On Recovering Affine Encodings in White-Box
Implementations

Patrick Derbez 1, Pierre-Alain Fouquel, Baptiste Lambin!, Brice
Minaud?

1Univ Rennes, CNRS, IRISA

2Royal Holloway University of London

&:IRISA EMSEC UN'VERS'T ; it

embedded security & cryptography

On Recovering Affine Encodings in White-Box Implementations

Baptiste Lambin

© Introduction

© Generic algorithm

© Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Introduction

@ Introduction

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Introduction

Black box vs. White box

Black box model Gray box model White box model
in in in
key = 0x1337...
key_schedule (key)
out = in

AESy

for i in 0...10
round_i (out,key)
return out

oﬁt § l

out
leakage

Baptiste Lambin

On Recovering Affine Encodings in White-Box Implementations

Introduction
White box implementation

Attacker:
e extracting key information from
the implementation

in

e computing decryption scheme l
from encryption scheme VLSS SN
NEAUNAUOUNRAN NN
ASONNUONNNNNNNNYN
- \\ \\ \\ \‘\\ \\\ \\\\\\ \\ \\
Designer: SOANNNNNN
e provide sound and secure imple- \\Qii\\i\\\s\\ss
mentation NN
NN NN G
SOUONNNANNNNNN
ANOUNNNNUNONNANN

Main application:

e Digital Rights Management

e Fast (post-quantum ©) public-key
encryption scheme

o
(=l
—+

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Introduction
Two main design strategies

o Table lookup
o First proposal by Chow et al. in 2002: broken

e Xiao and Lai in 2009: broken
o Karroumi et al. in 2011: broken
o Baek et al. in 2016: our target

o WhiteBlock from Fouque et al.: secure (but weird model)

o ASASA-like designs
@ SASAS construction: broken in 2001 by Biryukov and Shamir

o ASASA proposals (Biryukov et al., 2014): broken

e Recent proposals at ToSC'17 by Biryukov et al. to use more layers,
leading to SA...SAS

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Introduction
CEJO Framework

Derived from Chow et al. first white-box candidate constructions.
Block cipher decomposed into R round functions.
Round functions obfuscated using encodings.

Obfuscated round functions implemented and evaluated using several
tables (of reasonable size)

o frED T G) 6 f) o (DT G EU1) 6 1)

-~

table table

Increase security with external encodings

The affine and non-linear part of all (") is often structured for
efficient implementations !

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Affine Equivalence Algorithm

In 2003, Biryukov, De Canniere, Braeken and Preneel proposed an
algorithm to solve the following problem:

Given two bijections S; and S, on n bits, find affine mappings A and B
such that S, = Bo 51 0 A, if they exist. J

@ Ascertain whether such mappings exist

@ Enumerate all solutions
o Time complexity in O (n322"), O (n®2") if A, B linears

Improved by Dinur at Eurocrypt'18 to O (n®2") in the affine case, but
with a few limitations

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 8/21

Generic algorithm

© Generic algorithm

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Generic algorithm
Problem to solve for the attacker

affine non-linear affine
S
Given F = B o : o A without knowing F-1
Sy
known secret known secret

@ Find an equivalent representation F of F such that F~1is easily
computable (leads to a decryption function).

e Find which A and B were used (leads to a key recovery).

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Generic algorithm
Overview of the algorithm

2-step algorithm:

@ Isolate the input and output subspaces of each Sbox
(essentially the technique from Biryukov and Shamir in their SASAS
cryptanalysis)

@ Apply the generic affine equivalence algorithm to each Sbox separately

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Generic algorithm
Finding input subspace of each S-box

U n om n Vi
x| 1o [s]o 1 *
* X | S| k *
* B X | S5 %k ./4 *
* X | S| X *

Baptiste Lambin

Generic algorithm
Building V4

Testing if A € Vj :
e X = {x; € F}, x; random} "big enough”
o U={F(xi)®F(xi® A),x; € X} (output difference space)
e If dim(Span(U)) = n— m, then A € V4 w.h.p.

Build a basis of V; by doing the same test on independent vectors, and by
testing if the resulting output difference space is the same.

Do this k times to build all Vi,..., V.

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Generic algorithm
Finding input subspace of each S-box

Oy Ovi=1

x| 1 % [s] x| 1 %

* 0o S| o *
-

* 0 [S| O *
dim B B B B dim

Baptiste Lambin

Generic algorithm
Recovering affine layers

51
B o : o A
1 5 7DI
Fp 2o, ‘ RN
dim dim
m m

@ Apply the Affine Equivalence Algorithm on each F; = Q; o F o P;
@ Lead to 2 affine mappings A;, B; such that F; = B; o S; 0 A;

@ Build A’ from all A;'s and P;'s, B’ from all B;'s and Q;'s
such that B’ o (51,...,5¢) o A’ = F

We can now inverse F easily as F~1 = A'~1o (S;h... 8o Bt

Baptiste Lambin

On Recovering Affine Encodings in White-Box Implementations

Generic algorithm
Complexities

Complexity of solving the problem:
@ Biryukov et al.: O(n322"), Dinur : O(n32")
o Baek et al.: O (min(n™+422™/m, nlog(n)2"/?))

Our (best case): O (2’"n3 + %4 + 2’"m2n>

Our (different Sboxes): O (2’"n3 + 0y 2mmn2>

Our (worst case, e.g. AES S-box): O (2’"n3 + "% + 22mm2n>

Applications:
@ 128-bit block cipher, AES S-box (8 bits) : ~ 230 operations
e Baek et al. proposal (256-bit block, AES S-box) : ~ 23 operations

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Dedicated attack on Baek et al.'s scheme

e Dedicated attack on Baek et al.’s scheme

Baptiste Lambin On Recovering Affine Encodings in Whi ox Implementations

Dedicated attack on Baek et al.’s scheme
The Baek, Cheon and Hong proposal

Round function of AES : AES(") = MC o SR 0 SB o ARK

256-bit i/

256-bit¥) A(r)
A r
J J' QB K GB K

AES(") AES(") :> ’ S... 5‘ ’ 5...5 ‘ table

I | | I

(Alr+D) | MCoSR| | MCoSR|
256—bitf (A(’+1))_1

256-bit {/

Security claim : 110 bits

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Dedicated attack on Baek et al.'s scheme
Overview of the attack

*

From encoded round functions F ~ Bo S o A with A ~ < * .*_. >

@ Reduce the problem to block diagonal encodings :
= F =BoSoA with A" block diagonal.
@ Compute candidates for each block:
@ Using a projection, Po B o S o Al is affine equivalent to S.
@ Use the affine equivalence algorithm from [BCBP03] to get some
candidates for A’.
© Identify the correct blocks :
Use a MITM technique to filter the wrong candidates

See our paper for more details !

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations

Dedicated attack on Baek et al.'s scheme

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):
@ ~ 2000 C++ code lines
@ Main cost : 64 calls to the affine equivalence algorithm (~ 64 x 22%)
o Generic algorithm complexity : ~ 23% (Decryption function)
o Dedicated attack complexity : ~ 23! (Key-recovery)
@ Total time : ~ 12s, negligible memory

Implementation available at http://wbcheon.gforge.inria.fr/.

Fixing the construction for 60-bit security would require n = 213 parallel
AES, leading to an implementation of size ~ 212TR

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 20 /21

http://wbcheon.gforge.inria.fr/

Dedicated attack on Baek et al.'s scheme
Conclusion

e Given F =Bo(51,...,5) o A, with A and B secret, we provide a
generic algorithm to efficiently compute F~1.
This efficiently solve a critical step when attacking table-based white
box implementations.

@ Best case complexity : O (2”’n3 + "—,: +2Mm?n
In practice with AES parameters : ~ 230
Scale linearly if S-boxes are different

@ We mounted a dedicated attack on Baek et al.’s scheme, leading to a
key recovery in about 23! operations.

Baptiste Lambin On Recovering Affine Encodings in White-Box Implementations 21 /21

	Introduction
	Generic algorithm
	Dedicated attack on Baek et al.'s scheme

