# On Recovering Affine Encodings in White-Box Implementations

#### Patrick Derbez<sup>1</sup>, Pierre-Alain Fouque<sup>1</sup>, **Baptiste Lambin**<sup>1</sup>, Brice $Minaud^2$

<sup>1</sup>Univ Rennes, CNRS, IRISA

<sup>2</sup>Roval Holloway University of London







1 / 21







Introduction

2 Generic algorithm

3) Dedicated attack on Baek et al.'s scheme

#### Black box vs. White box



### White box implementation

#### Attacker:

• extracting key information from the implementation

• computing decryption scheme from encryption scheme

Designer:

• provide sound and secure implementation

Main application:

- Digital Rights Management
- Fast (post-quantum <sup>(iii)</sup>) public-key encryption scheme



#### Two main design strategies

• Table lookup

- First proposal by Chow et al. in 2002: broken
- Xiao and Lai in 2009: broken
- Karroumi et al. in 2011: broken
- Baek et al. in 2016: our target
- WhiteBlock from Fouque et al.: secure (but weird model)

#### ASASA-like designs

- SASAS construction: broken in 2001 by Biryukov and Shamir
- ASASA proposals (Biryukov et al., 2014): broken
- Recent proposals at ToSC'17 by Biryukov *et al.* to use more layers, leading to SA...SAS

#### Introduction

## **CEJO** Framework

- Derived from Chow et al. first white-box candidate constructions.
- Block cipher decomposed into *R* round functions.
- Round functions obfuscated using encodings.
- Obfuscated round functions implemented and evaluated using several tables (of reasonable size)

$$\cdots \circ \underbrace{f^{(r+1)^{-1}} \circ E^{(r)} \circ f^{(r)}}_{\text{table}} \circ \underbrace{f^{(r)^{-1}} \circ E^{(r-1)} \circ f^{(r-1)}}_{\text{table}} \circ \cdots$$

- Increase security with external encodings
- The affine and non-linear part of all  $f^{(r)}$  is often structured for efficient implementations !

7 / 21

### Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an algorithm to solve the following problem:

Given two bijections  $S_1$  and  $S_2$  on *n* bits, find affine mappings A and B such that  $S_2 = B \circ S_1 \circ A$ , if they exist.

- Ascertain whether such mappings exist
- Enumerate all solutions
- Time complexity in  $\mathcal{O}\left(n^{3}2^{2n}\right)$ ,  $\mathcal{O}\left(n^{3}2^{n}\right)$  if  $\mathcal{A}, \mathcal{B}$  linears

Improved by Dinur at Eurocrypt'18 to  $\mathcal{O}\left(n^{3}2^{n}\right)$  in the affine case, but with a few limitations





3 Dedicated attack on Baek et al.'s scheme

### Problem to solve for the attacker



- Find an equivalent representation  $\tilde{F}$  of F such that  $\tilde{F}^{-1}$  is easily computable (leads to a decryption function).
- Find which  $\mathcal{A}$  and  $\mathcal{B}$  were used (leads to a key recovery).

### Overview of the algorithm

#### 2-step algorithm:

- Isolate the input and output subspaces of each Sbox (essentially the technique from Biryukov and Shamir in their SASAS cryptanalysis)
- ② Apply the generic affine equivalence algorithm to each Sbox separately

Generic algorithm

### Finding input subspace of each S-box



# Building $V_1$

Testing if  $\Delta \in V_1$  :

- $X = \{x_i \in \mathbb{F}_2^n, x_i \text{ random}\}$  "big enough"
- $U = \{F(x_i) \oplus F(x_i \oplus \Delta), x_i \in X\}$  (output difference space)
- If dim(Span(U)) = n m, then  $\Delta \in V_1$  w.h.p.

Build a basis of  $V_1$  by doing the same test on independent vectors, and by testing if the resulting output difference space is the same.

Do this k times to build all  $V_1, \ldots, V_k$ .

Generic algorithm

### Finding input subspace of each S-box



### Recovering affine layers



- Apply the Affine Equivalence Algorithm on each  $F_i = Q_i \circ F \circ P_i$
- Lead to 2 affine mappings  $A_i, B_i$  such that  $F_i = B_i \circ S_i \circ A_i$
- Build  $\mathcal{A}'$  from all  $\mathcal{A}_i$ 's and  $\mathcal{P}_i$ 's,  $\mathcal{B}'$  from all  $\mathcal{B}_i$ 's and  $\mathcal{Q}_i$ 's such that  $\mathcal{B}' \circ (S_1, \ldots, S_k) \circ \mathcal{A}' = F$

We can now inverse F easily as  $F^{-1} = \mathcal{A}^{'-1} \circ (S_1^{-1}, \dots, S_k^{-1}) \circ \mathcal{B}^{'-1}$  !

# Complexities

#### Complexity of solving the problem:

- Biryukov *et al.*:  $\mathcal{O}(n^3 2^{2n})$ , Dinur :  $\mathcal{O}(n^3 2^n)$
- Baek et al.:  $\mathcal{O}\left(\min(n^{m+4}2^{2m}/m, n\log(n)2^{n/2})\right)$
- Our (best case):  $\mathcal{O}\left(2^m n^3 + \frac{n^4}{m} + 2^m m^2 n\right)$
- Our (different Sboxes):  $\mathcal{O}\left(2^m n^3 + \frac{n^4}{m} + 2^m mn^2\right)$
- Our (worst case, e.g. AES S-box):  $\mathcal{O}\left(2^m n^3 + \frac{n^4}{m} + 2^{2m} m^2 n\right)$

#### **Applications:**

- 128-bit block cipher, AES S-box (8 bits) :  $\sim 2^{30}$  operations
- Baek et al. proposal (256-bit block, AES S-box) :  $\sim 2^{35}$  operations





3 Dedicated attack on Baek et al.'s scheme

Dedicated attack on Baek et al.'s scheme

### The Baek, Cheon and Hong proposal

Round function of AES :  $AES^{(r)} = MC \circ SR \circ SB \circ ARK$ 



#### Security claim : 110 bits

Baptiste Lambin

On Recovering Affine Encodings in White-Box Implementations

18 / 21

### Overview of the attack

From encoded round functions  ${\it F} \simeq {\cal B} \circ {\it S} \circ {\it A}$  with  ${\it A} \simeq$ 

$$\begin{pmatrix} * & * & & \\ & * & * & \\ & \ddots & \\ & & & * \end{pmatrix}$$

- Reduce the problem to block diagonal encodings :  $\Rightarrow \widetilde{F} = \mathcal{B} \circ S \circ \mathcal{A}'$  with  $\mathcal{A}'$  block diagonal.
- Ompute candidates for each block:
  - **1** Using a projection,  $P \circ \mathcal{B} \circ S \circ \mathcal{A}'_i$  is affine equivalent to S.
  - Use the affine equivalence algorithm from [BCBP03] to get some candidates for A<sub>i</sub>.
- Identify the correct blocks :

Use a MITM technique to filter the wrong candidates

#### See our paper for more details !

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):

- $\sim$  2000 C++ code lines
- Main cost : 64 calls to the affine equivalence algorithm ( $\sim$  64 imes  $2^{25}$ )
- Generic algorithm complexity :  $\sim 2^{35}$  (Decryption function)
- Dedicated attack complexity :  $\sim 2^{31}$  (Key-recovery)
- Total time :  $\sim$  12s, negligible memory

Implementation available at http://wbcheon.gforge.inria.fr/.

Fixing the construction for 60-bit security would require  $n = 2^{13}$  parallel AES, leading to an implementation of size  $\sim 2^{12} TB$ 

### Conclusion

- Given F = B ∘ (S<sub>1</sub>,...,S<sub>k</sub>) ∘ A, with A and B secret, we provide a generic algorithm to efficiently compute F<sup>-1</sup>.
  This efficiently solve a critical step when attacking table-based white box implementations.
- Best case complexity :  $O\left(2^m n^3 + \frac{n^4}{m} + 2^m m^2 n\right)$ In practice with AES parameters :  $\sim 2^{30}$ Scale linearly if S-boxes are different
- We mounted a dedicated attack on Baek *et al.*'s scheme, leading to a key recovery in about 2<sup>31</sup> operations.