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Introduction

Black box vs. White box

Black box model Gray box model White box model
in in in
key = 0x1337...
key_schedule (key)
out = in
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for i in 0...10
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Introduction
White box implementation

Attacker:
e extracting key information from
the implementation
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Main application:

e Digital Rights Management

e Fast (post-quantum ©) public-key
encryption scheme
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Introduction
Two main design strategies

o Table lookup
o First proposal by Chow et al. in 2002: broken

e Xiao and Lai in 2009: broken
o Karroumi et al. in 2011: broken
o Baek et al. in 2016: our target

o WhiteBlock from Fouque et al.: secure (but weird model)

o ASASA-like designs
@ SASAS construction: broken in 2001 by Biryukov and Shamir

o ASASA proposals (Biryukov et al., 2014): broken

e Recent proposals at ToSC'17 by Biryukov et al. to use more layers,
leading to SA...SAS
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Introduction
CEJO Framework

Derived from Chow et al. first white-box candidate constructions.
Block cipher decomposed into R round functions.
Round functions obfuscated using encodings.

Obfuscated round functions implemented and evaluated using several
tables (of reasonable size)
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table table

Increase security with external encodings

The affine and non-linear part of all (") is often structured for
efficient implementations !
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Affine Equivalence Algorithm

In 2003, Biryukov, De Canniere, Braeken and Preneel proposed an
algorithm to solve the following problem:

Given two bijections S; and S, on n bits, find affine mappings A and B
such that S, = Bo 51 0 A, if they exist. J

@ Ascertain whether such mappings exist

@ Enumerate all solutions
o Time complexity in O (n322"), O (n®2") if A, B linears

Improved by Dinur at Eurocrypt'18 to O (n®2") in the affine case, but
with a few limitations
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© Generic algorithm
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Generic algorithm
Problem to solve for the attacker

affine non-linear affine
S
Given F = B o : o A without knowing F-1
Sy
known secret known secret

@ Find an equivalent representation F of F such that F~1is easily
computable (leads to a decryption function).

e Find which A and B were used (leads to a key recovery).
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Generic algorithm
Overview of the algorithm

2-step algorithm:

@ Isolate the input and output subspaces of each Sbox
(essentially the technique from Biryukov and Shamir in their SASAS
cryptanalysis)

@ Apply the generic affine equivalence algorithm to each Sbox separately
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Generic algorithm
Finding input subspace of each S-box

U n om n Vi
x| 1o [s]o 1 *
* X | S| k *
* B X | S5 %k ./4 *
* X | S| X *
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Generic algorithm
Building V4

Testing if A € Vj :
e X = {x; € F}, x; random} "big enough”
o U={F(xi)®F(xi® A),x; € X} (output difference space)
e If dim(Span(U)) = n— m, then A € V4 w.h.p.

Build a basis of V; by doing the same test on independent vectors, and by
testing if the resulting output difference space is the same.

Do this k times to build all Vi,..., V.
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Generic algorithm
Finding input subspace of each S-box

Oy Ovi=1
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Generic algorithm
Recovering affine layers

51
B o : o A
1 5 7DI
Fp 2o, ‘ RN
dim dim
m m

@ Apply the Affine Equivalence Algorithm on each F; = Q; o F o P;
@ Lead to 2 affine mappings A;, B; such that F; = B; o S; 0 A;

@ Build A’ from all A;'s and P;'s, B’ from all B;'s and Q;'s
such that B’ o (51,...,5¢) o A’ = F

We can now inverse F easily as F~1 = A'~1o (S;h... 8o Bt
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Generic algorithm
Complexities

Complexity of solving the problem:
@ Biryukov et al.: O(n322"), Dinur : O(n32")
o Baek et al.: O (min(n™+422™/m, nlog(n)2"/?))

Our (best case): O (2’"n3 + %4 + 2’"m2n>

Our (different Sboxes): O (2’"n3 + 0y 2mmn2>

Our (worst case, e.g. AES S-box): O (2’"n3 + "% + 22mm2n>

Applications:
@ 128-bit block cipher, AES S-box (8 bits) : ~ 230 operations
e Baek et al. proposal (256-bit block, AES S-box) : ~ 23 operations
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e Dedicated attack on Baek et al.’s scheme
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Dedicated attack on Baek et al.’s scheme
The Baek, Cheon and Hong proposal

Round function of AES : AES(") = MC o SR 0 SB o ARK

256-bit i/

256-bit¥ ) A(r)
A r
J J' QB K GB K

AES(") AES(") :> ’ S... 5‘ ’ 5...5 ‘ table

I | | I

(Alr+D) | MCoSR| | MCoSR|
256—bitf (A(’+1))_1

256-bit {/

Security claim : 110 bits
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Dedicated attack on Baek et al.'s scheme
Overview of the attack

*

From encoded round functions F ~ Bo S o A with A ~ < * .*_. >

@ Reduce the problem to block diagonal encodings :
= F =BoSoA with A" block diagonal.
@ Compute candidates for each block:
@ Using a projection, Po B o S o Al is affine equivalent to S.
@ Use the affine equivalence algorithm from [BCBP03] to get some
candidates for A’.
© Identify the correct blocks :
Use a MITM technique to filter the wrong candidates

See our paper for more details !
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Dedicated attack on Baek et al.'s scheme

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):
@ ~ 2000 C++ code lines
@ Main cost : 64 calls to the affine equivalence algorithm (~ 64 x 22%)
o Generic algorithm complexity : ~ 23% (Decryption function)
o Dedicated attack complexity : ~ 23! (Key-recovery)
@ Total time : ~ 12s, negligible memory

Implementation available at http://wbcheon.gforge.inria.fr/.

Fixing the construction for 60-bit security would require n = 213 parallel
AES, leading to an implementation of size ~ 212TR
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Dedicated attack on Baek et al.'s scheme
Conclusion

e Given F =Bo(51,...,5) o A, with A and B secret, we provide a
generic algorithm to efficiently compute F~1.
This efficiently solve a critical step when attacking table-based white
box implementations.

@ Best case complexity : O (2”’n3 + "—,: +2Mm?n
In practice with AES parameters : ~ 230
Scale linearly if S-boxes are different

@ We mounted a dedicated attack on Baek et al.’s scheme, leading to a
key recovery in about 23! operations.
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