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Elie Noumon Allini • Maciej Skórski • Oto Petura • Florent Bernard
• Marek Laban • Viktor Fischer

CHES 2018, Amsterdam, September 2018
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Jittery clock – commonly used source of randomness in digital devices

Clock jitter caused by several noise sources
I White noise (thermal noise, ...)

↪→ Best source of randomness, non manipulable

I Autocorrelated noise (low frequency noises, e.g. flicker noise)

↪→ Entropy rate (unpredictability measure) difficult to quantify

I Data dependent noise

↪→ Dangerous (manipulable), must be avoided

Jitter monitoring

Continuous embedded monitoring is preferable

Jitter – usually quantified using the variance

var(X ) = E(X 2)− [E(X )]2 (1)
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Free running oscillators – sources of the jittery clocks
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Objectives

Analyze the use of variance for entropy estimation

Use high order Markov model to estimate entropy coming from
auto-correlated noises

Compare performance of ROs and STRs as sources of randomness
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Characterization of random fluctuations of the clock frequency 6

Power spectral density (PSD)

Defined as:
Sy (f ) = hαf

α (2)

I y – dimensionless fractional frequency (y = (ν − ν0)/ν0)
I α – constant characterizing the noise process
I hα – intensity of this noise

Characterizes random fluctuations of the clock frequency

ααα Type of the noise process
−2 Random Walk Frequency (RWF)

−1 Flicker Noise Frequency (FF)

0 White Noise Frequency (WF) or Random Walk Phase (RWP)

1 Flicker Noise Phase (FP)

2 White Noise Phase (WP)
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Variance of the frequency fluctuations 7

Main assumption

y is an infinite zero-mean stationary process
I characterized by its variance computed from a window of length τ

Variance can be computed using the power spectral density

Corollary of the Wiener-Khinchin theorem

Variance of y computed from the power spectral density Sy (f ):

σ2
y (τ) =

∫ +∞

0
Sy (f )× |Hτ (f )|2df , (3)

whenever it exists.
I Hτ (f ) is the transfer function of the variance operator:

↪→ Fourier transform of the impulse response function hτ
↪→ Depends on the type of variance computed
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Computation of the statistical variance from the PSD 8

Time domain
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|Hτ (f )|2 =

(
sin(πτ f )

πτ f

)2

(4)

Variance of the jitter computed for α ∈ [−2; 2] from time window τ

σ2
y (τ) =

2∑
α=−2

hα
(πτ)2

∫ fh

0
f α−2 sin2(πτ f )df . (5)

Problem: if α 6 −1, the integral does not converge as f tends to 0
I The use of the statistical variance can cause entropy overestimation
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Allan variance and its computation from the PSD 9

Time domain

t

hτ (t)

−τ
τ

1/2τ

−1/2τ

Frequency domain

|Hτ (f )|2 =

(
sin(πτ f )

πτ f

)2

sin2(πτ f ) (6)

Allan Variance of the jitter computed for α ∈ [−2; 2] from window τ

σ2
y (τ) =

2∑
α=−2

2hα
(πτ)2

∫ fh

0
f α−2 sin4(πτ f )df (7)

Convergence ensured for α > −3 as f tends to 0:
I Allan variance is accurate, even in presence of low frequency noises
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Allan variance estimation from a limited data set 10

An average fractional frequency can be used

Average frequency deviation yk over a time interval of length τ
I Corresponds to the fluctuations while counting the number of periods

of the jittery signal over τ

Estimate of the Allan variance:

σ2
y (τ) =

1

2(M − 1)

M−1∑
i=1

(
y i+1 − y i

)2
. (8)

↪→ M : total number of yk ’s.

For α = 0, σ2
y (τ) is an unbiased estimator of the variance

even for a finite M
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Similar results for both types of free running oscillators studied
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Hardware implementations 12
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Comparison with the state-of-the-art methods

Method Area fmaxfmaxfmax Power

ALM/Regs DSPs [MHz] [mW]

Haddad et al. 119/160 2 178.3 6-7

Fischer and Lubicz 169/200 4 187.7 7-8

Proposed method, Eq. (8) 49/117 1 238.5 4-5

Noumon Allini, Skórski, Petura, Bernard, Laban, Fischer Free running oscillators as sources of randomness



Variance and Allan variance
High order Markov model for entropy rate estimation

Experimental results

1 Variance and Allan variance

2 High order Markov model for entropy rate estimation from
autocorrelated signals

3 Experimental results
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The use of high order Markov chain models for entropy estimation 14

Min-entropy

Min-entropy is the most conservative entropy measure
I Avoids entropy rate overestimation
I Hard to estimate in general

Recent approach offers efficient way to estimate min-entropya:
I Information sources modeled as high order Markov chains

a
S. Kamath and S. Verdu, Estimation of entropy rate and Renyi entropy rate for Markov chains, IEEE

International Symposium on Information Theory 2016

Markov chain

Convenient to model temporal short-term dependencies
I Higher order models give more accuracy but are much more complex

Depending on jitter properties and the randomness extraction
process, we use an 8-th order Markov model to study dependencies

I Model parameters: {0, 1}8 states, transition matrix 28 × 28
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Entropy estimates from the 8-th order Markov chain model 15

Randomness extraction method: sampling the jittery clock

Jitter accumulation time Markov AIS 31 AIS 31 T8 NIST NIST
chain Procedure B 800-90B 800-90B

Periods of s2 min-entropy Shannon entropy IID min-entropy

10 000 0.8102 failed 0.9844 non-IID 0.648

20 000 0.8105 failed 0.9851 non-IID 0.647

30 000 0.8102 failed 0.9847 non-IID 0.648

50 000 0.9369 failed 0.9992 non-IID 0.673

100 000 0.9012 failed 0.9935 non-IID 0.670

Randomness extraction method: counting the jittery clock periods

Jitter accumulation time Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

Periods of s2 min-entropy Shannon entropy IID min-entropy

10 000 0.8089 failed 0.9966 non-IID 0.844

15 000 0.9769 passed 0.9998 non-IID 0.931

20 000 0.9865 passed 0.9999 IID 0.999

25 000 0.9907 passed 0.9999 IID 0.998

100 000 0.9910 passed 0.9999 IID 0.998
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Impact of the surrounding logic on the jitter and entropy rate 17

Three projects implemented

Blocks placed exactly on the same place in the same FPGA
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Impact of the surrounding logic on the jitter and entropy rate 18

Project σ1 [ps] σ2 [ps] Var(cnt) Avar(N)

Project 1 (just two rings) 3.9 3.3 14.01 2.79

Project 2 (ring + ext.osc. + other logic) 9.7 7.3 26.94 4.33

Project 3 (two rings + other logic) 10.6 10.0 14.72 2.76

Oscillator jitter increases when a full cryptosystem is implemented
I Surrounding logic has inevitable impact on clock jitters

However, variances of counter values do not change when both
oscillators are implemented inside the device!

External clocks
I Cause entropy rate overestimation
I Introduce manipulable global noise sources into the generator
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Comparison of RO and STR as sources of randomness 19

Autocorrelation of raw counter values and their first differences
I Two identical rings (RO or STR)
I One ring (RO or STR) and an external quartz oscillator

RO and STR exhibit the same behavior in terms of jitter produced

The use of identical oscillators reduces autocorrelations

First order difference removes large portion of autocorrelation
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Conclusions

Counting jittery clock periods gives higher quality random numbers
I Higher bit rate with higher entropy rate
I Counter values can be used for online jitter monitoring

Allan variance should be used to estimate entropy rate rather than
the statistical variance

I Not sensitive to window size – impact of low frequency noises can be
reduced using small windows without loosing precision

I Smaller circuitry required for implementation

Differential principle of the TRNG design is a stringent requirement,
not a recommendation

I Global, manipulable noises are strong and always present

High order Markov chain models provide good min-entropy estimates
and are efficient to detect dependencies in generated numbers
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