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Abstract. In this paper, we evaluate clock signals generated in ring oscillators and
self-timed rings and the way their jitter can be transformed into random numbers. We
show that counting the periods of the jittery clock signal produces random numbers
of significantly better quality than the methods in which the jittery signal is simply
sampled (the case in almost all current methods). Moreover, we use the counter values
to characterize and continuously monitor the source of randomness. However, instead
of using the widely used statistical variance, we propose to use Allan variance to do
so. There are two main advantages: Allan variance is insensitive to low frequency
noises such as flicker noise that are known to be autocorrelated and significantly
less circuitry is required for its computation than that used to compute commonly
used variance. We also show that it is essential to use a differential principle of
randomness extraction from the jitter based on the use of two identical oscillators
to avoid autocorrelations originating from external and internal global jitter sources
and that this fact is valid for both kinds of rings. Last but not least, we propose a
method of statistical testing based on high order Markov model to show the reduced
dependencies when the proposed randomness extraction is applied.
Keywords: Physical source of randomness · physical RNG · stochastic model · entropy

Introduction
In modern cryptographic systems, security is based on the statistical quality and on
the unpredictability of confidential keys. These keys are generated in random number
generators (RNGs) using random physical phenomena that occur in the hardware devices
in which the system is implemented. A widespread source of randomness in digital devices
is the jitter of the clock signal generated inside the device using free running oscillators
such as ring oscillators [SMS07, BLMT11, RYDV15], or self-timed rings [CFAF13].

The statistical quality and unpredictability of the generated numbers depend on the
size and quality (e.g. the spectrum) of the clock jitter. It is therefore good practice to
continuously monitor this jitter using an embedded jitter measurement method. As required
in the document AIS-20/31 published by the German Federal Office for Information Security
(German acronym BSI) [KS11], the measured jitter parameters should then be used as
input parameters in the stochastic model used to estimate entropy, which characterizes
the unpredictability of generated numbers.

Generally, many sources of randomness contribute to the overall entropy rate at the
output of the RNG based on free running oscillators [VABF10]:
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1. Secure sources – random sources such as thermal noise, which are considered to be
the best sources of randomness, because of their large and almost uniform signal
spectrum similar to white noise, they are mutually independent, and unavoidable
(i.e. they cannot be manipulated by the attacker);

2. Security critical sources – random sources such as low frequency noises that feature
some autocorrelation, which reduces the entropy rate at the generator output, while
making entropy estimation very complex because of long term dependencies;

3. Dangerous sources – environmental, data dependent and correlated sources, which
can be random or deterministic. Their contribution to random number generation
must be avoided by the design, since they can be manipulated. If the manipulation
cannot be avoided, it must at least be detectable through dedicated embedded tests.

In practice, most (and sometimes all) of these sources of randomness coexist. This would
not be a big security issue if: 1) only the contribution of secure sources were taken into
account when estimating the entropy rate; 2) the generated numbers were impossible to
manipulate.

In [SMS07], Sunar et al. use an urn stochastic model to estimate the entropy rate at the
output of the generator using a huge number of ring oscillators, which the authors claimed
were independent. However, the model does not account for possible dependencies between
the outputs of the ring oscillators, which can even cause the rings to lock [CBFF12].

In [BLMT11], Baudet et al. propose a comprehensive stochastic model for an elementary
oscillator based random number generator sampling the jittery clock signal. In their model,
the entropy rate at the generator output is estimated from the variance of the random
jitter component that originates from the thermal noise.

The output numbers generated by both generators may be biased depending on the duty
cycle of the sampled signal(s). Although both generators use the clock signal generated in
the rings as a source of randomness, only the model proposed by Baudet et al. estimates the
entropy rate from the jitter component originating from the thermal noise and consequently
avoids overestimating entropy.

Evaluating the contribution of thermal and low frequency noises to the generated
randomness is no simple task. In [HBFT14], Haddad et al. computed the variance of the
jitter for different accumulation times and then computed the jitter component originating
from the thermal noise by curve fitting. This method has two disadvantages: 1) its
precision depends to a great extent on the precision of the curve fitting algorithm; 2) it is
not suitable for monitoring the jitter inside the device.

In [FL14], Fischer and Lubicz proposed a method of evaluation of the variance of the
random jitter originating from the thermal noise that can be embedded in logic devices
and hence used for online evaluation of the entropy rate at the output of the generator.
However, depending on the initial phase of the two clock signals and the jitter accumulation
time, the method can produce incorrect results. The error can be corrected by using
different accumulation times, but it is not easy to make this correction automatic.

In [KS08], Killmann and Schindler used a pair of noisy diodes as a source of randomness
and an operational amplifier, a Schmitt trigger and a counter of edges as a time-to-digital
converter transforming the noise into the raw binary signal. Surprisingly, the time-to-digital
conversion based on counters had not been previously studied in the context of the use of
free running oscillators.

Our contributions: 1) We show that counting the periods of the jittery clock signal,
representing a time-to-digital conversion, gives random numbers of significantly better
quality than the methods based on sampling the jittery signals. What is more, the counter
values can be used to characterize and to continuously monitor the source of randomness. 2)
We propose to use Allan variance of counter values instead of the commonly used statistical
variance to evaluate the jitter, since it is not sensitive to low frequency components of the
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jitter originating from low frequency noises, such as flicker noise, which are known to be
autocorrelated. The proportion of thermal noise in the total jitter can thus be more easily
measured inside the device with no error or overestimation. 3) We demonstrate that by
using two identical rings instead of one ring and one quartz oscillator, the impact of not
only external, but also of internal global jitter sources can be significantly reduced and
render the generator much more robust. 4) We propose to use a statistical method based
on a high order Markov model and show how efficient it is in detecting dependencies and
correlations in low quality generators.

The paper is organized as follows: in Section 1, we provide the theoretical background
and analyze state-of-the-art methods related to our approach. In Section 2, we describe the
experimental setup and analyze the impact of the type of the oscillator on the commonly
used statistical variance and on Allan variance. In Section 3, we present the results of
implementation of variance computation circuitries in hardware and discuss the impact of
the measurement circuitry and of the additional logic represented by an AES cipher on
the source of randomness in Section 3.2. In Section 4, we discuss the main results. We
present our conclusions in Section 5.

1 Theoretical background
In purely digital devices, which are currently used to implement cryptographic systems,
analog noise signals such as thermal noise cannot be directly exploited. Instead, the
designer can use the fact that electrical noises are transformed in free running oscillators
into uncertainties in timings of generated digital clock signals, which can be observed as a
jitter in the time domain and as a phase noise in the frequency domain [DDS18].

In logic devices, the most frequently used free running oscillators are ring oscillators
(ROs) and self-timed rings (STRs), because both are easy to implement using standard
logic gates. ROs are usually composed of an odd number of inverters as shown in the top
panel of Fig. 1 (a) or a NAND gate and a sufficient number of non-inverting buffers, as
shown in the bottom panel of Fig. 1 (a). In ROs, which are also called single-event ring
oscillators [Nis16], only one event (the rising or falling edge of the clock signal) propagates
at any given time in the ring. Its propagation time is impacted by noises that modify the
slope of the rising and falling edges and the reference voltage of inverters (or buffers).

In STRs, also called multi-event oscillators without signal collision, several events
can propagate over the ring at the same time. The STR is composed of L stages, each
consisting of a Müller gate and an inverter (see Fig. 1 (b)) [Nis16]. Fi is the forward input
of the i-th stage, Ri is the reverse input of the same stage, and Ci is the output of the
stage. If the forward and reverse input values differ, the forward input value is written to
the stage output. Otherwise, the previous output value is maintained.

Ring oscillators are simpler and hence less expensive than STRs, so many rings can be
used to increase entropy [SMS07]. STRs are more complex, but multiple outputs of the
same ring can be used to increase entropy [CFFA13].

The randomness originating from electrical noises, which is transformed in the free
running oscillators into a clock jitter, can be further transformed into random numbers
obtained as a chain of 1-bit or n-bit random values by: 1) sampling the jittery clock
signal(s) after a sufficiently long time interval required for entropy accumulation as shown
in Fig. 2 (a) [SMS07], [BLMT11]; 2) by counting the periods of the jittery clock signal
during the time interval as shown in Fig. 2 (b) [KG04].

While the first method based on sampling may be preferred because of its simplicity,
it is very sensitive to dependencies between the clock signals and also to the duty cycle
of the sampled clock signal, which can cause a significant bias in the generated numbers
[BLMT11].

Although the second method based on counting the periods of the jittery clock signal
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Figure 1: Generation of the jittery clock signal s in free running oscillators: ring oscillators
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Figure 2: Generation of random numbers from the jittery clock signals s1 and s2 using
a sampler (a) and a counter (b). Signals s1 and s2 are generated in two free running
oscillators (FRO) of the same type and topology.

adds some complexity to the RNG design, we will show that it effectively removes depen-
dencies between the clock signals by transforming random events from the time domain
to the frequency domain, and even removes the dependence of generated numbers on the
duty cycle of the jittery clock signal. We will also show that the counter can be used as a
basis for dedicated embedded tests.

In the following sections, we will demonstrate and justify the relationship between the
measured variance of counter values and that of the jitter present in clock signals s1 and
s2.

1.1 Characterization of the source of randomness by a statistical vari-
ance – a pitfall

Statistical variance characterizes the deviation of a random variable from its mean value.
More precisely, if X is a square-integrable random variable, then its statistical variance
can be computed as [Žit10, CM98, Eng06]:

Var(X) = E
(
X2)− (E(X))2 (1)

where E denotes the statistical average. The estimate of this variance on a set of M
samples {xi}16i6M , is given as [Ril08]:

Var(X) = 1
M

M∑
i=1

x2
i −

(
1
M

M∑
i=1

xi

)2

. (2)
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1.1.1 Limitations of statistical variance in the presence of low frequency noises

We denote the output frequency of the oscillator under study by ν(t). The fractional
frequency of the output is defined as:

y(t) = ν(t)− ν0

ν0
, (3)

where ν0 is the nominal frequency of the oscillator.
In oscillators, random fluctuations are often characterized by the power law spectrum

[AB81]:

Sy(f) = hαf
α, (4)

where f is the Fourier frequency, hα the intensity of the particular noise process and α
a constant that characterizes this process. The typical values of α, with corresponding
noise types, that often appear in the literature are +2 (white noise phase modulation),
+1 (flicker noise phase modulation), 0 (white noise frequency modulation), −1 (flicker
noise frequency modulation) and −2 (random walk frequency modulation). Knowing that
random fluctuations are due to the above mentioned types of noises, the power spectral
density of y can be expressed as [Uhr07]:

Sy(f) =
2∑

α=−2
hαf

α. (5)

Under the assumption that y is a zero-mean stationary random process, its statistics
do not change over time. This implies that y is an infinite signal that can only be observed
through a time window defined by the function hτ . The observed signal yτ can then be
considered as the response of a filter, with the impulse response hτ , to the random input
y. The power spectral densities of y and yτ are therefore related by [CM98]:

Syτ (f) = Sy(f) |Hτ (f)|2 , (6)

where Hτ is the Fourier transform of hτ . Based on the Wiener-Khinchin theorem, the
autocorrelation function of yτ can then be computed as [CM98]:

Ryτ (ξ) =
∫ +∞

−∞
Syτ (f)ei2πξfdf =

∫ +∞

−∞
Sy(f) |Hτ (f)|2 ei2πξfdf. (7)

Because the process has zero mean, the variance is the autocorrelation function,
evaluated at 0, hence [Ril08]:

Var(y) = E
(
y2) = E

(
y2
τ

)
=
∫ +∞

−∞
Sy(f) |Hτ (f)|2 df. (8)

The choice of hτ reveals how samples of the signal y are used in the variance computation.
Since in the case of statistical variance, we are interested in consecutive samples, the
corresponding time window has the form depicted in Fig. 3.

t

hτ(t)

τ

1/τ

Figure 3: Time window of the statistical variance
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The magnitude squared transfer function of the statistical variance is thus [Uhr07]:

|Hτ (f)|2 =
(

sin πτf
πτf

)2
. (9)

The statistical variance of the signal can then be expressed as:

Var(y) =
2∑

α=−2

hα
(πτ)2

∫ fh

0
fα−2 sin2(πτf)df, (10)

where fh is the cutoff frequency of the oscillator.

Riemann criterion for improper integrals Given two real numbers b and p such that
b > 0, the function t 7−→ tp is integrable in the improper sense on (0, b] if, and only if,
p > −1 [CN14, Chapter 10].

In Eq. (10), the integrand is equivalent to π2τ2fα as f → 0. The Riemann criterion
therefore shows that the integral does not converge for α = −1 and α = −2 corresponding
to low frequency noises. Consequently, it is not possible to compute the variance when the
data is affected by low frequency noises. In other words, statistical variance should not be
used when low frequency noises are not negligible.

For this reason, it is recommended to use other types of variance that converge in the
presence of low frequency noises [Ril08, All87]. One example of this type of variance is
the Allan variance, which is widely used to study the frequency stability of clocks and
oscillators [All66]. Next, we will show that the Allan variance should also be preferred in
entropy rate estimation.

1.2 Allan variance
We recall that y denotes the fractional frequency of the oscillator. Thus, the average
fractional frequency is defined as:

y(t) = 1
τ

∫ t+τ

t

y(u)du. (11)

It corresponds to the average frequency deviation over a time interval of length τ . If
the frequency data are acquired periodically with a sampling period of τ , the obtained
fractional frequency series is denoted (yi), where yi is the ith acquired sample. The Allan
variance of the frequency deviation of y is then defined as [AB81]:

σ2
y(τ) = 1

2 E
(
yi+1 − yi

)2
. (12)

We denote Avar(y) the Allan variance of y as in [Ril08]. An estimate of this variance
in a data set comprised of M average fractional frequency samples, is given as [Ril08]:

Avar(y) = σ2
y(τ) = 1

2(M − 1)

M−1∑
i=1

(
yi+1 − yi

)2
. (13)

1.2.1 Convergence in the presence of low frequency noises

Unlike statistical variance, the Allan variance computes the difference of consecutive
samples. This yields the time window presented in Fig. 4, with a magnitude squared
transfer function given by:

|Hτ (f)|2 = 2
(

sin πτf
πτf

)2
sin2 πτf. (14)
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Figure 4: Time window of the Allan variance

This makes it possible to write the signal variance as:

Avar(y) = σ2
y(τ) =

2∑
α=−2

2hα
(πτ)2

∫ fh

0
sin4(πτf)fα−2df. (15)

In this new case, the integrand is equivalent to π4τ4fα+2 as f → 0. The Riemann
criterion for f → 0 ensures that this integral converges when α > −3, and thus guarantees
the accuracy of the Allan variance, even when the data are affected by low frequency noises
(α = −1 and α = −2).

Next, we present the general properties of the Allan variance. Readers interested in
the proofs of these properties should refer to Appendix A.

Theorem 1 (General properties of the Allan variance). 1. The Allan variance coin-
cides with the statistical variance of any stationary and uncorrelated random process.

2. If λ is a real number and x is a stationary random process, then λx is also a stationary
random process and:

Avar(λx) = λ2 Avar(x). (16)

3. If x and y are two independent stationary random processes, the following equation
is valid:

Avar(x+ y) = Avar(x) + Avar(y). (17)

Since the measurement principle of the jitter is based on counter values, the properties
of the Allan variance presented here will be used to establish the link between the variance
of counter values and the variance of the jitter.

1.3 Link between the variance of counter values and of the jitter
We assume that both s1 and s2 contain jitter that causes variations in counter values.
Before using the variance of a population of counter values as a measure of quality of
the source of randomness, we need to determine and justify the relationship between this
variance and the variance of the jitter on both signals s1 and s2.

s2

τ =
k∑

r=1

T2r

s1

T1NT11 T12

ϕ0

Figure 5: Timings in counting the periods of signal s1
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As mentioned above, the counter values are obtained by counting the number of periods
of the measured clock signal s1 during a time interval τ defined by the reference clock
signal s2. Of course, in practice, both signals feature a jitter, however, to simplify the
computation, we include the jitter of signal s1 in that of signal s2 as done in [BLMT11].
Consequently, the period T2 of signal s2 can be considered as a random variable of standard
deviation (see [BLMT11, Appendix C]):

σeq '
√
σ2

2 + T2

T1
σ2

1 , (18)

and the period T1 of signal s1 as a constant. The measurement time τ =
k∑
r=1

T2r is thus a

random variable. This time defines only the length of the time period, not the position
of the initial phase ϕ0 of the signal s1 when the measurement (the counting) starts (see
Fig. 5). However, to measure the jitter more accurately, the initial phase ϕ0 has to be
taken into account. This initial phase is independent of τ , since its value does not depend
on the length τ .

Because T1 is constant, the counter value N is a random variable defined as:

N := max
{
k ∈ N, ϕ0 +

k∑
r=1

T1r 6 τ

}
= max {k ∈ N, ϕ0 + kT1 6 τ} . (19)

The value N thus satisfies the inequality:

ϕ0 +N × T1 6 τ < ϕ0 + (N + 1)× T1, (20)

which is equivalent to:

N 6
τ − ϕ0

T1
< N + 1. (21)

It then follows that N can be written as:

N =
⌊
τ − ϕ0

T1

⌋
. (22)

It thus exists 0 6 ε < 1 such that:

N = τ − ϕ0

T1
− ε (23)

According to Sheppard’s correction [She97], ε is a random variable that is uniformly
distributed over [0, 1). Since it is independent of τ−ϕ0

T1
, using Eq. (16) and (17) from

Theorem 1, the following equation holds:

Avar(N) = Avar
(
τ − ϕ0

T1

)
+ Avar(ε) = Avar(τ) + Avar(ϕ0)

T 2
1

+ 1
12 . (24)

It is important to note that the Allan variance of counter values always overestimates
the Allan variance of the jitter per unit of time (e.g the signal period). The correction
must be applied by subtracting Avar(ε) = 1

12 and Avar(ϕ0)
T 2

1
.

As Avar(ϕ0)
T 2

1
∈
[
0, 1

12
]
(the maximum is obtained if ϕ0 is uniformly distributed over [0, T1)),

according to Eq. (24), Avar(τ) = T 2
1 Avar(N)− T 2

1
12 −Avar(ϕ0) ≥ T 2

1 Avar(N)− T 2
1

12 −
T 2

1
12 . As
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we do not want to overestimate the jitter, a conservative approach is to take the minimum
value for Avar(τ) that is:

Avar(τ) = T 2
1 ·Avar(N)− T 2

1
6 . (25)

Using Eq. (25), the variance of the accumulated jitter can be computed from the
variance of counter values. This justifies using counter values to estimate the jitter.

2 Study and setup of the variance measurement
To study the difference between statistical variance and the Allan variance in different
conditions, we first implemented the circuit presented in Fig. 2 (b) in the hardware. Four
different hardware configurations were tested in an Intel Cyclone V FPGA:

• Configuration 1: Signal s1 of 127 MHz was generated in an RO and signal s2 came
from a low jitter quartz oscillator generating a stable 125 MHz clock.

• Configuration 2: Both signals (s1 and s2) were generated in two ROs with the
same number of elements, oscillating at a frequency of 125 and 127 MHz, respectively.

• Configuration 3: Signal s1 of 128 MHz was generated in an STR and signal s2
came from a low jitter quartz oscillator generating a stable 125 MHz clock.

• Configuration 4: Both signals (s1 and s2) were generated in two STRs with
the same number of elements and oscillating at a frequency of 130 and 128 MHz,
respectively.

The counter values were sent to a PC via a simple serial interface and evaluated in the
software. The jitter accumulation time τ was set up from the PC using the serial link.

To obtain meaningful and reliable embedded measurements, we first needed to establish
the right operating parameters. These parameters are k – the number of periods of signal
s2, which determines the accumulation time τ and M – the number of samples from which
the variance will be computed.

We performed a series of variance measurements for different values of M in order to
find an acceptable compromise between the measurement time and precision. We used
k = 30 000 for this study. Measurement results are shown in Fig. 6.

Figure 6 clearly shows the advantage of the Allan variance: it changes very slightly and
only for low values of M , while the statistical variance increases with M and its values
fluctuate. This fluctuation occurs because low frequency noises affect the signal periods.
We selected M = 4096 as a compromise between the number of statistical data (which
impacts the precision of the measurement) and the measurement time. To obtain coherent
results, the same values of M were used when measuring variance and Allan variance.

We next studied the impact of the accumulation time τ =
k∑
r=1

T2r on the measured

variance. We observed the variances and Allan variances of counter values from two ring
oscillators as well as two self-timed rings with k ranging from 300 to several million. The
results are presented in Fig. 7 and Fig. 8.

We observed that ROs and STRs behave similarly in terms of variance dependence on
k. This means that the jitter accumulates in both structures in a very similar way.

We also observed that for low values of k (k < 1 000), the computed variances varied
probably because of the quantization noise, rather than random noises. Indeed, for these
low values of k, the counter values varied only very slightly.

Last but not least, we observed that for sufficiently high values of k (k > 10 000), the
Allan variance was always lower than the statistical variance. This proves that statistical
variance overestimates the proportion of uncorrelated noise in the total accumulated jitter.
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Figure 7: Variance and Allan variance of counter values depending on the measurement
interval k, with two ROs as sources of the jittery clock signals

2.1 Accuracy of Allan variance estimation
The sample estimate given in Eq. (13) (time-average) approximates the true value1 from
Eq. (12) (average over process randomness) well, provided that the series is wide-sense
stationary and has rapidly decreasing correlations2 [LG08]. One can think of small
correlations as a short memory of the process: substantial new information is gained with
every sample, so that the estimate becomes increasingly accurate.

1This is formally defined as ergodicity in mean.
2We discuss basic facts about process correlations in Appendix B.
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Figure 8: Variance and Allan variance of counter values depending on the measurement
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To check the quality of our estimate, we examined the process of counter values (used
to compute the variance) and their first differences (used to compute the Allan variance)
in more detail. We collected the data from four different hardware configurations, i.e.
Configurations 1 to 4 described earlier in this section. All projects used k = 30 000 periods
of s2 to set the counting time. The behavior across all experiments is summarized at high
level in Table 1.

Table 1: Comparison of raw counter values and their first differences.

counter data memory autocorrelations
raw values long strong

first differences short weak

The autocorrelations were considerably reduced in first differences, as shown in Fig. 9.
This confirms that differencing subsequent counter values is a good way of eliminating low
frequency components and reducing correlations. Frequency noise in the ring oscillators is

Figure 9: Autocorrelations of raw counter values and their first differences in the four
hardware configurations. At lag 0, the correlation is by definition always equal to 1.
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modeled by a process with stationary first differences in the theoretical literature3 [Gre83];
this is consistent with our experiments. More experiments are presented in Appendix B.

Based on our empirical evidence, we assume that the correlation is zero for sufficiently
large lags. Under the mild assumption that the difference process is correlated Gaussian, we
can bound estimation errors in the Allan variance computations (quantifying convergence
rate). More precisely, we assume

Model assumption: The process of counter differences is stationary normal,
with zero correlations for lags larger than p.

The technical result and the corrolary regarding Allan variance are given below.

Lemma 1. Let Z = {Zi} be a zero-mean stationary normal process with autocorrelation
function zero for lags larger than p. Then for large M we have

Var
(

1
M

M∑
i=1

Z2
i

)
= O(p/M),

in particular

1
M

M∑
i=1

Z2
i −→E(Z2) in probability.

By applying Lemma 1 to the differences of counter values ∆ȳi = ȳi − ȳi−1 we obtain

Corollary 1 (Consistency of Allan variance estimation4). Under the chosen model, the
Allan variance estimate 1

2(M−1)
∑M
i=1(∆ȳi)2 in Eq. (13) is asymptotically (for large M)

unbiased and consistent, with variance O(p/M).

2.2 Evaluation of randomness in counter values
We propose to use the least significant bit of the counter values (or of their first difference) as
random values. To evaluate the quality of the generated sequence, we model dependencies
between subsequent bits by higher-order Markov chains. First, we recall some basics on
Markov chains in order to introduce the theorem used to compute the min-entropy rate,
which is more conservative than the Shannon entropy rate. We then empirically (based on
data generated under different hardware configurations) compare our evaluation technique
with the entropy estimation methods in AIS31 and NIST 800-90B.

2.2.1 Theoretical Background

Model The Markov chain model of order d assumes a sequence of random variables {Ui}i
over the common state space S (S = {0, 1} in our case), such that:

• the next state distribution depends only on previous d states (short memory)

Pr[Ui|Ui−1, Ui−2, . . . , U0] = Pr[Ui|Ui−1, Ui−2, . . . , Ui−d],

• the next state distribution is a function of state values (that are time homogeneous)

Pr[Ui = ui|Ui−1 = ui−1, Ui−2 = ui−2, . . . , Ui−d+1 = ui−d+1] = f(ui;ui−1, . . . , ui−d+1).
3Equivalently, phase noise is modeled by a process with second stationary differences.
4See proof in Appendix C.
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Reduction of a chain of order d to a first order chain A Markov chain of order d can be
reduced to a chain of order 1 by introducing the sliding window of length d. More precisely,
if {Ui}i is a Markov chain of order d with the set of possible states S then the blocks
Wi = (Ui, Ui−1, . . . , Ui−d+1) form a Markov chain of order 1 with states Sd = S × . . .× S︸ ︷︷ ︸

d

.

The transition matrix can be then estimated by counting the transitions between sub-
sequent states (blocks); namely Pv,w = #{i:Wi=w and Wi−1=v}

#{i:Wi−1=v} is the transition probability
from v to w. In our case Ui are bits and the assumed order is 8, thus the transformed
chain Wi has states {0, 1}8 and the transition matrix has the size 28 × 28.

Min-entropy rate Entropy rates (understood as the entropy per bit in long sequences)
can generally be computed from the transition matrix. However, computation of the
min-entropy rate is more complicated than that of the Shannon entropy and does not
have a closed-form formula. We refer the reader to [KV16] for a detailed discussion of
how different definitions of entropy (Shannon entropy, Renyi entropy, min-entropy) can be
computed using Markov chains; below we state the result for min-entropy.

A sequence of states s1, . . . , s`+1 is called a loop if s1 6= s2 6= . . . 6= s` and s1 = s`+1,
where ` is the length of the loop. The min-entropy rate is then determined as follows.

Theorem 2 (Min-entropy rate of Markov chains [KV16]). Let P be the transition matrix
of an irreducible and aperiodic Markov chain with the state space S. Then

H∞(P ) = min
`

min
(s1,...,s`+1)∈C`

1
`

∑̀
k=1

log 1
Psk,sk+1

(26)

where C` denotes the set of all loops of length ` and Psk,sk+1 the probability of the transition
from state sk to state sk+1.

2.2.2 Implementation

Language We implemented the procedure to estimate the min-entropy rate of a Markov
chain in Python; to increase the speed, parts of the code were compiled to C by the Cython
module. For computation, we used the Numpy library with double precision (64 bits).

Algorithmic issues Computation of the transition matrix requires one pass on the data
file. The value in Eq. (26) is found by dynamic programming; namely, for every ` and every
pair of states s′, s′′ we compute r(s′, s′′, `) = mins1=s′,s2,...,s`−1,s`=s′′

∑k
i=1 log 1

Psk,sk+1

where s1, . . . , s`−1 are different; dynamic programming is used to update values of r when
changing from ` to ` + 1. Once we have these numbers, we can determine the value in
Eq. (26). Because the formula assumes different states s1, . . . , s` we have that ` 6 |S|.
Computing all r(s′, s′′, `) for s′ ∈ S, s′′ ∈ S and ` 6 |S| requires a memory size of about
|S|3 multiplied by the size of the float placeholders.

Parameters Based on the dependencies indicated by the results of the autocorrelations,
we decided to use d = 8. We therefore study transitions between blocks of consecutive
d = 8 bits, and the size of the transition matrix is 28 × 28.

Table 2: Summary of implementation of the Markov chain model for entropy estimation.

Order (window) States Trans. matrix Memory used Dyn. program. loops
8 {0, 1}8 28 × 28 128MB 28
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2.2.3 Experiments on the generation of random bit streams from free running oscil-
lators

In our experiments on the generation of random numbers using free running oscillators,
we wanted to compare randomness extraction using the two methods presented in Fig. 2.
We analyzed the output values of the sampler from Fig. 2 (a) and the least significant bit
of the counter values from Fig. 2 (b) (and their first differences). We thus analyzed the
outputs of four projects.

• The first two projects used the method of entropy extraction based on sampling the
jittery clock signal (according to Fig. 2(a)) with two kinds of oscillators used as a
source of randomness:

– signals s1 and s2 were generated by two ROs oscillating at 125 and 127 MHz,
– signals s1 and s2 were generated by two STRs oscillating at 130 and 128 MHz.

• The other two projects used the counter method of entropy extraction (according to
Fig. 2(b)), while using the same oscillators as the first pair of projects.

For the method of extraction based on sampling of the jittery clock signal, we generated
random bit streams for k ranging from 10 000 to 100 000. For the counter method of
extraction we generated sequences for k ranging from 2 000 to 100 000. Two kinds of files
were generated in this case – one containing the least significant bits of the counter values
and the other containing the least significant bit of the first differences of counter values.

We tested all the generated sequences using the AIS31 Procedure B (tests T6 – T8) and
NIST 800-90B test suite, from which we also obtained Shannon entropy and min-entropy
estimates respectively. The min-entropy was computed for every sequence according to
Eq. (26), i.e. the computation was based on high order Markov chains while taking
correlations between output bits into account. The results are presented in Appendix D,
Table 5 to 10.

Three very important results stand out in the tables presented in Appendix D. First,
the method of randomness extraction based on sampling of the jittery clock signal always
gives lower entropy rates than those obtained by the method based on counting the jittery
clock signal periods. Second, the method of min-entropy estimation based on high order
Markov chains gives very consistent results even in the interval of values of k, for which
Procedure B of AIS31 revealed no differences in Shannon entropy estimates. Third, the
entropy rates are practically the same when the least significant bit of the counter values
or that of their differences is used. This is valid independently of the type of free running
oscillator (RO or STR).

3 Implementation of the variance measurements in hard-
ware and monitoring of the source of randomness

According to AIS 31 recommendations, the source of randomness should be monitored
continuously using dedicated embedded test(s). In our case, this monitoring process would
be represented by an online check that the differences of counter values fall within the
permitted interval.

To compare the parameters of the proposed randomness monitoring process, we imple-
mented tests based on counter differences and two other state-of-the-art tests (proposed in
[HBFT14] and [FL14]) in the same device – Intel Cyclone V FPGA.

The circuitry corresponding to implementation of the Allan variance according to
Eq. (13) in hardware is shown in Fig. 10.
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Figure 10: Allan variance measurement circuitry based on Eq. (13)

All the computations are in fixed point arithmetic. This method only requires one
multiplier to square data. One subtractor is used to compute the difference of the
consecutive samples and one adder with associated register is used as accumulator.

The circuitry corresponding to hardware implementation of the variance computation
used by Haddad et al. in [HBFT14] and for the one corresponding to Eq. (2) is depicted
in Fig. 11.
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Figure 11: Implementation of the counter variance measurement circuitry for the method
proposed by Haddad et al. in [HBFT14] and for that corresponding to Eq. (2)

Again, all the computations are in fixed point arithmetic. Numbers before and after
the radix point indicate the number of bits of the integer and fractional part of the given
value, respectively. Two multipliers (one of 12 bits and the other of 24 bits) are used to
square data. Two adders and associated registers (one of 24 bits and the other of 12 bits)
are used to implement accumulators. One subtractor is used before the output of the block.
Four additional data registers are used to store intermediate data.

The third test we implemented in the hardware has the same architecture as that
presented in [FL14], Fig. 6. In the following section, we compare the three implementations.

3.1 Implementation results
First, we evaluate design parameters like area, speed and power consumption of the three
methods of variance measurement described above. Area and speed values were obtained
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from Quartus software. Power consumption was measured using a dedicated hardware
evaluation platform [LDFV16]. The results are presented in Table 3.

Table 3: Summary of implementation results of the variance measurement method based
on counter differences compared to other state-of-the-art methods implemented in the
dedicated evaluation board featuring Intel Cyclone V FPGA device 5CEBA4F17C8N

Method Area fmax Power
ALM/Regs DSPs [MHz] [mW]

Haddad et al. [HBFT14], Eq. (2) 119/160 2 178.3 6-7
Fischer and Lubicz [FL14] 169/200 4 187.7 7-8
Proposed method, Eq. (13) 49/117 1 238.5 4-5

We observe that the Allan variance measurement circuitry based on Eq. (13) is smaller,
faster and consumes slightly less power than the circuitry required by the other two
methods. This is because the implementation of the Allan variance measurement is simple
(only one subtractor and one adder needed, only one DSP block used instead of two or
four, respectively).

3.2 Study of the impact of the measurement circuitry on the source
of randomness

Next, we propose a rigorous approach to assess the impact of the embedded jitter mea-
surement on the measured jitter itself. The impact of the jitter measurement on the jitter
itself is evaluated in the following steps:

• Project 1 – Only two free running oscillators, used as sources of randomness, are
implemented in the selected logic device. The generated clock signals are output
using low voltage differential signaling (LVDS) outputs and measured externally
using high end oscilloscope and differential probes (see Fig. 12).

Osc2

Osc1

Logic Device Oscilloscope

Var(X)
Computation

LVDS
I/F

LVDS
I/F

Two differential probes 

s1 

s2 

Figure 12: External jitter measurement method using an oscilloscope and differential
probes

• Project 2 – A complete TRNG, embedded variance measurement and an AES
cipher are implemented in the FPGA to mimic the behavior of the real crypto SoC
as shown in Fig. 13. Signal s2 is generated using an external quartz oscillator. The
variance is measured both internally, and externally.

• Project 3 – A complete TRNG, embedded variance measurement and an AES
cipher are implemented in the FPGA to mimic the behavior of the real crypto SoC as
shown in Fig. 13. Signal s2 is generated using a free running oscillator. The variance
is measured both internally, and externally.
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Figure 13: External jitter measurement method using an oscilloscope and differential
probes combined with an internal jitter measurement method while the TRNG and the
AES cipher are running (only one generator of signal s2 is present in each of the two
projects: Quartz oscillator in Project 2 and Osc2 in Project 3)

To ensure the measurement results are consistent, it is important to guarantee the
same placement and routing of Osc1 and Osc2 in all projects. We generated the Exported
Partition file (.qxp), which is the Quartus II software option used to export post-fitting
netlists. The exported netlist was then used in all the projects.

We decided to implement only ROs as Osc1 and Osc2 because, as shown in Section 2,
they are simpler to implement than STRs and the jitter behavior is very similar in both
STRs and ROs. Oscillators Osc1 and Osc2 had the same number of elements and the
same topology. They oscillated at respective frequencies of 124.5 ± 0.3 MHz and 126.3 ±
0.2 MHz. The difference in frequency in the three projects was thus less than 1 %, which
was important to ensure the results were comparable.

We measured the jitter of both oscillators as well as the normalized counter value
externally using a LeCroy WavePro 735i oscilloscope (4 GHz bandwidth, 40 GS/s) and
two D420 WaveLink 4 GHz differential probes. Counter values cannot be obtained directly
from an oscilloscope since the value of k cannot be set up like in hardware but can only be
deduced from the oscilloscope time base, which, in our case, was set to 5 µs per division.
We measured the number of periods of both clocks in this time interval. Finally, to make
the comparison of values obtained using the external and embedded measurements more
consistent, we measured the number of cycles of both clocks at the same time interval and
normalized the resulting data according to the following equation:

cnt = n1

n2
· k, (27)

where n1 represents the number of clock periods of s1 and n2 the number of clock periods
of s2 that appear during the same time interval determined by oscilloscope’s time base. In
our case, we used k = 30 000 to normalize oscilloscope measurements.

Table 4 shows the results of external and internal measurements. The jitters of Osc1
and Osc2 were both measured by the oscilloscope. To compare these values with those
obtained using the Allan variance according to Eq.(25), we saved the counter values in a
file for processing.
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Table 4: Results of external and internal measurements of oscillator jitters in three selected
projects: Columns 2 and 3 list the jitters σ1, σ2 measured using the oscilloscope. Column
4 lists the equivalent jitter σeq computed from Eq. (18). Column 5 lists the normalized
variance of counter values computed from the oscilloscope using Eq. (27). Column 6 lists
the Allan variance estimate computed inside the device using Eq. (13).

Project σ1 σ2 σeq [ps] V ar(cnt) Avar(N) Avar(τ) [s2]
[ps] [ps] from Eq.(18) from Eq.(27) from Eq.(13) from Eq.(25)

Project 1 3.9 3.3 5.1 14.01 2.79 2.0425e-16
Project 2 9.7 7.3 11.8 26.94 4.33 3.2438e-16
Project 3 10.6 10.0 14.5 14.72 2.76 2.0216e-16

We can see that putting the whole cryptosystem including the AES cipher in an FPGA
more than doubles the jitter of both oscillators, but the variance of counter values remains
almost the same if only internal oscillators are used. In Project 2, in which the signal
s2 is generated by an external quartz oscillator, there was a significant increase in the
variance of counter values, which confirms that using identically implemented oscillators and
implementing them both inside the FPGA (differential principle of randomness extraction)
helps prevent negative effects of the surrounding logic on the measured jitter.

To further confirm this claim, we acquired a large sequence of counter values from
Project 2 and transferred them to a PC in order to visualize them over time. The acquisition
was done with the accumulation period set by k = 30 000. The whole acquisition took
approximately 30 minutes. Figure 14 shows the counter values when the signal s2 was
generated by an external quartz oscillator. A strong low frequency signal can be seen to
affect the counter values. The frequency of the signal is approximately 1.5 mHz.

Figure 14: Counter values acquired using an external oscillator for s2

Figure 15 shows the counter values when s2 was generated by an internal RO. Even
though the low frequency pattern is still slightly visible, its amplitude is significantly
reduced.

We discovered that the observed low frequency signal originated from the power line
even though the evaluation board was using only low noise linear power supplies. These
findings confirm that unwanted global noises are almost always present and are unavoidable.
Since this kind of noise can be manipulated, it can be extremely dangerous for the TRNG
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Figure 15: Counter values acquired when both oscillators are implemented in the FPGA

design. Moreover, a low frequency signal such as the one visible in Fig. 14 is usually hard
to detect.

4 Discussion

We have very clearly demonstrated several advantages of the Allan variance over statistical
variance: it gives stable values independent of low frequency noises even for short data
sets. It is thus suitable for the estimation of entropy originating from non-manipulable
independent noises such as thermal noise. It can serve as a basis for embedded tests, for
which it is particularly suited because of its small area and low latency.

RO and STR behave similarly in terms of variance dependence on jitter accumulation
time. Jitter accumulates in both structures in a very similar way. This is a new observation.

Using two identical oscillators reduces autocorrelations in RNG output values. Using
the first differences of counter values instead of counter values themselves further reduces
autocorrelations.

The method of randomness extraction based on sampling of the jittery clock signal
always gives lower quality results than the method based on counting the jittery clock
signal periods. The jitter accumulation times can be reduced more than ten times (more
than 400 000 periods of the reference clock were needed in [FL14] and fewer than 30 000 if
the jittery clock periods are counted). This means significantly higher bit rates at generator
output with no loss of entropy.

The method of min-entropy estimation based on high order Markov chains gives very
consistent results even in the interval of values of k, for which Procedure B of AIS 31
revealed no differences in Shannon entropy estimates (see Tables 7 to 10).

The studies described here confirm, that using external oscillators jeopardizes the
implementation of security critical applications. They also prove, that implementing
identical oscillators inside the FPGA and using their relative jitter transformed into
counter values or even better into their differences, can efficiently mitigate the negative
effects of global noise sources both external to the FPGA and generated internally by the
surrounding logic, represented in our case by the AES cipher.
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5 Conclusions
We evaluated the jitter of clock signals generated in ring oscillators and self timed rings
and the way the jitter is transformed into random numbers. We showed that counting
the periods of the jittery clock signal gives random numbers of significantly better quality
than the usual methods of sampling jittery clock signals. We used counter values to
characterize and to continuously monitor the source of randomness. We showed that using
the Allan variance to characterize the clock jitter has at least two advantages: first, it is not
sensitive to low frequency noises such as flicker noise, and second, significantly less circuitry
is required for its computation than that used in other methods. We also show that a
differential principle of randomness extraction from the jitter, based on the use of two
identical oscillators is essential to avoid autocorrelations originating from both the external
and internal sources of global jitter, independently of the type of ring used. Last but not
least, we propose a new method of statistical testing based on a high order Markov model
to demonstrate the reduction of dependencies when the proposed randomness extraction
is applied. While providing an estimation of min-entropy, the method is very efficient in
detecting dependencies between generated numbers.
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A Proofs of the Allan variance properties
A.1 Allan variance generalizes the statistical variance
If x is a stationary and uncorrelated random process, we know that its statistical variance
exists [All87]. If we call µ the expected value of x, then:

Avar(x) = 1
2 E

[
(xi+1 − xi)2]

= 1
2 E

(
[(xi+1 − µ)− (xi − µ)]2

)
= 1

2 E
[
(xi+1 − µ)2 − (xi+1 − µ)(xi − µ) + (xi − µ)2]

= 1
2 E

[
(xi+1 − µ)2]− 1

2 E [(xi+1 − µ)(xi − µ)] + 1
2 E

[
(xi − µ)2]

= 1
2 Var(xi+1)− 1

2 E [(xi+1 − µ)(xi − µ)] + 1
2 Var(xi). (28)

Since x is stationary, one has:

Var(xi+1) = Var(xi) = Var(x) (29)

and:

E (xi+1) = E (xi) = µ. (30)

Moreover, the uncorrelatedness of x implies:

E (xi+1xi) = E (xi+1)E (xi) . (31)

It then follows:

E [(xi+1 − µ)(xi − µ)] = E
(
xi+1xi − µxi+1 − µxi + µ2)

= E (xi+1xi)− µE (xi+1)− µE (xi) + µ2

= 0. (32)

Hence:

Avar(x) = Var(x). (33)

A.2 Multiplication by a scalar
Given a real number λ and a stationary random process x, then λx is also a stationary
random process. Its Allan variance is then:

Avar(λx) = 1
2 E

[
(λxi+1 − λxi)2] = λ2 1

2 E
[
(xi+1 − xi)2] = λ2 Avar(x). (34)

A.3 Sum of independent random processes
If x and y are two independent stationary random processes, one has:
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Avar(x+ y) = 1
2 E

[
(xi+1 + yi+1 − xi − yi)2

]
= 1

2 E
[
(xi+1 − xi + yi+1 − yi)2

]
= 1

2 E
[
(xi+1 − xi)2 + (xi+1 − xi) (yi+1 − yi) + (yi+1 − yi)2

]
= 1

2 E
[
(xi+1 − xi)2

]
+ 1

2 E [(xi+1 − xi) (yi+1 − yi)] + 1
2 E

[
(yi+1 − yi)2

]
= Avar(x) + 1

2 E [(xi+1 − xi) (yi+1 − yi)] + Avar(y). (35)

Because the processes x and y are independent, one has:

E (xiyj) = E (xi)E (yj) , (36)

for any i, j ∈ N. Since they are stationary:

E (xj) = E (xi) = E (x) and E (yj) = E (yi) = E (y) ,

for any i, j ∈ N. Hence:

E [(xi+1 − xi) (yi+1 − yi)] = E [xi+1yi+1 − xi+1yi − xiyi+1 + xiyi]
= E [xi+1yi+1]− E [xi+1yi]− E [xiyi+1] + E [xiyi]
= E [xi+1]E [yi+1]− E [xi+1]E [yi]− E [xi]E [yi+1]

+E [xi]E [yi]
= E [x]E [y]− E [x]E [y]− E [x]E [y] + E [x]E [y]
= 0. (37)

It then follows that:

Avar(x+ y) = Avar(x) + Avar(y). (38)

B Autocorrelations
B.1 Background
Sample autocorrelation Given a sequence of observations z1, . . . , zN originating from
a random process {Zi}Ni=1, the sample autocorrelation is the function of the time lag τ
defined by

ρ̂u(τ) =
1

N−τ
∑N−τ
i=1

∑
(zi+τ − µ̂)(zi − µ̂)
σ̂2 (39)

where µ̂ and σ̂2 are sample mean and variance estimates

µ̂ = 1
N

N∑
i=1

zi

σ̂2 = 1
N − 1

N∑
i=1

(zi − µ̂)2
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At longer lags τ ≈ N there are fewer samples to estimate, so that ρ̂u becomes unstable;
for this reason one often applies the following modification

ρ̂b(τ) =
1
N

∑N−τ
i=1

∑
(zi+τ − µ̂)(zi − µ̂)
σ̂2 (40)

which increases the bias but has lower variance (and smaller MSE error as suggested in
some empirical studies); however, in our case N is big enough to obtain accurate results of
ρ̂u(τ) for a wide range of values 0� τ � N .

Process autocorrelation If the sample z1, . . . , zN comes from a WSS ergodic process
{Zi}i then ρ̂ and ρ̂b estimate the process autocorrelation function

ρZ(τ) = E(Zt+τ − EZt+τ )(Zi − EZt)√
Var(Zt+τ )

√
Var(Zt)

which under the WSS assumption depends only on τ (as the mean E(Zi) = µ and variance
σ2 = Var(Zi) do not depend on i).

Sample vs. process autocorrelation If the sample z1, . . . , zN comes from a WSS ergodic
process {Zi}i then ρ̂ and ρ̂b estimate the process autocorrelation. This estimate converges
provided the autocorrelations decay fast enough (in theoretical literature this is captured
by the notion of covariance ergodicity [PP01]). Confidence for these estimates, when
necessary, can be obtained using Bartlet’s formula [Bar46].

B.2 Examples
Raw counter values We first estimate autocorrelations of counter values. As expected
they are very high, particularly for setups with a quartz reference clock. We use both
estimators (40) and (39). We compute the sample autocorrelation function by fast Fourier
transform.

Figure 16: Autocorrelations of counter values, small lags (bias-corrected estimate ρ̂u)

Differences of counter values Next, we estimate autocorrelations for the counter differ-
ences. The autocorrelations are significantly reduced.

C Proof of Lemma 1
Since the process is Gaussian and the variance and mean of Zi do not change over time,
higher moments do not change over time either. We therefore have

E
(
Z2
i − E(Z2

i )
)2 = O(1) (41)
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Figure 17: Autocorrelations of counter values, including large lags (variance-stable estimate
ρ̂b)

Figure 18: Autocorrelations of counter values differences (bias-corrected estimate ρ̂u)

where the constant does not depend on time i. Now let us consider mixed moments

E
(
Z2
i − E(Z2

i )
) (
Z2
j − E(Z2

j )
)

= E(Z2
i Z

2
j )− E(Z2

i )E(Z2
j )

which, for the joint Gaussian distribution (Zi, Zj) can be simplified5 as

E(Z2
i Z

2
j )− E(Z2

i )E(Z2
j ) = 2 · Cov(Zi, Zj)2

= 2 (ρ(Zi, Zj)Var(Zi)Var(Zj))2

where ρ(Zi, Zj) is the correlation. Again Var(Zi) does not change over time; moreover
ρ(Zi, Zj) depends only on the lag j − i and equals zero when |i− j| > p according to our
assumptions. Thus

E
(
Z2
i − E(Z2

i )
) (
Z2
j − E(Z2

j )
)

=
{
O(1) |i− j| 6 p

0 |i− j| > p
(42)

where the constant does not depend on i, j. By combining Equations (41) and (42) we
obtain

Var
(

1
M

M∑
i=1

Z2
i

)
= 1
M2

∑E
(
Z2
i − E(Z2

i )
)2 +

∑
i 6=j

E
(
Z2
i − E(Z2

i )
) (
Z2
j − E(Z2

j )
)

= O(p/M). (43)

5We use the well-known formulas for central 4th-order moments of multivariate Gaussians.
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D Results of entropy estimation using a Markov chain
model and statistical tests required by standards

Entropy was evaluated in six different configurations of the TRNG including two methods
of randomness extraction and two types of oscillators, as explained in Sect. 1:

• Both clock signals generated by ROs, randomness extraction by sampling the clock.

• Both clock signals generated by STRs, randomness extraction by sampling the clock.

• Both clock signals generated by ROs, randomness extraction by counting the clock
edges (the least significant bit of the counter represented the random bit).

• Both clock signals generated by ROs, randomness extraction by counting the edges.

• Both clock signals generated by STRs, randomness extraction by counting the edges.

• Both clock signals generated by STRs, randomness extraction by counting the edges.

We used two standardized batteries of statistical tests alongside the method proposed
in this article to evaluate the output of the TRNGs:

• Markov chain min-entropy estimate. This method is explained in detail in
Section 2.

• German AIS 20/31 test suite from Procedure B, which is intended to test the output
of the TRNG core. Entropy is estimated by the test T8 is the Shannon entropy per
random bit.

• American NIST 800-90B test suites for independent and identically distributed data
(IID) and non-IID data. If data is detected to be IID, the min-entropy estimate of
the IID test track is given. Otherwise, the non-IID entropy estimate is used.

Table 5: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal ROs and the sampling method was used. Dependencies are
modeled using 8th order Markov chains.

τ Markov AIS 31 AIS 31 T8 NIST NIST
chain Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

10 000 0.8102 failed 0.9844 non-IID 0.648
20 000 0.8105 failed 0.9851 non-IID 0.647
30 000 0.8102 failed 0.9847 non-IID 0.648
50 000 0.9369 failed 0.9992 non-IID 0.673
100 000 0.9012 failed 0.9935 non-IID 0.670
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Table 6: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal STRs and the sampling method was used. Dependencies are
modeled using 8th order Markov chains.

τ Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

10 000 0.5440 failed 0.9072 non-IID 0.489
20 000 0.5435 failed 0.9074 non-IID 0.489
30 000 0.5425 failed 0.9021 non-IID 0.489
50 000 0.5432 failed 0.9030 non-IID 0.489
100 000 0.5423 failed 0.9076 non-IID 0.489

Table 7: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal ROs and the least significant bits of counter values were used.
Dependencies are modeled using 8th order Markov chains.

τ Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

2 000 0.2939 failed 0.0910 non-IID 0.621
10 000 0.8089 failed 0.9966 non-IID 0.844
15 000 0.9769 passed 0.9998 non-IID 0.931
15 000 0.9769 passed 0.9998 non-IID 0.931
20 000 0.9865 passed 0.9999 IID 0.999
25 000 0.9907 passed 0.9999 IID 0.998
100 000 0.9910 passed 0.9999 IID 0.998

Table 8: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal ROs and the least significant bits of the first differences of counter
values were used. Dependencies are modeled using 8th order Markov chains.

τ Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

2 000 0.2816 failed 0.0981 non-IID 0.336
10 000 0.8087 failed 0.9865 non-IID 0.661
15 000 0.9783 passed 0.9998 non-IID 0.876
20 000 0.9893 passed 0.9999 IID 0.999
25 000 0.9908 passed 0.9999 IID 0.999
100 000 0.9909 passed 0.9999 IID 0.998
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Table 9: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal STRs and the least significant bits of counter values were used.
Dependencies are modeled using 8th order Markov chains.

τ Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

2 000 0.3331 failed 0.0999 non-IID 0.565
10 000 0.8535 failed 0.9966 non-IID 0.849
15 000 0.9871 passed 0.9999 IID 0.998
20 000 0.9788 passed 0.9999 IID 0.999
25 000 0.9915 passed 0.9996 IID 0.999
100 000 0.9807 passed 0.9999 IID 0.998

Table 10: Entropy estimation using high order Markov chains, AIS 31 and NIST 800-90B
tests, when two internal STRs and the least significant bits of the first differences of counter
values were used. Dependencies are modeled using 8th order Markov chains.

τ Markov chain AIS 31 AIS 31 T8 NIST NIST
Procedure B 800-90B 800-90B

periods of s2 min-entropy Shannon entropy IID min-entropy
per bit per bit per bit

2 000 0.3264 failed 0.0997 non-IID 0.346
10 000 0.8463 failed 0.9979 non-IID 0.672
15 000 0.9883 passed 0.9999 non-IID 0.897
20 000 0.9924 passed 0.9999 IID 0.999
25 000 0.9915 passed 0.9998 IID 0.999
100 000 0.9835 passed 0.9999 IID 0.998
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