
On Recovering Affine Encodings in White-Box
Implementations

Patrick Derbez 1, Pierre-Alain Fouque1, Baptiste Lambin1, Brice
Minaud2

1Univ Rennes, CNRS, IRISA

2Royal Holloway University of London

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 1 / 21

1 Introduction

2 Generic algorithm

3 Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 2 / 21

Introduction

1 Introduction

2 Generic algorithm

3 Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 3 / 21

Introduction

Black box vs. White box

in

AESK

out

Black box model

in

AESK

out

Gray box model

leakage

in

key = 0x1337...

key schedule(key)

out = in

for i in 0...10

round i(out,key)

return out

out

White box model

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 4 / 21

Introduction

White box implementation

Attacker:
• extracting key information from
the implementation
• computing decryption scheme
from encryption scheme

Designer:
• provide sound and secure imple-
mentation

Main application:
• Digital Rights Management
• Fast (post-quantum) public-key
encryption scheme

in

key = 0x1337...

key schedule(key)

out = in

for i in 0...10

round i(out,key)

return out

out

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 5 / 21

Introduction

Two main design strategies

Table lookup
First proposal by Chow et al. in 2002: broken

Xiao and Lai in 2009: broken

Karroumi et al. in 2011: broken

Baek et al. in 2016: our target

WhiteBlock from Fouque et al.: secure (but weird model)

ASASA-like designs
SASAS construction: broken in 2001 by Biryukov and Shamir

ASASA proposals (Biryukov et al., 2014): broken

Recent proposals at ToSC’17 by Biryukov et al. to use more layers,
leading to SA. . . SAS

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 6 / 21

Introduction

CEJO Framework

Derived from Chow et al. first white-box candidate constructions.

Block cipher decomposed into R round functions.

Round functions obfuscated using encodings.

Obfuscated round functions implemented and evaluated using several
tables (of reasonable size)

· · · ◦ f (r+1)−1 ◦ E (r) ◦ f (r)︸ ︷︷ ︸
table

◦ f (r)−1 ◦ E (r−1) ◦ f (r−1)︸ ︷︷ ︸
table

◦ . . .

Increase security with external encodings

The affine and non-linear part of all f (r) is often structured for
efficient implementations !

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 7 / 21

Introduction

Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an
algorithm to solve the following problem:

Given two bijections S1 and S2 on n bits, find affine mappings A and B
such that S2 = B ◦ S1 ◦ A, if they exist.

Ascertain whether such mappings exist

Enumerate all solutions

Time complexity in O
(
n322n

)
, O

(
n32n

)
if A,B linears

Improved by Dinur at Eurocrypt’18 to O
(
n32n

)
in the affine case, but

with a few limitations

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 8 / 21

Generic algorithm

1 Introduction

2 Generic algorithm

3 Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 9 / 21

Generic algorithm

Problem to solve for the attacker

Given F

known

=

affine

B

secret

◦

non-linearS1
...
Sk


known

◦

affine

A

secret

without knowing F−1

Find an equivalent representation F̃ of F such that F̃−1 is easily
computable (leads to a decryption function).

Find which A and B were used (leads to a key recovery).

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 10 / 21

Generic algorithm

Overview of the algorithm

2-step algorithm:

1 Isolate the input and output subspaces of each Sbox
(essentially the technique from Biryukov and Shamir in their SASAS
cryptanalysis)

2 Apply the generic affine equivalence algorithm to each Sbox separately

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 11 / 21

Generic algorithm

Finding input subspace of each S-box

Sk

S3

S2

S1

B A

? ?

? ?
? ?

? ?

mn n

dim
n −m

dim
n −m

0 0

* *
* *

* *

V1U1

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 12 / 21

Generic algorithm

Building V1

Testing if ∆ ∈ V1 :

X = {xi ∈ Fn
2, xi random} ”big enough”

U = {F (xi)⊕ F (xi ⊕∆), xi ∈ X} (output difference space)

If dim(Span(U)) = n −m, then ∆ ∈ V1 w.h.p.

Build a basis of V1 by doing the same test on independent vectors, and by
testing if the resulting output difference space is the same.

Do this k times to build all V1, . . . ,Vk .

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 13 / 21

Generic algorithm

Finding input subspace of each S-box

Sk

S3

S2

S1

B A

? ?

? ?
? ?

? ?
dim
m

dim
m

* *
0 0

0 0

0 0

Vi = I1
⋂
i 6=1

O1

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 14 / 21

Generic algorithm

Recovering affine layers

B ◦

S1
...
Sk

 ◦ A
IiOi

dim
m

dim
m

Fm
2Fm

2

PiQi

Apply the Affine Equivalence Algorithm on each Fi = Qi ◦ F ◦ Pi
Lead to 2 affine mappings Ai ,Bi such that Fi = Bi ◦ Si ◦ Ai

Build A′ from all Ai ’s and Pi ’s, B′ from all Bi ’s and Qi ’s
such that B′ ◦ (S1, . . . ,Sk) ◦ A′ = F

We can now inverse F easily as F−1 = A′−1 ◦
(
S−1

1 , . . . ,S−1
k

)
◦ B′−1 !

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 15 / 21

Generic algorithm

Complexities

Complexity of solving the problem:

Biryukov et al.: O(n322n), Dinur : O(n32n)

Baek et al.: O
(
min(nm+422m/m, n log(n)2n/2)

)
Our (best case): O

(
2mn3 + n4

m + 2mm2n
)

Our (different Sboxes): O
(

2mn3 + n4

m + 2mmn2
)

Our (worst case, e.g. AES S-box): O
(

2mn3 + n4

m + 22mm2n
)

Applications:

128-bit block cipher, AES S-box (8 bits) : ∼ 230 operations

Baek et al. proposal (256-bit block, AES S-box) : ∼ 235 operations

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 16 / 21

Dedicated attack on Baek et al.’s scheme

1 Introduction

2 Generic algorithm

3 Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 17 / 21

Dedicated attack on Baek et al.’s scheme

The Baek, Cheon and Hong proposal

Round function of AES : AES(r) = MC ◦ SR ◦ SB ◦ ARK

A(r)

256-bit

AES(r) AES(r)

(
A(r+1)

)−1

256-bit

⇒

A(r)

256-bit

K (r) K (r)

S . . . S S . . . S

(
A(r+1)

)−1

MC ◦ SR MC ◦ SR
M(r)

table

256-bit

Security claim : 110 bits

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 18 / 21

Dedicated attack on Baek et al.’s scheme

Overview of the attack

From encoded round functions F ' B ◦ S ◦ A with A '
(∗ ∗

∗ ∗. . .
∗ ∗

)
1 Reduce the problem to block diagonal encodings :
⇒ F̃ = B ◦ S ◦ A′ with A′ block diagonal.

2 Compute candidates for each block:
1 Using a projection, P ◦ B ◦ S ◦ A′i is affine equivalent to S .
2 Use the affine equivalence algorithm from [BCBP03] to get some

candidates for A′i .
3 Identify the correct blocks :

Use a MITM technique to filter the wrong candidates

See our paper for more details !

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 19 / 21

Dedicated attack on Baek et al.’s scheme

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):

∼ 2000 C++ code lines

Main cost : 64 calls to the affine equivalence algorithm (∼ 64× 225)

Generic algorithm complexity : ∼ 235 (Decryption function)

Dedicated attack complexity : ∼ 231 (Key-recovery)

Total time : ∼ 12s, negligible memory

Implementation available at http://wbcheon.gforge.inria.fr/.

Fixing the construction for 60-bit security would require n = 213 parallel
AES, leading to an implementation of size ∼ 212TB

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 20 / 21

http://wbcheon.gforge.inria.fr/

Dedicated attack on Baek et al.’s scheme

Conclusion

Given F = B ◦ (S1, . . . ,Sk) ◦ A, with A and B secret, we provide a
generic algorithm to efficiently compute F−1.
This efficiently solve a critical step when attacking table-based white
box implementations.

Best case complexity : O
(

2mn3 + n4

m + 2mm2n
)

In practice with AES parameters : ∼ 230

Scale linearly if S-boxes are different

We mounted a dedicated attack on Baek et al.’s scheme, leading to a
key recovery in about 231 operations.

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 21 / 21

	Introduction
	Generic algorithm
	Dedicated attack on Baek et al.'s scheme

