
Cold Boot Attacks on Ring & Module-LWE
Under the NTT

Martin R. Albrecht, Amit Deo, Kenneth G. Paterson

Royal Holloway, University of London

September 12, 2018

1 / 30

Cold boot attack scenario

I Originally investigated by [HSHCPCFAF09]

I An attack method involving physical access to memory storing
cryptographic secret keys

I The attacker ejects the memory (lunch-time attack) and plugs
into their own machine

I The attacker locates key material in memory and uses data
remanence effects [HSHCPCFAF09] to recover the key

I Works on any cryptographic primitive where there is a secret
key

2 / 30

Cold boot attacks [HSHCPCFAF09]

	

	

I < 1% bit flip rate
towards ground
state after 10
minutes cooling to
-50◦C

I Limiting case is
0.17% after 1 hour
cooling with liquid
nitrogen to -196◦C

3 / 30

Cold boot attack scenario

I Bits in RAM decay towards ground state (0/1) on power down

I Cool RAM to extreme temperatures to slow decay

State of RAM with power on

1 0 1 1 0 1 0 1 0 0 1 1

Freeze + extract RAM

0 0 1 1 0 1 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0

Eventual ground state decay

4 / 30

Cold boot attack scenario

I Bits in RAM decay towards ground state (0/1) on power down

I Cool RAM to extreme temperatures to slow decay

State of RAM with power on

1 0 1 1 0 1 0 1 0 0 1 1

Freeze + extract RAM

0 0 1 1 0 1 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0

Eventual ground state decay

4 / 30

Cold boot attack scenario

I Bits in RAM decay towards ground state (0/1) on power down

I Cool RAM to extreme temperatures to slow decay

State of RAM with power on

1 0 1 1 0 1 0 1 0 0 1 1

Freeze + extract RAM

0 0 1 1 0 1 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0

Eventual ground state decay

4 / 30

Cold boot attack flips

I 2 classes of bit flips:
I Standard bit flips (towards memory ground state) rate ρ0

I Retrograde bit flips (away from memory ground state) rate
ρ1 ≈ 0.1%

I Assuming half the bits of the key not in ground state

=⇒ # bit flips ≈ (# bits in key) · (ρ0 + ρ1)/2

I Bit flip rates are written in the form (ρ0, ρ1)

5 / 30

Current state-of-the-art

I DES: (0.5, 0.001) bit flip rate trivially [HSHCPCFAF09]
I AES:

I AES-128: (0.7,0) bit-flip rate in 1 sec on average [KY10]
I AES-256: (0.65,0) bit-flip rate in 90 secs on average [Tso09]

I RSA (1024-bit modulus):
(0.4,0.001) bit-flip rate in 2.4 secs on average [PPS12]

I NTRU: (0.01,0.001) bit-flip rate in minutes to hours on
average for the ntru-crypto eps449ep1 parameters
(N = 449, df = 134, dg = 149, p = 3, q = 2048) [PV17]

6 / 30

Post quantum cryptography

I Cryptography resistant to quantum cryptanalytic algorithms

I Plans for wide-spread use and standardisation – NIST process

I 23 lattice-based proposals, the majority of which are LWE
based

Are there effective cold boot attacks on some of the
LWE-based contenders?

7 / 30

Post quantum cryptography

I Cryptography resistant to quantum cryptanalytic algorithms

I Plans for wide-spread use and standardisation – NIST process

I 23 lattice-based proposals, the majority of which are LWE
based

Are there effective cold boot attacks on some of the
LWE-based contenders?

7 / 30

LWE keys

Notation: Rq = Zq[x]/(xn + 1), n a power-of-two
We focus on the two main efficient variations of LWE:

I Ring-LWE:
I SecKey = s ∈ Rq

I Module-LWE:
I SecKey = s ∈ Rd

q

Trade-off between d and n:

I MLWE Kyber: n = 256, d = 3

I RLWE NewHope: n = 1024, d = 1

8 / 30

LWE keys

Notation: Rq = Zq[x]/(xn + 1), n a power-of-two
We focus on the two main efficient variations of LWE:

I Ring-LWE:
I SecKey = s ∈ Rq

I Module-LWE:
I SecKey = s ∈ Rd

q

Trade-off between d and n:

I MLWE Kyber: n = 256, d = 3

I RLWE NewHope: n = 1024, d = 1

8 / 30

Practical key storage for ring/module-LWE

I The number theoretic transform (NTT) is used for efficiency

I Without NTT, polynomial multiplication takes O(n2) ops

I With NTT, polynomial multiplication takes O(n log n) ops

I Polynomials in the secret key s often stored using an NTT

9 / 30

The NTT cold boot problem

“Decode a noisy NTT” OR “Recover s from
s̃ = NTTn(s) + ∆ mod q”

I Assumption: We have κ� n bit flips

I ∆’s components have a low Hamming weight binary signed
digit representation (BSDR)

I A BSDR of 7 is “1, 0, 0, -1” since 7 = 1 ∗ 8− 1

I κ bit flips =⇒ BSDR(∆) has Hamming weight κ

I s has small coefficients

MLWE Kyber [Sch+17] dimension: n = 256, d = 3
RLWE NewHope [Pop+17] dimension: n = 1024, d = 1

10 / 30

The NTT cold boot problem

“Decode a noisy NTT” OR “Recover s from
s̃ = NTTn(s) + ∆ mod q”

I Assumption: We have κ� n bit flips

I ∆’s components have a low Hamming weight binary signed
digit representation (BSDR)

I A BSDR of 7 is “1, 0, 0, -1” since 7 = 1 ∗ 8− 1

I κ bit flips =⇒ BSDR(∆) has Hamming weight κ

I s has small coefficients

MLWE Kyber [Sch+17] dimension: n = 256, d = 3
RLWE NewHope [Pop+17] dimension: n = 1024, d = 1

10 / 30

Attack overview

“Decode a noisy NTT” OR “Recover s from
s̃ = NTTn(s) + ∆ mod q”

3 main components:

1. Divide and conquer to reduce dimension

2. Work a low-dimensional solution up to solve the problem

3. Lattice + combinatorial attack to solve low dimensional
instance

11 / 30

Divide and conquer

Definition

Let ω be a primitive nth root of unity. Then for any a ∈ Zn
q,

NTT(a) :=
n−1∑
j=0

ω(i+1/2)jaj

NTTn=2k

NTTn/2

NTTn/4 NTTn/4

NTTn/2

NTTn/4 NTTn/4

12 / 30

Divide and conquer

For power of two n:

I ae = (a0, a2, . . . , an−2)

I ao = (a1, a3, . . . , an−1)

Formulae

For i = 0, . . . , n/2− 1

NTTn(a)i + NTTn(a)i+n/2 = 2 · NTTn/2(ae)i

NTTn(a)i − NTTn(a)i+n/2 = 2ωi+1/2 · NTTn/2(ao)i

13 / 30

Divide and conquer

Original n-dimensional instance: s̃ = NTTn(s) + ∆ mod q

Folded n/2-dimensional instance: For i = 0, . . . , n/2− 1

s̃i + s̃i+n/2 = 2 · NTTn/2(se)i +

(∆+)i︷ ︸︸ ︷(
∆i + ∆i+n/2

)
(1)

s̃i − s̃i+n/2 = 2ωi+1/2 · NTTn/2(so)i +
(
∆i −∆i+n/2

)︸ ︷︷ ︸
(∆−)i

(2)

(1) – the positive fold, (2) – the negative fold

And repeat on the positive folded instance . . .

14 / 30

Can we reach trivial dimension?
Writing ∆ = (∆`,∆r), the error terms after folding once are

I ∆+ = ∆` + ∆r ∈ Zn/2
q

I ∆− = ∆` −∆r ∈ Zn/2
q

Example

∆ = . . . ||1, 0, 0, 0, 0|| . . . || . . . ||0, 0, 0, 0,−1|| . . .

(∆+)i = 1, 0, 0, 0, 0
+ 0, 0, 0, 0,−1

1, 0, 0, 0,−1

(∆−)i = 1, 0, 0, 0, 0
− 0, 0, 0, 0,−1

−1, 0, 0, 0, 1

(∆`)i (∆r)i

Notes:

I These are less sparse when written in BSDR

I Repeated folding → “∆” term approaches a uniform
distribution

I “s” terms stay the same size

15 / 30

Can we reach trivial dimension?
Writing ∆ = (∆`,∆r), the error terms after folding once are

I ∆+ = ∆` + ∆r ∈ Zn/2
q

I ∆− = ∆` −∆r ∈ Zn/2
q

Example

∆ = . . . ||1, 0, 0, 0, 0|| . . . || . . . ||0, 0, 0, 0,−1|| . . .

(∆+)i = 1, 0, 0, 0, 0
+ 0, 0, 0, 0,−1

1, 0, 0, 0,−1

(∆−)i = 1, 0, 0, 0, 0
− 0, 0, 0, 0,−1

−1, 0, 0, 0, 1

(∆`)i (∆r)i

Notes:

I These are less sparse when written in BSDR

I Repeated folding → “∆” term approaches a uniform
distribution

I “s” terms stay the same size
15 / 30

Summary of divide and conquer component

top level −→

Legend: (dim,∆)

(n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

16 / 30

Summary of divide and conquer component

top level −→

Legend: (dim,∆)

(n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

16 / 30

Summary of divide and conquer component

top level −→

Legend: (dim,∆)

(n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

16 / 30

Summary of divide and conquer component

top level −→

Legend: (dim,∆)

(n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

16 / 30

Working a solution up a level

Instance in ∆ = (∆`,∆r) divides into two instances in

I ∆+ = ∆` + ∆r ∈ Zn/2
q

I ∆− = ∆` −∆r ∈ Zn/2
q

Given ∆+, guess which bits come from ∆` and which come from
∆r to reconstruct ∆. Assuming κ� n, at most 2κ guesses. 1

Each guess is verified by plugging the solution into sibling instance.

Small complication when bit flips in ∆` and ∆r collide!

1Compare to
(
n log(q)
κ

)
� 2κ guesses for cold boot exhaustive search

17 / 30

What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?

18 / 30

What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?

18 / 30

What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?

18 / 30

What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?

18 / 30

What we have so far

top level −→ (n = 2k ,∆)

(n/2,∆+)

(n/4,∆++)

(n/8,∆+++) (n/8,∆++−)

(n/4,∆+−)

(n/2,∆−)

←− bottom level

How do we solve the bottom level instance?

18 / 30

Our bottom level instance vs. LWE instances

Ours: ˆ̃s = NTT−1
n′ ∆ + s LWE: b = Ans + e

n′ fairly small (= 32) n fairly large (= 768)

NTT−1 not random A uniform random

s small in `2 e is small in `2

∆ not small in `2 s small in `2

Despite the differences, let’s try to embed our instance into a
Bounded Distance Decoding instance

19 / 30

Lattice Background: Bounded Distance Decoding (BDD)

Input: t, r
Promise: dist(t,L) ≤ r
Input: t
Promise: dist(t,L) ≤ r
Solution: Closest lattice point v

20 / 30

Lattice Background: Bounded Distance Decoding (BDD)

Input: t, r
Promise: dist(t,L) ≤ r
Input: t
Promise: dist(t,L) ≤ r
Solution: Closest lattice point v

20 / 30

Lattice Background: Bounded Distance Decoding (BDD)

Input: t, r
Promise: dist(t,L) ≤ r
Input: t
Promise: dist(t,L) ≤ r
Solution: Closest lattice point v

20 / 30

Embedding our problem into BDD

Copy the LWE method of:

1. Define target vector t := (0, ˆ̃s) ∈ Zn′+n′
q

2. Construct lattice
Λ := {(x, y) ∈ Zn′+n′

q : NTT−1(x) + y = 0 mod q}
3. Use BDD to find the closest vector in Λ, and hope that the

offset vector is (∆, s) ∈ Zn′+n′
q

Why/When should we expect to win given a perfect BDD solver?

I Why? (∆,−NTT−1(∆)) ∈ Λ and
t− (∆,−NTT−1(∆)) = (∆, s)

I When? Expect to win if ||(∆, s)|| is less than half the length
of the shortest vector in Λ

21 / 30

Embedding our problem into BDD

Copy the LWE method of:

1. Define target vector t := (0, ˆ̃s) ∈ Zn′+n′
q

2. Construct lattice
Λ := {(x, y) ∈ Zn′+n′

q : NTT−1(x) + y = 0 mod q}
3. Use BDD to find the closest vector in Λ, and hope that the

offset vector is (∆, s) ∈ Zn′+n′
q

Why/When should we expect to win given a perfect BDD solver?

I Why? (∆,−NTT−1(∆)) ∈ Λ and
t− (∆,−NTT−1(∆)) = (∆, s)

I When? Expect to win if ||(∆, s)|| is less than half the length
of the shortest vector in Λ

21 / 30

Ensuring a successful embedding

“Expect to win if the “offset” ||(∆, s)|| is less than half the
length of the shortest vector in Λ”

Problem: (∆, s) is not short!

22 / 30

Ensuring a successful embedding

“Expect to win if the “offset” ||(∆, s)|| is less than half the
length of the shortest vector in Λ”

Problem: (∆, s) is not short!

22 / 30

First step: Consider 2`SDR(∆) instead of ∆ as offset

Fix ` := dlog2(
√
q)e and consider 2`SDR(∆):

I New lattice is

Λ′ = {(x′, y) ∈ Z2n′+n′
q :

(
NTT−1 ⊗ (1, 2`)

)
(x′)+y = 0 mod q}

I New target vector is (0, ˆ̃s) ∈ Z2n′+n′
q

I The “offset” vector is now (2`SDR(∆), s)

Note:

I Dimension increase is from 2n′ to 3n′

I The tensor product introduces terms of the form
(2`,−1, 0, . . . , 0) with length ≈ √q

23 / 30

Shortening (2`SDR(∆), s) offset further

` := dlog2(
√
q)e =⇒ each entry of ∆ in minimal 2`SDR consists

of two integers in {−2` + 1, . . . , 0, 2` − 1}. Decompose as

∆i = ∆
(↑)
i + ∆

(↓)
i .

= +
` bits

` bits

1. Guess bits that contribute the most to length of
2`SDR(∆).

2. Update the target for our BDD to get new offset
(2`SDR(∆(↓)), s)

24 / 30

Solving BDD in our NTT lattices

0 20 40 60 80 100

6

8

10

i

lo
g

2
‖b

? i
‖

our instance
GSA

I Blue line is expected behaviour of random lattices

I Purple is observed for our lattices

∴ cannot rely on standard analysis for performance of BDD solver.
Instead we rely on experimental evidence using BDD enumeration.

25 / 30

Overall complexity

Divide and ConquerDivide and Conquer Trivial

Lattice Basis ReductionLattice Basis Reduction Done once and for all

BDD EnumerationBDD Enumeration

Working solution up treeWorking solution up tree 2κ

Dominates

26 / 30

Overall complexity

Divide and ConquerDivide and Conquer Trivial

Lattice Basis ReductionLattice Basis Reduction Done once and for all

BDD EnumerationBDD Enumeration

Working solution up treeWorking solution up tree 2κ

Dominates

26 / 30

Experimental results2 using FPLLL3

bit-flip rates NTT non-NTT
Scheme ρ0 ρ1 cost rate cost

Kyber 0.2% 0.1% 3 · 221.1 95% 238.7

Kyber 1.0% 0.1% 3 · 243.3 91% 270.3

Kyber 1.7% 0.1% 3 · 262.8 89% 2100.1

NewHope 0.17% 0.1% 248.7 84% 253.7

NewHope 0.25% 0.1% 260.6 81% 260.0

NewHope 0.32% 0.1% 270.2 81% 266.1

2Code available in paper
3https://github.com/fplll/fplll

27 / 30

Conclusions

I Structure of the NTT can be exploited by cold boot attackers

I For Kyber parameters, attack complexity of correcting 1% flip
rate decreases from 270 to 243 when NTT is used

I For NewHope, not much difference in attack complexity for
NTT vs. non-NTT case

I Recommendation: If cold boot attacks are a concern, it is
worth not storing secrets using NTT

I Future directions: Solving general LWE like instances with low
Hamming weight BSDR secrets, exploiting the rich algebraic
structure of NTT’s further

28 / 30

References I

Halderman, J Alex, Seth D Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and
Edward W Felten. “Lest we remember: cold-boot attacks on encryption
keys”. In: Communications of the ACM 52.5 (2009), pp. 91–98.

Kamal, Abdel Alim and Amr M Youssef. “Applications of SAT solvers to AES
key recovery from decayed key schedule images”. In: Emerging Security
Information Systems and Technologies (SECURWARE), 2010 Fourth
International Conference on. IEEE. 2010, pp. 216–220.

Paterson, Kenneth G, Antigoni Polychroniadou, and Dale L Sibborn. “A
coding-theoretic approach to recovering noisy RSA keys”. In: International
Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2012, pp. 386–403.

Paterson, Kenneth G and Ricardo Villanueva-Polanco. “Cold Boot Attacks on
NTRU”. In: International Conference in Cryptology in India. Springer. 2017,
pp. 107–125.

29 / 30

References II

Poppelmann, Thomas, Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas,
Antonio de la Piedra, Peter Schwabe, and Douglas Stebila. NewHope.
Tech. rep. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

Schwabe, Peter, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler,
and Damien Stehle. CRYSTALS-KYBER. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-

cryptography/round-1-submissions. National Institute of Standards and
Technology, 2017.

Tsow, Alex. “An improved recovery algorithm for decayed AES key schedule
images”. In: International Workshop on Selected Areas in Cryptography.
Springer. 2009, pp. 215–230.

30 / 30

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

