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Cold boot attack scenario

» Originally investigated by [HSHCPCFAFQ9]

> An attack method involving physical access to memory storing
cryptographic secret keys

» The attacker ejects the memory (lunch-time attack) and plugs
into their own machine

> The attacker locates key material in memory and uses data
remanence effects [HSHCPCFAFQ9] to recover the key

> Works on any cryptographic primitive where there is a secret
key

N
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Cold boot attacks [HSHCPCFAFQ9]

» < 1% bit flip rate
towards ground
state after 10
minutes cooling to

-50°C

> Limiting case is

0.17% after 1 hour
cooling with liquid
nitrogen to -196°C
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Cold boot attack scenario

» Bits in RAM decay towards ground state (0/1) on power down

» Cool RAM to extreme temperatures to slow decay

State of RAM with power on
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Cold boot attack scenario

» Bits in RAM decay towards ground state (0/1) on power down

» Cool RAM to extreme temperatures to slow decay

State of RAM with power on
S8088080BOO6H

Freeze + extract RAM

L 4

Eventual ground state decay

000088880004
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Cold boot attack flips

» 2 classes of bit flips:

» Standard bit flips (towards memory ground state) rate pg
» Retrograde bit flips (away from memory ground state) rate

» Assuming half the bits of the key not in ground state
= # bit flips &~ (# bits in key) - (po + p1)/2

» Bit flip rates are written in the form (po, p1)
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Current state-of-the-art

v

DES: (0.5, 0.001) bit flip rate trivially [HSHCPCFAF09]
» AES:

» AES-128: (0.7,0) bit-flip rate in 1 sec on average [KY10]

» AES-256: (0.65,0) bit-flip rate in 90 secs on average [Tso09]
RSA (1024-bit modulus):
(0.4,0.001) bit-flip rate in 2.4 secs on average [PPS12]
NTRU: (0.01,0.001) bit-flip rate in minutes to hours on

average for the ntru-crypto eps449epl parameters
(N = 449,df = 134,dg = 149, p = 3, g = 2048) [PV17]

v

v
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Post quantum cryptography

» Cryptography resistant to quantum cryptanalytic algorithms
» Plans for wide-spread use and standardisation — NIST process

> 23 lattice-based proposals, the majority of which are LWE
based
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Post quantum cryptography

» Cryptography resistant to quantum cryptanalytic algorithms
» Plans for wide-spread use and standardisation — NIST process

> 23 lattice-based proposals, the majority of which are LWE
based

Are there effective cold boot attacks on some of the
LWE-based contenders?
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LWE keys

Notation: Ry = Zg[x]/(x" + 1), n a power-of-two

We focus on the two main efficient variations of LWE:

» Ring-LWE:

» SecKey =s € Ry
» Module-LWE:

> SecKey =s € RY
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LWE keys

Notation: Ry = Zg[x]/(x" + 1), n a power-of-two

We focus on the two main efficient variations of LWE:

» Ring-LWE:

» SecKey =s € Ry
» Module-LWE:

> SecKey =s € RY

Trade-off between d and n:
» MLWE Kyber: n=256,d =3
» RLWE NewHope: n=1024,d =1
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Practical key storage for ring/module-LWE

v

The number theoretic transform (NTT) is used for efficiency

Without NTT, polynomial multiplication takes O(n?) ops

v

v

With NTT, polynomial multiplication takes O(nlog n) ops

v

Polynomials in the secret key s often stored using an NTT
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The NTT cold boot problem

“Decode a noisy NTT" OR “Recover s from
$ =NTT,(s) + A mod ¢"

v

Assumption: We have k < n bit flips

v

A's components have a low Hamming weight binary signed
digit representation (BSDR)

A BSDRof 7is “1,0, 0, -1" since 7=1%x8—1
k bit flips = BSDR(A) has Hamming weight x

v

v

s has small coefficients

v
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The NTT cold boot problem

“Decode a noisy NTT" OR “Recover s from
$ =NTT,(s) + A mod ¢"

v

Assumption: We have k < n bit flips

v

A's components have a low Hamming weight binary signed
digit representation (BSDR)

A BSDRof 7is “1,0, 0, -1" since 7=1%x8—1
k bit flips = BSDR(A) has Hamming weight x

v

v

s has small coefficients

v

MLWE Kyber [Sch+17] dimension: n = 256,d = 3
RLWE NewHope [Pop+17] dimension: n=1024,d =1
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Attack overview

“Decode a noisy NTT" OR “Recover s from
§ = NTT,(s) + A mod q"

3 main components:
1. Divide and conquer to reduce dimension
2. Work a low-dimensional solution up to solve the problem

3. Lattice + combinatorial attack to solve low dimensional
instance
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Divide and conquer

Let w be a primitive nt’ root of unity. Then for any a € Z7,

n—1
NTT(a) := Y w( /2
j=0

NTT,,_ o

N

NTT, /> NTT, />

/N /N

NTT, /4 NTT,, /4 NTT,, /4 NTT, /4
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Divide and conquer

For power of two n:
> a, = (ao, a, ..., a,,,z)

> a, = (31,23,. . .,a,,_l)

Formulae

Fori=0,...,n/2—-1

NTT,,(a),- + NTTn(a),+n/2 =2. NTT,,/Q(ae),-
NTT,(@); — NTTp(a); 1 /2 = 20" T/2 - NTT,, 2(a0);
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Divide and conquer

Original n-dimensional instance: § = NTT,(s) + A mod g

Folded n/2-dimensional instance: For i =0,...,n/2 -1
(A4)i

§i+8iinp2 = 2-NTT,a(se)i + (D84 Aignpp) (1)

§ = Siinp =20 T2 NTT, o(s0)i + (Ai = Apynp)  (2)
(A=)

[ (1) — the positive fold, (2) — the negative fold ]

And repeat on the positive folded instance ...
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Can we reach trivial dimension?
Writing A = (Ay, AA;), the error terms after folding once are

> Ay =D+ A, €72
> A_=Np— A, €7
Example
(Ag)i (Ar)i
A =...]]1,0,0,0,0]|...]|...]0,0,0,0, —1]|. ..
(A+)l = s Yy 505 0 (A—)I = y U, Uy, Uy

1,0,0 , 1,0,0,0, 0
+0,0,0,0, —1 - 0,0,0,0,—1
1,0,0,0, 1 ~1,0,0,0, 1

Y Bt B}
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Can we reach trivial dimension?
Writing A = (Ay, AA;), the error terms after folding once are

> A+=Ag+Ar€ZZ/Z
> Af:Ae—ArGZZQ
Example
(Ag)i (Ar);
A =...||1,0,0,0,0|...]|...]|0,0,0,0, —1]| ...
(Ay); = 1,0,0,0, 0 (A_); = 1,0,0,0, 0
+0,0,0,0, -1 - 0,0,0,0,-1
1,0,0,0,—-1 -1,0,0,0, 1
Notes:

> These are less sparse when written in BSDR

» Repeated folding — “A” term approaches a uniform
distribution

> “s" terms stay the same size
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Summary of divide and conquer component

top level — (n =2k A)

[Legend: (dim, A)]
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Summary of divide and conquer component

top level — (n =2k A)

N

(Legend: (dim,A)]  (n/2,44) (n/2,A_)
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Summary of divide and conquer component

top level — (n =2k A)

N

[Legend (dim, A (n/2,A}) (n/2,A_)

(n/4,A4y) (n/4, A1)
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Summary of divide and conquer component

top level — (n=2k A
[Legend: (dim, A (n/2,A}) (n/2,A_
(n/4,A4y) (n/4, A1)

N

(n/8,A4i+) (n/8,Ayi_) +— bottom level
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Working a solution up a level

Instance in A = (Ay, AA,) divides into two instances in

> Ay =D+ A, €73

» Al =Ny — A, €Z?

Given A, guess which bits come from A, and which come from
A, to reconstruct A. Assuming k < n, at most 2 guesses. 1

Each guess is verified by plugging the solution into sibling instance.

| S

[ Small complication when bit flips in A, and A, collide!

1Compare to ("'°5(q)) > 2" guesses for cold boot exhaustive search
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What we have so far

top level — (n=2k A
(n/2,A4) (n/2,A_
(n/4, A++ (n/4,A4)

& 0/8.50) < bottom leve
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What we have so far

top level — (n=2k A

/\

(n/2,A}) (n/2,A_

<— bottom level
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What we have so far

top level — (n=2kK A)
(n/2,A-)
(n/a, A )

<— bottom level
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What we have so far

top level —

(n/2,A_)

<— bottom level
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What we have so far

top level —

(n/2,A_)

<— bottom level

[ How do we solve the bottom level instance? ]
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Our bottom level instance vs. LWE instances

Ours: §=NTT,'A +s

LWE: b=A,s+ ¢

n’ fairly small (= 32)
NTT ! not random
s small in ¢

A not small in ¢

n fairly large (= 768)
A uniform random
e is small in >

s small in ¢»

Despite the differences, let’s try to embed our instance into a
Bounded Distance Decoding instance
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Lattice Background: Bounded Distance Decoding (BDD)

[ [ ([ ] [ ] [ ] [
[ ] [ ] [ ] [ ] [ ] [ ]
[ [ ([ ] [ ] [ [ ]
[ ] [ ] ([ ] [ ] [ ] [ ]
—@® @ ® o { @~
[ ] [ ] ([ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ [ ([ ] [ ] [ [
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Lattice Background: Bounded Distance Decoding (BDD)

Input: t,r » L4 b d
Promise: dist(t,£) <r
[ J [ ] [ ] [ ]
° ° ° ° ° °
°
[ ] [ ] ([ ] [ ] [ ] [ ]
-e ° ° ° ° °
[ ] [ ] ([ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
° ° ° ° ° °



Lattice Background: Bounded Distance Decoding (BDD)

Input: t o ° )
Promise: dist(t,£) <r

Solution: Closest lattice point v L] o o
° ° ° ° ° °
L] (] [} ) Y °

e ° ° ° °
[ ] [ ] ([ ] [ ] [ ] [ ]
L L o ° ) °
° ° ° ° ° °
[ ] [ ] [ ] [ ] [ ] [ ]

20/30



Embedding our problem into BDD

Copy the LWE method of:
1. Define target vector t := (0,3) € Zg”r”'
2. Construct lattice
A:={(x,y) € ZJ*+" : NTT}(x) +y = 0 mod g}
3. Use BDD to find the closest vector in A, and hope that the
offset vector is (A, s) € Z1 " -
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Embedding our problem into BDD

Copy the LWE method of:
1. Define target vector t := (0,3) € Zg”r”'
2. Construct lattice
A:={(x,y) € ZJ*+" : NTT}(x) +y = 0 mod g}
3. Use BDD to find the closest vector in A, and hope that the
offset vector is (A, s) € Z1 " -

Why/When should we expect to win given a perfect BDD solver?
» Why? (A, —NTT1(A)) € A and
t— (A, -NTT }(A)) = (4, 5)
» When? Expect to win if ||(A,s)|| is less than half the length
of the shortest vector in A
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Ensuring a successful embedding

“Expect to win if the “offset” ||(A,s)|| is less than half the
length of the shortest vector in A”
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Ensuring a successful embedding

“Expect to win if the “offset” ||(A,s)]|| is less than half the
length of the shortest vector in A”

Problem: (A, s) is not short!
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First step: Consider 2°SDR(A) instead of A as offset

Fix £ := [log,(,/q)] and consider 2°SDR(A):

» New lattice is
N ={(,y) € 22"+ (W11 @ (1,21) ) (X)+y = 0 mod g}

> New target vector is (0,5) € Z2"+"
» The “offset” vector is now (2°SDR(A), s)

Note:
» Dimension increase is from 2n’ to 3n’

» The tensor product introduces terms of the form
(2%,-1,0,...,0) with length ~ /g
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Shortening (2°SDR(A), s) offset further

¢ := [logy(/q)] = each entry of A in minimal 2SDR consists
of two integers in {—2¢ +1,...,0,2° — 1}. Decompose as

A =a1 4 AW,

woff 1
wolf T8

1. Guess bits that contribute the most to length of
2/SDR(A).

2. Update the target for our BDD to get new offset
(2SDR(AW), 5)
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Solving BDD in our NTT lattices

I I
—— our instance

— GSA

10

log, b7 |

|
0 20 40 60 80 100

i

> Blue line is expected behaviour of random lattices

» Purple is observed for our lattices

.. cannot rely on standard analysis for performance of BDD solver.
Instead we rely on experimental evidence using BDD enumeration.
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Overall complexity

Divide and Conquer

Lattice Basis Reduction

BDD Enumeration

Working solution up tree

26
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Overall complexity

Divide nquer

Latti i ction

[BDD Enumeration]

‘Working sohution up tree

Trivial

Done once and for all

Dominates

2/{
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Experimental results? using FPLLL3

bit-flip rates NTT non-NTT

Scheme 0 P1 cost rate cost
Kyber 02% 0.1% 3.2211 95% 2387
Kyber 1.0% 0.1% 3.2%33 91% 2703
Kyber 1.7% 0.1% 3.2028 89% 21001
NewHope 0.17% 0.1% 2487 84% 2537
NewHope 0.25% 0.1% 2606 819% 260.0
NewHope 0.32% 0.1% 2702 81% 2001

2Code available in paper
3https://github.com /fplll /fplll
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Conclusions

» Structure of the NTT can be exploited by cold boot attackers

» For Kyber parameters, attack complexity of correcting 1% flip
rate decreases from 270 to 243 when NTT is used

» For NewHope, not much difference in attack complexity for
NTT vs. non-NTT case

» Recommendation: If cold boot attacks are a concern, it is
worth not storing secrets using NTT

» Future directions: Solving general LWE like instances with low
Hamming weight BSDR secrets, exploiting the rich algebraic
structure of NTT's further
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