
Persistent Fault Analysis on Block Ciphers

Fan Zhang1,2, Xiaoxuan Lou1,2, Xinjie Zhao4, Shivam Bhasin5, Wei He6,
Ruyi Ding1,7, Samiya Qureshi1 and Kui Ren3

1 College of Information Science and Electronic Engineering, Zhejiang University, China
2 Institute of Cyber Security Research, Zhejiang University, China

3 College of Computer Science and Technology, Zhejiang University, China
4 The Institute of North Electronic Equipment, China

5 Nanyang Technological University, Singapore
6 Shield Laboratory, Huawei International Pte. Ltd., Singapore

7 Georgia Institute of Technology, GA, United States
fanzhang@zju.edu.cn

Abstract. Persistence is an intrinsic nature for many errors yet has not been caught
enough attractions for years. In this paper, the feature of persistence is applied to
fault attacks, and the persistent fault attack is proposed. Different from traditional
fault attacks, adversaries can prepare the fault injection stage before the encryption
stage, which relaxes the constraint of the tight-coupled time synchronization. The
persistent fault analysis (PFA) is elaborated on different implementations of AES-128,
specially fault hardened implementations based on Dual Modular Redundancy (DMR).
Our experimental results show that PFA is quite simple and efficient in breaking these
typical implementations. To show the feasibility and practicability of our attack, a
case study is illustrated on the shared library Libgcrypt with rowhammer technique.
Approximately 8200 ciphertexts are enough to extract the master key of AES-128
when PFA is applied to Libgcrypt1.6.3 with redundant encryption based DMR. This
work puts forward a new direction of fault attacks and can be extended to attack
other implementations under more interesting scenarios.
Keywords: Fault Analysis · PFA · DMR · AES · Libgcrypt · Rowhammer.

1 Introduction
Fault attack (FA) is a class of implementation level attacks on embedded systems [Joy12],
which is usually used to attack different ciphers such as RSA, AES, PRESENT[BKL+07],
LED[GPPR11], Piccolo[SIH+11]. FA is an active attack that disturbs the operation of
target device. The disturbance is realized by forcing the device in a non-nominal operating
condition. Common methods include changing the power supply voltage, changing the
frequency of the external clock, varying the temperature or exposing the circuits to
lasers during the key-dependent computations such as encryptions [BECN+06, ACS+07,
TJ09, Insa, Insb]. The idea of fault attack was first reported on RSA-CRT by Boneh et
al. in 1996 [DDL97]. Later, Biham and Shamir proposed the differential fault analysis
(DFA) attack on the block cipher DES, which combines a fault attack with differential
cryptanalysis [BS06]. Since then, DFA has been used to break various block ciphers [BS97,
DLV03, TMA11]. Apart from breaking cryptographic systems, FA is also used for other
attacks, like bypassing security checks in smartcards [BECN+06].

DFA operates in a differential setting, i.e., exploiting the difference of correct and faulty
ciphertexts for a fixed input. Later, other fault analysis techniques were introduced. Some
analysis techniques exploited the algebraic structure of the algorithm with fault injection

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 150–172
DOI:10.13154/tches.v2018.i3.150-172

mailto:fanzhang@zju.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.150-172

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 151

(AFA [CWJ10]) in a differential setting. Other analysis methods exploited statistical biases
introduced due to fault injection [Riv09, FJLT13]. These biases could be either exploited
in a differential setting or with faulty ciphertexts only.

Most, if not all, of the proposed fault analysis are developed with a transient fault
assumption. This means that the injected fault does not persist from one encryption to
another. A fault is injected during a target computation, while all other computations
remain unaffected. Fault models, such as bit flips, random byte, etc., are often used in
a transient fault setting. Alternately, some fault analysis techniques assume permanent
faults. Permanent faults are equivalent to device defects which stay during the lifetime.
As the fault is fixed, the bias introduced is exploited by statistical means. Stuck-at fault
model is a common example of this kind.

In this paper, we develop fault analysis for a third kind of fault model, called as
persistent fault. This fault falls between transient and permanent. While the fault persists
from one encryption to another, it disappears when the target device reboots. We propose
a statistical technique to exploit such faults, called as Persistent Fault Analysis (PFA).

For aforementioned analysis techniques to work, it is desirable that the fault is injected
in the last few rounds of the cipher. If the fault is injected much deeper into the cipher
(middle rounds), the analysis becomes too complex and does not give much advantage over
a simple brute force search. Moreover, majority of the known attacks can only handle a
single fault injection. This requirement puts several restrictions on the attacker’s capability,
as he is expected to inject single faults in later rounds only.

On the contrary, PFA assumes that a persistent fault might be always present. A
common example is when the fault is injected into an algorithm constant stored in memory
(ROM) like one element in S-box. Unless the ROM is refreshed, the fault will persist for all
the subsequent encryptions, however only the rounds accessing that particular faulty S-box
element will be affected. A DFA (or other aforementioned techniques) cannot be applied
in this setting for two reasons. Firstly, fault can be multiple and present in earlier rounds.
Secondly, it is not possible to acquire correct and faulty ciphertext in presence of persistent
fault for a given plaintext, which prevents any differential analysis. The proposed PFA is
developed to exploit such cases, where a fault is persistent and can affect multiple rounds.
From a practical aspect, PFA also relaxes some constraints enforced on the adversary. The
adversary does not need to synchronise the fault injection with later rounds in run time,
and also does not require re-encryption for correct/faulty ciphertext pairs. The attack
target can be perturbed before hand, by injecting the fault which persists and exploited
later. When the victim encrypts on the plaintext, the adversary observes the resultant
ciphertext and performs PFA to retrieve the secret key.

PFA is also capable of compromising some of the widely used fault countermeasures
under its basic fault model. We target dual module redundancy (DMR), which performs
redundant operations followed by comparison to detect faults. This countermeasure is
also used for reliability verification, and thus widely adopted in commercial products. It
is believed to be provably secure against single fault injection. As we show later, such
countermeasures can be easily broken by PFA. While some versions of DMR are broken
by design, others can be broken with higher number of available ciphertexts. For example,
in AES, the attack roughly needs 10× more ciphertexts than an unprotected design.

The main contributions of this work are summarized as follows:

• We target a new category of injected faults, called persistent faults.

• Based on persistent fault, we develop a fault analysis technique called persistent fault
analysis (PFA) and explain its working mechanism. Unlike common fault analysis
technique, PFA is not differential and it uses statistical means for key recovery. Thus,
it is a faulty ciphertext only attack.

• We extend PFA to work in a multiple-faults setting.

152 Persistent Fault Analysis on Block Ciphers

• PFA is first validated on S-box and T-box based AES-128 on Virtex-5 FPGA. Xilinx
data2mem software is used for emulation of persistent faults.

• PFA is then shown to break fault countermeasures based on Dual Modular Redun-
dancy (DMR). Different variants of the countermeasure were broken with 2− 10×
extra ciphertexts as compared to unprotected designs.

• PFA is then practically validated on a server under a shared library setting. By
practical rowhammer attacks, on the fault hardened shared cryptographic library
Libgcrypt, PFA is shown to successfully recover the secret key with 8200 ciphertexts.

The rest of the paper is organised as follows. Section 2 introduces the related work.
Section 3 highlights the core idea, the process of PFA, the complexity and the comparison
with other fault attacks. Section 4 extends PFA with multiple faults. Section 5 gives the
background of AES implementations. Section 6 evaluates the PFA on different scenarios,
especially on those with fault attack countermeasures. Section 7 shows a case study of
PFA with the injection technique of rowhammering. Section 8 concludes the paper.

2 Related Works
Fault Duration: Faults in electronic circuits can be either permanent or transient. A
permanent fault is caused by intentional or unintentional defects in the chip [Sko10],
which permanently modifies its functionality. In contrast, a transient fault [BECN+06]
only influences the device for a very short time. A common application of transient
faults is corrupting a single execution of an encryption. In this work, we are more
interested in the third category called as persistent fault. The term “persistent” refers
to the characteristic of a new type of faults whose duration may not be permanent and
typically can last for several encryptions, for example, a few minutes or up to a few
hours. Sometimes it might be persistent till the device is reset. An example of such fault
is a modification of a stored constant, like an S-box entry, using rowhammer injection
techniques [KDKF14]. Rowhammer injection techniques are used in some previous works
to attack ciphers [BM16, RGB+16, XZZT16]. With such faults, all the rounds of all
encryptions will be affected. A reboot or refresh of the affected memory will restore the
original functionality.

Fault Analysis: Most fault analysis techniques are differential in nature. They
require a correct and faulty computation with same inputs, to exploit the difference of
outputs for key recovery. Typical techniques include differential fault analysis(DFA) [BS06],
algebraic fault analysis (AFA) [CWJ10], fault rate analysis (FRA) [WCWW13] and more.
Other techniques are statistical in nature and sometimes exploit faulty ciphertexts only.
Common examples are statistical fault analysis (SFA) [Riv09, FJLT13] and fault sensitivity
analysis (FSA) [LSG+10]. In practical fault attacks, adversaries usually face a ciphertext-
only scenario, with no or limited control on inputs. In addition, some countermeasures
restrict multiple encryptions with the same inputs by using techniques like random value
padding [BBB+18]. In this paper, we are interested in exploiting fault attacks that can be
conducted under ciphertext-only attack scenario. A through comparison of PFA against
other common analysis techniques is drawn in Section 3.5.

Persistent Fault Attack: The notion of persistent fault attack is not new. In [SHP10],
a ultraviolet light was used to erase the contents of a microcontroller, particularly lookup
tables. However, the precision of the attack was limited. Also the offline analysis in [SHP10]
was differential and not developed particularly to exploit persistent faults. In [ASSS16],
the AES lookup table implemented on the Xilinx FPGA using embedded block memories
(BRAMs) was tampered, where the persistent attack is firstly mounted on the hardware
implementation. However, the attack model was too strong and corresponding offline

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 153

persistent analysis in [ASSS16] was very simple due to their assumption that the entire
AES table was set as all zeroes and the last round key can be directly output as the
ciphertext.

3 Persistent Fault Attack
This section provides details about the proposed persistent fault analysis methodology.

3.1 Fault model
The assumed fault model is as follows:

• The adversary can inject faults before the encryption of a block cipher. Typically,
these faults alter a stored algorithm constant.

• The injected faults are persistent, i.e., the affected constant stays faulty unless
refreshed. Thus all iterations are computed with the faulty constant.

• The adversary is capable of collecting multiple ciphertext outputs. Thus, a watchdog
counter on detected faults is considered out of scope.

In this section, we first show the analysis with single fault injection. Exploitation of
multiple fault injections is discussed in next section.

3.2 Core idea
As stated in the fault model, the fault persists over several computations. In case of
block ciphers, the prime target of this attack, these computations refer to the round
function. Each encryption is composed of several calls of a round function. The injected
fault persists over several encryptions (thus round function calls), but the faulty value
may not be accessed. For example, if the fault exists in an S-box element, the round
computation is only faulty if the faulty S-box element is accessed. Otherwise, the injected
fault does not impact this round computation. If the faulty value is not accessed during an
encryption, the resultant ciphertext will be correct, otherwise incorrect. We further exploit
the statistical distribution of correct and incorrect ciphertexts to reveal key-dependant
information. We call this newly developed fault analysis technique as Persistent Fault
Analysis (PFA). The corresponding attack is called as Persistent Fault Attack.

The complete persistent fault attack is composed of three stages. In the fault injection
stage, the persistent fault is injected before the first encryption. Unlike traditional DFA,
identification of exact round timing or precise location is not required. In the encryption
stage, the adversary (denoted as A) then waits for the victim (denoted as V) to start the
encryptions. A can then observe the produced ciphertexts, few of which are correct while
others incorrect due to the persistent fault. In the fault analysis stage, A analyses the
mixture of correct and faulty ciphertexts with PFA to recover the secret key. As shown
later, PFA can be applied on unprotected implementation as well as some state of the art
fault hardened implementations.

3.3 Persistent Fault Analysis (PFA)
In this part, we further detail the analysis technique of a persistent fault attack. While
the analysis technique remains generic, for sake of simplicity, we start to explain with an
example of SPN block cipher targeted for last round key recovery.

Let us assume a typical SPN construction with L words of b bits. A b-bit input is
processed by a substitution component (typically, S-box), followed by linear permutation

154 Persistent Fault Analysis on Block Ciphers

layer (LP) and a round key addition. Next, we take PFA on the last round of SPN block
cipher as an example to describe the technique. As LP is linear, we remove it for a
simpler analysis. Let xj and yj denote the jth word of last round, at input and output of
S-box respectively. yj when mixed with jth word of last round key, produces jth word of
ciphertext cj . Then, it satisfies yj ⊕ kj = cj which is equivalent to the following:

kj = yj ⊕ cj (1)

S
xj

yj

S[0]=v S*[0]=v* v≠ v*
S S*

Pr(yj)

kj

cj

0

0

12 b

2b0

0

2b

2 b2 b

v*

v

 normal encryption faulty encryption

0

0

2b

2 b

0

0

12 b

2b

2 b

v*⊕k j

v⊕ k j

Pr(cj)

Fault

model
Key

Guess

Exploiting cj with max(Pr(.))

c j=v* ⊕ k j

Exploiting cj with Pr(.) >0

c j≠ v* ⊕ k j

c j≠ v ⊕ k j

Exploiting cj with Pr(.)=0

c j=v⊕ k j

Probability

distribution of

ciphertexts

Probability

distribution of

substitution oupouts

Last round
S*

xj
yj

kj

cj

Figure 1: Overview of persistent fault analysis (PFA).

Let Pr(yj) and Pr(cj) denote the distribution probability of yj and cj respectively. As
for the correct encryption, due to the avalanche effect, for each candidate of yj , Pr(yj)
is close to 2−b. Let us assume that the fault is injected in the first S-box element, where
correct value S[0] = v is altered to S′[0] = v∗ and v 6= v∗. The same is illustrated in Fig. 1.
The fault injection makes Pr(yj = v) as zero. As the number of observed encryption
increases, Pr(yj = v∗) approaches to 21−b. For all other values of yj , Pr(yj) converges
to 2−b. This difference in probabilities can be statistically distinguished, thus requiring
multiple ciphertexts for conducting PFA. As kj is fixed, the probability distribution of yj
also relates to distribution of cj . With the collected ciphertext, the adversary can build
the distribution of cj , to retrieve information on yj , eventually allowing the recovery of
the key kj . This analysis can be formally written as:

Pr(cj) = Pr(yj ⊕ kj) (2)

For the jth word of ciphertext, each possible value of cj is denoted as t, 0 ≤ t < 2b.
The adversary can collect N ciphertexts and calculate the appearance of t denoted as
Counts(t). Counts(t) is a function to count the number of ciphertexts where cj = t.
Suppose arg_mincounts(t) and arg_maxcounts(t) are two respective functions to find
the value of t with the minimal and maximal number of counts. The corresponding value
of t is denoted as tmin and tmax, respectively, which can be computed as followings:

tmin = arg_mincounts(t) , {t|∀s : Counts(t) ≤ Counts(s)}
tmax = arg_maxcounts(t) , {t|∀s : Counts(t) ≥ Counts(s)}

(3)

Then, three cryptanalysis strategies can be applied to recover the secret key.

Strategy 1: Exploiting tmin. Since the adversary can calculate the statistic distribution
of each element in ciphertexts, he is aware of the value of tmin. He also knows v which is

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 155

publicly known as the original value of the element in the S-box. If N is large enough, kj
can be directly deduced as:

kj = v ⊕ tmin (4)

Strategy 2: Exploiting impossible values for t 6= tmin. For the other values t of cj ,
where t 6= tmin, the adversary can use these values to eliminate impossible candidates of
kj , which can be denoted as

kj 6= v ⊕ t (5)

Strategy 3: Exploiting tmax. The adversary can also try to find the value of tmax whose
frequency is approaching 21−b. If the adversary knows v∗, i.e., the faulty value of the
element with the persistent fault, kj can be easily computed as:

kj = v∗ ⊕ tmax (6)

All three strategies can be used in exploiting the fault for key recovery. However, based
on the application scenario, one of the strategy might be better suited. Strategy 1 and 2
are accurate analyses. As long as the probability of t is nonzero, the value of v ⊕ t is the
impossible candidate for kj and can be eliminated. Both strategies require the value of v
to be known.

Strategy 3 is a statistical analysis. Only when the total number of ciphertexts N is
increased to a representative value, the probability of tmax (approaching to 21−b) can be
obviously distinguished from other cases. As a result, kj = v∗ ⊕ tmax can be recovered.
Strategy 3 requires the additional knowledge that the adversary should also know v∗, the
value of the faulty element in the lookup table.

Algorithm 1 describes the pseudo code of persistent fault analysis on the last round key.
The attack eliminates the impossible candidates for each key element until it identifies all L
words of the last round key. In the attack, a two-dimensional array, Counts[u][t], 0 ≤ u ≤ L,
0 ≤ t ≤ 2b is initialized to all zeroes. Then, the value of specific element of Counts[u][t]
is updated by counting the appearance of each ciphertext element. If the total number
of counts for Counts[u][t] is non-zero, then (t ⊕ v) can be discarded as an impossible
candidate for ku. Otherwise (t⊕ v) can be kept as a possible candidate for ku. In the end,
only one non-zero value remains for one of the Counts[u] at indice t′, which reveals the
value of ku = t′ ⊕ v. Note that this analysis reveals all key elements in one enumeration of
all N ciphertexts, which is quite simple and efficient.

Algorithm 1: Pseudo code of PFA on the last round of a general block cipher.
1 for u = 0; u < L; u++ do
2 for t = 0; t < 2b; t++ do
3 Counts [u][t]=0;
4 end
5 end
6 for u = 0; u < L; u++ do
7 for n = 0; n < N; n++ do
8 Counts [u][cu,n]++ ; // cu,n is cu in the n-th ciphertext
9 end

10 end
11 for u = 0; u < L; u++ do
12 for t = 0; t < 2b; t++ do
13 if Counts [u][t] > 0 then
14 Discard candidate ku = t⊕ v;
15 end
16 end
17 end

156 Persistent Fault Analysis on Block Ciphers

3.4 Complexity analysis
Recall N is the total number of ciphertexts that are available and n is the number of
ciphertexts already used for analysis. For any cj , let θn denote the “average” number
of different outputs of table lookups using n ciphertexts. When n is small, the lookup
outputs might be pairwisely different, so θn = n. When n is large, θn will converge to the
value η = 2b − 1, assuming single fault is injected. The adjective “average” means that the
analysis of θn is conducted in a probabilistic way, which will give the estimated value of N
for finding out the only impossible value v for cj .

Let ∆θn = θn − θn−1. When n = 0, θ0 = 0. When n = 1, θ1 = 1 and ∆θ1 = 1. For
n = 2, we have ∆θ2 = (η − θ1)/η, assuming that the remaining possible values of the
lookup output θ1 will satisfy the uniform distribution. Then, we can easily deduce the
following:

n = 2,∆θ2 = (η − θ1)/η, θ2 = θ1 + ∆θ2 = 1 + (η − θ1)/η
n = 3,∆θ3 = (η − θ2)/η, θ3 = θ2 + ∆θ3 = 1 + (η − θ1)/η + ((η − θ1)/η)2

· · ·
(7)

According to the observations in Eq.(7), we can infer the formula of θn by using the
mathematical induction of geometric progression. Thus to compute θn, we have:

θn = 1− qn

1− q , where q = η − 1
η

(8)

The value of v can never be output in the encryption. Let εn denote the average
number of the remaining possible key candidates associated with cj using n ciphertexts.
We have εn = 2b − θn = 2b − 1−qn

1−q . When n increases and θn is approaching η = 2b − 1, η
impossible candidates of kj , that is, v ⊕ t, can be gradually eliminated. Finally, only the
correct candidate of kj , i.e., v ⊕ tmin, remains.

Fig. 2 describes the relationship between log2 εn and n where b = 8 (for AES). We can
see that log2 εn decreases with the increase of n. When n is greater than 1400, log2 εn
can be reduced to 1, which implies that two possible key candidate exist. In fact, when
n ≥ 2000, log2 εn can be reduced to 0, which gives the unique key candidate. Note that
Fig.2 only gives a theoretical estimation of log2 εn for better understanding on the limit of
N . In practice, the adversary needs more ciphertexts to statistically get the correct key.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

Sample size

N
u

m
b

er
 o

f
th

e
re

m
ai

n
ed

 k
ey

 c
an

d
id

at
e

 (
L

o
g

 2
)

Figure 2: Relationship between log2 εn and n for one element of master key where b = 8.

The estimation of n (when log2 εn is reduce to 1) is popularly known as the coupon
collector’s problem [BHS94] where it needs 255 ∗ (1/1 + 1/2 + ... + 1/255) ' 1561 tries
to collect 255 coupons. Similarly, it roughly requires 1561 trials to see all 255 occurring

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 157

ciphertexts at least once.If the cipher is composed of smaller S-boxes (like b = 4), the
analysis needs fewer ciphertext (n ' 49). PFA can be applied to DES like ciphers where
S-boxes are not bijective. However, if the S-boxes are not identical, only a part of key bits
will be recovered with one fault. PFA is currently applied on the last round, which in case
of AES, extracts 16 key bytes for S-box implementation with one injection. PFA could be
on the last but one round at the cost of complex analysis as fault might affect both last
two rounds.

3.5 Comparison with other fault analysis
Most fault analyses, like DFA, AFA, etc., are differential in nature. They exploit difference
between correct and faulty ciphertexts, produced from a fixed plaintext.

Other fault analysis like SFA [Riv09, FJLT13] or FSA [LSG+10], require extra re-
quirements like biased fault or side-channel information. SFA needs multiple biased or
constant faults, while PFA needs a single random fault (in ROM). Depending on attackers’
capability, one of PFA/SFA might be preferred. The advantages and disadvantage of PFA
against other fault analysis techniques can be summarized as follows:

3.5.1 Advantages

• The attack is not differential in nature and thus the control over the plaintext is
not required. It exploits the statistical properties, which can be built directly upon
faulty ciphertexts.

• The adversary does not necessarily need live synchronisation, to inject a fault at a
sensitive moment. The adversary can inject a persistent fault beforehand and wait
for the victim to start encryption. Such setting implies that remote, powerful but
slow injection techniques like rowhammer can be well suited.

• The fault model remains relaxed compared to statistical attacks like SFA and FSA.
While SFA assumes biased fault injection, FSA needs side-channel information for
the analysis. PFA is built upon ciphertexts with a random fault model only without
any biases. No side-channel information is required.

• As shown later, PFA can also be applied in multiple fault setting.

• By its nature, PFA can bypass some redundancy based countermeasures.

• Some circuits deploy fault injection sensors to detect injection attempts. For energy
saving, these sensors are only operated in the so-called sensitive mode. An adversary
can always inject the persistent fault before the victim is switched to the sensitive
mode, rendering the protection ineffective.

3.5.2 Disadvantages

• As the analysis technique is statistical, it needs much higher number of ciphertexts
as compared to DFA, which in some cases can be as low as 1 or 2 ciphertext pair.

• Persistent faults can be detected by some built-in health test mechanism.

4 PFA with Multiple Faults
Unlike other fault analysis techniques, PFA can also be applied in a multiple fault injection
setting. By multiple faults, we mean the adversary modifies several elements in a persistent
manner. If we take the previous example, the adversary modifies several elements of the

158 Persistent Fault Analysis on Block Ciphers

S-box. Analysis of multiple injection is becoming more realistic when the technology node
is shrinking much faster than the fault injection capability. Thus, the adversary is likely
to affect a larger area, like multiple memory locations [SHP10].

Let us assume that the adversary injects faults into λ elements of the S-box. The fault
model remains similar to the previous case. There are at least (2b − λ) possible output
values from S-box. For simplicity, we do not consider the linear layer in our equations.
Thus, we have (2b − λ) candidate values for each ciphertext word cj . Suppose Sv denotes
the set of the corrupted S-box output elements (v0, v1, · · · vλ−1). For each vi in Sv,

Counts(t) = 0, kj = vi ⊕ t, (0 ≤ i < λ, 0 ≤ j < L) (9)

In the attack, for each possible value t in each ciphertext element, we calculate
Counts(t) for 2b candidates of t. If Counts(t) = 0, we can keep vi ⊕ t as candidates of kj .
If Counts(t) 6= 0, we can discard vi ⊕ t. With enough number of ciphertexts, at most λ
candidates of kj can be kept after PFA on each element of ciphertext. Then, the maximal
residual entropy of the last round key can be calculated as L × log2 λ where L is the
number of ciphertext words, i.e., for AES L = 16, 16 words of one byte (b = 8) each.

Fig. 3 shows the relationship between the average residual key entropy corresponding
to the sample size N and the number of multiple faults λ. We set 1 ≤ λ ≤ 16 (no. of
persistent faults) and 1 ≤ N ≤ 5000 (no. of ciphertexts). For each value of λ, we repeat
PFA 1000 times on different datasets, and the final result is averaged over all experiments.
We increase the number of samples one by one and calculate the residual entropy of the
last round key as a function on N .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

16

32

48

64

80

96

112

128

Number of ciphertexts

R
es

id
u

al
 K

ey
 E

n
tr

o
p

y

λ=1
λ=2
λ=3
λ=4
λ=5
λ=6
λ=7
λ=8

λ=9
λ=10
λ=11
λ=12
λ=13
λ=14
λ=15
λ=16

Figure 3: Relationship among the residual key entropy, N and λ.

From Fig. 3, we can see that, for each value of λ, the residual key entropy of the block
cipher with b = 8 can be at most reduced to 16× log2 λ after PFA on the last round. Also,
at N = 2000 the attack saturates and the key entropy cannot be further reduced without
extra information. Normally, an adversary can try brute force of the remaining candidates.
If the key entropy is beyond brute force search, the adversary can extend PFA to the last
but one round and further reduce the key entropy.

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 159

5 Validation of PFA on AES-128
5.1 AES implementation
In this section, we check validation of our attack on AES-128. AES-128 [AES] is a
symmetric block cipher algorithm with a block size of 128 bits. Suppose the i-th round is
denoted as Ri. The initial nine rounds Ri, 1 ≤ i ≤ 9 comprise of four major operations:
SubByte(SB), ShiftRow(SR), MixColumn(MC), and AddroundKey(AK). There is an
additional key whitening before R1 and no MixColumn operation in R10. The SB function
is the only non-linear operation of the block cipher consisting of an substitution box (S-box)
lookup applied to the state. AES-128 uses an 8× 8 S-box, i.e., 256 bytes. Moreover, the
operations in AES-128 are byte oriented which makes b = 8 or η = 2b − 1 = 255.

Three exemplary AES-128 implementations are considered. All implementation are
based on look-up tables which are stored in the memory. An adversary can inject faults in
the memory to corrupt a particular entry of the look-up table, through various available
injection means. The details of the tested AES-128 implementations are:

I1: S-box Implementation has an S-box lookup table in the encryption and an inverse
table S−1 in the decryption. There are 256 elements in both S and S−1 tables and
are used in all ten rounds.

I2: T-table Implementation optimises performance by merging SB, SR and MC opera-
tions in one T-table lookup. There are four T tables in the encryption, denoted
as T0, T1, T2, T3. Each Ti is an 8× 32 lookup i.e. 256 elements of 32 bits. In each
round Ri(1 ≤ i ≤ 10), each table of T0, T1, T2, T3 is accessed for four times. In the
decryption, the four inverse lookup tables are denoted as T−1

0 , T−1
1 , T−1

2 , T−1
3 . Since

R10 has no MC operation, the required output is extracted from the same T-tables
to optimise memory requirements.

I3: T-table Implementation is similar to I2. Each of T0, T1, T2, T3 is accessed for four
times in the first nine rounds. Four additional tables T ′0, T ′1, T ′2, T ′3 are used in R10.
Each element of T ′i also has 32 bits. However three bytes of the element in T ′i are
just zeroes, while the only non-zero byte has the same value as that in S.

Table 1 summarises the types of implementations that are offered to apply the AES using
S-box and T-box with the lookups in each round and table size. Note that I3 is also a
realistic implementation whose assembly code could be found in the file rijndeal-amd64.S
of the shared library Libgcrypt 1.6.3. Similar to Openssl, Libgcrypt is also a well-known
cryptographic library which provides numerous cryptographic building blocks.

Table 1: Different implementations of AES-128 encryptions.

Type Lookups in each round Table size Notes
I1 R1−10: S S:256B Typical S-box implementation
I2 R1−10: T0, T1, T2, T3 Ti:1KB Typical T-box implementation

I3 R1−9: T0, T1, T2, T3 Ti:1KB Code can be found in rijndeal-amd64.S
R10: T ′0, T

′
1, T

′
2, T

′
3 T ′i :1KB in the library Libgcrypt 1.6.3

I3 is analyzed in the next section using rowhammer attacks on modern processors. We
test I1 and I2 on Virtex-5 FPGA (xc5vlx50). The area results of I1 and I2 are summarised
in Table 2. Since there are 16 S-box and 16 S−1-box consumption for each complete AES,
each BRAM (RAMB36) can accommodate 4 S-box or S−1-box. The BRAM cost for S-box
based AES is 8. By contrast, the BRAM cost for T-box based AES is 4.

For the validation of the attack, we use data2mem tool [dat09] provided by Xilinx. It
can update the BRAM content without the need of re-flashing a new bitstream. Thus, it
allows us to emulate the persistent fault injection.

160 Persistent Fault Analysis on Block Ciphers

Table 2: Cost of S-box and T-box AES implementations.

AES style RAMB36 Slice LUTs Slice Registers Occupied Slices
S-box 8 2630 2469 2131
T-box 4 4526 2492 1370

5.2 PFA on vulnerable S-box implementation (I1)
It is assumed that an adversary effects AES S-box with a fault injected on one element
to collide with another existing element, resulting in only 255 distinct elements. The
correct value victim v of the eth element does not appear instead the effected faulty value
v∗ appears twice. All other elements in the S-box remain correct and appear with a
probability of 1

256 . When only one fault is injected to the table, the discrete probability
distribution function of y can be described as follows:

Pr(y = v) = 0; Pr(y = v∗) = 2
256 ; Pr(y 6= v ∧ y 6= v∗) = 1

256
(10)

The goal for adversary A is to extract the last round key K10. Here Algorithm 1
can be directly applied to handle this situation where b = 8. However, the number of N
samples needs to be carefully chosen in order to successfully launch the attack based on
the theoretical estimation.

5.2.1 Attack result

Fig.4 shows the result of an exemplary PFA on AES S-box implementation. In the attack,
the first element of S-box is injected with the persistent fault, v = 0x63. After the fault
injection, only the 7-th bit of v is flipped from one to zero, v∗ = 0x61. In Fig.4, 2× 104

ciphertexts are collected. For each ciphertext byte, for example, c1 in Fig.4a and c2 in
Fig.4b, the probability for each value is plotted as one curve, which is calculated as the
counts of appearances for that specific value divided by the number of ciphertexts already
used in the analysis. In both subfigures, two curves are obviously distinct from the rest.
The red curve at the bottom is for tmin, which never appears in cj . The blue curve on the
top is for tmax, whose probability is converged to 2

256 and significantly larger than that of
other values. Since c1 = 0x2e, k1 can be computed as k1 = 0x61⊕ 0x2e = 0x4f . Similarly,
k2 = 0x61⊕ 0x0a = 0x6b. The attack values of k1 and k2 are the same as the one in K10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

−5

0

5

10

15
x 10−3

Number of ciphertexts

P
ro

ba
bi

lit
y

c1=0x2e,k1=0x61 ⊕ 0x2e=0x4f

c1=0x2c, k1=0x63 ⊕ 0x2c=0x4f

(a) Extract k1 using the distribution of c1

0 0.5 1 1.5 2

x 104

−5

0

5

10

15
x 10−3

Number of ciphertexts

P
ro

ba
bi

lit
y

c2=0x0a,k2=0x61 ⊕ 0x0a=0x6b

c2=0x08,k2=0x63 ⊕ 0x08=0x6b

(b) Extract k2 using the distribution of c2

Figure 4: Exemplary PFA on AES-128 using distributions of ciphertext values.

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 161

5.2.2 Residual key entropy for different sample size

Let φt(n) denote the theoretical estimation of the residual key entropy for K10 when n
ciphertexts are used for analysis. Note that the similar analysis can be applied to all
sixteen key bytes simultaneously. φt(n) can be approximately calculated as 16× log2 εn,
where εn = 256− 1−qn

1−q and q = 254
255 .

Let φ(n) denote the actual residual key entropy when n ciphertexts are used for analysis.
The value of φ(n) can be calculated according to Algorithm 1, assuming the attacks on each
byte kj are equivalent. Fig. 5a shows how φ(n) and φt(n) decrease when n is increased. In
Fig. 5a, φ(n) is very close to the theoretical value of φt(n). When n ≥ 1240, φt(n) ≤ 16.
When n ≥ 1360, φ(n) ≤ 16, which implies that there are at most 216 candidates of K10.
When n ≥ 1405, φt(n) ≤ 1. And when n ≥ 2148, φ(n) ≤ 1, which implies that there are
at most two candidates for the full K10.

0 500 1000 1500 2000 2500
0

16

32

48

64

80

96

112

128

Sample size

R
es

id
u

al
 k

ey
 e

n
tr

o
p

y

Practical results
Theoretical estimation

(a) φ(n) v.s. φt(n).

1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of ciphertexts

P
ro

ba
bi

lit
y

(b) Distributions of Nf

Figure 5: Attack result of PFA on unprotected AES.

5.2.3 Sample size distributions for full key recovery

In order to guarantee the success rate of our PFA method, the fault attacks are conducted
again ξ times with the random plaintext. For each attack, we increase the number of
ciphertexts n in the analysis, until all the sixteen key bytes are recovered. Suppose Nf
denotes the number of ciphertexts that is required when the adversary A can successfully
extract all the sixteen bytes of AES for the first time in one specific attack.

Fig.5b describes the distributions of Nf for ξ = 1000 attacks. It is clear that 1678 ≤
Nf ≤ 3504, it depicts that at least 1678 and at most 3504 samples are required to recover
the full master key. The average value of Nf is 2281.

6 Defeating Fault Attack Countermeasures with PFA
In this section, we enhance the PFA to AES-128 protected against fault attacks.

6.1 Countermeasures against fault attacks
Dual Modular Redundancy (DMR) is a mechanism of using two redundant modules to
prevent fault attacks [Joy12]. DMR has characteristics of reliability, security and also
offers robustness to the systems in order to detect the error. This countermeasure is readily
adopted in commercial solutions due to its properties thus enhances the reliability.

As shown in Fig.6, there are two modules in the DMR scheme: Module 1 and Module
2. If both modules are performing encryption, the countermeasure is named as redundant

162 Persistent Fault Analysis on Block Ciphers

encryption based DMR (REDMR) where Module 2 is functionally equivalent to Module
1. Provided that the resultant ciphertexts of two modules are the same (C ′ = C ′′), the
security check for REDMR is passed. Thus, the ciphertext is considered true and can be
sent to display the output. REDMR passes the security check and is considered secure
against single fault injection. In order to defeat this countermeasure, one has to inject
either same fault in both the modules (two fault injection are required), or inject a fault
in one module and bypass the security check.

An alternative strategy is adopted to make the same fault in two modules harder.
If Module 1 is an encryption module and Module 2 is decrypting the ciphertext from
Module 1, the corresponding countermeasure is named as inversive decryption based DMR
(IDDMR). If the decrypted plaintext from the module is the same as the original plaintext
(P ′ = P), the ciphertext of Module 1 is considered as true and can be sent to display the
output. Since both the modules are performing different operations and have different
architectures, injecting complementary fault is harder. Next, we focus on IDDMR, the
stronger of the two countermeasures. Same analysis also applies to REDMR.

P C''
... ...X

C'
... ...X

Module 1: encryption

P P'
... ...X

C'
... ...X

P if C'=C'', output C'
if C' ≠ C'', no outputs

if P=P', output C'
if P ≠ P', output random
values or no outputs

redundant
encryption

countermeasure

inversive
decryption

countermeasure

Module 2: encryption

Module 1: encryption Module 2: decryptionVictim

Device

Figure 6: Countermeasures against fault attacks: REDMR and IDDMR.

Based on the reaction to failed security check, three countermeasure can be classified.

C1: No ciphertext output (NCO) . If P ′ 6= P is detected, the victim V will not display
the incorrect ciphertext C ′.

C2: Zero value output(ZVO) . If P ′ 6= P is detected, the victim V will display the
output that is a ciphertext C ′ = 0.

C3: Random ciphertext output(RCO) . A ciphertext with total random values will
appear at output when P ′ 6= P is detected. The major benefit of this scheme is
to embed the incorrect ciphertexts into a large pool of randomized ciphertexts,
resulting in the adversary’s difficulty of directly differentiating the fault leakages.
Different from NCO and ZCO, A can not distinguish the correct encryption from
faulty encryption.

Note that for REDMR, if both the modules use shared memory i.e. common look-up
tables, all three countermeasures will fail to detect a fault in lookup tables, that is target
of PFA. In the following, we do not consider this case but a stronger implementation where
each module has independent memory, for instance, IDDMR.

6.2 PFA on S-box (I1) with NCO and ZCO
With NCO and ZCO, only a fraction of the N ciphertexts are available while the rest
of cipherexts are suppressed by either no ciphertext output (NCO) or by all zero values

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 163

(ZCO). This is because the injected faults in the lookup table are used in some intermediate
computations in the encryption, and the incorrect ciphertext is used in the decryption,
which further leads in the faulty output P ′. Thus, the adversary A has to perform
further more encryptions in order to have significant number of ciphertexts which are
not suppressed. However, the analysing methodology remains exactly the same as in the
unprotected case, once enough number of ciphertexts are available. Each AES encryption
involves 160 S-box calls (16 in each of 10 rounds). Note that the 40 lookups in the key
schedule are not considered. The probability p that one plaintext can bypass IDDMR, i.e.,
the probability that all 160 S-box lookups do not access the faulty element in the S-box
table, can be calculated as

p = (1− 1
256)160 ≈ 0.5346 (11)

Thus, only p × N ciphertexts can be used for the attack. In this case, the attacker
would need around N/p ≈ 1.8706×N encryptions, instead of N encryptions to perform
full key recovery.

To investigate the case of PFA on NCO/ZCO-based IDDMR, we repeat the attack
for ξ = 1000 times. Fig.7 describes the distribution of Nf . The statistic shows that
3042 ≤ Nf ≤ 7141, which means that at least 3042, at most 7141 ciphertexts are required
to recover the full master key. The average value of Nf is 4234. In the attack, if we set
n > 7200, the success rate is 100%.

3000 4000 5000 6000 7000 8000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of ciphertexts

P
ro

ba
bi

lit
y

Figure 7: Distribution of Nf for PFA on AES with NCO/ZCO.

6.3 PFA on S-box (I1) with RCO
In contrary to Section 6.2, in the presence of RCO, the adversary cannot distinguish
between correct ciphertext and random ciphertext. Each ciphertext byte can take all
possible 256 values. Strategy 2, which depends on the impossible value of ciphertexts, can
not defeat this countermeasure scheme. Whether Strategy 1 and 3 (exploiting tmin or
tmax) can be applied or not depends upon the probability distribution for different values
of the ciphertext byte. Since all the ciphertexts are generated either by a correct output
when P ′ = P or by a random output when P ′ 6= P , the discrete probability distribution
function for the ciphertext byte y can be computed in two parts accordingly. One is
the output of the S-box whose distribution is already described in Eq.(2). However, the
constraint that the ciphertext is correct should be added, whose probability is given in
Eq.(11). The other is the random output which satisfies the uniform distribution. The
specific distribution is listed in Eq.(12) where p is the probability that one encryption does
not access to any faulty element in S-box.

164 Persistent Fault Analysis on Block Ciphers

Pr(y = v) = 0× p+ 1
256 × (1− p) = 0.4654

256
Pr(y = v∗) = 2

256 × p+ 1
256 × (1− p) = 1.5346

256
Pr(y 6= v ∧ y 6= v∗) = 1

256 × p+ 1
256 × (1− p) = 1

256

(12)

From Eq.(12), y = v is still with the minimal probability and y = v∗ is with the
maximal probability. In this case, both Strategy 1 and Strategy 3 can be adopted to
extract the secret key, with updated specific probability value Pr(y = v) and Pr(y = v∗).
Fig. 8 clearly demonstrates the probability distribution of two illustrative ciphertext bytes,
c1 in Fig.8a and c2 in Fig.8b, which are the first and the second byte of AES ciphertext for
S-box implementation protected with RCO. For each ciphertext byte, the probability for
each value in corresponding to the increase of N is plotted as one curve, which is calculated
as the counts of appearances for that specific value divided by the number of ciphertexts
already used in the analysis.

In Fig. 8, 4× 104 ciphertexts under the IDDMR are collected. The red curve at the
bottom is for tmin, whose probability is converged to 0.4654

256 and significantly smaller than
that of other values. The blue curve on the top is for tmax, whose probability is converged
to 1.5346

256 and obviously larger than that of other values. In both subfigures, two curves are
obviously distinctive from the rest.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.005

0.01

0.015

Number of ciphertexts

P
ro

ba
bi

lit
y c1=0x2e, k1=0x61 ⊕ 0x2e=0x4f

c1=0x2c, k1=0x63 ⊕ 0x2c=0x4f

(a) Extract k1 using the distribution of c1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.005

0.01

0.015

Number of ciphertexts

P
ro

ba
bi

lit
y c2=0x0a, k2=0x61 ⊕ 0x0a=0x6b

c2=0x08, k2=0x63 ⊕ 0x08=0x6b

(b) Extract k2 using the distribution of c2

Figure 8: Attack result on AES-128 S-box implementation with RCO.

Algorithm 2 describes the analysis on AES-128 (Implementation I1) which extracts
K10 when IDDMR with RCO is applied. The attack sets two threshold values τ1 and
τ2 to filter the correct key candidates. The choice of τ1 and τ2 is based on the empirical
experience, in order to distinguish the two biased bytes from other 254 unbiased bytes.
For the sake of simplicity, τ1 is set as 0.9× 1.5346

256 and τ2 is set as 1.1× 0.4654
256 , in order for

identifying the key candidate with maximal and minimal probability, respectively.
Similar to Algorithm 1, the two-dimensional Counts[u][t] is updated by counting the

appearance of each ciphertext byte. For Strategy 1, if the total number of counts for
Counts[u][t] divided by N is smaller than τ1, (t+ v) can be kept as the possible candidate
for ku and inserted into a candidate set Φu,1. For Strategy 2, If Counts[u][t] divided by N
is larger than τ2, (t+ v∗) can be kept and inserted into a candidate set Φu,2.

According to Algorithm 2, we conduct two experiments to estimate φ(n), the residual
key entropy, by using τ1 and τ2. Let φu,1, φu,2 denote the residual key entropy (log2 based)

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 165

Algorithm 2: Attack on AES-128 to extract the round key in R10 under IDDMR.
1 for u = 0; u < 16; u++ do
2 for t = 0; t < 256; t++ do
3 Counts [u][t]=0;
4 end
5 end
6 for u = 0; u < 16; u++ do
7 for n = 0; n < N; n++ do
8 Counts [u][cu,n]++; ; // cu,n is cu in the n-th ciphertext
9 end

10 end
11 for u = 0; u < 16; u++ do
12 for t = 0; t < 256; t++ do
13 if Counts[u][t]

N < τ1 then
14 Insert t+ v into Φu,1; ; // Strategy 1
15 end
16 if Counts[u][t]

N > τ2 then
17 Insert t+ v∗ into Φu,2; ; // Strategy 2
18 end
19 end
20 end

of Φu,1, Φu,2 respectively. Φu,1 and Φu,2 are the residual key search space when analyzing
the u-th byte of the last subkey in R10 merely with only τ1 or τ2, respectively.

In the first experiment, the residual key entropy φ1(n) is calculated as the sum of all
φu,1. In the second experiment, φ2(n) is the sum of all φu,2. In each experiment, 1000
attacks are performed. φ1(n) and φ2(n) are depicted in Fig.9a respectively, showing how
the residual key entropies change with the number of ciphertexts used in analysis. We can
see that φ1(n) in PFA using τ1 is much less than that using τ2. On average, the required
sample size is about 9280, 12660 for using different thresholds (τ1, τ2), respectively, when
the residual key entropy is less than 16.

0 5000 10000 15000 20000 25000 30000
0

16

32

48

64

80

96

112

128

Number of ciphertexts

R
es

id
u

al
 k

ey
 e

n
tr

o
p

y

τ
1

τ
2

(a) S-box implementation with RCO

0 5000 10000 15000 20000 25000 30000
0

16

32

48

64

80

96

112

128

Number of ciphertexts

R
es

id
u

al
 k

ey
 e

n
tr

o
p

y

τ

1

τ
2

(b) T-box implementation with RCO

Figure 9: φ1(n), φ2(n) v.s. the number of samples, when different thresholds (τ1, τ2) are

used in PFA on IDDMR countermeasures. φ1(n) =
15∑
u=0

φu,1, φ2(n) =
15∑
u=0

φu,2.

6.4 PFA on T-tables (I2) with RCO
In this section, we enhance our fault attack to T-tables based implementation (I2) protected
with additional RCO. Even though the use of T-tables based implementation is limited
and discouraged due to huge memory requirement and vulnerability to cache attacks, it is
still used in some libraries. In comparison to the S-box implementation, in this type of
implementation, the attack requires more effort in fault injection. For T-tables (I2), each
table Ti is accessed for 4 times in each AES round and 40 times in one encryption. Let kj

166 Persistent Fault Analysis on Block Ciphers

denote the jth byte of the last round key K10, 0 ≤ j ≤ 15.
In case of a straight forward attack, the adversary is required to modify four en-

tries, one in each T-table to make sure the correspondence of single fault injection in
S-box implementation. For T-tables stored in memory, four byte faults are injected
into T0, T1, T2, T3 simultaneously. For instance, the adversary can modify the following
four elements: the first element of T0 (the third byte, 0xc66363a5 → 0xc66361a5), the
first element of T1 (the fourth byte, 0xa5c66363 → 0xa5c66361), the first element of
T2 (the first byte, 0x63a5c663 → 0x61a5c663), the first element of T3 (the second byte,
0x6363a5c6 → 0x6361a5c6). Then, p′′, the probability that one plaintext can bypass
IDDMR, is still (1− 1

256)160 ≈ 0.5346.
In our attack, we set τ1 = 0.9 × 1.5346

256 and τ2 = 1.1 × 0.5346
256 . Fig. 9b shows the

relationship between φ(n) and the sample size n. It is observed that in this scenario, φ(n)
in PFA using τ1 is much less than using τ2. To reduce the residual key entropy to be less
than 16, the average sample size is 8840 and 12870 for τ1 and τ2, respectively.

6.5 Discussion
It is important to mention that the 40 S-box lookups in the key schedule of AES do not
affect our analysis that much. In the scenario of REDMR or IDDMR, the probability
of outputting a correct ciphertext will be calculated as (1 − 1

256)200. The analysis will
remain as the same and quite straightforward. In addition, considering the multiple
faults on IDDMR, it is also possible that two faults are injected to S and S−1 separately.
Intuitively, the fault in S−1 might cancel some faulty propagation during the reversible
decryption process, resulting more number of ineffective ciphertexts for analysis. However,
our preliminary analysis shows the second fault to S−1 does not improve our PFA. It will
require the same number of ciphertexts as in PFA on the normal IDDMR. It should be
noted that, to further reduce the data complexity and the key search space, our PFA can
be extended to more rounds besides the last round, e.g., the 9-th round of AES-128.

7 Case Study: Rowhammer-based PFA on T-box (I3)
Cryptographic libraries are vital to provide the security to the applications. Cryptographic
primitives frequently used are hardcoded in the shared libraries, which are assembled
among multiple processes. In addition to that, it simultaneously prevents the performance
downgrading. Cryptographic libraries such as Libgcrypt [lib], OpenSSL, PolarSSL etc. are
some common examples. In this section, we experiment persistent bit fault that is injected
into the T-tables of the binary file of Libgcrypt(Implementation I3), which is compiled
and deployed as a shared library.

7.1 Attack overview
The overview of our attack on shared libraries is illustrated in Fig.10. The fault is injected
in a setting where two processes running on the same computer that access the Libgcrypt
in the memory. The process A is the malicious adversary and the other process V is the
victim. Both are user privilege processes at the security level of ring-3. In our experiments,
we further hardened aes_encrypt by REDMR. The choice for REDMR is motivated by
use of the encrypt function only. In fact, the adversary A can prepare an attacking
environment before V’s encryption. A can search for the entire T-table (marked as green
in Fig.10) in his own virtual address space (marked as blue). The size of entire T-table is
8KB which includes all Ti and T ′i (0 ≤ i ≤ 3) and crosses three physical pages. Note that
Ti and T ′i may not be aligned to the starting address of the physical page that they reside.
The offset of T ′i to the resident page can be inferred from the layout of the .so binary file.

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 167

.so file

Adversary's Virtual Address Space

Victim's Virtual Address Space

……

Bit flip

AES_encrypt

AES_encrypt T'0

T

T

.so fileT

……

……

……

……

……

T0
T'1
T1

T'2
T2

T'3
T3

Aggressive Row1

Victim Row

Aggressive Row2

Module1

Module2

any call

Physical Address Space

Figure 10: Overview of the rowhammer-based persistent fault attacks on shared libraries.

A can flip one bit in one of the T-tables (illustrated as T ′0 in Fig.10) in Libgcrypt 1.6.3
with a very simple hammering technique.

7.2 Attack procedure
For fault injection by rowhammer technique, the adversary A performs four distinct steps:
profiling, allocation, positioning and hammering, which are described as below:

Step1: Profiling The adversary profiles the DRAM when the victim process is not running.
Profiling helps in determining the vulnerable rows. The outcome of the profiling
step is a dictionary of bit flips information for each physical row, for example, the
rows which may contain bit flips after the hammering, and the location of those flips
in the specific row. Note that this dictionary is a hardware profile for the physical
memory, and credible to resist any alterations for the software changes.

Step2: Allocation In this step, the adversary aims to allocate T ′i into the vulnerable rows.
Once the shared library is loaded, the OS allocates it to a random location in the
page cache based on current memory usage. So in order to steer the victim towards
targeted vulnerable location, several attempts are made to try different locations, as
the shared library is reloaded to a new address after being evicted from memory.

Step3: Positioning In the positioning step, the adversary A tries to position virtual pages
that are mapped to adjacent aggressive rows for next hammering. A first determines
the row in which the victim library is located using certain highest bits (i.e, the row
ID) of its physical address. Then he calculates the highest bits of adjacent rows
and obtain the range of physical addresses that are located on adjacent rows. After
that, he keeps spraying blank pages to the memory with the function mmap and
checks if the physical address of a specific blank page is within in the address range
of adjacent rows or not. If it is, he can keep the blank page, otherwise just drop it.
After the number of blank pages in the adjacent rows are reached up to a threshold,
the spraying is halted and those virtual addresses of blank pages in two adjacent
rows are pushed into two sets VA1 and VA2, respectively. These two virtual address
sets are used for hammering in the next step.

Step4: Hammering In this step, the adversary can access pages that are saved in VA1
and VA2 with high frequency. Once it results the bit flips in one of T ′i , hammering is
interrupted. A then waits for V to start the encryption and observe the ciphertext.
If there are no flips, the attack should be started from Step 2 again.

168 Persistent Fault Analysis on Block Ciphers

000d6710h: C6 63 63 A5 63 00 00 00 F8 7C 7C 84 7C 00 00 00 ;
000d6720h: EE 77 77 99 77 00 00 00 F6 7B 7B 8D 7B 00 00 00 ;
000d6730h: FF F2 F2 0D F2 00 00 00 D6 6B 6B BD 6B 00 00 00 ;
000d6740h: DE 6F 6F B1 6F 00 00 00 91 C5 C5 54 C5 00 00 00 ;
000d6750h: 60 30 30 50 30 00 00 00 02 01 01 03 01 00 00 00 ;
000d6760h: CE 67 67 A9 67 00 00 00 56 2B 2B 7D 2B 00 00 00 ;
000d6770h: E7 FE FE 19 FE 00 00 00 B5 D7 D7 62 D7 00 00 00 ;
000d6780h: 4D AB AB E6 AB 00 00 00 EC 76 76 9A 76 00 00 00 ;

Figure 11: The the first 16 elements of T0 and T ′0 in the binary file of Libgcrypt-1.6.3.

The adversary might have to repeat the above process several times to achieve desirable
faults in T ′i which are accessed by the victim. Once the victim V starts the encryption,
the adversary collects N ciphertexts. Each time the adversary A can only inject one bit to
one table, therefore only four keys bytes can be extracted. The fault injection should be
repeated for different tables T ′0, T ′1, T ′2, T ′3.

7.3 Experiment results
7.3.1 Setup

Our attack is conducted on the Lenovo ThinkPad x230 laptop. The CPU is Intel(R)
Core(TM) i5-3320M at 2.60GHz. It contains two Samsung DDR3 modules, each with
2GB at 1333MHz . The Linux OS is Ubuntu 12.04 LTS with the kernel version of 3.2.0-79
generic. The target is Libgcrypt v1.6.3. The compiler for building the shared library is gcc
4.6.3 with the default optimization setting.

In Libgcrypt 1.6.3, the size of the binary file is 2853 KB where the first element of AES
T-table T0 starts at the offset 000d6710h. The partial layout of the first 16 elements of T0
and T ′0 is shown in Fig.11. Every element (4 bytes) of T0 is followed by the corresponding
element of T ′0 (also 4 bytes, where only one byte is non-zero). Note that T ′i is actually a
copy of the compact S-box and will only be accessed during the last round R10.

7.3.2 Result of hammering

The attack result for injecting one bit flip to any one of the four T-tables can be depicted
in the Table 3. The second column records the attack time that it takes to successfully
inject one bit to any of T ′0, T ′1, T ′2, T ′3, ranging from 3 up to 230 minutes for the first 20
experiments facilitated with profiling information. The injection time on average is about
64.1 minutes. The exact location of the detected bit flip, the correct value of that bit in
standard T-tables, and the faulty value after the hammering are also listed in the last three
columns of Table 3. Statistically, injections occur 5,4,6,5 times to T ′0, T ′1, T ′2, T ′3, in 90.80,
57.75, 49.83, 59.6 minutes respectively. The numbers of injections are evenly distributed
among all four tables with certain small variance in the injection time. In contrast, two
experiments are conducted without the profiling information, which takes about 461 and
1367 minutes, respectively.

7.3.3 Result of fault analysis

According to experimental results in Table 3, the adversary A can inject one bit flip into
one of the four tables. Since REDMR is vulnerable to PFA, the faulty ciphertexts are
available to A. Bytes of K10 are recovered row wise. A flip is injected in T ′2[100] from
0x43 to 0x41, and 4000 ciphertext are collected. This allows the recovery of k2, k6, k10, k14.
Similarly, flip in T ′0[235] from 0xe9 to 0xa9 and T ′3[67] from 0x70 to 0x50, helps recover
k0, k4, k8, k12 and k3, k7, k11, k15. Rest of the key can be recovered by brute force or another
flip in T ′1[208] from 0x70 to 0x50. The number of ciphertexts required for recovering each
column of the key is shown in Fig. 12. Roughly, 8200 ciphertexts are required i.e. 2050
per row, to recover the full last round key.

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 169

Table 3: The attack result for injecting one bit flip to any of T ′i with or w/o profiling.

ID Attack time(min) Location of flip Data before injection Data after injection
1 30 T ′0[235] e900 0000 a900 0000
2 38 T ′1[208] 0070 0000 0050 0000
3 53 T ′2[100] 0000 4300 0000 4100
4 81 T ′3[67] 0000 001a 0000 0018
5 230 T ′0[18] c900 0000 c800 0000
6 102 T ′1[131] 00ec 0000 00cc 0000
7 77 T ′2[172] 0000 9100 0000 9000
8 3 T ′3[34] 0000 0093 0000 0091
9 104 T ′0[230] 8e00 0000 8600 0000
10 49 T ′2[126] 0000 f300 0000 7300
11 86 T ′3[101] 0000 004d 0000 004c
12 75 T ′3[55] 0000 009a 0000 001a
13 17 T ′2[221] 0000 c100 0000 8100
14 44 T ′1[67] 001a 0000 0018 0000
15 53 T ′3[147] 0000 00dc 0000 00d8
16 5 T ′0[108] 0000 0050 0000 0010
17 41 T ′2[252] 0000 0f00 0000 0b00
18 62 T ′2[140] 0000 6400 0000 4400
19 47 T ′1[13] 00d7 0000 0097 0000
20 85 T ′0[168] c200 0000 8200 0000
1 461(w/o profiling) T ′3[75] 0000 00b3 0000 00f3
2 1367(w/o profiling) T ′1[163] 000a 0000 0002 0000

0 400 800 1200 1600 2000 2400
0

4

8

12

16

20

24

28

32

Number of ciphertexts

R
es

id
u

al
 k

ey
 e

n
tr

o
p

y

φ(k
0
,k

4
,k

8
,k

12
)

φ(k
1
,k

5
,k

9
,k

13
)

φ(k
2
,k

6
,k

10
,k

14
)

φ(k
3
,k

7
,k

11
,k

15
)

Figure 12: The residual key entropy v.s. the sample size. The PFA attack is conducted
on Libgcrypt 1.6.3 with REDMR.

8 Conclusion

In this paper, we propose persistent fault analysis, a novel fault attack based on persistent
fault model. The power of the proposed PFA is that it can even attack general block
ciphers hardened with certain countermeasures against fault attacks. The attack is first
validated in an FPGA environment on AES-128 hardened with DMR countermeasures, to
recover the last round key. Further, using rowhammer based fault injection, the attack is
practically conducted in a shared library setting to target AES-128 in cryptographic library
Libgcrypt. The proposed attack opens an alternate analysis technique which motivates
to break various fault countermeasures under this threat model. As a countermeasure,
built-in health test with fault counters can be integrated to verify the functionality of the
algorithm before performing block encryptions and limit the number of faulty ciphertexts.
This can be easily performed, for instance, at S-box level but remains difficult to implement
for more complex algorithms. Moreover, it motivates to research new configurations of
DMR countermeasures and other novel countermeasures to resist PFA.

170 Persistent Fault Analysis on Block Ciphers

Acknowledgement
This work was supported in part by the National Natural Science Foundation of China
under Grant 61472357 and 61571063, and in part by the Zhejiang University Fundamental
Research Funds for the Central Universities under Grant 2018QNA5005.

References
[ACS+07] M. Alderighi, F. Casini, D S., S. Pastore, G. R. Sechi, and R. Weigand.

Evaluation of single event upset mitigation schemes for sram based fpgas
using the flipper fault injection platform. In IEEE International Symposium
on Defect and Fault-Tolerance in Vlsi Systems, pages 105–113, 2007.

[AES] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[ASSS16] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento, and Santiago
Sĺćnchez-Solano. Aes t-box tampering attack. Journal of Cryptographic
Engineering, 6(1):31–48, 2016.

[BBB+18] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, and
Thomas Peyrin. Protecting block ciphers against differential fault attacks
without re-keying. In 2018 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 191–194. IEEE, 2018.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–
382, 2006.

[BHS94] Gunnar Blom, Lars Holst, and Dennis Sandell. Problems and Snapshots from
the World of Probability. Springer Verlag, 1994.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight
block cipher. Lecture Notes in Computer Science, 4727:450–466, 2007.

[BM16] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of Rowham-
mer: Flipping Secret Exponent Bits Using Timing Analysis. Springer Berlin
Heidelberg, 2016.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. Lncs, 1294:513–525, 1997.

[BS06] Eli Biham and Adi Shamir. Differential cryptanalysis of the data encryption
standard. Crystal Research & Technology, 17(1):79–89, 2006.

[CWJ10] Nicolas T Courtois, David Ware, and Keith M Jackson. Fault-algebraic
attacks on inner rounds of DES. 2010.

[dat09] Data2mem user guide (ug658), 2009.

[DDL97] Boneh Dan, Richard A. Demillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults. In International Conference
on Theory and Application of Cryptographic Techniques, pages 37–51, 1997.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault
analysis on A.E.S. In International Conference on Applied Cryptography and
Network Security, pages 293–306, 2003.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi and K. Ren 171

[FJLT13] Thomas Fuhr, Eliane Jaulmes, Victor Lomne, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In The Workshop on Fault
Diagnosis & Tolerance in Cryptography, pages 108–118, 2013.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED
block cipher. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 326–341, 2011.

[Insa] https://www.riscure.com/security-tools/inspector-fi/.

[Insb] https://www.riscure.com/security-tools/inspector-sca/.

[Joy12] Marc Joye. Fault analysis in cryptography. Information Security & Cryptog-
raphy, 2012.

[KDKF14] Yoongu Kim, R Daly, J Kim, and C Fallin. Flipping bits in memory without
accessing them: An experimental study of dram disturbance errors. In
Proceeding of the International Symposium on Computer Architecuture, pages
361–372, 2014.

[lib] https://gnupg.org/software/libgcrypt/index.html.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic
Hardware and Embedded Systems, CHES 2010, International Workshop,
Santa Barbara, Ca, Usa, August 17-20, 2010. Proceedings, pages 320–334,
2010.

[RGB+16] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,
and Herbert Bos. Flip feng shui: Hammering a needle in the software stack.
In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 1–18, 2016.

[Riv09] Matthieu Rivain. Differential fault analysis on DES middle rounds. In
Cryptographic Hardware and Embedded Systems - CHES 2009, International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages
457–469, 2009.

[SHP10] Jörn Marc Schmidt, Michael Hutter, and Thomas Plos. Optical fault attacks
on AES: A threat in violet. In Fault Diagnosis and Tolerance in Cryptography,
pages 13–22, 2010.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 342–357, 2011.

[Sko10] Sergei Skorobogatov. Optical fault masking attacks. In Fault Diagnosis and
Tolerance in Cryptography, pages 23–29, 2010.

[TJ09] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse Engi-
neering. Springer Berlin Heidelberg, 2009.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. Community
Mental Health Journal, 49(6):658–667, 2011.

https://www.riscure.com/security-tools/inspector-fi/
https://www.riscure.com/security-tools/inspector-sca/
https://gnupg.org/software/libgcrypt/index.html

172 Persistent Fault Analysis on Block Ciphers

[WCWW13] An Wang, Man Chen, Zongyue Wang, and Xiaoyun Wang. Fault rate
analysis: Breaking masked aes hardware implementations efficiently. IEEE
Transactions on Circuits & Systems II Analog & Digital Signal Processing,
60(8):517–521, 2013.

[XZZT16] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit
flips, one cloud flops: Cross-vm row hammer attacks and privilege escalation.
In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 19–35, 2016.

	Introduction
	Related Works
	Persistent Fault Attack
	Fault model
	Core idea
	Persistent Fault Analysis (PFA)
	Complexity analysis
	Comparison with other fault analysis
	Advantages
	Disadvantages

	PFA with Multiple Faults
	Validation of PFA on AES-128
	AES implementation
	PFA on vulnerable S-box implementation (I1)
	Attack result
	Residual key entropy for different sample size
	Sample size distributions for full key recovery

	Defeating Fault Attack Countermeasures with PFA
	Countermeasures against fault attacks
	PFA on S-box (I1) with NCO and ZCO
	PFA on S-box (I1) with RCO
	PFA on T-tables (I2) with RCO
	Discussion

	Case Study: Rowhammer-based PFA on T-box (I3)
	Attack overview
	Attack procedure
	Experiment results
	Setup
	Result of hammering
	Result of fault analysis

	Conclusion

