
Cold Boot Attacks on
Ring and Module LWE Keys Under the NTT

Martin R. Albrecht∗, Amit Deo† and Kenneth G. Paterson‡

Information Security Group, Royal Holloway, University of London,
martin.albrecht@royalholloway.ac.uk,

{amit.deo.2015,kenny.paterson}@rhul.ac.uk

Abstract. In this work, we consider the ring- and module- variants of the LWE
problem and investigate cold boot attacks on cryptographic schemes based on these
problems, wherein an attacker is faced with the problem of recovering a scheme’s
secret key from a noisy version of that key. The leakage resilience of cryptography
based on the learning with errors (LWE) problem has been studied before, but there
are only limited results considering the parameters observed in cold boot attack
scenarios. There are two main encodings for storing ring- and module-LWE keys, and,
as we show, the performance of cold boot attacks can be highly sensitive to the exact
encoding used. The first encoding stores polynomial coefficients directly in memory.
The second encoding performs a number theoretic transform (NTT) before storing
the key, a commonly used method leading to more efficient implementations. We
first give estimates for a cold boot attack complexity on the first encoding method
based on standard algorithms; this analysis confirms that this encoding method is
vulnerable to cold boot attacks only at very low bit-flip rates. We then show that, for
the second encoding method, the structure introduced by using an NTT is exploitable
in the cold boot setting: we develop a bespoke attack strategy that is much cheaper
than our estimates for the first encoding when considering module-LWE keys. For
example, at a 1% bit-flip rate (which corresponds roughly to what can be achieved in
practice for cold boot attacks when applying cooling), a cold boot attack on Kyber
KEM parameters has a cost of 243 operations when the second, NTT-based encoding
is used for key storage, compared to 270 operations with the first encoding. On the
other hand, in the case of the ring-LWE-based KEM, New Hope, the cold boot attack
complexities are similar for both encoding methods.
Keywords: Cold boot attack · Lattice reduction · Number theoretic transform ·
Post-quantum cryptography · Ring learning with errors · Module learning with errors

1 Introduction
One of the attractive features of the Learning with Errors problem (LWE) [Reg05] is its
“leakage resilience” [DGK+10, BG10, BL14] which roughly states that the difficulty of the
problem deteriorates only gradually as information about the secret is leaked. Indeed,
∗The research of Albrecht was supported by EPSRC grant EP/P009417/1 (Bit Security of Learning

with Errors for Post-Quantum Cryptography and Fully Homomorphic Encryption) and by the European
Union Horizon 2020 Research and Innovation Program Grant 780701 (PROMETHEUS).
†The research of Deo was supported by the EPSRC and the UK government as part of the Centre for

Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1).
‡The research of Paterson was supported by EPSRC Grant EP/M013472/1 (UK Quantum Technology

Hub for Quantum Communications Technologies), by EPSRC Grants EP/K035584/1 and EP/P009301/1
(Centre for Doctoral Training in Cyber Security at Royal Holloway), and by the European Union Horizon
2020 Research and Innovation Program Grant 780701 (PROMETHEUS).

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 173–213
DOI:10.13154/tches.v2018.i3.173-213

mailto:martin.albrecht@royalholloway.ac.uk,
mailto:amit.deo.2015@rhul.ac.uk, kenny.paterson@rhul.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.173-213

174 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

the LWE problem has been shown to remain hard even when an attacker knows many
bits of the secret [AGV09] or when random inner products with the secret vector are
known [Pie12]. With efficiency in mind, many systems proposed for practical use are
based on the related ring-LWE problem (RLWE) [LPR13a] and module-LWE problem
(MLWE) [LS15]. For this setting, fewer results are known. For example, the ring-LWE-
based public key encryption scheme from [LPR13b] was recently shown to remain IND-CPA
secure when certain information on the private key is leaked [DSGKS17].

A running motivating example in the leakage resilience literature is “cold boot attacks”,
cf. [AGV09, NS09, DSGKS17]. Cold boot attacks were introduced and studied in the
seminal work of Halderman et al. [HSH+09]. Briefly, cold boot attacks rely on the fact
that bits in RAM retain their value for some time after power is cut. In order to preserve
the value for longer, memory can be cooled to extreme temperatures (−50◦C) in order
to retain a ρ0 = 1% bit-flip rate even after a time period of ten minutes. Halderman et
al. also noted that bit-flip rates as low as ρ0 = 0.17% are possible when liquid nitrogen
is used for cooling. Another key observation was that memory has a ground state that
the bits will decay to over time, i.e. the noise introduced is very biased. However, it was
also noticed that there is a very small but non-zero probability of retrograde bit-flips away
from the ground state. It was estimated that these retrograde bit-flips occur at a rate of
ρ1 ∈ [0.05− 0.1%]. In a cold boot attack, then, the attacker is assumed to have physical
access to a machine shortly after a power down cycle. The attacker proceeds by extracting
from memory a noisy version of a scheme’s secret key, where a small number of bits have
been flipped. The attacker then recovers the key by applying bespoke error correction
algorithms.

To date, cold boot attacks have received a significant amount of attention across a
range of cryptographic primitives including a variety of symmetric ciphers [HSH+09, Tso09,
KY10, AC11], RSA [HS09, HMM10, PPS12], discrete log systems [PS15] and, most recently,
NTRU [PV17]. However, the literature so far contains no dedicated analysis of cold boot
attacks against LWE-based cryptographic primitives.

Establishing the resilience to side-channel attacks of LWE-based schemes is gaining
significance in light of these schemes being on the brink of widespread adoption. Firstly,
LWE/RLWE/MLWE assumptions are popular candidates for post-quantum cryptography.
For example, many proposals submitted to NIST’s post-quantum standardisation process
are based on these assumptions [SSZ17, Ham17, DKRV17, GMZB+17, BAA+17, PAA+17,
PHAM17, SAL+17, LLJ+17, ZJGS17, Saa17, NAB+17, SPL+17, DTGW17, SAB+17,
LDK+17, LLKN17]. We note that NIST considers resistance to side-channel attacks as
a worthwhile, albeit secondary security feature: “schemes that can be made resistant to
side-channel attack at minimal cost are more desirable than those whose performance
is severely hampered by any attempt to resist side-channel attacks. We further note
that optimised implementations that address side-channel attacks (e.g., constant-time
implementations) are more meaningful than those which do not” [Nat16]. Secondly, efforts
to standardise homomorphic encryption schemes have gained traction, with the first white
papers being issued [CCD+17, ACC+17, BDH+17]. The homomorphic encryption schemes
being considered for standardisation are all based on the RLWE assumption.

Contributions and road map. We consider the resistance of RLWE- and MLWE-based
schemes to cold boot attacks. In light of the leakage resilience of LWE mentioned above,
we investigate how cold boot leakage of secrets stored as polynomial coefficients affects
the hardness of the LWE problem. We show that for moderate cold boot error rates the
resulting problem is considerably easier to solve than the side-channel-free RLWE/MLWE
instances from which it is derived; for this analysis, we simply apply standard security
estimates. However, we note that this analysis does not apply to many schemes as specified
and implemented in practice. In particular, many schemes, e.g. [PAA+17, SAL+17, LLJ+17,

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 175

Table 1: Cold boot attacks on Kyber KEM keys stored in the NTT domain with ρ0, ρ1
the cold boot bit-flip rates. The column “cost” gives the cost of recovering 256 components
of the secret in terms of the number of lattice points visited during enumeration (≈ 100
CPU cycles each). The attack can be repeated to recover all 768 components. The column
“rate” shows the overall success rate 1− (1− p0)2 for recovering 256 components of the
secret, cf. Section 7. We also give the costs of a cold boot attack when the secret key
is stored in the time domain in the column “non-NTT”, cf. Section 4. In that case, the
success rate is always expected to be close to 100%.

bit-flip rates NTT non-NTT
ρ0 ρ1 cost rate cost

0.2% 0.1% 3 · 221.1 95% 238.7

0.5% 0.1% 3 · 233.1 87% 251.6

1.0% 0.1% 3 · 243.3 91% 270.3

1.4% 0.1% 3 · 253.6 91% 289.2

1.7% 0.1% 3 · 262.8 89% 2100.1

ZJGS17, Saa17, SPL+17, DTGW17, SAB+17, LDK+17, CLP17], make use of a power-of-
two cyclotomic ring Z[x]/(xn+1). This ring is amenable to performing multiplications using
a (negacyclic) number theoretic transform (NTT) with complexity O(n log2 n). Adopting
the language of the Fourier transform from which the NTT is derived, the expensive step of
an NTT computation is to transform the inputs from the time domain into the frequency
domain and back; the actual multiplication takes only O(n) elementary operations. Thus,
it is beneficial to keep intermediate values in the frequency domain. For example, the
Kyber specification [SAB+17] directly specifies the secret key in the frequency domain.
This implementation detail dramatically alters the landscape for cold boot attacks on
RLWE/MLWE-based schemes that specify the use of an NTT: now, a cold boot attacker
is confronted with the problem of “decoding a noisy NTT”, i.e. recovering the input to an
NTT given a noisy output. This problem is well-defined in our setting since the sought
after input is small compared to the modulus q for which the NTT is specified.

While our attack in principle applies to all RLWE/MLWE schemes using the NTT and
storing secret keys in the frequency domain, we use a running example of the default Kyber
parameters [SAB+17] for concreteness. To start off, in Section 3, we establish the decoding
cost for cold boot attacks when the NTT is not used for secret key storage, and obtain a
solving cost of 270 operations for ρ0 = 1%, ρ1 = 0.1% bit-flip rates. We then introduce
the “cold boot NTT problem” in Section 4. This accurately captures the information
available to the adversary in a cold boot attack on Kyber and related schemes that store
the private key using an NTT. We then develop a practical attack with a cost of roughly
243 operations for the aforementioned bit-flip rates by exploiting properties of the NTT.
We summarise our findings in Table 1. In addition to the running example of Kyber, we
also analyse New Hope KEM [PAA+17] to give an idea of the attack performance on a
RLWE-based scheme. The results for New Hope are slightly different to the Kyber results
and are summarised in Table 2. In particular, for the bit-flip rates considered, the attack
complexities on New Hope when using the NTT for key storage are comparable to the
case where the NTT is not used.

Our attack proceeds as follows. In Section 5 we show how to reduce the dimension of
our NTT cold boot problem by using a divide and conquer approach that is inspired by the
standard recursive formula for the NTT. We then show that the resulting low dimensional
instance is efficiently solvable using a careful application of lattice reduction. What prevents
our attack from having trivial complexity is that we encounter LWE-like instances where
the secret distribution has a peculiar form. Specifically, each component of the secret can be
written as the sum of a small number of positive/negative powers of two and the secret itself

176 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Table 2: Cold boot attacks on New Hope KEM. The column “cost” gives the cost of
recovering all 1024 components of the secret in terms of the number of lattice points visited
during enumeration (≈ 100 CPU cycles each). The column “rate” shows the overall success
rate 1 − (1− p0)2 for recovering 1024 components of the secret, cf. Section 7. For the
columns labelled “non-NTT”, see caption of Table 1.

bit-flip rates NTT non-NTT
ρ0 ρ1 cost rate cost

0.17% 0.1% 248.7 84% 253.7

0.25% 0.1% 260.6 81% 260.0

0.32% 0.1% 270.2 81% 266.1

is guaranteed to be sparse.1 Therefore, in Section 6, we introduce a special attack on LWE
with this type of secret. This attack combines guessing of higher-order bits with running an
enumeration for a closest vector [LP11, LN13]. Similar combinations of combinatorial and
lattice-reduction techniques have been previously considered, e.g. in [HG07]. In particular,
our approach is similar to that used in [BCGN17, dBDJdW18] for solving the Mersenne Low
Hamming Ratio Search Problem [AJPS17]. However, in contrast to [BCGN17, dBDJdW18],
our attack is aided by the fact that we are considering a lattice derived from an NTT
matrix. These lattices are highly structured and display a behaviour very far from that
observed for random lattices. Thus, on the one hand, we cannot apply standard estimates
for various quantities involved in lattice reduction. On the other hand, performing lattice
reduction on the lattice bases that we encounter turns out to be easier than expected. Thus,
the cost of our lattice-reduction is not derived from (standard) estimates but based on
experimental evidence obtained using [FPL17, FPY18]. We describe the relevant properties
of these lattices and the lattice reduction/enumeration step of our attack in Section 7.
Finally, we report on the overall cost of our attack in Section 8.

For completeness, we include an overview of other possible cold boot attack techniques
(meet-in-the-middle and Gröbner bases) in the appendix. We also consider there an
alternative approach to solving the cold boot problem based on Blahut’s Theorem and the
Berlekamp-Massey algorithm [Mas69]. This approach succeeds when the bit-flip rate is
low and where the secret key is guaranteed to have low Hamming weight when compared
to the ring dimension. In particular, if the secret has Hamming weight w and an attacker
has access to 2w consecutive clean components of the secret, then the full secret can be
derived at a trivial cost.

Discussion. While our attacks are a far cry from the impressive bit-flip rates that can be
handled for other primitives such as RSA and AES, they highlight that cold boot attacks
apply to RLWE/MLWE-based schemes. Our results show that use of the NTT makes cold
boot attacks easier for the MLWE-based Kyber KEM. However, for the RLWE-based
scheme New Hope KEM, the complexity of cold boot attacks in the non-NTT and NTT
cases is roughly the same for the bit-flip rates we considered. One reason for this is that our
NTT-based attack allows us to consider each ring element of an MLWE secret individually
which reduces the dimension of the cold boot problem. This is not possible in the case of
RLWE where the secret key is a single ring element with a large dimension.2 This fact also
explains why the bit-flip rates that our attack effectively handles are lower for New Hope.

For Kyber KEM, our results suggest that vulnerability to cold boot attacks can be
1The positive powers of two correspond to a 0→ 1 bit-flip in a cold boot scenario whereas the negative

powers correspond to bit-flips in the other direction.
2We note that while LWE can be viewed as MLWE with n = 1, this behaviour does not translate. For

this divide-and-conquer approach to be successful, we require unique decoding for each ring element. This
condition is not satisfied in the case of LWE.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 177

mitigated by storing the secret in the time domain instead of the frequency domain. This
counter measure would increase decryption time in a typical IND-CCA setting by a factor
of at most two as such a conversion from the time to frequency domain must take place
already due to the re-encryption step.3 However, such a counter measure would not
completely rule out cold boot attacks: for bit-flip rates of ρ0 = 0.2% the resulting MLWE
instance is still relatively easy to solve using the methods of Section 3. This countermeasure
does not appear to be relevant in the case of New Hope according to Table 2 where the
complexity of attacking a New Hope key remains comparable whether the NTT is used for
key storage or not. However, future work may propose better algorithms for solving the
cold boot NTT decoding problem.

2 Preliminaries
For positive real y, we write byc to denote the integer part of y, dye to denote the smallest
positive integer larger than y and bye to denote the rounding of y to the nearest integer
(where we round down in the case of a tie). We denote the integers modulo q as Zq. We
use subscripts to reference individual entries of vectors e.g. ai. We start counting at zero.
In the case where we have a polynomial a(x) =

∑n−1
i=0 aix

i, we often identify it with its
vector of coefficients (a0, . . . , an−1). Our treatment of a as either a polynomial or a vector
should be clear from the context. We use the notation s← D to mean that s is an element
sampled from the distribution D. If s is a k-dimensional vector, then s← (D)k denotes
that each entry in s is drawn independently from the distribution D. If S is a finite set,
we use the notation s ← S to denote that s is an element sampled from the uniform
distribution over S.

Let q be a prime such that an 2nth primitive root of unity γ exists, and set ω = γ2.
The negacyclic number theoretic transform (NTT) in dimension n will be defined as the
linear function NTT : Znq → Znq given by

NTTn(a)i :=
n−1∑
j=0

γjωijaj mod q.

This transform allows for fast polynomial multiplication in rings of the form Zq[x]/(xn + 1)
where n is a power of two [SS71, Win96]. In general, â will be used as shorthand for the
NTT of a and we often drop the subscript n when its value is clear from the context. The
inverse negacyclic NTT is given by

NTT−1
n (â)i := n−1γ−i

n−1∑
j=0

ω−ij âj .

We need the following result, whose proof is an easy exercise:

Proposition 1. Let X ← {±20,±21,±22, . . . ,±2`−1}. We have

E[X] = 0 and E[X2] = 4` − 1
3 ` .

Furthermore, let Y = (X0, . . . , Xn−1) where each Xi ← {±20,±21,±22, . . . ,±2`−1}. Then
the expected squared norm of Y is

E[‖Y ‖2] = n

(
4` − 1

3 `

)
.

3Note that the NTT is typically not the most expensive operation in RLWE/MLWE-based schemes,
thus the factor of two is conservative. There is also a conversion from the frequency to time domain during
decryption. However, in an MLWE setting this operates on one ring element as opposed to k ring elements,
which is the dimension of the secret s.

178 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

2.1 LWE definitions
We will be using the definition of ring-LWE (RLWE) discussed in [LPR13b] since it best
represents practical use. The reason for this is that the original RLWE definition [LPR10]
(and the definition of module-LWE (MLWE) from [LS15]) uses a continuous error distribu-
tion which is inconvenient in practice. We restrict to rings of the form R = Z[x]/(xn + 1)
where n is a power of two. We also define Rq := R/(qR).

Definition 1 (Ring-LWE distribution). For a “secret” s ∈ Rq and an error distribution
χ over R, a sample from the ring-LWE distribution As,χ over Rq × Rq is generated by
choosing a← Rq uniformly, e← χ and outputting (a, a · s+ e mod qR).

Definition 2 (Search ring-LWE problem). The search ring-LWE problem with secret
distribution D over R entails recovering s from arbitrarily many samples of As,χ where
s← D.

We note that in practice, we usually have a restriction on the number of samples. In the
module-LWE definitions below, k will be a positive integer representing the module “rank”.
It is understood that if a := (a(0), . . . , a(k−1)) ∈ (Rq)k and s := (s(0), . . . , s(k−1)) ∈ (Rq)k,
then a · s =

∑k−1
i=0 a

(i)s(i) ∈ Rq.

Definition 3 (Module-LWE distribution). For a “secret” s ∈ (Rq)k and error distribution
χ over R, a sample from the module-LWE distribution Ak,s,χ over (Rq)k ×Rq is generated
by choosing a← (Rq)k uniformly, e← (χ)k and outputting (a, a · s+ e mod qR).

Definition 4 (Search module-LWE problem). The search module-LWE problem with
secret distribution D over R entails recovering s from arbitrarily many samples of Ak,s,χ
where s← (D)k.

The decision variant of RLWE challenges an adversary to distinguish between samples
from As,χ and the uniform distribution over Rq ×Rq given that s← D. Similarly, decision
MLWE is the problem of distinguishing between Ak,s,χ and the uniform distribution over
(Rq)k ×Rq given s← (D)k.

2.2 Minimal binary signed digit representation
We will often consider integers in binary signed digit representation (BSDR). This repre-
sentation is reminiscent of binary representation for positive integers, apart from the fact
that each individual bit in BSDR has its own sign. For example, (1, 0,−1) is a BSDR
of −3 because −3 = 1 · 20 + 0 · 21 − 1 · 22. We also have that −3 can be written as
(−1,−1) in BSDR. It is clear that integers can have many BSDRs. In order to reduce
the number of possibilities, we often consider the minimal BSDRs corresponding to the
BSDRs with the minimum possible Hamming weight. For example, the minimal BSDR
of 31 is (−1, 0, 0, 0, 0, 1). Note that this has a lower Hamming weight than the binary
representation of 31 i.e. (1, 1, 1, 1, 1). Even when considering minimal BSDRs, the issue
of non-uniqueness can arise. The integer −3 is a simple example of this. One can also
consider integers in q-ary signed digit representation (q-SDR). For example, if q = 3, a
possible q-SDR of the integer 8 would be (−1, 0, 1). Once again these representations are
not unique. We extend these definitions to vectors in the obvious way, i.e. by considering
vectors component-wise.

2.3 Lattices
We here only briefly recall the definitions relevant to this work. For an introduction
to lattices and lattice-based cryptography see [MR09, Pei15]. An n-dimensional lattice

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 179

is a discrete subgroup of Rn. A rank m lattice Λ can be written in terms of a basis
{~b0, . . . ,~bm−1} as

Λ := {~x ∈ Rn : ~x =
m−1∑
i=0

zi~bi, zi ∈ Z}.

We only consider full-rank lattices in this work where m = n. We can represent the basis
as a matrix B ∈ Rm×n where each row is considered to be a basis vector. The main
computational lattice problem that will arise in this work is the bounded distance decoding
problem (BDD), cf. [LN13]. To define BDD in it simplest form, we will denote the shortest
nonzero vector in a lattice Λ as λ1(Λ). The BDD problem then asks to find the closest
lattice vector to some target point ~t under the guarantee that there exists a lattice vector
within distance λ1(Λ) from ~t.

A common strategy for solving BDD is to first obtain a “high quality” basis for the
lattice and then to run Babai’s nearest plane algorithm to obtain a solution. At a high
level, the most desirable bases for running Babai are short and orthogonal. Obviously,
because of the geometry of most lattices, these bases simply do not exist. Due to this fact,
definitions of “reduced” bases aim to mimic the notion of a short and orthogonal basis.
The well-known BKZ algorithm [Sch87, CN11] outputs a so-called BKZ-reduced basis. It
is parametrised by a block size β, indicating at which dimension calls are made to an exact
SVP oracle as a subroutine in the algorithm. After performing BKZ-β reduction, the first
vector in the transformed lattice basis will have norm δm0 · det(Λ)1/m where det(Λ) is the
determinant of the lattice under consideration and the root-Hermite factor δ0 is a constant
based on the block size parameter β. More generally, the quality of a reduced basis B can
be expressed by the slope of the logs of the lengths of the vectors ~b?i in the Gram-Schmidt
orthogonalisation of B. For random bases, the Geometric Series Assumption (GSA) is
commonly assumed to hold:

Definition 5 (Geometric Series Assumption [Sch03]). The norms of the Gram-Schmidt
vectors after lattice reduction satisfy

‖~b∗i ‖ = αi−1 · ‖~b1‖ for some 0 < α < 1.

Combining the GSA with the root-Hermite factor and the fact that det(Λ) =
∏n
i=1 ‖~b?i ‖,

we get α = δ
−2n/(n−1)
0 ≈ δ−2

0 . Increasing the block-size parameter β of BKZ-β leads to
a smaller δ0 but also leads to an increase in run-time. In this work, we consider the
“enumeration regime” where lattice point enumeration is used to realise the exact SVP
oracle in dimension β. In this case the running time grows as βΘ(β) [Kan83, MW15].

Babai’s nearest plane algorithm has been generalised to consider multiple planes [LP11].
This, in turn, can be considered as a form of pruned BDD enumeration [LN13]. In this work,
we follow the BDD enumeration approach to solving BDD, i.e. we first compute a high
quality basis and then run pruned enumeration to recover the (hopefully) closest vector to
our target vector. As is usual, we run enumeration in some sub-dimension and then extend
the solution in the projected sub-lattice to a full solution by running Babai’s nearest plane
algorithm. This is equivalent to picking very small pruning coefficients for the smallest
indices. We make use of BKZ and enumeration as implemented in [FPL17, FPY18]. This
implementation also features a Pruning module, which computes parameters for pruned
enumeration.

3 Leakage resilience for Kyber’s parameters
As mentioned above, we use the default parameter set of the Kyber KEM [SAB+17],
henceforth referred to simply as “Kyber”, as the running example. However, we stress that
our analysis applies generally to RLWE/MLWE keys as we will see later when the New

180 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Hope KEM [PAA+17] is considered. Kyber relies on the MLWE problem in dimension
k = 3 over the ring Rq = Z7681[x]/(x256 + 1). It uses a centred binomial error distribution
Bη with parameter η = 4. This distribution has standard deviation

√
η/2 =

√
2. In Kyber,

the components of the secret also follow Bη.
Now, consider the Kyber public key a, b := a · s+ e with si, ei ← Bη and assume that,

due to some leakage, we are given a noisy version of s, denoted by s̃ := s+ ∆. Here, the
addition is over Rq and ∆ is an element of Rq representing bit-flips. This means that each
component of ∆ should have low Hamming weight when written in minimal BSDR. For
illustrative purposes, we will focus on cold boot bit-flip rates of ρ0 = 1.0% towards the
ground state and a retrograde bit-flip rate of ρ1 = 0.1%, cf. [HSH+09]. More values are
given in Table 1 and estimates for the New Hope KEM are given in Table 2. We consider

a · s̃− b = a · s̃− a · s− e = a · (s̃− s) + e = a ·∆ + e (1)

which is an MLWE instance for the secret ∆. We note that the conversion works both
ways, i.e. an attacker who can find ∆ can then solve the above MLWE instance, and thus
the two problems are equivalent.

By definition of Bη we have −η ≤ si ≤ η. Thus, si fits into four bits (including one sign
bit) and we may assume that the secret ∆ is both relatively sparse (at least when considered
in minimal BSDR) and has components that are bounded by η = 4 in absolute value. This
means that we only need to consider 768 · 4 bits altogether. We assume that half of these
bits are in the ground state and the other half are not. That is, for ρ0 = 1.0%, ρ1 = 0.1%,
we obtain a ∆ with an expected number of 17 = d(1.0 + 0.1)/100 · 768 · 4/2e non-zero
components, each bounded by four in absolute value. According to the LWE estimator
from [APS15] the MLWE instance (1) for these parameter sets take ≈ 270.3 operations to
solve assuming enumeration is used to realise the SVP oracle [CN11].4 This attack might
be improved somewhat by taking into account the a priori distribution of the si.

4 Cold boot NTT decoding problem
The discussion in the previous section assumes that s is stored in RAM as a vector with
small components, allowing a cold boot attacker to obtain a noisy image of s. Yet, as
discussed in the introduction, Kyber stores ŝ := NTTn(s) instead of s. Thus, a cold boot
attacker does not encounter a noisy version of s but a noisy version of ŝ. In other words, the
costs derived in Section 3 are immaterial for a real-world attack on Kyber. In particular,
the decoding problem encountered during a cold boot attack on M/RLWE-based schemes
utilising an NTT, is as follows:

Definition 6 (Cold boot NTT decoding problem). Let NTT be a (negacyclic) NTT of
dimension n modulo q, let ξ be some known constant mod q, let s be a vector with some
known distribution χ and let ∆ be some vector with known distribution ψ. Then the Cold
Boot NTT Decoding Problem is to recover s given

˜̂s := ξ NTT(s) + ∆.

In the definition above, we slightly generalise the cold boot problem encountered by
permitting a scaling factor ξ, cf. Section 5. As before, in our setting ∆ corresponds to
bit-flips which means that each component of ∆ should have low Hamming weight when
written in minimal BSDR. However, contrary to the discussion in Section 3, the norm of

4The following call to the code available at https://bitbucket.org/malb/lwe-estimator was used to
establish this cost:
sage: f = partial(drop_and_solve, primal_usvp, n=3*256, q=7681, alpha=sqrt(2)*sqrt(2*pi)/7681,
reduction_cost_model=BKZ.CheNgu12, decision=False, postprocess=False)
sage: f(secret_distribution=((-4, 4), ceil((1.0 + 0.1)/100 * 4 * 768/2)))

https://bitbucket.org/malb/lwe-estimator

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 181

the “noise term” ∆ is not necessarily small. By analogy with LWE, it will be convenient
to consider the problem with the roles of s and ∆ reversed, i.e. to consider the inverse
NTT of the above instance. In particular, we will be considering the problem of recovering
s or ∆ given

s̃ := W∆ + s (2)

where W is the inverse (of a possibly scaled by some constant) negacyclic NTT matrix
for dimension n, s̃ is known, s is small and ∆ is sparse in minimal BSDR. We sometimes
write Wn to explicitly indicate the dimension of the NTT.

In a standard LWE setting, the matrix A is uniformly randomly sampled mod q.
Indeed, to prevent precomputation attacks, Kyber specifies that a fresh A is computed
for s. In contrast, in our decoding problem each instance has the same W which is the
matrix representation of an inverse negacyclic NTT. Thus, precomputation attacks become
feasible. More importantly, though, this matrix is highly structured and, indeed, the q-ary
lattices derived from this matrix do not behave like random lattices. We consider this in
Sections 5 and 7.

We note that while we are only given n samples in our decoding problem, the problem
is still well defined, despite ∆ not being small. This is because ∆ is sparse when its
components are written in BSDR form. On the other hand, the distribution of ∆ implies
that standard techniques for solving LWE-like problems need to be adapted. We consider
this in Section 6.

We parametrise the cold boot NTT decoding problem by a parameter κ representing
the number of expected bit-flips; explicitly:

κ := d(ρ0 + ρ1) · n · dlog2 qe/2e.

Finally, we note that, for Kyber, the dimension of the problem is immediately reduced
from n · k = 768 to n = 256 since a single Kyber key gives rise to k independent cold
boot problems. It should be noted that this reduction in dimension does not occur when
considering RLWE keys since RLWE is effectively MLWE with k = 1. For bit-flip rates of
0.17% and 1% in the ground state direction (and 0.1% in the retrograde direction), we expect
a total of less than d(0.17 + 0.1) · 256 · 13/200e = 5 and d(1 + 0.1) · 256 · 13/200e = 19 bits
to be flipped respectively. Therefore, under these cold boot assumptions, we expect
either 5 or 19 unknown bit-flips. Note that in both cases, the number of retrograde
bit-flips is approximately 2. The case ρ0 = 0.17% can therefore be solved by exhaustive
search in

(13·256/2
3

)
·
(13·256/2

2
)
≈ 250 operations. For the case, ρ0 = 1.0%, the naive

strategy of simply guessing the positions of bit-flips implies an attack of complexity roughly(13·256/2
17

)
·
(13·256/2

2
)
≈ 2154. This is the case that we will use as our running example.

5 Divide and conquer
It is well known that a 2n-dimensional Fourier transform can be written in terms of
two 2n−1-dimensional Fourier transforms. The same holds for a negacyclic NTT. To
aid the presentation of the appropriate formulae, define g(e) := (g0, g2, . . . , gn−2) and
g(o) := (g1, g3, . . . , gn−1) for any g ∈ Znq . The negacyclic NTT can be shown to satisfy the
following relations:

2NTTn/2(g(e))i = NTTn(g)i + NTTn(g)i+n/2 (3)
2γωiNTTn/2(g(o))i = NTTn(g)i − NTTn(g)i+n/2 (4)

for i ∈ {0, 1, . . . , n/2− 1}.

182 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Example 1. Consider n = 8, given a 2n-th root of unity γ, we can write the forward
negacyclic NTT in matrix form as

Wn =

1 γ γ2 γ3 γ4 γ5 γ6 γ7

1 γ3 γ6 −γ −γ4 −γ7 γ2 γ5

1 γ5 −γ2 −γ7 γ4 −γ −γ6 γ3

1 γ7 −γ6 γ5 −γ4 γ3 −γ2 γ
1 −γ γ2 −γ3 γ4 −γ5 γ6 −γ7

1 −γ3 γ6 γ −γ4 γ7 γ2 −γ5

1 −γ5 −γ2 γ7 γ4 γ −γ6 −γ3

1 −γ7 −γ6 −γ5 −γ4 −γ3 −γ2 −γ

Adding the rows i and i + 4 for i ∈ {0, 1, 2, 3}, we obtain W

(+)
n as shown below which

corresponds to the NTT matrix for n = 4 scaled by ξ = 2:

W
(+)
n =

 2 0 2γ2 0 2γ4 0 2γ6 0
2 0 2γ6 0 −2γ4 0 2γ2 0
2 0 −2γ2 0 2γ4 0 −2γ6 0
2 0 −2γ6 0 −2γ4 0 −2γ2 0

 , 2Wn/2 =

 2 2γ2 2γ4 2γ6

2 2γ6 −2γ4 2γ2

2 −2γ2 2γ4 −2γ6

2 −2γ6 −2γ4 −2γ2

 .

Using this halving property, we can split our cold boot NTT decoding problem into
two smaller cold boot NTT decoding problems. Recall that our cold boot instance is
described by the equation s̃ = NTT−1

n (∆) + s (see Equation (2)). To show how we utilise
Equations (3) and (4), we perform the following steps:

1. Take a forward NTT to obtain the instance NTTn(s̃) = NTTn(s) + ∆.

2. Perform the two folding steps:

(a) (Positive Fold) Compute the vector described by

NTTn(s̃)i + NTTn(s̃)i+n/2 = 2NTTn/2(s(e))i + (∆i + ∆i+n/2).

(b) (Negative Fold) Compute the vector described by

1
2γωi

(
NTTn(s̃)i − NTTn(s̃)i+n/2

)
= NTTn/2(s(o))i + 1

2γωi (∆i −∆i+n/2).

3. Define ∆(l) := (∆0, . . . ,∆n/2−1), ∆(r) := (∆n/2, . . . ,∆n−1) and do the following:

(a) (Positive Fold): Multiply by 2−1 mod q and take an inverse NTT. The resulting
instance is

s̃(e) = 2−1 NTT−1
n/2(∆(l) + ∆(r)) + s(e).

(b) (Negative Fold) Define the matrix Ω such that Ωi,j = (γωi)−1
δi,j where δi,j is

the Kronecker delta function. Take an inverse NTT to obtain the instance

s̃(o) = 2−1 NTT−1
n/2
(
Ω · (∆(l) −∆(r))

)
+ s(o).

To summarise, in matrix notation, we can halve the dimension of the instance s̃ = Wn∆+s
by performing the folding step and deriving the following two instances of half the dimension:

s̃(e) = 2−1Wn/2(∆(l) + ∆(r)) + s(e), (5)
s̃(o) = 2−1 (Wn/2 Ω

)
(∆(l) −∆(r)) + s(o). (6)

Looking at the form of the sub-instance given by the “positive fold” (Equation (5)), it
is clear that we can run a further divide and conquer step to reduce the dimension further.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 183

(Wn, s̃), (∆, s)

(1
2Wn/2Ω, s̃(o)), (∆(−), s

(o))(1
2Wn/2, s̃

(e)), (∆(+), s
(e))

(1
4Wn/4Ω′, s̃(eo)), (∆(+−), s

(eo))(1
4Wn/4, s̃

(ee)), (∆(++), s
(ee))

(1
8Wn/8Ω′′, s̃(eeo)), (∆(++−), s

(eeo))(1
8Wn/8, s̃

(eee)), (∆(+++), s
(eee))

Figure 1: Recursive folding/dimension reduction.

In fact, we can repeatedly divide and conquer the positive fold to reach any dimension we
wish as illustrated in Figure 1.

Considering, the “negative fold”, the additional scaling factor Ω prevents us from
folding down further without rescaling the rows (and thus s). However, we note that on
the lowest level, the attacker may still solve the negative branch.
Remark 1. Note that we can also attempt to divide and conquer on the inverse NTT
directly in the hope of obtaining sub-instances with error terms of the form s(l) ± s(r) and
secrets ∆(e) or ∆(o). Yet, when attempting to do this for the negacyclic NTT, we actually
obtain sub-instances with errors of the form s(l) + ω±n/4s(r) which are not guaranteed to
be small. However, these instances are still susceptible to lattice attacks for limited folding
levels.

A drawback of reducing to an extremely small dimension is that the secret becomes less
sparse at each level, eventually to the point that its distribution approaches the uniform
distribution. Nonetheless, performing only a limited number of folding steps can preserve
sparsity. This is because if ∆ := (∆(l),∆(r)) is very sparse, then ∆(l)±∆(r) is still expected
to be sparse (albeit not as sparse as ∆) and of the same Hamming weight as ∆ when
written in minimal BSDR. We will see later that a sparse minimal BSDR is the key to
our lattice-based attack, so reducing to trivial dimension would be detrimental to our cold
boot attack.

5.1 Extending a solution
We now show how to derive a solution to an n-dimensional instance given an oracle that
solves just one of the child instances in dimension n/2. We instantiate such an oracle in
Sections 6 and 7.

For this we note that given the solution to one of the sub-instances, we can derive
a solution to the other. First assume that the minimal BSDR (or possibly elements of
a minimal BSDR list) of ∆(l) + ∆(r) has Hamming weight equal to that of ∆. In other
words, there was no decrease in minimal BSDR Hamming weight when performing the
positive fold. Then each bit set in the minimal BSDR of ∆(l) + ∆(r) (or the single correct
element of the BSDR list) originate from either ∆(l) or ∆(r). Therefore, in order to guess
∆(l) −∆(r), we simply flip some bits in the minimal BSDR of ∆(l) + ∆(r). We then check
the correctness of the guess by substituting the value of ∆(l) −∆(r) back into the instance.
Note that the list of minimal BSDRs is expected to be relatively short. For example, of
the integers {1, . . . , 7680}, less than 4.92% have a BSDR list length of 4 or more when
considering 13-bit representations. The maximum BSDR list length observed for these

184 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

integers is 21 and occurs just 4 times. Since we will typically be encountering integers
with low Hamming weight minimal BSDR, the length of the minimal BSDR lists ought to
be shorter than suggested by these figures over {1, . . . , 7680}.

If the Hamming weight of the minimal BSDR of ∆(l) + ∆(r) is different to that of ∆, it
has decreased with very high probability.5 For example, assume that each component of
∆(l) is the result of at most a single bit-flip. Assume the same for ∆(r). Performing a fold
in such a case would mean that each component of ∆(l) + ∆(r) is the result of at most two
bit-flips. Therefore the minimal BSDR of each component should have Hamming weight
at most 2. In what follows, a sum a+ b is intended to represent folding where a is from
∆(l) and b is from ∆(r). Under this assumption, there are two cases where the Hamming
weight decreases by 1:

(a) Two bits with the same sign and position collide after folding e.g., (1 + 1) =
2, (−1− 1) = −2

(b) Two bits with opposite signs appear in consecutive positions after folding e.g.,
(−1 + 2) = 1, (2− 1) = 1, (1− 2) = −1, (−2 + 1) = −1.

The Hamming weight can also decrease by 2 if two bits with opposite signs collide e.g.,
(1− 1) = 0, (−1 + 1) = 0.

In light of these observations, we can still use a combinatorial approach to derive
∆(l) −∆(r) from ∆(l) + ∆(r) even when folding caused the Hamming weight to decrease.
For now, assume that the Hamming weight κ of ∆ is known6 and let κ′ denote the Hamming
weight of ∆(r) + ∆(l) and ignore the small factors arising from the non-uniqueness of the
minimal BSDR. We perform one of the following three guessing strategies depending on
κ− κ′:

0: Flip signs of ∆(l) + ∆(r) to guess ∆(l) −∆(r); 2κ′ guesses required.

1: Assume the Hamming weight decreased by 1 when folding due to either case (a) or
(b) above; 3κ′ · 2κ′−1 guesses required.

2: Assume the Hamming weight decreased by 2 due to a single collision in bits with
opposing signs; at most (n/2 · dlog(q)e − κ) · 2 · 2κ guesses required

Note that the 3κ′ factor arises because we must choose one out of the κ′ bits that directly
resulted from the Hamming weight decrease, and then there are at most three ways that
this spurious bit occurred. For example, suppose the spurious bit represented the integer
2. Then it could be that this value arose from the (1 + 1), (4 − 2) or (−2 + 4). The
(n/2 · dlog(q)e−κ) factor arises in the third case because we must choose a 0 bit that arose
from a collision and there are at most (n/2 · dlog(q)e − κ) zeros that are set to 0. There is
a chance that this guessing approach fails. In order to increase the probability of success,
we would have to perform additional guessing phases where we try to correct multiple
spurious bits assuming various configurations. However, our experimental results below
show that performing the three guessing phases above already yields a good probability of
success. We also note that in a cold boot attack the exact value of κ is not known. In this
case, the attacker starts by assuming κ = κ′, followed by κ = κ′ + 1 and κ = κ′ + 2. We
note that this is sufficient to achieve a high rate of success.

Furthermore, an attacker may also directly solve the problem of the neighbour branch
∆(l) − ∆(r). Indeed, given ∆(l) + ∆(r), we can eliminate either ∆(l) or ∆(r) from the
neighbour instance to obtain a problem in either ∆(l) or ∆(r). This new problem will
have associated Hamming weight roughly κ/2. Furthermore, since κ < n there is a very

5Modular reduction by q may increase the Hamming weight, but this case occurs so infrequently that
we ignore it here.

6While this does not hold in a real cold boot attack, we will discuss below how to handle this.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 185

high probability that a known value (∆(l))i + (∆(r))i = 0 is indeed the result of adding
(∆(l))i = 0 and (∆(r))i = 0. Thus, the dimension of the neighbour instance can be further
reduced by eliminating those components, producing a rather easy instance.

Combining the solutions from the two neighbour instances yields a solution for the
parent instance. Thus, a solution in dimension n, implies a solution in dimension 2n which
can then be extended to solutions in 4n, 8n, . . . using the simple guessing approach above.
The overall divide and conquer strategy can be summarised as follows:

1. Repeatedly divide and conquer the positive fold until a desired target dimension n′
has been reached.

2. Solve the bottom (positive fold) instance, cf. Section 7.

3. (a) Given a solution to the positive fold, guess the solution to the negative fold and
work the solution upwards. This costs in the order of7

max
(
2κ, 3(κ− 1)2κ−2, (n′/2 · dlog(q)e − (κ− 2)) · 2 · 2κ−2)

operations multiplied by the number of folds.
(b) If guessing fails, solve the negative instance directly, using partial information

about ∆(l) or ∆(r).

4. Repeat the previous step until the full solution is recovered.

Table 3 uses Kyber parameters with κ = 19 bits flipped to give an overview of how
the Hamming weight of ∆ evolves as we fold multiple times. Assuming two folds, this
shows a rough success rate of 74% when only considering the trivial phase of guessing to
work a 64-dimensional solution upwards. However, when all three phases of guessing are
used, we empirically estimate that the success probability is around 97% when working a
solution up from dimension 64. The corresponding success probability with κ = 25 is 94%.
These values were obtained by sampling 1,000 random vectors ∆ with minimal BSDR of
Hamming weight κ = 19 and 25 and then analysing the cause of a decrease in Hamming
weight whenever this occurred. A breakdown of the statistics of 1000 trials at the 128 to
64-dimensional fold are shown in Tables 4 and 5. In particular, we include how many times
the Hamming weight decreases by 0,1 and 2 as well as how many of these are solvable in
the three simple guessing phases described above. We also report success rates of 98%
and 96% for solving this particular fold for κ = 19 and κ = 25 respectively. We reiterate
that even when the simple guess-and-verify algorithm presented here fails, we expect to be
able to solve the neighbour branch by making use of partial information about ∆l or ∆r.
Thus, from now on, we will assume that the aspect of our attack introduced in this section
always succeeds.

Table 3: The preservation rate of the Hamming weight of ∆ on folding multiple times for
κ = 19 cold boot flips on Kyber parameters.

Folds Bottom level dimension Hamming weight preserved
1 128 90.4%
2 64 73.5%
3 32 48.3%
4 16 19.1%

What remains to be established is how to solve one or both of the bottom level instances;
this is the subject of the following sections.

7Once again, we ignore the small factor arising from the non-uniqueness of the minimal BSDR.

186 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Table 4: A breakdown of the statistics on the 128 to 64 dimensional fold on 1000 Kyber
cold boot instances (κ = 19) when carrying out the three guessing phases. The “Solvable”
row indicates how many of the instances in each category are solvable by the three guessing
phases.

No decrease Decrease by 1 Decrease by 2
Frequency 824 119 45
Solvable 824 119 39

Success rate 100% 100% 87%
Overall success rate for fold: 98.2%

Table 5: The analogous statistics to those in Table 4 for κ = 25. For details on the table
entries, see the caption for Table 4.

No decrease Decrease by 1 Decrease by 2
Frequency 714 174 94
Solvable 714 173 70

Success rate 100% 99% 74%
Overall success rate for fold: 95.7%

6 Lattice formulation
Our algorithm for solving the bottom level instance after applying repeated folding is
inspired by the normal form of the primal attack on LWE. At a high level, the aim of
this attack is to construct a lattice Λ which contains a vector v closest to (0, s̃), such
that the offset between Λ and (0, s̃) is (∆, s). Then, finding this unique closest vector
v to (0, s̃) allows to recover (∆, s). The success of this attack depends on v being the
unique closest vector. Heuristically, we can expect the attack to work if (∆, s) is shorter
than the shortest vector in Λ.8 Looking at our instance in Equation (2), our “secret term”
(interpreting the instance as LWE) is the vector ∆, which is not guaranteed to have small
norm, but is guaranteed to be sparse. Note that we abuse notation slightly here and let
Equation (2) refer to the bottom level instance after folding, i.e. ξ > 1 and ∆ is a vector
obtained by repeated folding. As mentioned in the introduction, this setting is similar to
that considered in [BCGN17, dBDJdW18]. Now, since we know that the component-wise
minimal BSDR of ∆ will be small in norm, the idea is to construct a lattice resembling
the primal attack lattice with an offset vector containing the minimal BSDR of ∆ in its
components.

In fact, we will generalise this idea to construct a lattice with the 2`-ary signed digit
representation of ∆ as an offset. Let b = dlog2` qe and ∆(`) ∈ Znb be the vector where
all components of ∆ are expanded in the 2`-ary signed digit representation of minimal
norm, i.e. we consider 2`-SDR. Concretely, for Kyber the reader may assume ` = 7 and
thus b = 2. Now, let W (`) = W ⊗ (1, 2`, . . . , 2(b−1)`) ∈ Zn×nb and θ ∈ Q be some rational
scaling factor. We take as our lattice

Λ := {x ∈ Znb ×Qn :
[
W (`)|(1/θ)In

]
· x ≡ 0 mod q}. (7)

Concretely, a basis for this (nb+ n)-dimensional lattice can be constructed from the rows
of

B =
(

Ibn×bn θ (W (`)T)
0 q θ In×n

)
8The attack might still succeed even if Λ contains shorter vectors if these vectors are fairly orthogonal

to the offset vector (∆, s).

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 187

where (·)T denotes a transpose. Our aim is that v := (0, θs̃)− (∆(`), θs) ∈ Λ is the closest
lattice vector to (0, θs̃). To estimate whether this is the case, we need to estimate the
norm of the offset vector ‖(∆(`), θs)‖ and the length of the shortest vector in Λ denoted
by λ1(Λ).

For LWE, λ1(Λ) is estimated using the Gaussian heuristic. This is well justified for the
LWE case where A is a uniformly random matrix mod q. However, the tensor product
in W (`) means that there are two classes of unusually short vectors in Λ. The first class
contains vectors of the form

(0, . . . , 0, 2`,−1, 0, . . . , 0)

where the last n components are 0 and the 2` and 1 belong to the same chunk of b
entries. This vector essentially “undoes” the tensor product, producing zero in the part
corresponding to W (`). This vector has norm ≈ 2`, e.g. 128 in our Kyber-based running
example.

The second class of fairly short vectors is given in terms of the 2`-ary signed digit
representation of q that has minimum norm, which we denote as ~q(`) ∈ Zb. Explicitly, the
second class of vectors are of the form

(0, . . . , 0, ~q(`), 0, . . . , 0)

where b divides the number of leading zeros and the last n components are 0. For example,
for ` = 7, we can write q = 7681 as 60 · 2128 + 1 implying our lattice contains vectors
(0, . . . , 0, 60, 1, 0, . . . , 0) of norm ≈ 60.

In addition to these short vectors, we must consider the expected length of the shortest
vector in Λ ignoring such unusually short vectors. We will denote this length as λ′1(Λ). As
mentioned above, if W were uniformly random, we could follow the usual strategy and
consider the Gaussian heuristic to estimate this norm as:

λ′1(Λ) :=
√
n+ nb

2πe (θq)n/(n+nb)
.

However, as we will discuss in Section 7 the Gaussian Heuristic does not hold in our case.
Thus, we will establish λ′1(Λ) empirically using strong lattice reduction.

Now, we expect that the unique vector v ∈ Λ closest to (0, θ s̃) satisfies v+ (∆(`), θs) =
(0, θ s̃) when the following three conditions are all met:

‖(∆(`), θs)‖ <

√

22` + 1 ≈ 2`

‖~q(`)‖
λ′1(Λ).

We note that the above conditions imply that we expect that a unique closest vector to
our target exists. It does not, by itself, imply that it is efficient to recover it.

Furthermore, we need to estimate the expected length of the vector (∆(`), θs). Assuming
κ� n bit-flips and (ρ0 +ρ1) · log2 q � 1 (so that each non-zero component of ∆ is with high
probability the result of a single bit-flip), we have that ‖∆(`)‖2 ≈ κ 4`−1

3 ` , cf. Proposition 1.
We then expect that

E
[
‖(∆(`), θs)‖

2]
= κ

4` − 1
3 ` + n θ2 σ2 (8)

where σ is the standard deviation of the secret distribution.

Example 2. To carry out the analysis for Kyber, we pick ` = 7 which means ‖~q(`)‖2 = 3601
and dlog2`(q)e = 2. Thus, we heuristically require our offset vector to have squared norm
< min(16385, 3601). Even picking a very small θ, i.e. ignoring the third condition above,
this implies that we can only satisfy our constraints for κ ≤ 15.

188 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

6.1 A guessing strategy
To shorten the distance between the lattice and our target vector we simply guess the
bits of ∆ that contribute most significantly to the norm of ∆(`).9 To formalise the former
approach, we define a “band size” β that describes which bits we consider as contributing
significantly to ∆(`). For example, suppose we choose some ` ≥ 2 and a band size of β < `.
Then we consider the top β bits of each entry in ∆(`) (written in minimum Hamming
weight BSDR) as being significant.

We can decompose ∆(`) into two parts: ∆(`,↑) (the vector arising from the bits in the
significant band) and ∆(`,↓) (the vector arising from the non-significant band). In doing
so, we can write ∆(`) = ∆(`,↑) + ∆(`,↓).

Our “guessing approach” is simply to guess ∆(`,↑) and use the basic primal attack to
find the short vector ∆(`,↓). Note that assuming sparsity, the norm of ∆(`,↓) is smaller
than that of ∆(`) so it is more likely that the primal attack will succeed. More concretely,
once we have guessed ∆(`,↑), we define s̃(↓) := s̃ −W (`)∆(`,↑) and target offset vector
(∆(`,↓), θs).

Now to investigate when (∆(`,↓), θs) is likely to be the offset to the unique closest vector
in Λ, we begin by assuming some fixed ` and β < ` and calculating the expected length
of ∆(`,↓). For every individual entry of ∆(`), there are ` − β bits in the non-significant
band and β bits in the significant band. Therefore, assuming κ bit-flips in total, we would
expect roughly `−β

` κ bit-flips10 in ∆(`,↓). Assuming κ� n (i.e. sparsity of bit-flips), we
expect that

E
[
‖(∆(`,↓), θs)‖2

]
= `− β

`
κ

4`−β−1 − 1
3 (`− β − 1) + n θ2 σ2. (9)

At this point, we can reuse the three success conditions detailed above, as the characteristic
properties of Λ remain unchanged. We refer to the process of removing the top-most bits
of a vector as “shaving”. This process is parametrised by a band size β and a maximum
number of bits to correct, α. Setting α to be less than the expected number of bits set in
the top band has the advantage of yielding a shorter number of potential guesses available,
but there is also the disadvantage that there may still be a few bits set in the top band. If
there are some bits still set in the top band, then the candidate vector ∆(`,↓) may still be
too long. The number of possible guesses for the top band with at most α bits flipped is

α∑
i=0

2i ·
(

#bits in significant band
i

)
(10)

where the factor 2i takes care of the fact that each set bit-flip takes values in {−1, 1} when
multiple folding steps have been performed. If we have not folded, the factor of 2i may be
omitted since the sign of the bit-flips are known.

Example 3. Returning to our running example, we analyse the case ` = 7 again. Firstly,
there are 256 ·2β bits in the significant band. Note the factor of 2 due to the fact that each
element of Z7681 requires two integers when written in base 27. However, since 7681 < 213,
the top most bit of each element of Z7681 must be 0. This leaves 256 · (2β − 1) unknown
bit positions where we must correct bit-flips. There is an average of 2β−1

13 · κ bit-flips in
the unknown part of the significant band. The maximum κ such that (9) < 3601 with θ
arbitrarily small, i.e. we are ignoring the second summand in (9), is given in Table 6. We
use Equation (10) with α set to the expected number of bit-flips to estimate the number
of guesses required for κ = 19 bit-flips in total.

9Of course, other guessing strategies are possible. For example, for sufficiently small κ we may have ∆
sparse even mod q. An attacker might thus attempt to guess which columns of ∆ can be ignored in an
attack.

10The number of expected bit-flips is actually less than this for some parameters (see Example 3 below).

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 189

Table 6: The maximum possible κ handled by each guessing band size β for Kyber
parameters and the cost of guessing the significant band.

guessing cost for κ = 19
β max κ n = 16 n = 32
0 15
1 52 29.0 211.0

2 169 225.8 230.9

Even strategy. As illustrated in Example 3, the existence of vectors ~q(`) is a main limiting
factor for ensuring that our offset vector is unusually short. To remove this class of vectors
from our lattice, we focus on resolving bit-flips in the least significant bits of the components
of ∆. Assume for the moment that this has been achieved, and ∆i mod 2 ≡ 0 for all
0 ≤ i < n. Then, instead of considering W ⊗ (1, 2`, . . . , 2(b−1)`) ∈ Zn×nb we may consider

W ⊗ (2, 2`, . . . , 2(b−1)`) ∈ Zn×nb,

i.e. scale the rows 0, b, 2b, . . . , nb of B by a factor of two. Since q mod 2 ≡ 1 we cannot write
q as a linear combination of 2, 2`, . . . , 2(b−1)`. This removes the annoying vectors ~q(`) from
our lattice. To ensure ∆i mod 2 ≡ 0, as assumed here, we may apply a similar guessing
strategy as discussed above. However, we note that this comes with some additional cost
for guessing and correcting the least significant bits of the components of ∆.

Finally, we stress that our analysis so far uses expected values throughout. In Figure 2,
we plot an example histogram of the ‖(∆(`), θs)‖2 against our expectation for κ = 19 and
θ = 3. As illustrated in Figure 2, the actually observed distribution has a large variance.
Thus, to estimate the cost of our attack, we will derive parameters from empirical evidence.

0 0.5 1 1.5 2 2.5 3 3.5
·104

0

0.2

0.4

0.6

0.8

1

·10−4

‖∆(`), θs‖2

Pr

histogram
E[·]

Figure 2: Histogram of observed squared norms of vectors of length n = 256 mod q = 7681,
folded three times to dimension 32, written in base 27, for θ = 3 and κ = 19. Note that
in this example E[‖(∆(`), θs)‖2] < κ 4`−1

3 ` + n (θσ)2 because log2 q < 14. Thus, half of our
entries are bounded by 26 instead of 27 This is taken into account when we compute the
expectation in this figure.

190 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

7 BDD on NTT lattices
So far, we have only analysed the existence of a unique closest vector to our target. The
last ingredient of our attack is to find this vector, i.e. a vector in

Λ := {x ∈ Zndlog2` qe ×Qn :
[
W (`)(1/θ)In

]
· x ≡ 0 mod q}

that is close to (0, θs̃). Concretely, for Kyber we set ` = 7 and n = 32, where n ≥ 16 is
chosen to preserve sparsity for ρ0 = 1.0%, ρ1 = 0.1%, where we expect κ = 19 bit-flips. To
consider the geometry of the lattice spanned by our instances, consider the smaller case
n = 4, θ = 1 (since it fits on this page). We obtain the q-ary lattice basis

B =

1 1 −ω3 −ω2 −ω
1 27 −27ω3 −27ω2 −27ω

1 1 −ω ω2 −ω3

1 27 −27ω 27ω2 −27ω3

1 1 ω3 −ω2 ω
1 27 27ω3 −27ω2 27ω

1 1 ω ω2 ω3

1 27 27ω 27ω2 27ω3

7681
7681

7681
7681

.

where all of the omitted entries are zero. Note that the lattice spanned by B contains the
unusually short vector

(1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 0).

This vector is not an artefact of the tensor product but an artefact of B being derived
from an NTT matrix: it corresponds to folding all the way down to dimension n = 1.

More generally, the geometry of the q-ary lattices Λ considered in this work is far
from what we would expect from a random q-ary lattice. In Figure 3, we plot the lengths
of the Gram-Schmidt vectors of a BKZ-90 reduced basis for a lattice Λ corresponding
to folding our 256-dimensional instance down to dimension n = 32. This lattice has
dimension 96 = dlog27 qe · n+ n. For comparison, we also plot the expected lengths of the
Gram-Schmidt vectors according to the Geometric Series Assumption which approximates
the behaviour of random q-ary lattices reasonably well.

Due to this unusual geometry, we cannot readily apply standard estimates for lattice
reduction. As a case in point, computing a BKZ-90 reduced basis of the 96-dimensional
lattice in Figure 3 took less than an hour with FPLLL [FPL17], i.e. reducing this basis is
considerably faster than expected for random q-ary lattices.

Thus, to find the vector v ∈ Λ closest to (0, θs̃), we proceed as follows. First, we remove
the unusually short vector that corresponds to folding all the way down to n = 1. This is
accomplished by guessing the value of ∆0 and considering the sublattice spanned by the
rows of Λ except for the first dlog2` qe rows. Pessimistically, we expect that this increases
our guessing cost by a factor of dlog2 qe. We refer to this smaller basis as B′ and call d
the dimension of the lattice spanned by B′. Then, we compute a high-quality basis for the
lattice spanned by B′. In particular, for n = 32 we compute a BKZ-90 reduced basis. Then,
for each guess as in Section 6.1, we perform one pruned BDD enumeration in dimension
bs = min(60, d), i.e. the bs-dimensional sub-lattice orthogonal to the first d− bs vectors
in B′. We heuristically expect that BDD enumeration in block size bs will find the closest
vector iff the projection of the offset vector orthogonal to the first d− bs vectors in B′ is
shorter than ~b?d−bs, the Gram-Schmidt vector at index d− bs in B′ [ADPS16, AGVW17].

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 191

0 10 20 30 40 50 60 70 80 90 100

5

6

7

8

9

10

11

i

lo
g 2
‖b

? i
‖

our instance
GSA

Figure 3: Length of Gram-Schmidt vectors in q-ary lattice derived from negacyclic inverse
NTT at dimension 32 using parameters ` = 7, θ = 1.

As in [ADPS16, AGVW17], we assume that the length of this projection is√
bs
d

E
[
‖∆(`), θs‖

]
where E[‖(∆(`), θs)‖] is experimentally established by sampling 1024 vectors.11 As enu-
meration radius we pick

min
(√

bs
d
· E[‖(∆(`), θs)‖], ‖~b?d−bs‖

)
. (11)

The right-hand argument in (11) takes care of the fact that there is little point in
enumerating beyond the length of the shortest vector in the projected sub-lattice if we
are targeting a unique closest vector. We illustrate the expected behaviour in Figure 4,
where we plot the projected norms for 256 samples of (∆(`), θs) against the norms of the
Gram-Schmidt vectors for our reduced basis B′ for θ = 3. Note that in contrast to Figure 3,
the basis in Figure 4 is B′ and not B. We expect enumeration to succeed for every grey
line that stays below the Gram-Schmidt vectors for all indices < d−bs. Figure 4 illustrates
that we can improve our probability of success by increasing the enumeration dimension at
the cost of increasing the running time. Note that the algorithm may still succeed when
the heuristic success condition discussed above is not satisfied due to the orientation of the
vectors involved. Therefore, we use the empirical evidence (cf. Tables 7-11) to establish
the success rate.

The experiments we performed are as follows. We sampled random sparse binary
vectors ∆ in dimension n for various κ and construct a corresponding cold boot NTT
decoding problem. We then folded this instance down to dimension n = 32 and ran the
guessing part of the algorithm for some parameters α, β. Since the cost of the guessing
part of the attack is easy to predict, we simulated it by always picking the best “shaving”
under the constraints imposed by α, β. This is implemented as the shave function in an

11In our experiments, the approximation
√

bs
d
E
[
‖∆(`), θs‖

]
indeed appears reasonably accurate.

192 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

0 20 40 60 80
i

2

4

6

8

10

12

log‖(·)2‖

b ∗
i

Figure 4: Projected lengths for 256 samples of (∆(`), θs) and the norms of the Gram-
Schmidt vectors for our reduced basis B′ for θ = 3 with κ = 19, folded down three times to
n = 32 and shaved with parameters α, β = 4, 2. The dotted line indicates d−bs, i.e. where
we start enumerating.

appendix of the full version. We then ran lattice point enumeration to recover the offset
vector, this is implemented in the function offset_vector. We report success when the
returned vector matches the norm of our target exactly and failure otherwise. In summary,
we implemented the full attack on the n = 32 sub-problem except for the guessing part.
We note that we also implemented and verified extending the solution upwards as described
in Section 5.1.

We summarise the observed behaviour of our algorithm for solving the bottom-level
n = 32 instance in Tables 7-11. These tables illustrate the trade off between the two
pruned exhaustive search steps in our algorithm, the first searching for set higher-order
bits, the second searching for lattice points. Increasing one reduces the other. Furthermore,
according to our empirical evidence, the “even” strategy may provide a small gain in
some cases, but it is not overall more efficient than the “not even”, i.e. “odd” strategy.
All numbers in these tables were obtained using the proof of concept implementation in
Sage [S+17] available in the full version. To establish the cost of the enumeration, we use
the number of nodes in the pruned enumeration tree as reported by the Pruner class from
FPLLL/FPYLLL [FPL17, FPY18]. Processing each node is generally assumed to take
about 100 CPU cycles [FPL17].

8 Putting it all together
8.1 Kyber KEM
We now draw together Sections 5-7 to give a concise account of our attack and its
performance on the Kyber KEM. Recall that we have 3 instances of the form s̃ = Wn∆ + s
for a single private key in Kyber, with n = 256. We first establish some notation. Below,
“label, (n,m)” indicates that the instance with “label” in Figure 1 has n variables si and
that each error term is the sum of m original error terms ∆j . Note that in Figure 1, the
label of a node is given by the subscript in ∆.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 193

Table 7: Experimental results for Kyber parameters and number of bit-flips κ = 5
(ρ0 = 0.2%, ρ1 = 0.1%); θ is the scaling factor of our lattice, α the number of bits we
guess in a band of size β. In the “even” case we target the least significant bits of the
components of ∆ first. The column “guess” holds the number of guesses before lattice
enumeration which includes the cost of guessing ∆0, the column “enum” holds the number
of nodes in the pruned lattice-point enumeration tree. The column “total” is the product
of the two. All costs are give as log2(·). The column “rate” is the success rate over 200
experiments. Only parameters with success rate ≥ 60% are shown. The minimal total cost
is highlighted in bold and used in Table 1.

cost
θ α β guess enum total rate

κ = 5, odd
2 1 1 9.7 16.2 25.9 77.5%
2 1 2 11.3 14.8 26.1 85.0%
2 2 1 14.7 16.2 30.9 83.5%
2 2 2 17.9 13.7 31.5 96.5%
2 3 1 19.0 16.2 35.3 84.0%
2 3 2 23.8 13.5 37.3 99.5%
3 1 1 9.7 14.0 23.8 81.0%
3 1 2 11.3 13.6 24.9 87.0%
3 2 1 14.7 14.0 28.7 87.5%
3 2 2 17.9 12.8 30.7 98.5%
3 3 1 19.0 14.0 33.1 88.0%
3 3 2 23.8 12.7 36.5 100.0%

cost
θ α β guess enum total rate

κ = 5, even
2 1 1 10.7 11.1 21.8 74.5%
2 1 2 11.7 9.4 21.1 78.5%
2 2 1 16.7 10.7 27.4 87.5%
2 2 2 18.7 6.0 24.7 94.0%
2 3 1 22.1 10.5 32.6 90.5%
2 3 2 25.1 5.7 30.8 98.5%
3 1 1 10.7 11.6 22.4 79.5%
3 1 2 11.7 10.3 22.0 81.0%
3 2 1 16.7 11.3 28.0 92.0%
3 2 2 18.7 7.8 26.5 96.0%
3 3 1 22.1 11.2 33.3 94.5%
3 3 2 25.1 7.6 32.7 99.5%

root (256,1) This instance is in the secrets si for i ∈ {0, 1, 2, , . . . , n− 1} and has error ∆j

for the j-th equation. It corresponds to the root node in Figure 1.

+ (128, 2) This instance is the result of folding once on the plus branch. It is in the
secrets si for i ∈ {0, 2, 4, . . . , n− 2}. The j-th equation has error term ∆j + ∆j+128.

++ (64, 4) This instance is the result of folding twice on the plus branch. It is in the
secrets si for i ∈ {0, 4, 8 . . . , n− 4}. The j-th equation has error term ∆j + ∆j+64 +
∆j+128 + ∆j+192.

+++ (32, 8) This instance is the result of folding three times on the plus branch. It
is in the secrets si for i ∈ {0, 8, 16, . . . , n − 8}. The j-th equation has error term
∆j + ∆j+32 + ∆j+64 + ∆j+96 + ∆j+128 + ∆j+160 + ∆j+192 + ∆j+224.

++- (32, 8) This instance the result of folding twice on the plus branch and once on the
negative. It is in the secrets si for i ∈ {4, 12, 20, . . . , n− 4}. The j-th equation has
error term ∆j −∆j+32 + ∆j+64 −∆j+96 + ∆j+128 −∆j+160 + ∆j+192 −∆j+224.

For each of our three sub-problems we perform the following steps:

1. Divide and conquer 3 times to obtain two bottom level instances +++ and ++- as in
Section 5.

2. Solve at least one bottom level instance using combinatorial and lattice-reduction
techniques as in Sections 6 and 7. The cost and expected success rate for solving one
such instance are given in Section 7. If solving one instance succeeds with probability
p0, we assume that this step succeeds with probability 1− (1− p0)2, i.e. we assume
the two bottom level instances are sufficiently different.

3. Substitute the solution obtained into the instance ++. This reduces it from (64, 4) to
(32, 4), Solve this instance as in Sections 6 and 7. Note that solving this instance

194 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Table 8: Experimental results for Kyber parameters and κ = 10 (ρ0 = 0.5%, ρ1 = 0.1%).
For details see Table 7.

cost
θ α β guess enum total rate

κ = 10, odd

2 3 2 23.8 16.2 40.0 93.0%

2 4 2 29.4 16.2 45.6 97.5%

2 5 2 34.6 15.9 50.5 99.5%
3 3 1 19.0 14.0 33.1 63.5%
3 3 2 23.8 14.0 37.9 95.5%
3 4 1 22.9 14.0 37.0 64.0%
3 4 2 29.4 14.0 43.4 98.0%
3 5 1 26.5 14.0 40.5 64.0%
3 5 2 34.6 14.0 48.6 98.5%
4 3 1 19.0 20.9 40.0 64.0%
4 3 2 23.8 19.5 43.4 87.5%
4 4 1 22.9 20.9 43.9 64.5%
4 4 2 29.4 19.1 48.5 91.5%
4 5 1 26.5 20.9 47.4 64.5%
4 5 2 34.6 18.8 53.4 92.0%

cost
θ α β guess enum total rate

κ = 10, even
2 3 1 22.1 11.1 33.2 66.5%
2 3 2 25.1 9.8 34.9 89.5%
2 4 1 27.0 11.1 38.1 69.0%
2 4 2 31.1 8.2 39.3 95.0%
2 5 1 31.6 11.1 42.7 70.0%
2 5 2 36.7 7.7 44.4 99.5%
3 3 1 22.1 14.2 36.3 76.5%
3 3 2 25.1 10.6 35.7 90.5%
3 4 1 27.0 14.2 41.3 79.0%
3 4 2 31.1 9.4 40.5 95.0%
3 5 1 31.6 14.2 45.9 79.0%
3 5 2 36.7 9.0 45.8 99.5%
4 3 1 22.1 12.2 34.3 86.0%
4 3 2 25.1 12.1 37.2 95.5%
4 4 1 27.0 12.2 39.3 87.0%
4 4 2 31.1 11.2 42.2 98.0%
4 5 1 31.6 12.2 43.9 87.5%
4 5 2 36.7 10.9 47.6 99.5%

Table 9: Experimental results for Kyber parameters and κ = 19 (ρ0 = 1.0%, ρ1 = 0.1%).
For details see Table 7.

cost
θ α β guess enum total rate

κ = 19, odd
2 4 2 29.4 16.2 45.6 62.5%
2 5 2 34.6 16.2 50.8 80.0%
2 6 2 39.5 16.2 55.7 86.5%
2 7 2 44.2 16.2 60.4 91.0%
2 8 2 48.7 16.2 64.9 94.5%
3 4 2 29.4 14.0 43.4 71.0%
3 5 2 34.6 14.0 48.6 82.0%
3 6 2 39.5 14.0 53.6 87.0%
3 7 2 44.2 14.0 58.3 91.5%
3 8 2 48.7 14.0 62.8 92.5%
4 4 2 29.4 20.9 50.3 66.5%
4 5 2 34.6 20.9 55.5 70.5%
4 6 2 39.5 20.9 60.5 79.0%

4 7 2 44.2 20.9 65.2 83.5%

4 8 2 48.7 20.9 69.7 84.0%

cost
θ α β guess enum total rate

κ = 19, even

2 5 2 36.7 11.1 47.8 70.5%
2 6 2 42.1 11.1 53.1 84.0%
2 7 2 47.2 11.1 58.3 90.5%
2 8 2 52.1 10.6 62.8 96.0%

3 5 2 36.7 14.2 50.9 74.0%
3 6 2 42.1 13.3 55.4 86.0%
3 7 2 47.2 12.2 59.4 93.0%
3 8 2 52.1 11.8 63.9 98.0%
4 4 2 31.1 12.2 43.3 70.5%
4 5 2 36.7 12.2 48.9 83.0%
4 6 2 42.1 12.2 54.3 89.0%
4 7 1 40.0 12.2 52.2 60.0%
4 7 2 47.2 12.2 59.4 96.5%
4 8 1 43.8 12.2 56.1 60.5%
4 8 2 52.1 12.2 64.4 97.5%

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 195

Table 10: Experimental results for Kyber parameters and κ = 25 (ρ0 = 1.4%, ρ1 = 0.1%).
For details see Table 7.

cost
θ α β guess enum total rate

κ = 25, odd
2 6 2 39.5 16.2 55.7 60.5%
2 6 3 44.0 16.2 60.2 68.0%
2 7 2 44.2 16.2 60.4 72.5%
2 7 3 49.5 16.2 65.7 82.5%
2 8 2 48.7 16.2 64.9 79.0%
2 8 3 54.8 16.2 71.0 90.5%
3 5 3 38.3 14.0 52.4 60.0%
3 6 2 39.5 14.0 53.6 70.0%
3 6 3 44.0 14.0 58.1 74.0%
3 7 2 44.2 14.0 58.3 76.0%
3 7 3 49.5 14.0 63.5 81.5%
3 8 2 48.7 14.0 62.8 80.0%
3 8 3 54.8 14.0 68.8 87.0%
4 6 2 39.5 20.9 60.5 60.5%
4 6 3 44.0 20.9 65.0 68.0%
4 7 2 44.2 20.9 65.2 69.0%
4 7 3 49.5 20.9 70.4 80.5%
4 8 2 48.7 20.9 69.7 71.0%
4 8 3 54.8 19.5 74.3 84.0%

cost
θ α β guess enum total rate

κ = 25, even

2 7 2 47.2 11.1 58.3 65.0%
2 7 3 51.4 11.1 62.4 67.0%
2 8 2 52.1 11.1 63.2 77.5%
2 8 3 56.9 11.1 68.0 80.5%

3 7 2 47.2 14.2 61.4 71.0%
3 7 3 51.4 14.2 65.6 71.5%
3 8 2 52.1 14.2 66.4 82.5%
3 8 3 56.9 13.3 70.2 84.5%
4 6 2 42.1 12.2 54.3 66.5%
4 6 3 45.6 12.2 57.9 66.0%
4 7 2 47.2 12.2 59.4 80.0%
4 7 3 51.4 12.2 63.6 79.0%
4 8 2 52.1 12.2 64.4 89.5%
4 8 3 56.9 12.2 69.1 89.0%

Table 11: Experimental results for Kyber parameters and κ = 30 (ρ0 = 1.7%, ρ1 = 0.1%).
For details see Table 7.

cost
θ α β guess enum total rate

κ = 30, odd
2 8 3 54.8 16.2 71.0 66.5%
2 9 2 53.0 16.2 69.2 63.0%
2 9 3 59.8 16.2 76.0 82.5%
3 7 2 44.2 14.0 58.3 60.0%
3 7 3 49.5 14.0 63.5 66.0%
3 8 2 48.7 14.0 62.8 67.5%
3 8 3 54.8 14.0 68.8 73.0%
3 9 2 53.0 14.0 67.1 74.5%
3 9 3 59.8 14.0 73.9 84.0%

4 7 3 49.5 20.9 70.4 62.5%
4 8 2 48.7 20.9 69.7 63.5%
4 8 3 54.8 20.9 75.7 73.0%
4 9 2 53.0 20.9 74.0 66.0%
4 9 3 59.8 20.7 80.5 80.0%

cost
θ α β guess enum total rate

κ = 30, even

2 9 2 56.9 11.1 67.9 65.5%
2 9 3 62.3 11.1 73.3 66.5%

3 8 2 52.1 14.2 66.4 65.0%
3 8 3 56.9 14.2 71.1 65.0%
3 9 2 56.9 14.2 71.1 73.5%
3 9 3 62.3 14.2 76.5 75.0%
4 7 2 47.2 12.2 59.4 64.5%
4 7 3 51.4 12.2 63.6 64.5%
4 8 2 52.1 12.2 64.4 72.0%
4 8 3 56.9 12.2 69.1 72.0%
4 9 2 56.9 12.2 69.1 79.5%
4 9 3 62.3 12.2 74.5 79.0%

196 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

is much easier than in the previous step since the Hamming weight of the noise is
reduced to ≈ κ/2. We assume this step always succeeds.

4. Work the solution of ++ upward to + by solving +- using the information from ++
as in Section 5.1. This step succeeds with probability p1 and we assume that it is
cheaper than the previous steps.

5. Work the solution of + upward to “root” by solving - using the information from
+ as in Section 5.1. We assume this step always succeeds and we assume that it is
cheaper than the previous steps.

Thus, the overall complexity of recovering 256 components of the Kyber secret is to run
the lattice attack from Section 7 three times (steps 2 and 3) and succeeds with probability
≈ p1 · (1 − (1− p0)2). In particular, for our choice of parameters we have12 p1 ≈ 1 and
p0 > 0.6 and thus expect success with probability > 0.84. For example, with κ = 19,
Table 9 shows that we can solve the hardest BDD problem with a cost of 243.3 and success
probability p0 = 0.705. Since this is by far the most expensive stage of the attack, we
report an attack cost of enumerating ≈ 243.3 nodes in an enumeration tree where each
node requires about 100 CPU cycles to process and a p1 · (1− (1− p0)2) ≈ 0.91 success
probability. We can attack each of the k = 3 module elements separately and combine
the final solution. We note that the attacker can detect with high probability when a
sub-solution is incorrect and thus invest more computational resources to increase the
chance of success. We summarise our results in Table 1.

The attack needs to be run k = 3 times to recover a full Kyber secret. If a solution
cannot be obtained for one of the three secret ring elements, then the solutions of the other
two sub-problems can be substituted back into the original MLWE problem for Kyber’s
public key. This reduces the effective dimension of the public key to n = 256. An attacker
could then target this smaller RLWE instance. Solving such an instance costs roughly 277

according to the LWE estimator from [APS15], again assuming that enumeration is used
to realise the SVP oracle inside BKZ. As suggested above, an attacker could alternatively
attempt to re-run our cold boot attack on the remaining unknown secret element with
different parameter choices from Tables 7-11. This would boost the probability of success
at the expense of a greater computational cost.

8.2 New Hope KEM
We now move away from our MLWE-based example of Kyber KEM and give a concise
account of the performance of our attack on the RLWE-based New Hope KEM [PAA+17].
The parameters used are n = 1024, q = 12289 and the secret polynomials have coefficients
lying in the set {0,±1, . . . ,±8}. Similarly to Kyber KEM, New Hope uses an NTT to
store its secret keys, meaning that we can launch the same cold boot attack. An important
distinction between the Kyber and New Hope cases is that, for Kyber, we obtain multiple
independent cold boot instances, each one corresponding to an individual polynomial in the
secret key; this leads to multiple instances of relatively low dimension for Kyber. However,
in the case of New Hope, we have just one cold boot instance in a large dimension. This
distinction between MLWE- and RLWE-based schemes holds true in general for our cold
boot attack in the NTT domain.

We focus our attention on the lattice aspect of the attack, assuming that we have folded
the New Hope 1024-dimensional cold boot instance repeatedly to reach a 32-dimensional
instance using the methods in Section 5. We can then experimentally estimate the success
rate of solving this bottom level instance for various choices of θ, α, β using the methods

12Note that it is easy to amplify p1 by performing additional guessing phases in Section 5.1.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 197

Table 12: Experimental results for New Hope parameters and number of bit-flips κ = 10;
θ is the scaling factor of our lattice, α the number of bits we guess in a band of size β.
In the “even” case we target the least significant bits of the components of ∆ first. The
column “guess” holds the number of guesses before lattice enumeration which includes
the cost of guessing ∆0, the column “enum” holds the number of nodes in the pruned
lattice-point enumeration tree. The column “total” is the product of the two. All costs
are give as log2(·). The column “rate” is the success rate over 100 experiments. Only
parameters with success rate ≥ 50% are shown. The minimal total cost is highlighted in
bold and used in Table 2.

cost
θ α β guess enum total rate

κ = 10, odd

2 3 2 25.1 15.6 40.7 82.0%

2 4 2 31.1 15.6 46.6 96.1%

2 5 2 36.7 15.6 52.3 100.0%

3 3 2 25.1 12.8 37.9 68.0%

3 4 2 31.1 12.8 43.9 76.6%

3 5 2 36.7 12.8 49.5 81.2%

cost
θ α β guess enum total rate

κ = 10, even
2 3 1 23.8 10.3 34.2 60.9%
2 3 2 26.1 10.3 36.4 73.4%
2 4 1 29.4 10.3 39.7 73.4%
2 4 2 32.4 10.3 42.7 93.0%
2 5 1 34.6 10.3 44.9 77.3%
2 5 2 38.3 10.3 48.7 97.7%
3 3 1 23.8 11.1 35.0 63.3%
3 3 2 26.1 11.1 37.2 71.9%
3 4 1 29.4 11.1 40.5 76.6%
3 4 2 32.4 11.1 43.5 91.4%
3 5 1 34.6 11.1 45.7 78.1%
3 5 2 38.3 11.1 49.4 93.0%

in Section 7 with b = 2 and ` = 7. The results for κ = 10, 19, 25, 30 are given in Tables 12–
15. Note that the value κ = 19 roughly corresponds to the limiting cold boot case of
ρ0 = 0.17%, ρ1 = 0.1% where liquid nitrogen is used to cool the RAM chip.

We now reuse the analysis and notation from Section 8.1 to estimate the running time
and success probability of the full attack on New Hope. The success probability of the
attack is ≈ p1 · (1 − (1 − p0)2) where p1 is the success probability of working a bottom
level solution up and p0 is the probability of successfully solving a bottom level instance.
Once again, we assume that this aspect of the attack can be performed successfully with
probability p1 ≈ 1 without dominating the complexity of the overall attack. To determine
p0, we use the results form Tables 12-15. A summary of our results for κ = 19, 25, 30 is
given in Table 2.

198 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

Table 13: Experimental results for New Hope parameters and number of bit-flips κ = 19;
for details see Table 12.

cost
θ α β guess enum total rate

κ = 19, odd
2 5 2 36.7 15.6 52.3 57.8%
2 6 2 42.1 15.6 57.6 76.6%
2 7 2 47.2 15.6 62.8 82.8%
2 8 2 52.1 15.6 67.7 90.6%
3 6 2 42.1 12.8 54.9 51.6%
3 7 2 47.2 12.8 60.0 56.2%
3 8 2 52.1 12.8 64.9 62.5%

cost
θ α β guess enum total rate

κ = 19, even
2 5 2 38.3 10.3 48.7 59.4%
2 6 2 44.0 10.3 54.4 69.5%
2 7 2 49.5 10.3 59.8 84.4%
2 8 2 54.8 10.3 65.1 89.8%
3 5 2 38.3 11.1 49.4 58.6%
3 6 2 44.0 11.1 55.1 75.0%
3 7 2 49.5 11.1 60.6 81.2%
3 8 2 54.8 11.1 65.9 85.9%
4 6 2 44.0 11.7 55.7 60.9%
4 7 2 49.5 11.7 61.2 69.5%
4 8 2 54.8 11.7 66.4 75.0%
5 6 2 44.0 12.7 56.7 50.8%
5 7 2 49.5 12.7 62.2 59.4%
5 8 2 54.8 12.7 67.5 60.2%

Table 14: Experimental results for New Hope parameters and κ = 25. For details see
Table 12.

cost
θ α β guess enum total rate

κ = 25, odd
2 7 2 47.2 15.6 62.8 52.3%
2 7 3 51.4 15.6 66.9 59.4%
2 8 2 52.1 15.6 67.7 63.3%
2 8 3 56.9 15.6 72.5 75.0%

3 8 2 52.1 12.8 64.9 50.0%
3 8 3 56.9 12.8 69.7 57.8%

cost
θ α β guess enum total rate

κ = 25, even
2 7 2 49.5 10.3 59.8 53.9%
2 7 3 52.9 10.3 63.3 54.7%
2 8 2 54.8 10.3 65.1 64.1%
2 8 3 58.7 10.3 69.0 64.8%
3 7 2 49.5 11.1 60.6 56.2%
3 7 3 52.9 11.1 64.1 56.2%
3 8 2 54.8 11.1 65.9 66.4%
3 8 3 58.7 11.1 69.8 67.2%

Table 15: Experimental results for New Hope parameters and κ = 30. For details see
Table 12.

cost
θ α β guess enum total rate

κ = 30, odd
2 8 3 56.9 15.6 72.5 52.3%
2 9 2 56.9 15.6 72.4 56.2%
2 9 3 62.3 15.6 77.8 66.4%
2 10 2 61.5 15.6 77.0 64.1%
2 10 3 67.5 15.6 83.0 76.6%

3 9 3 62.3 12.8 75.1 50.0%

3 10 3 67.5 12.8 80.3 54.7%

cost
θ α β guess enum total rate

κ = 30, even

2 9 2 59.8 10.3 70.2 56.2%
2 9 3 64.3 10.3 74.6 58.6%
2 10 2 64.8 10.3 75.1 68.0%
2 10 3 69.7 10.3 80.1 70.3%
3 9 2 59.8 11.1 71.0 55.5%
3 9 3 64.3 11.1 75.4 56.2%
3 10 2 64.8 11.1 75.9 67.2%
3 10 3 69.7 11.1 80.8 68.0%

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 199

References
[AC11] Martin Albrecht and Carlos Cid. Cold boot key recovery by solving polyno-

mial systems with noise. In Javier Lopez and Gene Tsudik, editors, ACNS
11: 9th International Conference on Applied Cryptography and Network
Security, volume 6715 of Lecture Notes in Computer Science, pages 57–72.
Springer, Heidelberg, June 2011.

[ACC+17] David Archer, Lily Chen, Jung Hee Cheon, Ran Gilad-Bachrach, Roger A.
Hallman, Zhicong Huang, Xiaoqian Jiang, Ranjit Kumaresan, Bradley A.
Malin, Heidi Sofia, Yongsoo Song, and Shuang Wang. Applications of
homomorphic encryption. Technical report, HomomorphicEncryption.org,
Redmond WA, July 2017.

[ACFP14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret.
Algebraic algorithms for LWE. Cryptology ePrint Archive, Report 2014/1018,
2014. http://eprint.iacr.org/2014/1018.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, pages
327–343. USENIX Association, 2016.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011:
38th International Colloquium on Automata, Languages and Programming,
Part I, volume 6755 of Lecture Notes in Computer Science, pages 403–415.
Springer, Heidelberg, July 2011.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Reingold,
editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of
Lecture Notes in Computer Science, pages 474–495. Springer, Heidelberg,
March 2009.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wun-
derer. Revisiting the expected cost of solving uSVP and applications to LWE.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
– ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 297–322. Springer, Heidelberg, December 2017.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 459–468.
IEEE, 2006.

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos Santha.
Mersenne-756839. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

http://eprint.iacr.org/2014/1018
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

200 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto,
Johannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer,
Patrick Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo
Zanon. qTESLA. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On
the hardness of the Mersenne low Hamming ratio assumption. Cryptology
ePrint Archive, Report 2017/522, 2017. https://eprint.iacr.org/2017/
522.

[BDH+17] Michael Brenner, Wei Dai, Shai Halevi, Kyoohyung Han, Amir Jalali, Miran
Kim, Kim Laine, Alex Malozemoff, Pascal Paillier, Yuriy Polyakov, Kurt
Rohloff, Erkay Savaş, and Berk Sunar. A standard API for RLWE-based
homomorphic encryption. Technical report, HomomorphicEncryption.org,
Redmond WA, July 2017.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-
key encryption under subgroup indistinguishability - (or: Quadratic residu-
osity strikes back). In Rabin [Rab10], pages 1–20.

[BL14] Alexandra Berkoff and Feng-Hao Liu. Leakage resilient fully homomorphic
encryption. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptog-
raphy Conference, volume 8349 of Lecture Notes in Computer Science, pages
515–539. Springer, Heidelberg, February 2014.

[CCD+17] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Mor-
rison, Amit Sahai, and Vinod Vaikuntanathan. Security of homomorphic
encryption. Technical report, HomomorphicEncryption.org, Redmond WA,
July 2017.

[CLP17] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic
library - SEAL v2.1. Cryptology ePrint Archive, Report 2017/224, 2017.
http://eprint.iacr.org/2017/224.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 1–20. Springer, Heidelberg, December 2011.

[dBDJdW18] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks
on the AJPS Mersenne-based cryptosystem. In Tanja Lange and Rainer
Steinwandt, editors, Post-Quantum Cryptography, pages 101–120, Cham,
2018. Springer.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary inputs.
In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography
Conference, volume 5978 of Lecture Notes in Computer Science, pages 361–
381. Springer, Heidelberg, February 2010.

[DKRV17] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/522
https://eprint.iacr.org/2017/522
http://eprint.iacr.org/2017/224
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 201

[DSGKS17] Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, and Aria Shahverdi.
On the leakage resilience of ideal-lattice based public key encryption. Cryp-
tology ePrint Archive, Report 2017/1127, 2017. https://eprint.iacr.
org/2017/1127.

[DTGW17] Jintai Ding, Tsuyoshi Takagi, Xinwei Gao, and Yuntao Wang. Ding
key exchange. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[FPL17] The FPLLL Development Team. FPLLL, a lattice reduction library. Available
at https://github.com/fplll/fplll, 2017.

[FPY18] The FPYLLL Development Team. FPYLLL, a Python interface for FPLLL.
Available at https://github.com/fplll/fpylll, 2018.

[GMZB+17] Oscar Garcia-Morchon, Zhenfei Zhang, Sauvik Bhattacharya, Ronald
Rietman, Ludo Tolhuizen, and Jose-Luis Torre-Arce. Round2. Technical
report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

[Hal09] Shai Halevi, editor. Advances in Cryptology – CRYPTO 2009, volume 5677
of Lecture Notes in Computer Science. Springer, Heidelberg, August 2009.

[Ham17] Mike Hamburg. Three Bears. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In Alfred Menezes, editor, Advances in Cryptology –
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
150–169. Springer, Heidelberg, August 2007.

[HMM10] Wilko Henecka, Alexander May, and Alexander Meurer. Correcting errors
in RSA private keys. In Rabin [Rab10], pages 351–369.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from
random key bits. In Halevi [Hal09], pages 1–17.

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98, 2009.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 604–613, New
York, NY, USA, 1998. ACM.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In 15th Annual ACM Symposium on Theory of Computing,
pages 193–206. ACM Press, April 1983.

[KUI99] Takayasu Kaida, Satoshi Uehara, and Kyoki Imamura. An algorithm for
the k-error linear complexity of sequences over GF (pm) with period pn, p a
prime. Information and Computation, 151(1-2):134–147, 1999.

https://eprint.iacr.org/2017/1127
https://eprint.iacr.org/2017/1127
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

202 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

[KY10] Abdel Alim Kamal and Amr M Youssef. Applications of SAT solvers to
AES key recovery from decayed key schedule images. In Emerging Secu-
rity Information Systems and Technologies (SECURWARE), 2010 Fourth
International Conference on, pages 216–220. IEEE, 2010.

[Laa14] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. Cryptology ePrint Archive, Report 2014/744,
2014. http://eprint.iacr.org/2014/744.

[LDK+17] Vadim Lyubashevsky, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[LLJ+17] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, and
Zhenfei Zhang. LAC. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[LLKN17] Dongxi Liu, Nan Li, Jongkil Kim, and Surya Nepal. Com-
pact LWE. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update.
In Ed Dawson, editor, Topics in Cryptology – CT-RSA 2013, volume 7779
of Lecture Notes in Computer Science, pages 293–309. Springer, Heidelberg,
February / March 2013.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
LWE-based encryption. In Aggelos Kiayias, editor, Topics in Cryptology –
CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science, pages
319–339. Springer, Heidelberg, February 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, Heidelberg, May / June 2010.

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. Journal of the ACM, 60(6):43:1–43:35,
November 2013.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes
in Computer Science, pages 35–54. Springer, Heidelberg, May 2013.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, June
2015.

[Mas69] James Massey. Shift-register synthesis and BCH decoding. IEEE transactions
on Information Theory, 15(1):122–127, 1969.

http://eprint.iacr.org/2014/744
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 203

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum
Cryptography, pages 147–191. Springer, Heidelberg, Berlin, Heidelberg, New
York, 2009.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration
with minimal overhead. In Piotr Indyk, editor, 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 276–294. ACM-SIAM, January
2015.

[NAB+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas, Karen East-
erbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Niko-
laenko, Christopher Peikert, Ananth Raghunathan, and Douglas Ste-
bila. FrodoKEM. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Nat16] National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the Post-Quantum Cryptography standardiza-
tion process. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
documents/call-for-proposals-final-dec-2016.pdf, December 2016.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage.
In Halevi [Hal09], pages 18–35.

[PAA+17] Thomas Poppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos,
Leo Ducas, Antonio de la Piedra, Peter Schwabe, and Douglas Ste-
bila. NewHope. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive,
Report 2015/939, 2015. http://eprint.iacr.org/2015/939.

[PHAM17] Le Trieu Phong, Takuya Hayashi, Yoshinori Aono, and Shiho Mo-
riai. LOTUS. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[Pie12] Krzysztof Pietrzak. Subspace LWE. In Ronald Cramer, editor, TCC 2012:
9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in
Computer Science, pages 548–563. Springer, Heidelberg, March 2012.

[PPS12] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. A
coding-theoretic approach to recovering noisy RSA keys. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 386–403. Springer,
Heidelberg, December 2012.

[PS15] Bertram Poettering and Dale L. Sibborn. Cold boot attacks in the discrete
logarithm setting. In Kaisa Nyberg, editor, Topics in Cryptology – CT-
RSA 2015, volume 9048 of Lecture Notes in Computer Science, pages 449–465.
Springer, Heidelberg, April 2015.

[PV17] Kenneth G. Paterson and Ricardo Villanueva-Polanco. Cold boot attacks on
NTRU. In Arpita Patra and Nigel P. Smart, editors, Progress in Cryptology
- INDOCRYPT 2017: 18th International Conference in Cryptology in India,

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://eprint.iacr.org/2015/939
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

204 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

volume 10698 of Lecture Notes in Computer Science, pages 107–125. Springer,
Heidelberg, December 2017.

[Rab10] Tal Rabin, editor. Advances in Cryptology – CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science. Springer, Heidelberg, August 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93. ACM Press, May
2005.

[S+17] William Stein et al. Sage Mathematics Software Version 8.1. The Sage De-
velopment Team, 2017. http://www.sagemath.org.

[Saa17] Markku-Juhani O. Saarinen. HILA5. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[SAB+17] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tan-
crede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehle. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[SAL+17] Nigel P. Smart, Martin R. Albrecht, Yehuda Lindell, Emmanuela Orsini,
Valery Osheter, Kenny Paterson, and Guy Peer. LIMA. Technical
report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[Sch03] Claus-Peter Schnorr. Lattice reduction by random sampling and birthday
methods. In Helmut Alt and Michel Habib, editors, STACS 2003, 20th
Annual Symposium on Theoretical Aspects of Computer Science, volume
2607 of Lecture Notes in Computer Science, pages 145–156. Springer, 2003.

[SM93] Mark Stamp and Clyde F Martin. An algorithm for the k-error linear
complexity of binary sequences with period 2n. IEEE Transactions on
Information Theory, 39(4):1398–1401, 1993.

[SPL+17] Minhye Seo, Jong Hwan Park, Dong Hoon Lee, Suhri Kim, and Seung-Joon
Lee. EMBLEM and R.EMBLEM. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[SS71] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Com-
puting, 7(3):281–292, Sep 1971.

[SSZ17] Ron Steinfeld, Amin Sakzad, and Raymond K. Zhao. Tita-
nium. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

http://www.sagemath.org
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 205

[Tso09] Alex Tsow. An improved recovery algorithm for decayed AES key schedule
images. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-
Naini, editors, SAC 2009: 16th Annual International Workshop on Selected
Areas in Cryptography, volume 5867 of Lecture Notes in Computer Science,
pages 215–230. Springer, Heidelberg, August 2009.

[Win96] Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts &
Monographs in Symbolic Computation. Springer, 1996.

[ZJGS17] Yunlei Zhao, Zhengzhong Jin, Boru Gong, and Guangye Sui. KCL (pka
OKCN/AKCN/CNKE). Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

A The Blahut, Berlekamp-Massey attack
A.1 Linear complexity
In this section, we will be considering sequences of elements in a field Zq where q is prime.
Linear feedback shift registers (LFSR) for binary sequences are well known as a concept.
We will be considering LFSRs over a field Zq i.e. shift registers where the input (or feedback
function) is a linear combination (over Zq) of the current register values.

Definition 7 (Linear Complexity). The linear complexity of a sequence is the length of
the shortest LFSR generating the sequence.

Definition 8 (Connection Polynomial). Suppose an LFSR produces a sequence via the
relation sn + c1 · sn−1 + . . . cL · sn−L = 0. Then the connection polynomial of this LFSR is
defined to be C(D) := 1 + c1D + . . . cLD

L.

Remark 2. The linear complexity need not be equal to the degree of the minimal connection
polynomial for finite sequences (see the example below). However, these two quantities
are equal when considering infinite periodic sequences with a finite period.

Example 4. Suppose that we are working in the field Z7 and consider the sequence
(3, 2, 3, 1, 3, 2, 4). It can be shown that a LFSR with 4 registers with a connection polynomial
of C(D) = 1 + 4D + 6D2 + 5D3 can be used to generate this sequence. To check this,
note that the initial loading of the 4 registers would be (3, 2, 3, 1) and we have that
3 + 4 + 6 · 3 + 5 · 2 = 0, 2 + 4 · 3 + 6 + 5 · 3 = 0 etc. A pictorial representation of this LFSR
is given in Figure 5.

The linear complexity and minimal connection polynomial of any finite (or infinite
periodic) sequence can be calculated in polynomial time using the Berlekamp-Massey
algorithm [Mas69]. This algorithm is extremely generic as it accounts for sequences over
any field and does not restrict to periodic sequences.

We now briefly overview the structure of the Berlekamp-Massey algorithm. Suppose
we wish to find the linear complexity and connection polynomial of the finite sequence
(a0, . . . , an−1). Then the Berlekamp-Massey algorithm iteratively calculates the linear
complexity and connection polynomial of each subsequence a0, . . . , ai for i = 0, . . . , n− 1.
Suppose we have just completed the (k− 1)th loop and have arrived at a linear complexity
of lk−1 and connection polynomial C(k−1)(D) := 1 + c

(k−1)
1 D + · · ·+ c

(k−1)
lk−1

Dlk−1 (recall
that some of these coefficients may be 0) for the subsequence (a0, . . . , ak−1). To start the
kth iteration, we calculate the discrepancy defined to be d := ak +

∑lk−1
i=1 ck−i1 ak−i. This

tells us how far Ck−1(D) is from being the connection polynomial of the subsequence
(a0, . . . ak). There are three cases to consider when updating the linear complexity and
connection polynomial:

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

206 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

3231

×2×1×3

+++

Figure 5: A minimal length LFSR generating the finite sequence (3, 2, 3, 1, 3, 2, 4) over Z7.
Note that the coefficients of the connection polynomial are the negation of the multiplicands
in this diagram. This LFSR has length 4, yet the minimal polynomial is of degree 3.

1. If d = 0, then the linear complexity and connection polynomial remain the same.

2. If d 6= 0, there are two sub-cases:

(a) If 2 · lk−1 > k + 1, then the connection polynomial must change but the linear
complexity stays the same.

(b) If 2 · lk−1 ≤ k + 1 then the connection polynomial changes and the linear
complexity increases.

The Berlekamp-Massey algorithm gives explicit formulae for updating linear complexi-
ties and connection polynomials depending on which of the three cases is relevant. For a
rigorous proof of correctness, see [Mas69]. The pseudocode for the Berlekamp-Massey
algorithm is given as Algorithm 1.

The second component of our attack is the following theorem:

Theorem 1 (Blahut). Let q be a prime such that there exists an nth primitive root of
unity in Zq and let NTT(·) denote a traditional NTT13 of dimension n over Zq. For any
s ∈ Zq, define (ŝ) := (NTT(s), NTT(s), . . .) to be the sequence comprising of infinitely many
copies of NTT(s). Then LC((ŝ)) = HW(s).

Blahut’s Theorem has been proven for the traditional NTT. However, in this work we
are considering the negacyclic NTT. It turns out that the correctness of Blahut’s Theorem
for the negacyclic NTT follows straight-forwardly from the traditional case:

Lemma 1 (Negacyclic Blahut). Let q be a prime such that there exists an 2nth primitive
root of unity in Zq and let NTT(·) denote a negacyclic NTT of dimension n over Zq. For
s ∈ Znq , define (ŝ) := (NTT(s), NTT(s), . . .) to be the sequence comprising of infinitely many
copies of NTT(s). Then, from Blahut’s theorem for the traditional NTT, LC((ŝ)) = HW(s).

Proof. In this proof, we denote whether an NTT is negacyclic or traditional using neg
or trad in the subscript. Let ω ∈ Zq be a primitive nth root of unity and γ ∈ Zq be
a square root of ω. Also let ~g = (1, γ, γ2, . . . , γn−1) and � denote the component-wise
multiplication of vectors. We then have

NTTneg(s)i =
n−1∑
j=0

ωijsj =
n−1∑
j=0

ωij(γjsj) = NTTtradx(~g � s)i (12)

13Note that the matrix associated to the traditional NTT has (i, j)th component given by ωij

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 207

Algorithm 1 The Berlekamp-Massey algorithm
Input: s = (s0, . . . , sn−1)
Output: Linear complexity of s and connection polynomial (L,C(D))
% Initialisation

1: C(D)← 1; B(D)← 1; x← 1;
2: L← 0; b← 1; N ← 0

% Main Loop
3: while N < n do
4: (c0, c1, . . . , cn−1)← C(D).Coefficients();
5: d← sN +

∑L
i=1 cisN−i; % the discrepancy

% Case 1: no updates required
6: if d = 0 then
7: x← x+ 1;
8: continue;

% Case 2: update only the connection polynomial
9: else if d 6= 0 and 2L > N then
10: C(D)← C(D)− db−1DxB(D);
11: x← x+ 1;
12: continue;

% Case 3: update both linear complexity and connection polynomial
13: else
14: T (D)← C(D);
15: C(D)← C(D)− db−1DxB(D);
16: L← N + 1− L;
17: B(D)← T (D);
18: b← d;
19: x← 1;
20: end if
21: N ← N + 1;
22: end while
23: return (L,C(D))

Defining the infinite sequence (~̂g � strad) := (NTTtrad(~g � s), NTTtrad(~g � s), . . .), we have
that

LC((ŝ)) = LC((~̂g � strad)) = HW(~g � s) = HW(s) (13)

where the first equality is due to Equation (12), the second is due to Blahut’s theorem for
the traditional NTT, and the last is due to the fact that γjsj = 0 if and only if sj = 0.

Blahut’s theorem tells us that a secret with Hamming weight w corresponds precisely
to an infinite sequence in the NTT domain with linear complexity w. In order to exploit
this relation, we use the Berlekamp-Massey algorithm [Mas69] which provides a method
for finding the linear complexity and connection polynomial of any finite sequence.

To investigate this further, we can produce a linear complexity profile for a sequence
by plotting the maximal index present in the subsequence in each iteration against the
linear complexity calculated for that subsequence. This is a trivial task when considering
the previously mentioned structure of the Berlekamp-Massey algorithm. For the linear
complexity profile of a random sequence, we typically end up observing that the points
on the profile exhibit a step behaviour roughly lying on the line y = x/2. However, if
our sequence is the result of a NTT transform of a low Hamming weight vector, Blahut’s
theorem tells us that we should get low linear complexity. In this case, the linear complexity
profile shows the same step behaviour, but levels off when the low linear complexity of the

208 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

10 20 30 40 50 60
k

5

10

15

20

25

30

LC(s0, . . . , sk)

10 20 30 40 50 60
k

5

10

15

20

25

30

LC(s0, . . . , sk)

Figure 6: Linear complexity profiles for a random sequence and for the NTT of a low
Hamming weight vector.

sequence is reached. Examples of linear complexity profiles in both these cases in given in
Figure 6.

A.2 Attack description
Suppose we are given a noisy version of a secret key with low Hamming weight w in the
NTT domain. We will show that the Berlekamp Massey algorithm implicitly yields a
strategy for finding such a key given 2w consecutive error-less symbols. The logic behind
the attack is that the connection polynomial must be recovered fully once 2w symbols
have been considered. A consequence of this is that the attack in Algorithm 2 works if
there are 2w clean symbols in the noisy key. Note that if we were to disregard the NTT,
leaking 2w symbols of the secret key does not lead to an immediate key recovery attack.

Lemma 2. For a prime q, integer n and vector s ∈ Zq with Hamming weight w, the
minimal connection polynomial of ŝ := NTT(s) can be recovered given 2w consecutive
symbols of ŝ.

Proof. Suppose that our linear complexity has reached w (which is its maximum value
for the error-less NTT sequence) after the consideration of the first 2w symbols. We
analyse the loop in the Berlekamp-Massey algorithm that considers 2w + 1 symbols. Since
we know that the linear complexity cannot increase, we must either be in case 1 or 2
from Algorithm 1. However, to be in case 2, we must have 2L > N which translates to
2w > 2w+ 1 for the loop in consideration. This is clearly impossible, so we must be in the
case where the connection polynomial does not change. The same argument holds for the
remaining iterations.

To complete the argument, we need to show that the linear complexity after 2w
iterations is in fact w. Suppose not, i.e. that we have a linear complexity of w′ < w. Then
at some point in the remaining iterations, we must increase the linear complexity to w.
Suppose the first increase occurs for N = 2w+ k for some k ≥ 0. Then we must be in case
3 from Algorithm 1, so we update the linear complexity to 2w+ k + 1−w′ > w which is a
contradiction. Therefore we must reach the linear complexity of w after 2w symbols have
been considered.

Note that we can change the starting point of the sequence ŝ without changing the
proof of the result above. Therefore in the attack, we do not require that the 2w error-less
symbols occur in the first components of ŝ. If we do not know where the error-less symbols
are, we can simply re-run the Berlekamp-Massey algorithm on all of the cyclic shifts of ŝ
in an attempt to get the error-less symbols at the beginning of the sequence.

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 209

A general framework for this attack is given as Algorithm 2. Note that this algorithm
outputs a list of candidates given a noisy NTT secret. A simple way to find the solution
within this list would be to check whether b− a · s is small (in the non-NTT domain) for
each candidate.

Algorithm 2 Generic attack based on Berlekamp-Massey algorithm
Input: ˜̂s = (s̃0, . . . , s̃n−1) % noisy NTT of secret, Hamming weight w < n/2
Output: List of candidate secrets L

1: L ← ∅;
2: for i = 0, . . . , n− 1 do
3: (t0, . . . , t2w−1)← (si, . . . , s2w+i);
4: (L,C(D))←Berlekamp-Massey(t0, . . . t2w−1);
5: (c0, . . . , cw)← C(D).coefficients();
6: for j = 2w, . . . , n− 1 do
7: tj ← −

∑w
k=1 citj−i; % derive the remaining symbols

8: end for
9: for j = 0, . . . , n− 1 do
10: rj = tj−i mod n;
11: end forL.Add((r0, . . . , rn−1));
12: end for
13: return L

A.3 Cold boot scenario
We now consider the Blahut-Berlekamp Massey attack within an NTT cold boot scenario.
We will work with RLWE parameters n, q, w := HW(s). Recall that we need 2w consecutive
clean symbols for the attack to go through which is equivalent to requiring 2wdlog2 qe
consecutive bits of the secret key. When considering these bits in a noisy version of the
secret key, about half of the bits will be out of the ground state indicating that they have
not flipped. Therefore, assuming a bit-flip rate of ρ0 towards the ground state and a
bit-flip of ρ1 away from the ground state, we expect (ρ0 + ρ1)wdlog2 qe bit-flips within the
entire block of 2w dlog2 qe bits. The strategy is to exhaustively search for the bits that
were flipped and run the Berlekamp-Massey algorithm to check each guess. Ignoring the
trivial cost of running Berlekamp-Massey, we have a rough average complexity of(

wdlog2 qe
bρ0wdlog2 qee

)
·
(

wdlog2 qe
bρ1wdlog2 qee

)
. (14)

For example parameters w = 64, q = 12289, n = 1024, we have an attack with complexity
roughly 280 for bit-flip rate ρ0 = 1%, ρ1 = 0.1% remembering that ρ1 is the retrograde
flip rate (if ρ = 0.17%, the attack complexity is roughly 228). In certain scenarios, this
complexity could be much lower. For example, suppose there is a block of 2wdlog2 qe
consecutive bits where the majority flips could have only occurred away from the ground
state. Then we expect only a small number of bit-flips in this block (since ρ1 < ρ0), which
reduces the amount of guesses required before the attack is successful. Therefore, in a cold
boot attack, we would be able to identify the optimal consecutive block of 2w symbols to
launch our attack on very easily.

A.4 Future directions for linear complexity attacks
The k-error linear complexity of a sequence is the lowest minimal complexity attainable
when changing at most k symbols. This notion corresponds closely to the case where we

210 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

have a noisy version of the key that contains at most k erroneous symbols. If we had an
algorithm that computed k-error linear complexity along with the symbol changes required
to minimise the linear complexity, then we would be able to recover secret keys in many
non-trivial cases.

However, efficient algorithms for calculating k-error linear complexities only exist for
specific classes of sequences [SM93, KUI99]. There is currently no efficient algorithm that
handles sequences with power-of-two period n over a field GF (q) satisfying 2n|(q − 1). It
is an interesting open problem to discover such an algorithm.

B Alternative algorithms
B.1 Meet in the middle attack analysis
Meet in the middle attacks offer improvements in terms of time over exhaustive search at
the expense of increased memory requirements. It seems feasible that combinatorial meet
in the middle attacks are compatible with our cold boot scenarios from Section 4 since we
are recovering a low entropy secret ∆ that is not small in Euclidean norm (see Equation 2).
The idea is to split ∆ into a left half ∆(l) ∈ Zn/2q and a right half ∆(r) ∈ Zn/2q . In addition
to this, define Wi to be the ith row of the inverse NTT matrix and Wi,(l) (Wi,(r)) to be the
left (resp. right) half of this ith row. The meet in the middle attack hinges on the relations

s̃i −Wi,(l) ·∆(l) ≈Wi,(r) ·∆(r) mod q, i = 0, . . . , n− 1, (15)

where the ith approximate equality is up to an error given by the ith coefficient of the true
secret s which is assumed to be small for practical constructions.

We assume that the bit errors are uniformly spread across our noisy key i.e. that
there are κ/2 bit errors in both the left and right halves of our noisy key. We then
pick a particular candidate ∆∗(l) and calculate the components of the vector arising from
evaluating the LHS of Equation (15). We denote the resulting vector by t∆∗(l)

and store
the pair (t∆∗(l)

,∆∗(l)) in a table T . This process is repeated for all valid choices of ∆∗(l).
Next we consider the value of the RHS for each candidate ∆(r) and check the approxi-

mate equality given in Equation (15) with each entry of the table T . In particular, we
are looking for pairs ∆(l) and ∆(r) such that the error in Equation (15) is a valid sample
from the distribution that s was drawn from. Enumerating over all ∆(r) produces a list of
candidates for the full vector ∆.

B.1.1 Locality sensitive hashing

The description above should serve as an intuition rather than a guide to implementing such
an attack in practice. Techniques such as locality sensitive hashing (LSH) can significantly
decrease the computational cost of meet in the middle attacks in this setting [dBDJdW18].
LSH essentially offers a method of efficiently finding the most likely table entries for a
given candidate ∆∗(r) by organising the table entries into hash buckets according to some
measure of closeness. More concretely, for some similarity measure D giving rise to the
definition of a “ball” B(p, r) := {p′ : D(p, p′) ≤ r} around point p with radius r, we can
define a locality sensitive hash family as follows:

Definition 9 (LSH Family [IM98]). A family of functions H := {h : S → U} is
(r1, r2, p1, p2)-sensitive with respect to D if ∀ p, p′, p′′ ∈ S

• if p′ ∈ B(p, r1), then PrH[h(p′) = h(p)] ≥ p1,

• if p′′ /∈ B(p, r2) then PrH[h(p′′) = h(p)] ≤ p2,

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 211

where PrH denotes a probability when h is uniformly sampled from H.

Once this family is chosen, the standard LSH strategy is to construct different hash
functions, each consisting of µ uniform random functions from H i.e. pick

gj(·) = (hj,1(·), . . . , hj,µ(·)), j = 1, . . . φ. (16)

where each of the h(·,·) are chosen uniformly at random from H. We then create one hash
table per function gi and store our data points in the appropriate hash buckets. Now
suppose we want to query the database on point p to see if there is a similar point in the
database. Then we simply calculate the values g1(p), . . . , gφ(p) and compare with all of
the data points in these φ buckets.

A concise summary of the runtime and space requirements of LSH is given in [Laa14]
in the form of the following lemma.

Lemma 3. Suppose there exists a (r1, r2, p1, p2)-sensitive family H. For a list L of size
N , let

ρ = log 1/p1

log 1/p2
, µ = logN

log 1/p2
, φ = cNρ

for some constant c. Then for any v in the appropriate space, we can either (a) find
an element w∗ ∈ L such that D(v, w∗) ≤ r2, or (b) conclude that with high probability
(≥ 1− e−c) that for all w ∈ L, D(v, w) ≥ r1. Let τh be the time taken to compute a hash,
mh be the storage size of a hash, and τD be the time to calculate D(·, ·). The algorithm
requires:

• Preprocessing time: Nµφ · τh

• Hash table storage: Nµφ ·mh

• Single query time:

– Hash evaluation: µφ · τh
– Expectation of comparison time: cNρ · τD

Note that the lemma only considers finding a single vector in the ball of radius r2. Our
search problem asks to find all vectors in this ball. Therefore, we would have to search
through all candidates output by LSH. Nonetheless, we will assume that our LSH family
is good enough to ensure that our list of candidates ends up being very short.

Next, we must choose a similarity measure along with a family H. We choose to work
with the Euclidean norm using the hash family from [AI06]. A single hash is computed
by a projection onto a random 24-dimensional plane followed by a translation and then a
very cheap (< 519 real operations) Leech lattice decoding procedure. Letting ν denote
the initial dimension of the data being hashed, we approximate τh ≈ 24ν, mh ≈ 24 and
τD = ν in Lemma 3.

We now return to our running example of the Kyber scheme (n = 256, q = 7681, σ =
√

2)
with κ bit-flips per secret ring element. As before, we consider attacking each of the secret
ring elements individually. We have that the dimension of each vector ∆(l) is ν = 128 and
make the simplifying assumption that there are no retrograde bit-flips14. This means that
there are N =

(13·128/2
bκ/2c

)
possibilities for this vector taking into account that the ground

state of memory makes it clear when a bit-flip has not occurred and that approximately
half of the secret bits will be out of the ground state. Thus the number of unknown bits in
∆(l) is 13 ·138/2 (rather than 13 ·128). Note that we have rounded κ/2 down to the nearest
integer and are implicitly assuming

(13·128/2
dκ/2e

)
choices for ∆(r). Since the secret in Kyber

14We show that this attack is not competitive, even under making simplifying assumptions

212 Cold Boot Attacks on Ring and Module LWE Keys Under the NTT

actually comes from a binomial distribution, we have that each coefficient lies in the set
{−4, 3, . . . , 3, 4}. Therefore, the maximum Euclidean length of the secret is

√
256 · 4 = 32.

The values of r1 and r2 chosen should be compatible with this. One particular choice might
be r1 = 22.85 and r2 = 32 which corresponds to values p1 = 0.0177896 and p2 = 0.0013332
according to the empirical analysis of [AI06]. In the statement of Lemma 3, we can take
ρ = 0.609, µ = 6.62 · log

((13·128/2
κ/2

))
and c = 2. If we made these choices, a summary of

the costs would be:

• Preprocessing time: 6.62 ·
(832
bκ/2c

)1.609 log(
(832
bκ/2c

)
) · (24 · 128)

• Storage: 24 · 6.62 ·
(832
bκ/2c

)1.609 log(
(832
bκ/2c

)
)

• Query time per guess:

– Hash evaluations: 6.62 ·
(832
bκ/2c

)0.609 log(
(832
bκ/2c

)
) · (24 · 128)

– Comparison time: 2 ·
(832
bκ/2c

)0.609 · 128

We note that the time complexity of the preprocessing step and the guessing step
(assuming N guesses) roughly balance each other out. Therefore, the running time of the
attack is around twice the preprocessing time. Using this heuristic, we obtain a 2120 attack
for the cold boot case of ρ0 = 1% bit-flip rate to ground state, ignoring retrograde bit-flips
(κ = 17). We can divide and conquer the instance from dimension 256 to 32 before running
meet in the middle to attempt to bring down the complexity. However, it becomes harder
to consider the ground state memory to rule out bit-flips at this dimension. Nonetheless,
assume that we can rule out flips for half of the bits that we consider even at dimension
32. Rerunning the analysis with the same ratio r2/r1 does yield a significant improvement
to time complexity of 279. However, despite making optimistic assumptions, this attack
is still not competitive when comparing to our lattice attacks despite significantly larger
memory requirements.

B.2 Arora-Ge attacks
Another algorithm for solving LWE is due to Arora and Ge [AG11]. The main idea is to
set up a system of non-linear but noiseless equations whose solution is the LWE secret.
We briefly describe the attack in our setting.

Recall that our LWE-like sample is (W, s̃ := W∆ + s). Working under the assumption
that s has small coefficients, the polynomial P (X) := X

∏t
i=0(X − i)(X + i) satisfies

P (si) = 0 with high probability for some large enough t. Rewriting, we have that
P ((b−W∆)i) = 0 with high probability. Note that this formulation of the problem makes
no use of s being small but instead relies on s having low entropy. In a similar fashion, we can
add equations encoding the solution set for each ∆i as Q(X) := X

∏dlog2 qe
i=0 (X+2i)(X−2i).

Finally, to encode the number of bit-flips κ, we may add equations R(X) :=
∏
i∈Sj

Xi

where S is the set containing all subsets of {0, 1, . . . , n−1} with κ+1 elements and Sj ∈ S,
i.e. a set of indices. Since there are only κ non-zero ∆i, any product of κ+ 1 of them must
evaluate to zero.

Arora and Ge use linearisation to solve the system of equations which requires a very
large number of samples. Linearisation is a special case of a Gröbner basis computation
and an improved analysis using Gröbner bases was carried out in [ACFP14] which, in
principle, works for any number of samples such that the problem is well-defined. Thus,
the attack then reduces to computing a Gröbner basis for a system in n unknowns, given
n equations of degree 2t+ 1, n equations of degree 2 dlog2 qe+ 1, and

(
n
κ+1
)
equations of

degree κ+ 1. For Kyber, we take t = 4 and dlog2 qe = 13 and fold down to n = 32. Using

Martin R. Albrecht, Amit Deo and Kenneth G. Paterson 213

the gb_cost function from the estimator of [APS15], we obtain a cost of 2117.3 operations
which is not competitive with our lattice attack.

	Introduction
	Preliminaries
	LWE definitions
	Minimal binary signed digit representation
	Lattices

	Leakage resilience for Kyber's parameters
	Cold boot NTT decoding problem
	Divide and conquer
	Extending a solution

	Lattice formulation
	A guessing strategy

	BDD on NTT lattices
	Putting it all together
	Kyber KEM
	New Hope KEM

	The Blahut, Berlekamp-Massey attack
	Linear complexity
	Attack description
	Cold boot scenario
	Future directions for linear complexity attacks

	Alternative algorithms
	Meet in the middle attack analysis
	Arora-Ge attacks

