO 2005, 2005. Available from https://www.iacr.org/
conferences/crypto2005/r/3.pdf.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks
on elliptic curve cryptosystems. In CRYPTO 2000, volume 1880 of LNCS,
pages 131–146. Springer, 2000.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie–Hellman and related schemes. In
Neal Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 129–142.
Springer, 1996.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. "Ooh
aah... just a little bit" : A small amount of side channel can go a long way.
In CHES 2014, volume 8731 of LNCS, pages 75–92. Springer, 2014.

[CS17] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic:
The case of large characteristic fields. Cryptology ePrint Archive, Report
2017/212, 2017. http://eprint.iacr.org/2017/212.

http://safecurves.cr.yp.to
http://grouper.ieee.org/groups/1363/Research/contributions/Ble2000.tif
http://grouper.ieee.org/groups/1363/Research/contributions/Ble2000.tif
https://www.iacr.org/conferences/crypto2005/r/3.pdf
https://www.iacr.org/conferences/crypto2005/r/3.pdf
http://eprint.iacr.org/2017/212

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 369

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Information Theory, 22(6):644–654, 1976.

[DMHMP14] Elke De Mulder, Michael Hutter, Mark E Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce leaks
in 384-bit ECDSA: extended version. Journal of Cryptographic Engineering,
4(1):33–45, 2014.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[FFAL17] Armando Faz-Hernández, Hayato Fujii, Diego F. Aranha, and Julio López. A
secure and efficient implementation of the quotient digital signature algorithm
(qDSA). In Sk Subidh Ali, Jean-Luc Danger, and Thomas Eisenbarth, editors,
SPACE 2017, volume 10662 of LNCS, pages 170–189. Springer, 2017.

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on
“Program Generation, Optimization, and Platform Adaptation”.

[FLRV08] Pierre-Alain Fouque, Reynald Lercier, Denis Réal, and Frédéric Valette.
Fault attack on elliptic curve Montgomery ladder implementation. In Luca
Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-Pierre
Seifert, editors, FDTC 2008, pages 92–98. IEEE, 2008.

[Gal13] Patrick Gallagher. Digital signature standard (DSS). NIST, 2013. FIPS
PUB 186–4.

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, 2004.

[Gt16] Torbjörn Granlund and the GMP development team. GMP: The GNU
Multiple Precision Arithmetic Library Version 6.1.2, 2016. http://gmplib.
org/.

[GVY17] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be with you:
A microarchitectural side channel attack on several real-world applications
of Curve25519. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, CCS 2017, pages 845–858. ACM, 2017.

[HGJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 235–256. Springer, 2010.

[HGS01] Nick A. Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001.

[HW11] Georg Hager and Gerhard Wellein. Introduction to High Performance Com-
puting for Scientists and Engineers. Chapman and Hall / CRC computational
science series. CRC Press, 2011.

http://gmplib.org/
http://gmplib.org/

370 New Bleichenbacher Records

[KS00] David R. Kohel and Igor E. Shparlinski. On exponential sums and group
generators for elliptic curves over finite fields. In ANTS-IV, pages 395–404,
2000.

[LCL13] Mingjie Liu, Jiazhe Chen, and Hexin Li. Partially known nonces and fault
injection attacks on SM2 signature algorithm. In Inscrypt 2013, volume 8567
of LNCS, pages 343–358. Springer, 2013.

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic curves for security.
IRTF, 2016. RFC 7748.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An
update. In CT-RSA 2013, volume 7779 of LNCS, pages 293–309. Springer,
2013.

[Mac] Kenneth MacKay. micro-ecc: a small and fast implementation of ECDSA
and ECDH for 8-bit, 32-bit, and 64-bit processors. https://github.com/
kmackay/micro-ecc.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987.

[NNTW05] David Naccache, Phong Q. Nguyen, Michael Tunstall, and Claire Whelan.
Experimenting with faults, lattices and the DSA. In Serge Vaudenay, editor,
PKC 2005, volume 3386 of LNCS, pages 16–28. Springer, 2005.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. Journal of Cryptology,
15(3), 2002.

[NS03] Phong Q Nguyen and Igor E Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Designs, Codes and
Cryptography, 30(2):201–217, 2003.

[NT12] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-based fault attacks on
signatures. In Marc Joye and Michael Tunstall, editors, Fault Analysis
in Cryptography, Information Security and Cryptography, pages 201–220.
Springer, 2012.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff,
editor, COSADE, volume 8622 of LNCS, pages 243–260. Springer, 2014.

[Ope08] OpenMP Architecture Review Board. OpenMP application program interface
version 3.0, May 2008. http://www.openmp.org/mp-documents/spec30.
pdf.

[Ren17a] Joost Renes. qDSA reference implementation for C. https://www.cs.ru.
nl/~jrenes/software/cref-g1.tar.gz, 2017.

[Ren17b] Joost Renes. qDSA reference implementation for the AVR ATmega. https:
//www.cs.ru.nl/~jrenes/software/avr-g1.tar.gz, 2017.

[RS17] Joost Renes and Benjamin Smith. qDSA: Small and secure digital signatures
with curve-based Diffie-Hellman key pairs. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, volume 10625 of LNCS, pages 273–302.
Springer, 2017.

https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://www.cs.ru.nl/~jrenes/software/cref-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/cref-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/avr-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/avr-g1.tar.gz

Akira Takahashi, Mehdi Tibouchi and Masayuki Abe 371

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks.
In CHES 2002, volume 2523 of LNCS, pages 2–12. Springer, 2002.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm
for certain NP-complete problems. SIAM Journal on Computing, 10(3):456–
464, 1981.

[TT18] Akira Takahashi and Mehdi Tibouchi. New Bleichenbacher records:
Parallel implementation. https://github.com/security-kouza/new-
bleichenbacher-records, 2018. Source code of this attack.

https://github.com/security-kouza/new-bleichenbacher-records
https://github.com/security-kouza/new-bleichenbacher-records

	Introduction
	Attacks on Nonces in Schnorr-like Signatures
	Montgomery Curve, Curve25519, qDSA
	Our Contributions
	Related Work

	Preliminaries
	Notations
	The quotient Digital Signature Algorithm
	Knapsack Problem

	Fault Attacks on qDSA
	Random Semi-Permanent Fault on the Base Point
	Instruction Skipping Fault on Base Point Initialization
	Preprocessing Signatures for Bleichenbacher's Attack
	Possible Countermeasures

	Bleichenbacher's Nonce Attack
	Bias Definition and Properties
	Range Reduction
	Bias Computation
	Recovering Remaining Bits

	Optimization and Parallelization of Bleichenbacher's Attack
	Our Approach: Using Schroeppel–Shamir Algorithm
	Analysis
	Parallelization
	Lower Bounds for the Amount of Signatures
	Data-(Time, Space) Trade-off
	Performance Comparison

	Implementation Results
	Attack against 2-bit Bias
	Attack against 3-bit Bias

	Conclusion

