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Cold boot attack scenario

I Originally investigated by [HSHCPCFAF09]

I An attack method involving physical access to memory storing
cryptographic secret keys

I The attacker ejects the memory (lunch-time attack) and plugs
into their own machine

I The attacker locates key material in memory and uses data
remanence effects [HSHCPCFAF09] to recover the key

I Works on any cryptographic primitive where there is a secret
key
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Cold boot attacks [HSHCPCFAF09]

	

	

I < 1% bit flip rate
towards ground
state after 10
minutes cooling to
-50◦C

I Limiting case is
0.17% after 1 hour
cooling with liquid
nitrogen to -196◦C
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Cold boot attack scenario

I Bits in RAM decay towards ground state (0/1) on power down

I Cool RAM to extreme temperatures to slow decay

State of RAM with power on

1 0 1 1 0 1 0 1 0 0 1 1

Freeze + extract RAM

0 0 1 1 0 1 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0

Eventual ground state decay
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Cold boot attack flips

I 2 classes of bit flips:
I Standard bit flips (towards memory ground state) rate ρ0

I Retrograde bit flips (away from memory ground state) rate
ρ1 ≈ 0.1%

I Assuming half the bits of the key not in ground state

=⇒ # bit flips ≈ (# bits in key) · (ρ0 + ρ1)/2

I Bit flip rates are written in the form (ρ0, ρ1)
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Current state-of-the-art

I DES: (0.5, 0.001) bit flip rate trivially [HSHCPCFAF09]
I AES:

I AES-128: (0.7,0) bit-flip rate in 1 sec on average [KY10]
I AES-256: (0.65,0) bit-flip rate in 90 secs on average [Tso09]

I RSA (1024-bit modulus):
(0.4,0.001) bit-flip rate in 2.4 secs on average [PPS12]

I NTRU: (0.01,0.001) bit-flip rate in minutes to hours on
average for the ntru-crypto eps449ep1 parameters
(N = 449, df = 134, dg = 149, p = 3, q = 2048) [PV17]
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Post quantum cryptography

I Cryptography resistant to quantum cryptanalytic algorithms

I Plans for wide-spread use and standardisation – NIST process

I 23 lattice-based proposals, the majority of which are LWE
based

Are there effective cold boot attacks on some of the
LWE-based contenders?
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LWE keys

Notation: Rq = Zq[x ]/(xn + 1), n a power-of-two
We focus on the two main efficient variations of LWE:

I Ring-LWE:
I SecKey = s ∈ Rq

I Module-LWE:
I SecKey = s ∈ Rd

q

Trade-off between d and n:

I MLWE Kyber: n = 256, d = 3

I RLWE NewHope: n = 1024, d = 1

8 / 30



LWE keys

Notation: Rq = Zq[x ]/(xn + 1), n a power-of-two
We focus on the two main efficient variations of LWE:

I Ring-LWE:
I SecKey = s ∈ Rq

I Module-LWE:
I SecKey = s ∈ Rd

q

Trade-off between d and n:

I MLWE Kyber: n = 256, d = 3

I RLWE NewHope: n = 1024, d = 1

8 / 30



Practical key storage for ring/module-LWE

I The number theoretic transform (NTT) is used for efficiency

I Without NTT, polynomial multiplication takes O(n2) ops

I With NTT, polynomial multiplication takes O(n log n) ops

I Polynomials in the secret key s often stored using an NTT
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The NTT cold boot problem

“Decode a noisy NTT” OR “Recover s from
s̃ = NTTn(s) + ∆ mod q”

I Assumption: We have κ� n bit flips

I ∆’s components have a low Hamming weight binary signed
digit representation (BSDR)

I A BSDR of 7 is “1, 0, 0, -1” since 7 = 1 ∗ 8− 1

I κ bit flips =⇒ BSDR(∆) has Hamming weight κ

I s has small coefficients

MLWE Kyber [Sch+17] dimension: n = 256, d = 3
RLWE NewHope [Pop+17] dimension: n = 1024, d = 1
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Attack overview

“Decode a noisy NTT” OR “Recover s from
s̃ = NTTn(s) + ∆ mod q”

3 main components:

1. Divide and conquer to reduce dimension

2. Work a low-dimensional solution up to solve the problem

3. Lattice + combinatorial attack to solve low dimensional
instance
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Divide and conquer

Definition

Let ω be a primitive nth root of unity. Then for any a ∈ Zn
q,

NTT(a) :=
n−1∑
j=0

ω(i+1/2)jaj

NTTn=2k

NTTn/2

NTTn/4 NTTn/4

NTTn/2

NTTn/4 NTTn/4
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Divide and conquer

For power of two n:

I ae = (a0, a2, . . . , an−2)

I ao = (a1, a3, . . . , an−1)

Formulae

For i = 0, . . . , n/2− 1

NTTn(a)i + NTTn(a)i+n/2 = 2 · NTTn/2(ae)i

NTTn(a)i − NTTn(a)i+n/2 = 2ωi+1/2 · NTTn/2(ao)i

13 / 30



Divide and conquer

Original n-dimensional instance: s̃ = NTTn(s) + ∆ mod q

Folded n/2-dimensional instance: For i = 0, . . . , n/2− 1

s̃i + s̃i+n/2 = 2 · NTTn/2(se)i +

(∆+)i︷ ︸︸ ︷(
∆i + ∆i+n/2

)
(1)

s̃i − s̃i+n/2 = 2ωi+1/2 · NTTn/2(so)i +
(
∆i −∆i+n/2

)︸ ︷︷ ︸
(∆−)i

(2)

(1) – the positive fold, (2) – the negative fold

And repeat on the positive folded instance . . .
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Can we reach trivial dimension?
Writing ∆ = (∆`,∆r ), the error terms after folding once are

I ∆+ = ∆` + ∆r ∈ Zn/2
q

I ∆− = ∆` −∆r ∈ Zn/2
q

Example

∆ = . . . ||1, 0, 0, 0, 0|| . . . || . . . ||0, 0, 0, 0,−1|| . . .

(∆+)i = 1, 0, 0, 0, 0
+ 0, 0, 0, 0,−1

1, 0, 0, 0,−1

(∆−)i = 1, 0, 0, 0, 0
− 0, 0, 0, 0,−1

−1, 0, 0, 0, 1

(∆`)i (∆r )i

Notes:

I These are less sparse when written in BSDR

I Repeated folding → “∆” term approaches a uniform
distribution

I “s” terms stay the same size
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Summary of divide and conquer component

top level −→

Legend: (dim,∆)

(n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level
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Working a solution up a level

Instance in ∆ = (∆`,∆r ) divides into two instances in

I ∆+ = ∆` + ∆r ∈ Zn/2
q

I ∆− = ∆` −∆r ∈ Zn/2
q

Given ∆+, guess which bits come from ∆` and which come from
∆r to reconstruct ∆. Assuming κ� n, at most 2κ guesses. 1

Each guess is verified by plugging the solution into sibling instance.

Small complication when bit flips in ∆` and ∆r collide!

1Compare to
(
n log(q)
κ

)
� 2κ guesses for cold boot exhaustive search
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What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?
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Our bottom level instance vs. LWE instances

Ours: ˆ̃s = NTT−1
n′ ∆ + s LWE: b = Ans + e

n′ fairly small (= 32) n fairly large (= 768)

NTT−1 not random A uniform random

s small in `2 e is small in `2

∆ not small in `2 s small in `2

Despite the differences, let’s try to embed our instance into a
Bounded Distance Decoding instance
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Lattice Background: Bounded Distance Decoding (BDD)

Input: t, r
Promise: dist(t,L) ≤ r
Input: t
Promise: dist(t,L) ≤ r
Solution: Closest lattice point v
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Embedding our problem into BDD

Copy the LWE method of:

1. Define target vector t := (0, ˆ̃s) ∈ Zn′+n′
q

2. Construct lattice
Λ := {(x, y) ∈ Zn′+n′

q : NTT−1(x) + y = 0 mod q}
3. Use BDD to find the closest vector in Λ, and hope that the

offset vector is (∆, s) ∈ Zn′+n′
q

Why/When should we expect to win given a perfect BDD solver?

I Why? (∆,−NTT−1(∆)) ∈ Λ and
t− (∆,−NTT−1(∆)) = (∆, s)

I When? Expect to win if ||(∆, s)|| is less than half the length
of the shortest vector in Λ
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Ensuring a successful embedding

“Expect to win if the “offset” ||(∆, s)|| is less than half the
length of the shortest vector in Λ”

Problem: (∆, s) is not short!
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First step: Consider 2`SDR(∆) instead of ∆ as offset

Fix ` := dlog2(
√
q)e and consider 2`SDR(∆):

I New lattice is

Λ′ = {(x′, y) ∈ Z2n′+n′
q :

(
NTT−1 ⊗ (1, 2`)

)
(x′)+y = 0 mod q}

I New target vector is (0, ˆ̃s) ∈ Z2n′+n′
q

I The “offset” vector is now (2`SDR(∆), s)

Note:

I Dimension increase is from 2n′ to 3n′

I The tensor product introduces terms of the form
(2`,−1, 0, . . . , 0) with length ≈ √q
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Shortening (2`SDR(∆), s) offset further

` := dlog2(
√
q)e =⇒ each entry of ∆ in minimal 2`SDR consists

of two integers in {−2` + 1, . . . , 0, 2` − 1}. Decompose as

∆i = ∆
(↑)
i + ∆

(↓)
i .

= +
` bits

` bits

1. Guess bits that contribute the most to length of
2`SDR(∆).

2. Update the target for our BDD to get new offset
(2`SDR(∆(↓)), s)
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Solving BDD in our NTT lattices

0 20 40 60 80 100

6

8

10

i

lo
g

2
‖b

? i
‖

our instance
GSA

I Blue line is expected behaviour of random lattices

I Purple is observed for our lattices

∴ cannot rely on standard analysis for performance of BDD solver.
Instead we rely on experimental evidence using BDD enumeration.
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Overall complexity

Divide and ConquerDivide and Conquer Trivial

Lattice Basis ReductionLattice Basis Reduction Done once and for all

BDD EnumerationBDD Enumeration

Working solution up treeWorking solution up tree 2κ

Dominates
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Experimental results2 using FPLLL3

bit-flip rates NTT non-NTT
Scheme ρ0 ρ1 cost rate cost

Kyber 0.2% 0.1% 3 · 221.1 95% 238.7

Kyber 1.0% 0.1% 3 · 243.3 91% 270.3

Kyber 1.7% 0.1% 3 · 262.8 89% 2100.1

NewHope 0.17% 0.1% 248.7 84% 253.7

NewHope 0.25% 0.1% 260.6 81% 260.0

NewHope 0.32% 0.1% 270.2 81% 266.1

2Code available in paper
3https://github.com/fplll/fplll
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Conclusions

I Structure of the NTT can be exploited by cold boot attackers

I For Kyber parameters, attack complexity of correcting 1% flip
rate decreases from 270 to 243 when NTT is used

I For NewHope, not much difference in attack complexity for
NTT vs. non-NTT case

I Recommendation: If cold boot attacks are a concern, it is
worth not storing secrets using NTT

I Future directions: Solving general LWE like instances with low
Hamming weight BSDR secrets, exploiting the rich algebraic
structure of NTT’s further
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