Cold Boot Attacks on Ring & Module-LWE Under the NTT

Martin R. Albrecht, Amit Deo, Kenneth G. Paterson

Royal Holloway, University of London

September 12, 2018

- Originally investigated by [HSHCPCFAF09]
- An attack method involving physical access to memory storing cryptographic secret keys
- The attacker ejects the memory (lunch-time attack) and plugs into their own machine
- The attacker locates key material in memory and uses data remanence effects [HSHCPCFAF09] to recover the key
- Works on any cryptographic primitive where there is a secret key

Cold boot attacks [HSHCPCFAF09]

- < 1% bit flip rate towards ground state after 10 minutes cooling to -50°C
- Limiting case is 0.17% after 1 hour cooling with liquid nitrogen to -196°C

- Bits in RAM decay towards ground state (0/1) on power down
- Cool RAM to extreme temperatures to slow decay

- Bits in RAM decay towards ground state (0/1) on power down
- Cool RAM to extreme temperatures to slow decay

- Bits in RAM decay towards ground state (0/1) on power down
- Cool RAM to extreme temperatures to slow decay

Cold boot attack flips

- 2 classes of bit flips:
 - Standard bit flips (towards memory ground state) rate ρ_0
 - ▶ Retrograde bit flips (away from memory ground state) rate $\rho_1 \approx 0.1\%$
- Assuming half the bits of the key not in ground state

 \implies # bit flips \approx (# bits in key) \cdot ($\rho_0 + \rho_1$)/2

• Bit flip rates are written in the form (ρ_0, ρ_1)

Current state-of-the-art

- ▶ DES: (0.5, 0.001) bit flip rate trivially [HSHCPCFAF09]
- AES:
 - ► AES-128: (0.7,0) bit-flip rate in 1 sec on average [KY10]
 - ► AES-256: (0.65,0) bit-flip rate in 90 secs on average [Tso09]
- RSA (1024-bit modulus):

(0.4,0.001) bit-flip rate in 2.4 secs on average [PPS12]

NTRU: (0.01,0.001) bit-flip rate in minutes to hours on average for the ntru-crypto eps449ep1 parameters (N = 449, df = 134, dg = 149, p = 3, q = 2048) [PV17]

Post quantum cryptography

- Cryptography resistant to quantum cryptanalytic algorithms
- Plans for wide-spread use and standardisation NIST process
- 23 lattice-based proposals, the majority of which are LWE based

Post quantum cryptography

- Cryptography resistant to quantum cryptanalytic algorithms
- Plans for wide-spread use and standardisation NIST process
- 23 lattice-based proposals, the majority of which are LWE based

Are there effective cold boot attacks on some of the LWE-based contenders?

LWE keys

Notation: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$, *n* a power-of-two We focus on the two main efficient variations of LWE:

- ► Ring-LWE:
 - SecKey = $s \in R_q$
- Module-LWE:

• SecKey = $\mathbf{s} \in R_q^d$

LWE keys

Notation: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$, *n* a power-of-two We focus on the two main efficient variations of LWE:

► Ring-LWE:

• SecKey =
$$s \in R_q$$

Module-LWE:

• SecKey = $\mathbf{s} \in R_q^d$

Trade-off between *d* and *n*:

- MLWE Kyber: n = 256, d = 3
- ▶ RLWE NewHope: *n* = 1024, *d* = 1

Practical key storage for ring/module-LWE

- ▶ The number theoretic transform (NTT) is used for efficiency
- Without NTT, polynomial multiplication takes $\mathcal{O}(n^2)$ ops
- ▶ With NTT, polynomial multiplication takes $O(n \log n)$ ops
- Polynomials in the secret key s often stored using an NTT

The NTT cold boot problem

"Decode a noisy NTT" **OR** "Recover *s* from $\tilde{s} = \text{NTT}_n(s) + \Delta \mod q$ "

- Assumption: We have $\kappa \ll n$ bit flips
- ► Δ's components have a low Hamming weight binary signed digit representation (BSDR)
- ▶ A BSDR of 7 is "1, 0, 0, -1" since 7 = 1 * 8 1
- κ bit flips $\implies BSDR(\Delta)$ has Hamming weight κ
- s has small coefficients

The NTT cold boot problem

"Decode a noisy NTT" **OR** "Recover *s* from $\tilde{s} = \text{NTT}_n(s) + \Delta \mod q$ "

- Assumption: We have $\kappa \ll n$ bit flips
- ► Δ's components have a low Hamming weight binary signed digit representation (BSDR)
- ► A BSDR of 7 is "1, 0, 0, -1" since 7 = 1 * 8 1
- κ bit flips $\implies BSDR(\Delta)$ has Hamming weight κ
- s has small coefficients

MLWE Kyber [Sch+17] dimension: n = 256, d = 3RLWE NewHope [Pop+17] dimension: n = 1024, d = 1

Attack overview

"Decode a noisy NTT" **OR** "Recover s from $\tilde{s} = \text{NTT}_n(s) + \Delta \mod q$ "

3 main components:

- 1. Divide and conquer to reduce dimension
- 2. Work a low-dimensional solution up to solve the problem
- 3. Lattice + combinatorial attack to solve low dimensional instance

Divide and conquer

Definition

Let ω be a primitive n^{th} root of unity. Then for any $\mathbf{a} \in \mathbb{Z}_q^n$,

$$\texttt{NTT}(\mathbf{a}) := \sum_{j=0}^{n-1} \omega^{(i+1/2)j} a_j$$

Divide and conquer

For power of two *n*:

▶
$$\mathbf{a}_e = (a_0, a_2, \dots, a_{n-2})$$

▶ $\mathbf{a}_o = (a_1, a_3, \dots, a_{n-1})$

$$\bullet \mathbf{a}_o = (a_1, a_3, \dots, a_{n-1})$$

Formulae

For
$$i = 0, \dots, n/2 - 1$$

$$\operatorname{NTT}_{n}(\mathbf{a})_{i} + \operatorname{NTT}_{n}(\mathbf{a})_{i+n/2} = 2 \cdot \operatorname{NTT}_{n/2}(\mathbf{a}_{e})_{i}$$

$$\operatorname{NTT}_{n}(\mathbf{a})_{i} - \operatorname{NTT}_{n}(\mathbf{a})_{i+n/2} = 2\omega^{i+1/2} \cdot \operatorname{NTT}_{n/2}(\mathbf{a}_{o})_{i}$$

Divide and conquer

Original *n*-dimensional instance: $\tilde{s} = NTT_n(s) + \Delta \mod q$

Folded n/2-dimensional instance: For $i = 0, \ldots, n/2 - 1$

$$\tilde{s}_{i} + \tilde{s}_{i+n/2} = 2 \cdot \operatorname{NTT}_{n/2}(s_{e})_{i} + \underbrace{\left(\Delta_{i} + \Delta_{i+n/2}\right)}_{(\Delta_{i} + n/2)} (1)$$

$$\tilde{s}_{i} - \tilde{s}_{i+n/2} = 2\omega^{i+1/2} \cdot \operatorname{NTT}_{n/2}(s_{o})_{i} + \underbrace{\left(\Delta_{i} - \Delta_{i+n/2}\right)}_{(\Delta_{-})_{i}} (2)$$

(1) – the positive fold, (2) – the negative fold

And repeat on the **positive** folded instance

Can we reach trivial dimension?

Writing $\Delta = (\Delta_{\ell}, \Delta_r)$, the error terms after folding once are

Example

$$\Delta = \dots ||1, 0, 0, 0, 0|| \dots || \dots ||0, 0, 0, 0, -1|| \dots$$

$$(\Delta_{+})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, -$$

Can we reach trivial dimension?

Writing $\Delta = (\Delta_{\ell}, \Delta_r)$, the error terms after folding once are

Example

$$\Delta = \dots ||1, 0, 0, 0, 0|| \dots || \dots ||0, 0, 0, 0, -1|| \dots$$

$$(\Delta_{+})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= 1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{-})_{i} = \underbrace{1, 0, 0, 0, 0, 0}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \\ \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0, 0, -1} \qquad (\Delta_{+})_{i} = \underbrace{(\Delta_{+})_{i}}_{= -1, 0, 0$$

Notes:

- These are less sparse when written in BSDR
- ▶ Repeated folding \rightarrow "△" term approaches a uniform distribution
- "s" terms stay the same size

top level
$$\longrightarrow$$
 $(n = 2^k, \Delta)$

Working a solution up a level

Instance in $\Delta = (\Delta_{\ell}, \Delta_r)$ divides into two instances in

Given Δ_+ , guess which bits come from Δ_ℓ and which come from Δ_r to reconstruct Δ . Assuming $\kappa \ll n$, at most 2^{κ} guesses.¹

Each guess is verified by plugging the solution into sibling instance.

Small complication when bit flips in Δ_{ℓ} and Δ_{r} collide!

¹Compare to $\binom{n \log(q)}{\kappa} \gg 2^{\kappa}$ guesses for cold boot exhaustive search

How do we solve the bottom level instance?

Our bottom level instance vs. LWE instances

Ours: $\hat{s} = \text{NTT}_{n'}^{-1} \Delta + s$ *n'* fairly small (= 32) NTT⁻¹ not random *s* small in ℓ_2 Δ not small in ℓ_2

LWE: $\mathbf{b} = \mathbf{A}_n \mathbf{s} + \mathbf{e}$

n fairly large (= 768)

 $\boldsymbol{\mathsf{A}}$ uniform random

- e is small in ℓ_2
- ${\color{black} {s}}$ small in ℓ_2

Despite the differences, let's try to embed our instance into a Bounded Distance Decoding instance

Lattice Background: Bounded Distance Decoding (BDD)

Lattice Background: Bounded Distance Decoding (BDD)

Lattice Background: Bounded Distance Decoding (BDD)

Embedding our problem into BDD

Copy the LWE method of:

- 1. Define target vector $\mathbf{t} := (\mathbf{0}, \hat{ ilde{s}}) \in \mathbb{Z}_q^{n'+n'}$
- 2. Construct lattice

 $\Lambda := \{(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}_q^{n'+n'} : \texttt{NTT}^{-1}(\mathbf{x}) + \mathbf{y} = 0 \bmod q\}$

3. Use BDD to find the closest vector in Λ , and hope that the offset vector is $(\Delta, s) \in \mathbb{Z}_q^{n'+n'}$

Embedding our problem into BDD

Copy the LWE method of:

- 1. Define target vector $\mathbf{t} := (\mathbf{0}, \hat{\tilde{s}}) \in \mathbb{Z}_q^{n'+n'}$
- 2. Construct lattice

$$\Lambda := \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{Z}_q^{n'+n'} : \texttt{NTT}^{-1}(\mathbf{x}) + \mathbf{y} = 0 \bmod q \}$$

3. Use BDD to find the closest vector in Λ , and hope that the offset vector is $(\Delta, s) \in \mathbb{Z}_q^{n'+n'}$

Why/When should we expect to win given a perfect BDD solver?

- ► Why? $(\Delta, -\text{NTT}^{-1}(\Delta)) \in \Lambda$ and $\mathbf{t} (\Delta, -\text{NTT}^{-1}(\Delta)) = (\Delta, s)$
- When? Expect to win if ||(Δ, s)|| is less than half the length of the shortest vector in Λ

Ensuring a successful embedding

"Expect to win if the "offset" $||(\Delta, s)||$ is less than half the length of the shortest vector in Λ "

Ensuring a successful embedding

"Expect to win if the "offset" $||(\Delta, s)||$ is less than half the length of the shortest vector in Λ "

Problem: (Δ, s) is not short!

First step: Consider $2^{\ell}SDR(\Delta)$ instead of Δ as offset

Fix $\ell := \lceil \log_2(\sqrt{q}) \rceil$ and consider $2^{\ell}SDR(\Delta)$:

New lattice is

$$\Lambda' = \{ (\mathbf{x}', \mathbf{y}) \in \mathbb{Z}_q^{2n'+n'} : \left(\texttt{NTT}^{-1} \otimes (1, 2^\ell)
ight) (\mathbf{x}') + \mathbf{y} = 0 mod q \}$$

• New target vector is $(\mathbf{0}, \hat{ ilde{s}}) \in \mathbb{Z}_q^{2n'+n'}$

• The "offset" vector is now $(2^{\ell}SDR(\Delta), s)$

Note:

- Dimension increase is from 2n' to 3n'
- The tensor product introduces terms of the form $(2^{\ell}, -1, 0, \dots, 0)$ with length $\approx \sqrt{q}$

Shortening $(2^{\ell}SDR(\Delta), s)$ offset further

 $\ell := \lceil \log_2(\sqrt{q}) \rceil \implies$ each entry of Δ in minimal $2^{\ell}SDR$ consists of two integers in $\{-2^{\ell} + 1, \dots, 0, 2^{\ell} - 1\}$. Decompose as

- Guess bits that contribute the most to length of 2^ℓSDR(△).
- Update the target for our BDD to get new offset (2^ℓSDR(Δ^(↓)), s)

Solving BDD in our NTT lattices

- Blue line is expected behaviour of random lattices
- Purple is observed for our lattices

.: cannot rely on standard analysis for performance of BDD solver. Instead we rely on experimental evidence using BDD enumeration.

Overall complexity

Divide and Conquer

Lattice Basis Reduction

BDD Enumeration

Working solution up tree

Overall complexity

Trivial

BDD Enumeration

Done once and for all

Dominates

 2^{κ}

Experimental results² using FPLLL³

bit-flip rates			N	ГТ	non-NTT	
Scheme	$ ho_0$	ρ_1	cost	rate	cost	
Kyber	0.2%	0.1%	$3\cdot 2^{21.1}$	95%	2 ^{38.7}	
Kyber	1.0%	0.1%	$3 \cdot 2^{43.3}$	91%	2 ^{70.3}	
Kyber	1.7%	0.1%	$3 \cdot 2^{62.8}$	89%	$2^{100.1}$	
NewHope	0.17%	0.1%	2 ^{48.7}	84%	2 ^{53.7}	
NewHope	0.25%	0.1%	2 ^{60.6}	81%	2 ^{60.0}	
NewHope	0.32%	0.1%	2 ^{70.2}	81%	$2^{66.1}$	

³https://github.com/fplll/fplll

²Code available in paper

Conclusions

- Structure of the NTT can be exploited by cold boot attackers
- For Kyber parameters, attack complexity of correcting 1% flip rate decreases from 2⁷⁰ to 2⁴³ when NTT is used
- For NewHope, not much difference in attack complexity for NTT vs. non-NTT case
- Recommendation: If cold boot attacks are a concern, it is worth not storing secrets using NTT
- Future directions: Solving general LWE like instances with low Hamming weight BSDR secrets, exploiting the rich algebraic structure of NTT's further

References I

Halderman, J Alex, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten. "Lest we remember: cold-boot attacks on encryption keys". In: Communications of the ACM 52.5 (2009), pp. 91–98.

Kamal, Abdel Alim and Amr M Youssef. "Applications of SAT solvers to AES key recovery from decayed key schedule images". In: Emerging Security Information Systems and Technologies (SECURWARE), 2010 Fourth International Conference on. IEEE. 2010, pp. 216–220.

Paterson, Kenneth G, Antigoni Polychroniadou, and Dale L Sibborn. "A coding-theoretic approach to recovering noisy RSA keys". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2012, pp. 386–403.

Paterson, Kenneth G and Ricardo Villanueva-Polanco. "Cold Boot Attacks on NTRU". In: International Conference in Cryptology in India. Springer. 2017, pp. 107–125.

References II

- Poppelmann, Thomas, Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas, Antonio de la Piedra, Peter Schwabe, and Douglas Stebila. NewHope. Tech. rep. available at https://csrc.nist.gov/projects/postquantum-cryptography/round-1-submissions. National Institute of Standards and Technology, 2017.
- Schwabe, Peter, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehle. CRYSTALS-KYBER. Tech. rep. available at https://csrc.nist.gov/projects/post-quantumcryptography/round-1-submissions. National Institute of Standards and Technology, 2017.
 - Tsow, Alex. "An improved recovery algorithm for decayed AES key schedule images". In: International Workshop on Selected Areas in Cryptography. Springer. 2009, pp. 215–230.