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Abstract. Ever since the first candidate white-box implementations by Chow et al. in
2002, producing a secure white-box implementation of AES has remained an enduring
challenge. Following the footsteps of the original proposal by Chow et al., other
constructions were later built around the same framework. In this framework, the
round function of the cipher is “encoded” by composing it with non-linear and affine
layers known as encodings. However, all such attempts were broken by a series of
increasingly efficient attacks that are able to peel off these encodings, eventually
uncovering the underlying round function, and with it the secret key.

These attacks, however, were generally ad-hoc and did not enjoy a wide applicability.
As our main contribution, we propose a generic and efficient algorithm to recover affine
encodings, for any Substitution-Permutation-Network (SPN) cipher, such as AES,
and any form of affine encoding. For AES parameters, namely 128-bit blocks split
into 16 parallel 8-bit S-boxes, affine encodings are recovered with a time complexity
estimated at 23? basic operations, independently of how the encodings are built.
This algorithm is directly applicable to a large class of schemes. We illustrate this on
a recent proposal due to Baek, Cheon and Hong, which was not previously analyzed.
While Baek et al. evaluate the security of their scheme to 110 bits, a direct application
of our generic algorithm is able to break the scheme with an estimated time complexity
of only 2%° basic operations.

As a second contribution, we show a different approach to cryptanalyzing the Baek
et al. scheme, which reduces the analysis to a standalone combinatorial problem,
ultimately achieving key recovery in time complexity 23'. We also provide an
implementation of the attack, which is able to recover the secret key in about 12
seconds on a standard desktop computer.
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1 Introduction
Historically, cryptanalysis is performed within the black-box model: the cryptographic

algorithm under attack is executed in a trusted environment, and the view of the attacker
is limited to the input-output behavior of the algorithm. Depending on the type of
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attack under consideration, the attacker may be able to observe the inputs and outputs
of encryption or decryption queries, and perhaps choose the corresponding inputs, but
nothing more. Such attack models are particularly relevant in scenarios where the attacker
does not have direct access to an implementation of the scheme, whether because it is
executed remotely, or within a protected hardware environment such as a secure enclave.

Since the advent of side-channel attacks however, new attack models have come into
the light, wherein the attacker has access to some auxiliary information leaked by the
implementation. These models are sometimes called gray-box models, in contrast with the
black-box model outlined in the previous paragraph. Attacks in the gray-box model may
exploit physical leakage such as computation time, power consumption, or electromagnetic
leakage, among many others. Such attacks can result in practical breaks against schemes
that would otherwise appear secure in the standard black-box model.

White-box cryptography. Going one step further, in 2002, Chow et al. introduced the
white-box model [CEJVO02a, CEJVOO02b]. In this model, the attacker has full access to
an implementation of the target cryptographic algorithm, including the ability to control
its execution environment. Therefore he can observe memory content, set breakpoints
in the execution flow, change arbitrary values in the code or the memory, etc. In this
setting, the security assumptions of the black-box model clearly no longer hold. However,
it may still be desirable that the adversary should be unable to extract the secret key of
the cryptographic algorithm under attack.

This model is relevant in the context of software distribution, whenever a piece of
software containing sensitive cryptographic information (such as an encryption algorithm)
is to be widely distributed, and hence can be downloaded and analyzed by adverse parties.
The most prominent application occurs in Digital Rights Management, where attackers
may wish to recover a decryption key used to protect copyrighted content (digital music,
TV broadcasts, video games, etc). A successful attacker is then able to distribute the
secret key to unauthorized users, providing them with illegitimate access to the protected
content. In effect, the goal is to protect sensitive functions within the deployed software,
such as cryptographic algorithms, in much the same way that a trusted environment would
protect security-critical functions in a hardware context.

In order to achieve this goal, white-box cryptography techniques attempt to obfuscate
the implementation of the target cryptographic algorithm. Ideally, an attacker in possession
of the obfuscated cipher should be unable to interact with it in any meaningful way, beside
simply executing it on chosen inputs. While Barak et al. have shown that general program
obfuscation is impossible [BGIT01], the context of white-box cryptography presents two
key differences. The first is that white-box cryptography merely attempts to obfuscate
particular function families (such as block ciphers), which Barak et al.’s result has no bearing
on. Another key difference is that white-box models do not generally require guarantees as
strong as those offered by black-box obfuscation: in the case of a white-box implementation
of AES for instance, it may be enough that the adversary is unable to recover the secret
key (for a detailed discussion of white-box models, see e.g. [DLPR13, FKKM16]).

The CEJO framework. In their original 2002 articles, Chow et al. proposed such a
white-box scheme for DES and AES [CEJVO02a, CEJVO02b]. While their proposals were
quickly broken [JBF02, BGECO04], their work opened the path to white-box encryption.
Follow-up works often reused the same general framework, which we will call the “CEJO
framework”.

In the CEJO framework, each round function is obfuscated by being composed with
carefully crafted input and output encodings. That is, the round function E() at round r
is replaced in the white-box implementation by ]‘(T‘Hr1 o EM o f() where (), ]‘(T‘Hr1
are bijections called respectively to the input and output encoding. By design, the output



Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Brice Minaud 123

encoding of each round is canceled out by the input encoding of the next round.
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Figure 1: The CEJO framework.

For each round, the white-box implementation gives access to the encoded version of
the round function F" = f(’"'Hr1 o E() o (") but not directly to the underlying round
function E().

Chow et al. proposed to define the encodings f(") as the composition of a non-linear
mapping and an affine mapping. The idea is to follow a classic concept in symmetric
cryptography : the non-linear mapping will add some confusion on the intermediate values
of the state, while the affine mapping will add some diffusion (see Sec. 3.3 and 3.4 in
[CEJVOO02b]). In addition, in a typical SPN block cipher, round keys are XORed into
the inner state of the cipher. In that case, whenever the constant of the affine encoding
is uniformly random, a single obfuscated round completely hides the value of the round
key, which implies that a successful key-recovery attack must target multiple rounds
simultaneously. Thus the CEJO framework is a natural approach to attempt to obfuscate
a block cipher, especially in the case of SPN ciphers such as AES.

In addition to the above, some external input/output encodings M,,:/M;, can be
added before and after the cipher. In that case, the implementation provides a map from
encoded plaintexts to encoded ciphertexts. These encodings are merged into the tables used
for the initial and final encoded round function. The implementation is then equivalent to
an encoded version of the cipher, which can be expressed as My, 0 B o0 EMW o M;,,.

External encodings can be used to increase security, as the attacker is denied direct
access to raw plaintexts/ciphertexts. On the other hand, external encodings assume that
the implementation surrounding the white-box cipher takes these encodings into account.
As such, a white-box implementation with external encodings is not properly speaking an
implementation of the cipher it contains. For this reason, in this work, we shall explicitly
signal the presence of external encodings, and use the term white-box implementation with
external encodings when appropriate.

It is crucial that, given the encoded round function F", the adversary should be unable
to compute and peel off the encodings f (r+1)~! and f(). Indeed, for typical ciphers such
as AES, granting direct access to a single round FE would allow the adversary to easily
recover the corresponding round key, and from there the secret key of the cipher. However
attacks on white-box implementations typically achieve precisely this, by taking advantage
of the specific structure of the encodings A and B. In white-box implementations following
the CEJO framework, encodings are composed of a very simple non-linear layer, together
with a more complex affine layer. Attacks generally peel off the non-linear component,
then proceed to recover the affine layer. This is typically achieved in an ad-hoc way, by
exploiting specific properties of the scheme under attack.

Our Contribution.

As our main contribution, we propose a generic algorithm to recover affine encodings for
any white-box implementation of a cipher following the CEJO framework, independent of
the way the encodings are built. More generally, our algorithm solves the affine equivalence
problem (given two maps F' and S with the promise that they are affine equivalent, compute
affine maps A, B, such that F' = Bo S o .A) whenever one of the two maps is composed of
the parallel application of distinct S-boxes.
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Our main algorithm is very similar to one of the steps of the structural cryptanalysis
of SASAS by Biryukov and Shamir [BS01], combined with a generic affine equivalence
algorithm; for this purpose, we use the recent algorithm by Dinur [Din18], but the same
attack would also work with the classic affine equivalence algorithm by Biryukov, De
Cannieére, Braeken and Preneel [BCBP03]. Thus the components we use are not essentially
new. However, to the best of our knowledge, the fact that they enable breaking all
white-box schemes following the design of Chow et al. in a generic way has not yet been
explicitly pointed out in the literature, or analyzed in detail, despite the fact that the
SASAS algorithm predates both these schemes and their attacks. As a result, in our
experience, this fact is also largely ignored by practitioners in the industry.

By design, our attack applies to a large class of white-box schemes following the CEJO
framework, including [CEJVO02a, CEJVO02b, XL09, Kar10]. Beyond the previously cited
schemes, which were already broken by ad-hoc attacks, we illustrate our attack on a new
white-box design by Baek, Cheon and Hong [BCH16]. One distinctive feature of this design
that makes it particularly attractive to illustrate our attack (beside not being previously
cryptanalyzed) is that it increases the state size by obfuscating two parallel rounds of AES,
precisely to prevent generic attacks from being able to recover the affine encodings of the
scheme. Indeed Baek et al. estimate the security level of their proposal to 110 bits based
on their own specialized version of an affine equivalence algorithm. However our generic
attack on this scheme requires only about 23° basic operations.

As a second contribution, we analyze the scheme by Baek et al. more closely, and
introduce another technique able to break this scheme. This new technique extracts and
solves a standalone problem from the scheme by Baek et al.. Ultimately, it is able to
recover the secret key of the scheme in time complexity 23!. This is verified with an
implementation. This dedicated attack on Baek et al.’s scheme is also more powerful as
it allows us to fully recover the key, while the generic attack only creates a decryption
function without recovering the key.

In more detail, our two contributions are as follows.

(1) In an SPN cipher, a round function is composed of an affine layer (in which we
include key addition), and a non-linear S-box layer. The S-box layer S consists of the
application of k parallel m-bit S-boxes, where n = km is the block size. As a result, when
encoding a round function using affine encodings, the encoded round function may be
written as F' = B o S o A, folding the affine layer into one of the encodings. A natural
problem in this setting is the affine equivalence problem: namely, to recover affine encodings
A and B, given F' = Bo S o A, and knowing S. More precisely, since A and B may not be
uniquely defined, the problem can be stated as: given S and F' as before, find affine maps
A’ B' such that F =B oSo A’

The general affine equivalence algorithm by Dinur solves precisely this problem, without
assuming any special structure on S [Din18] (this is also the case of the classic algorithm by
Biryukov et al. [BCBP03]). However its complexity is O (n32”), which makes it unsuitable
for recovering encodings on a typical block size of 128 bits. In contrast, we focus on
the case where S is made up of k parallel m-bit S-boxes. In this setting, we propose an
algorithm that solves the affine equivalence problem with a (typically much lower) time

complexity of O (2’"113 + %4 + 2mm2n). For the AES parameters n = 128, m = 8, k = 16,

this yields a time complexity of 232 basic operations! (to be compared with 2149 basic

operations if the generic algorithm by Dinur were applied naively).

As noted earlier, due to its genericity, our attack applies to essentially all white-box
schemes following the CEJO framework: this includes the original designs by Chow et al.
[CEJVO02a, CEJVOO02b], and later proposals [XL09, Karl0]. In the case of Karroumi’s
scheme [Kar10], while it does not seems to follow the CEJO framework at first glance, it

n practice the constants hidden in the O () notation for our algorithm are quite small, and we disregard
them when giving complexity estimates.
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has been later shown that this scheme is equivalent to the CEJO framework [LRDM™13,
DMRP13], and hence our technique applies directly.

The main limitation of our attack is that it only targets affine encodings, whereas
most white-box schemes following the CEJO framework also use non-linear encodings in
addition to affine encodings ([CEJVO02a, CEJVO02b, Kar10, BCH16] do, while [XL09]
only uses linear encodings). When non-linear encodings are used, our attack does not
break the scheme by itself. However, even in the presence of non-linear encodings, the
first step of attacks typically consists of peeling off the non-linear encoding layer first
[BGEC04, BCH16], which do not apply to the state as a whole, and leaves the attacker with
an instance of the previous problem. In this context, our algorithm provides a powerful
tool, which is able to recover affine encodings in a very general setting.

(2) As a second contribution, we take a closer look at the scheme by Baek et al.. We
identify another angle from which the scheme can be attacked. At the core of this second
approach lies the following problem. Let F', hi, hy be three non-linear mappings from
m bits to m bits, and let Ay, As be two linear mappings on m bits. Given oracle access
to G(z,y) = F(A1(z) ® A2(y)) @ hi(x) @ ha(y), recover Ay and Az (up to equivalence).
We solve this problem and deduce an attack against the white-box scheme by Baek et al.
with time complexity ~ 23! operations. We implemented the full attack, and were able to
recover the secret key (and external encodings) in about 12 seconds on a standard desktop
computer. Our implementation is available at http://yaawai.tk/.

Related Work.

Literature on white-box cryptography, especially designs and attacks following the frame-
work of Chow et al., is quite extensive. The first white-box candidate constructions by Chow
et al. [CEJVO02a, CEJVO02b] were quickly broken in practical time [JBF02, BGEC04].

In 2009, Xiao and Lai proposed to rely on larger affine encodings covering two S-boxes
at once [XL09]. However, their proposal was broken in about 232 operations by De Mulder
et al. [DMRP12]. To thwart this attack, Karroumi proposed to use a dual representation
of the AES round function in order to change the structure of each AES round [Karl0].
But this was also broken in about 222 operations by Lepoint et al. [LRDM*13].

The previous attack also applies to the original scheme by Chow et al.; and another
work by De Mulder et al. also provides improvement on the original BGE attack [DMRP13].
Note that all aforementioned attacks exploit the specific structure of the encodings used in
the scheme under attack. As a result, they are more efficient than our generic algorithm,
which works regardless of the structure of the encodings. Our algorithm also applies
to these schemes and succeeds in practical time; but the point is that it is much more
general: it does not require any structure in the affine encodings, and applies to all
previous schemes at once, and more generally to all schemes in the CEJO framework. This
includes Karroumi’s scheme as it has been shown to be equivalent to the CEJO framework
[DMRP13, LRDM*13].

A useful tool in the context of white-box cryptanalysis is the linear and affine equivalence
algorithm by Biryukov et al. [BCBP03]. Their algorithm solves the following problem:
given two bijections S, .Sy on n bits, find affine (or linear, depending on the variant of the
problem) mappings A, B such that Sy = Bo.Sj oA, if they exist. Biryukov et al.’s algorithm
is both able to ascertain whether such mappings exist, and enumerate all solutions. The
time complexity of their solution is O (n32”) when A, B are linear, and O (n322") when
they are affine. In both cases, these complexities are practical when considering standard
S-box sizes, such as n = 8.

This algorithm has been further improved in the affine case by Dinur [Dinl18], bringing
the complexity down to O (n3 2"). Note however that this improved algorithm was designed
for random permutations. Indeed, the AES S-box being self-affine equivalent, which is
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fairly rare in the random case, will lead to a failure of the algorithm. This was mentioned
by the author, who also proposed a workaround. However our own implementation of
the algorithm shows that it still fails on the AES S-box even when using the workaround.
Hence, in that case of the AES S-box, we use the algorithm from [BCBP03] which has a
higher complexity, but works on the AES S-box.

The main algorithm we propose in this article is essentially the same as the algorithm
appearing in Section 2.3 of the structural cryptanalaysis of SASAS by Biryukov and
Shamir [BS01]. However it is worth noting that this algorithm, from 2001, predates the
first white-box constructions, due to Chow et al. in 2002; and a fortiori later constructions
in the CEJO framework. Yet, to the best of our knowledge, it has not yet been clearly
pointed out in the literature that this older algorithm actually solves the critical step in
attacks on white-box schemes in the CEJO framework, as we show in this article. And
indeed this algorithm is not referred to in any of the attacks mentioned above. Thus, we
regard as a worthwhile contribution for practitioners in the field to point out that all
known constructions in the CEJO framework can be uniformly broken (as far as recovering
affine layers, which is the critical step in most cases) by combining this algorithm with a
generic affine equivalence algorithm.

Our attack is also related to the attack by Minaud et al. [MDFK15] on the ASASA
construction [BBK14], as well as the followup work by Biryukov and Khovratovich [BK15].
However, the ASASA attack would only recover the output spaces of S-boxes, not their
input spaces, which we also need. In the setting where the ASASA (and SASAS) attack
was developed, this was inconsequential, because the attacker had access to both the
ASASA function and its inverse, so the problem was symmetric between input and output.
However for us this is not the case: a key feature of our setting is that we only have access
to an ASA mapping, but not its inverse. This difference is significant, as recovering the
input spaces of the S-boxes from their output spaces seems as hard as breaking the scheme
in the first place. And indeed, in the designs by Chow et al. to realize white-box AES
and DES [CEJVO02a, CEJVO02b], we are not aware of any way to invert the encoded
round function without also breaking the scheme. In addition to qualitative differences in
the setting considered, the algorithm by Minaud et al. is also more expensive for typical
parameters (e.g. n = 128 or 256), as it costs about 2n? + n% operations, where the last
term is due to having to solve a quadratic system in n variables. Running the ASASA
algorithm on the scheme by Baek et al., recovering only the output spaces of S-boxes,
would require 24% operations instead of 23° with our attack. Thus the SASAS algorithm
[BSO01], which we use, is the better approach in our setting.

At SAC 2008, Michiels, Gorissen and Hollmann also proposed a generic algorithm to
break white-box implementations following the framework by Chow et al. [MGHO8]. Their
work considers non-linear encodings, but requires two extra hypotheses: (1) the input
space of each individual S-box through the input encoding should be known; and (2) the
diffusion matrix of the scheme should satisfy a property called disjoint spanning block
sets. In particular, that work does not solve the general problem of recovering arbitrary
affine encodings surrounding a known S-box layer. Moreover, no overall complexity bound
is provided?, as some steps of the algorithm are not accompanied by a time complexity
bound. There is also no implementation, which further prevents assessing performance.

The idea of considering a specialized variant of Biryukov et al.’s generic affine equivalence
algorithm in the context we have described thus far (i.e. where the inner non-linear layer
is composed of distinct S-boxes) was also proposed by Baek, Cheon and Hong in [BCH16],
who proposed the specialized affine equivalence algorithm (SAEA) for solving this problem.
However, SAEA is very inefficient for larger n in our setting, with a time complexity of
O (min(n™*422™ /m,nlog(n)2"/?)). Baek et al. used SAEA to assess the security of their

2In Section 7, there is a claim that in the particular case of AES and Serpent, the time complexity of
their algorithm would be dominated by the generic affine equivalence algorithm for each S-box. However
that claim is not backed by any analytical bound, nor is it backed by an implementation.
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own white-box implementation with external encodings of AES, predicting a security level
of 210 operations. Our own generic algorithm, however, merely requires an estimated 23°
basic operations, breaking the scheme with practical complexity.

Incidentally, both the previously cited works by Michiels et al. and by Baek et al.,
while introducing interesting new techniques, also illustrate the lack of awareness around
the fact that the SASAS technique by Biryukov and Shamir [BS01], combined with a
generic affine equivalence algorithm, solves the ASA problem generically. In this respect
our work may be regarded as filling a gap in the literature.

Finally, an interesting and recent line of work has exhibited side-channel attacks on
white-box implementations [BHMT16, BBIJ17]. These approaches are quite powerful in
that they require only “gray-box” access to the implementation, but are not generic attacks
in the sense of our work. For example they are not applicable to the scheme by Baek et al.
(not only because the scheme obfuscates two parallel executions of AES simultaneously,
but also because it uses external encodings on both ends of the cipher). By nature this
approach also relies on experimentation, rather than providing analytical bounds as we do.

Recent work in this direction has shed more light on the success of the gray-box approach
outlined above, and studied more closely the effect of affine and non-linear encodings on the
resistance of a white-box implementation against side-channel attacks [SMG16, BBMT18].
These works show that 4-bit non-linear encodings, which were recommended in the original
scheme by Chow et al. for size reasons, are insecure in that context. Both works focus their
analysis mainly on non-linear encodings, and on the (practically highly relevant) case of a
white-box implementation of AES following [CEJVOO02b]. By contrast our work considers
only affine encodings and requires full white-box access, but does so within a more general
CEJO framework with an arbitrary SPN cipher and arbitrary (affine) encodings.

Structure of the Article.

In Section 2, we describe our generic algorithm to recover affine encodings in SPN ciphers in
detail, together with its complexity analysis. In Section 3, we describe the white-box scheme
by Baek et al.. In Section 4, we first point out that our algorithm from Section 2 breaks
this scheme in a generic manner, then develop a second dedicated attack underpinned by
a different technique, and discuss its implementation.

2 A Generic Algorithm to Recover Affine Encodings in
SPN Ciphers

In this section, we present our algorithm for solving the affine equivalence problem in the
case where the inner non-linear layer is composed of parallel S-boxes. As discussed in the
introduction, solving this problem amounts to recovering affine encodings from a white-box
implementation of any SPN cipher based on Chow et al.’s approach, regardless of the way
the encodings are built. More precisely, our algorithm solves the following problem.

Problem 1. Let F' be an n-bit to n-bit permutation such that F' =B oS o A, where:
1. A and B are n-bit affine layers;

2. S =(S1,...,Sk) consists of the parallel application of k permutations S; on m bits
each (called S-bozxes). Note that n = km.

Knowing S, and given oracle access to F (but not F~'), find affine A', B’ such that
F=BoSoA.

Before we move on to the algorithm itself, a few remarks are in order.
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Remark 1. First, our statement of the problem allows the algorithm to query F, but
not F~!. This is tailored to match the real situation of recovering an affine white-box
encoding. Indeed, white box schemes following the CEJO framework allow access to
F, but not to F~!, as the output of F is computed as a sum of some hard-coded table
outputs, and inverting F would require knowing how to split a given output of F into the
appropriate sum. To the best of our knowledge, the most straightforward way to achieve
this is actually to break the scheme.

Of course, in other contexts, a variant of Problem 1 where the algorithm is granted
access to both F' and F~! may also be worth considering. If n is small, it should be noted
that =1 can be computed exhaustively in 2" operations, so if we are willing to pay 2"
calls to F', both variants of the problem become equivalent. In fact, our own algorithm
will first isolate the input and output space of each S-box, then exhaust that space in 2™
operations for each S-box, which will allow us to access the inverse mapping of each S-box.
Thus, essentially, our own algorithm will allow us to revert back to the case where the
direct and inverse mappings are both available. In particular, it is not obvious how our
algorithm could be improved even if F~! were accessible. In this regard, we note that
Baek et al. explicitly provide an algorithm to solve Problem 1 when F and F~! are both
available, in O (n*23™ /m) operations [BCH16]. However this is slower than our algorithm
for all reasonable parameter ranges, even though our algorithm does not require access to
F~1 (as noted in the introduction, Baek et al. also propose an algorithm when only F is
accessible, but it is much slower).

Remark 2. As stated, Problem 1 asks to recover some affine encodings A’, B’ such
that F' = B’ 0 S o A, but not necessarily A and B. This is because A and B may not be
uniquely defined. In fact, if all S-boxes are identical (as is common in SPN ciphers), and
as soon as there is more than one S-box, A and B cannot be uniquely defined: indeed,
any solution (A, B) can be replaced by (P o A, Bo P~!), where P is any permutation
swapping S-box inputs. Problem 1 merely asks to recover a solution. However, because our
algorithm eventually reduces the problem to the affine equivalence problem for each S-box,
which is solved using the algorithm by Dinur, and that algorithm is able to enumerate all
solutions if desired, it is straightforward to adapt our algorithm so that it outputs every
solution.

Remark 3. The special case of Problem 1 where encodings are linear instead of
affine may also be worth considering. As mentioned in the previous remark however, our
algorithm eventually reduces Problem 1 to the affine equivalence problem for each S-box
separately. As such, our algorithm can be trivially adapted to the linear variant of the
problem by using a linear equivalence algorithm on each S-box, instead of an affine one.

Remark 4. In the special case where k£ = 1, i.e. S is composed of a single S-box,
Problem 1 is precisely the affine equivalence problem tackled by Biryukov et al. [BCBP03]
and Dinur [Din18], with the caveat that F~1 is not accessible. However, as mentioned in
the introduction, the O (n32") time complexity of the faster algorithm by Dinur precludes
its use on full 128-bit blocks. From this perspective, the point of our algorithm is to
achieve better time complexity, and in particular, practical complexity for n upwards of
128 bits, by using the fact that S is split into relatively small m-bit S-boxes.

2.1 Overview of the Algorithm

In a nutshell, the idea of the algorithm is to first isolate the input and output subspaces of
each S-box, then apply the generic affine equivalence algorithm by Dinur to each S-box
separately.

Thus, the first step of the algorithm is to find the input subspace of each S-box. More
precisely, we want to build a subspace of dimension m of the input space, such that this
subspace spans all 2™ possible values at the input of a single fixed S-box, and yields a
constant value at the input of all other S-boxes. To achieve this, we use a differential
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cryptanalysis approach. Namely, we pick uniformly at random an input difference A. With
probability 27 A yields a zero difference at the input of a particular S-box. We can
easily ascertain whether this is the case by checking that the set of output differences
generated by input difference A spans a subspace of dimension n — m. If that is the case,
then A yields a zero difference at the input of one S-box, and non-zero differences at the
output of all other k — 1 S-boxes3.

By repeating this process a few times, we can eventually find n —m linearly independent
input differences that yield a zero difference at the input of the same S-box. By going
through this process for each S-box, we recover k spaces of dimension n — m, each yielding
a zero difference at the input of a distinct S-box. Now if we pick any k — 1 of these
spaces and compute their intersection, we obtain a space of dimension m that yields a zero
difference at the input of £ — 1 S-boxes, and spans all values at the input of the remaining
S-box. This is precisely the space we wanted to build.

Indeed, if we query the overall permutation F' on all 2™ values forming such a subspace,
we obtain a mapping that is affine equivalent to the corresponding S-box. It remains to
apply the affine equivalence algorithm by Dinur to recover affine mappings witnessing the
affine equivalence for that S-box. We repeat this process for all S-boxes. Finally we merge
together the affine mappings thus recovered for each S-box to obtain the overall solution.

2.2 Description of the Algorithm

We will first detail our algorithm in the case that all S-boxes are the same, and then explain
how to adapt it to the case of different S-boxes. The main idea to solve this problem is to
find all input difference spaces I; which activate only one of the S-boxes. That is, for a
difference A € I, and any message x € Fy, the difference after the application of A, i.e.
A= A(z) @ A(x @ A), is zero except on m consecutive bits corresponding to the input of
the i-th S-box. Indeed for such an input difference space I; C Fg, since the S-boxes are
bijective, the output difference space O; = F'(z) @ F(z @ I;) C Fy is of dimension m, for
any x € F. Note that this output space O; does not depend on the choice of x. Therefore
we can compute affine mappings P; (from F3* to I;) and Q; (from O; to F3") such that
S" = Qj o F oPjis a bijection over F5* which is affine equivalent to the S-box S. We can
then use the affine equivalence algorithm by Dinur to recover two affine mappings A;, B;
such that S’ = B; 0 S o A;. By doing this for each S-box, we will be able to build two
affine layers A’ and B’ such that £ =B 0o (S,...,5) o A’

Computing the I;’s. To compute the input spaces that we are looking for, we will begin
by computing all input spaces V; which activate at most £ — 1 S-boxes. More precisely,
for i from 1 to k the space V; is such that, for any A € V; and x € F}, we have that
A(z) ® A(x @ A) is zero on m bits corresponding to the input of the i-th S-box. There is
k such spaces and once we have them, we can recover all the input spaces I; by computing
the intersection of £ — 1 spaces V;.

Computing the V;’s. We first remark that if we have a difference A € V;, then the
output vector space of differences O; will be of dimension n — m instead of n since one
S-box will be inactive. This is the test we will use to construct the V;’s. The idea is to
pick a difference A at random as well as n — m + [ messages and then check whether the
dimension of the output is lower or equal to n —m. For a large enough value [, a difference
A will satisfy the condition if and only if it belongs to one of the V;’s. Repeating this
procedure enough time would allow us to fully recover the spaces V;. However this would

3Tt should be noted that our algorithm makes a (very mild) assumption about the non-linearity of
S-boxes: namely, we assume that, for most differences at the input of one S-box, the corresponding set of
reachable output differences spans the whole output space of that S-box. In particular, this requires that
the S-box does not have a linear approximation of probability one (in the sense of linear cryptanalysis).
By construction, cryptographic S-boxes are expected to fulfill this requirement.
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lead to a lot of rank computations. Instead we observe that, once we found an element
of V;, we can build the full output difference space O;. Hence we compute a parity-check
matrix of O;, 7.e. a matrix H; such that for any v € Fy, H, - x = 0 if and only if x € O;.
This parity-check matrix can be used to quickly verify whether a vector belongs to O;,
and, as a result, whether a difference A belongs to V;.

Recovering affine layers. The two previous steps allow us to build the spaces I; and
O, that we were looking for. As described above, we thus get some affine mappings
A, Bi, P, Q; for i = 1...k. Note that we do not know which S-box is activated by
the space I;, and thus one could think that we need to try all possible arrangement of
those affine mappings. However this is not necessary, since we could always write F' as
F=BoP1o(S,...,5) 0PoAwhere P is a permutation over the consecutive blocks
of m bits. Therefore, we build a block diagonal affine mapping D4 (resp. Dg) where the
blocks are the mappings Aj, ..., Ag (resp. Bi,...,Bg), as well as the two affine mappings
P and Q built as
(93}

Qk
That way, we have that D4 = Ao P and Dg = Q o B and thus by taking A’ = D40 P~}

and B’ = Q! o Dg, we have our equivalent function F' = B’ o (S,...,9) 0 A’
The whole algorithm is summarized as pseudo code in Algorithm 1

Complexity of the algorithm. The first step is to compute all vector spaces V;. We
can split this step into two parts. First, the computation of the output space O;. Note that
our test only checks whether A € Ué?:le, and this happens with probability £27™. Hence
we need to try 2™ values for A on average to determine all the k& output spaces. Taking
n —m + [ elements in X leads to a probability of a false positive, i.e. rank(0;) =n —m
while A activates all S-boxes, of 27 for one value of A. The effective value of [ will depend
on the overall probability of failure that we wish to achieve for the whole algorithm and will
be detailed below. Then computing the rank of O; can be done in (n —m + 1)*n = O(n?)
operations. All in all, the computation of the output spaces O, O, ..., O has complexity

o (2mn3) .

The second part is to compute a basis of the input space V; which is of dimension
n —m. To get each of those n — m vectors (minus Ay which we already know), we first
remark that as above, the probability that a difference A is valid is 27", hence 2™ tries
for A. Each value of A will be tested using [ values of z, leading to a probability of false
positive of 27™ for one specific A. The parity-check matrix of O; can be computed at
the same time as the rank computation, and thus adds no cost here. This matrix is of
size m x n, therefore checking if one output difference belongs to O; costs about O(mn)
operations. Therefore, using that n = km, the complexity of computing the basis of size
n — m for each of the k spaces V; is

O(k(n —m)2™lmn) = O(2"klmn?) = O(2™In?).

Computing all intersections of (k— 1) vector spaces V; can be done in O(kn?) operations
using the algorithm in Appendix A. Then, we need to make k calls to the affine equivalence
algorithm, which leads to a complexity of O(km?32™). All in all, the total complexity of
our algorithm is

4
@) <2mn3 +2™mn3 4+ n + Qmm2n> .
m

As mentioned previously, the algorithm from [Din18] was designed for random permuta-
tions. This algorithm has a certain probability to fail, which is higher when the size of the
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Algorithm 1 Computing A and B.

1:
2
3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

24:

25:
26:
27:

28:

29:

fori=1...kdo

A < random element in F%
X + {n —m+ ! random elements in F5}
O+« FX)aF(XaA)
if (rank(O;) > n—m) OR (O; = Oy for any j < i) then
Go back to line 2
else With probability 2—™
V. = {A} Vi will contain a basis of n — m elements
while #V;, <n —m do
A « random element in F? s.t. A & span(V;) ~ 2™ walues for A
z < random element in Fy l values for x
if F(z)® F(x @A) € Span(0;) then Using a parity-check matriz of O;
Vi=Viu{A}
end if
end while
end if
end for
for each intersection I; of £ — 1 spaces V; do ji=1...k
Compute a m-bit to n-bit projection P; from F5* to I;
Compute a n-bit to m-bit projection Q; from O; to F5*
SI < Qj ol o P]‘
S’ is a bijection over FS* which is affine equivalent to S
Use the affine equivalence algorithm from Dinur to recover two affine mappings
A;, B; of size m such that S’ = B; 0 S o A,
end for
Dy + diag( Ay, ..., Ax) Block diagonal affine mapping with block size m
Dp + diag(By, ..., Bx) Block diagonal affine mapping with block size m
P+ (Pi]...|Pr) B =QoB
o))
Q : A =AoP
Ok
A« DygoPtand B + Q 'oDg That way, we have F =B o (S,...,5) o A’

S-box is low, or when the affine equivalence problem has multiple solutions, which is the
case for the AES S-box since it is self-affine equivalent. This was mentioned by the author,
along with a trick which could make the algorithm work on the AES S-box. However, we
did implement this trick, along with further tweaking, and the algorithm would still fail
for this specific choice of S-box. Hence, if the algorithm from Dinur fails, one would need
to use the algorithm from Biryukov et al. [BCBP03], which raises the complexity to

4
@] <2mn3 +2™min3 4+ n + 22?2 > .
m

Distinct S-boxes. In the analysis so far, we have assumed that all k& S-boxes are identical.
In Appendix B, we discuss how the previous algorithm can be adapted to handle the case
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Figure 2: The Baek et al. proposal

of different S-boxes. In the end, this yields a very similar complexity of
ni
o (Zmln3 + —+ 22mmn2>
m

when using the algorithm from Biryukov et al., and O (len3 + %4 + 2m'mn2) when using

the improved affine equivalence algorithm from Dinur (cf. Appendix B).

Probability of failure

In Appendix C, we provide an analysis of the failure probability of Algorithm 1. Recall
that the number of messages we use within the algorithm is parametrized by the value [.
Intuitively, the probability of failure decreases with [.

In fact, as shown in Appendix C, the probability of failure can be approximated by:

(k(n —m) 4 1)2m1=D,

As an example, for the Baek et al. proposal, the parameters are n = 256, m = 8 and k = 32.
Hence, using only [ = 5 messages, the failure probability is 2716, In practice, failures are
not a concern: in our experiments we set [ = 5, and never encountered a failure.

3 Description of the White-Box Scheme by Baek et al.

Baek et al. provide a toolbox to break any white-box scheme in the CEJO framework
[BCH16]. Their results suggest that the main weakness in the previous proposals for
white-box AES is the size of the internal state. Thus, they proposed to concatenate two
AES instances, and encode them together in order to increase the size of the internal state
(Fig. 2). We note that their proposal is a white-box scheme with external encodings.
Baek et al. also showed that the cost of removing the non-linear encodings is lower
than recovering the affine encodings, so they focused only on designing affine encodings.
Let us recall the round function of AES, denoted as AES™) | built from the four sub-steps
AddRoundKey(ARK), SubBytes(SB), ShiftRows(SR) and MixColumns(MC):

ARS(™) — MCoSRoSBoARK, ifr=1,...,9,
" ]ARKoSRoSBoARK, if r = 10.
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Thus, the encoded round function is the 256 -bit to 256 -bit mapping
-1
FO = (A<r+1>) ° (AES““),AEs(T)) o A,

where A(") are affine mappings on 256 bits. However, using a random affine mapping
would result in some impractical tables since these mappings are of input size 256.

Therefore, they proposed to build 32 tables from 16 bits to 256 bits for each round,
using some structured affine mappings as follows: Let A” be an invertible linear map of
dimension 256 over Fy, and denote the (i, )-th 8 x 8 block of A" by A} ;, 4,j =0,...,31.
Then A" is built such that A7 ; is the zero matrix for all (i, j) # (4,4), (4,7 + 1) and (31,0).
Finally, let a” = (af), . ..,a%;) be a random 256 -bit vector, where each a} is an 8-bit block.
Then we define the input encoding of the 7-th round A" with:

Asg Az, 00 ... 0 2o ap
0 A7 A7 0 ... 0 T a’

A ()= A" z@a = | . btk , el Moo
A% o 0 0 0 ... A4 31 a%,

To generate the tables, we will merge (.A(’”‘H))fl with the linear part of AES, that
is, we define M) = (A<’"+1>)’1 o (MCoSR,MC o SR) which is an affine mapping of
size 256. Then, as depicted on Fig. 2 our encoded round function becomes F(") =
M) o (S, ..., 8) o ARKo A" for r =1,...,9, where K" is the r-th round key. The last
round (r = 10) is slightly different and will be treated in a later part.

Table construction. We split the linear part of M) into 32 linear blocks of size
256 x 8 M such that M) (z) = (MJ,..., M},) - @ m" where m" is a 256-bit vector
representing the affine part of M. Also take 31 random 256 -bit vectors m;,i=0,...,30
and m5; =m" @& my D --- ®mpy. Then for ¢ =0,...,31, we have the 16-bit to 256 -bit
tables F\") defined as:

Fi(T) =ACpr o M 0 S0 ACkrgar © (A;i AT i)

where AC,, is defined as AC,(z) = 2 @ a and the index are taken modulo 32 when necessary.
Thus, one can evaluate the encoded round function F(") as the sum of Fi(r):

31
F(T) (l‘o,xl, Ce 71‘31) = @Fl(r) (1‘,’,15,’+1) .
=0

Therefore to implement our encoded round function F(), instead of having an unreasonable
256 -bit to 256 -bit table, we juste need to store 32 tables from 16 bits to 256 bits.
However, the partial application Fl-(T)(:mO) = ACpr 0 M 0 S 0 ACkraar o A () is
an 8-bit to 256 -bit mapping which can be reduced to an 8-bit bijection by applying a
projection. Then it is affine equivalent to S, and one can efficiently recover the affine
mappings with the affine equivalence algorithm described in [BCBP03] in about 225

operations. To prevent this weakness, Baek et al. proposed to replace Fi(r) by Ti(r) such
that

T (@,y) = F7(@,y) @ b7 (@) @ b3 (v),
(r)

where h; ’ is a random 8-bit to 256-bit function, and we get

31 31
BT (i, 2i11) =P F" (@i, 3541) = FO (20,21, 231)
=0 =0
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using the fact that the index are taken modulo 32. We will later see that this choice was
not enough to hide the structure of Fi(r).

External encodings. Consider two random 256 -bit affine functions M, and M ;.
The external input encoding function is then defined by F(®) = (A(l))_l o My, which is
implemented with a 256 x 256 matrix and a 256 -bit vector. The external output encoding
Mt allows us to define the last encoded round function as

FOO — Ao (AES<1°>, AEs“O)) o A1),

where AES!'?) = ACyx11 0SRo (S, ..., 5) o ACk1o.

This function is then split into 32 tables Ti(lo) using the same technique as above. That
way, we have

FQA0) ... o () o p0) — Mui © (AES, AES) 0 My,,.

Since one encoded round function is implemented with 32 tables from 16 bits to 256
bits, the memory required for each encoded round function is

32 x 216 x 256 bits = 64 MB,

leading to 640MB for the full scheme with external encodings. In their paper, Baek et al.
evaluate the security of this construction to 2'1° using their toolbox. However, as we will
show in the next section, we are able to decrypt any message in ~ 10 x 23° operations,
and fully break this construction by recovering the key in ~ 23! operations.

4 Cryptanalysis of the Scheme by Baek et al.

Baek et al. assessed the security level of their proposition to 110 bits. Recall that each
encoded round function is of the form F'= Mo (S,...,S5) o A where M and A are affine
mappings. Therefore, our generic algorithm from Section 2 can be used to compute an
equivalent round function F = M’ o (S5,...,5) o A" where A" and M’ are known affine
mappings, in about ~ 2346 operations. However, one can exploit the specific structure of
the encodings to mount a more efficient dedicated attack on their scheme. We will first
begin by giving a method of complexity ~ 230 to recover a computationally easy to invert
equivalent representation of one encoded round function. Next, we will show that instead
of using this method 10 times (for each round function), we are able to fully break this
scheme in ~ 23! operations, that is, recovering the secret key used in the underlying AES
as well as the external encodings M;, and M.

4.1 Building an Equivalent Representation of the Scheme

Let us consider one encoded round function and drop the exponent notation for the round
as it is not relevant here, and also merge the key addition with the input affine encoding.
Given an encoded round function F of the form Mo (S,...,S5) oA where M and A are
secret affine mappings, and A has the structure depicted in (1), our goal is to provide a
computationally easy to invert representation of F', that is, finding two equivalent affine
mappings M’ and A’ such that F' = M’ (S,...,S)oA". In that case, inverting one round
would only cost two inversions of 256 -bit affine mappings. Remember that the encoded
round function is hidden in the tables T;(z,y) = Fi(z,y) ® h;(x) ® hi+1(y) where h; are
random functions.
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4.1.1 Reducing the Problem to Block Diagonal Input Encodings

Finding the input encoding can easily be done if this encoding is a block diagonal affine
mapping where each block is of size 8. By applying an appropriate projection, one can
obtain some 8-bit bijections that are affine equivalent to the AES S-box. In that case,
recovering the affine mappings used can be done in about 22° operations with the affine
equivalence algorithm from [BCBPO03]. Because of the random mappings h;, one cannot
use this algorithm directly on the tables in the Baek et al. proposal. However, we will
show that we can decompose the secret input encoding A in A = B o A where:

e B is a secret block diagonal affine mapping, built from blocks B; of size 8 x 8,

e A is a known linear mapping which has the same structure as A (1).

Let us denote the 16-bit to 8-bit linear mapping L; = (A4;; A; i+1), which is unknown
by the attacker. By construction, since we want the affine encodings to be invertible, we
know that L; is of rank 8. If one is able to recover Ker L;, which is then a linear space
over Fi6 of dimension 16 — 8 = 8, then there exists an 8 x 8 invertible matrix B; such
that L; = B; o (0g Idg) o Vfl, where the linear mapping V; is built as (v ...v16) with
{v1,...,vs} a basis of Ker L; and {vg,...,v16} a completion of this basis. In that case,
while the matrices B; are still unknown for the attacker and will form the block diagonal
matrix B, one can build the matrix A from the 8 x 16 blocks (0g Idg) o Vi_l.

So now, we only need a way to compute Ker L; from the tables T;, which can be done
using the following lemma.

Lemma 1. For any (a,b) € F§ x F5:
l.xeKerAi; =y—T(adz,bdy) ®Ti(a,bdy) is constant,
2.yeKerAjjv1 = z—Ti(adz,bdy) & T;(a®x,y) is constant,
3. (z,y) € Ker L; = T;(a,b) ® Ty(a ® x,b) ® T;(a,bDy) ® Ti(a®z,bBy) =0.

A proof of Lemma 1 is provided in Appendix D. Note that the third point is a strict
implication. Indeed, if one takes z € Ker A;;, one can easily see that for any y € F3, the
third equation holds while (z,y) is not necessarily in Ker L;. So to compute Ker L;, we
first need to recover Ker A;; and Ker A; ;41.

We can safely assume that if « ¢ Ker A;;, the function f, : y = Ti(a ® z,b D y) &
T;(a,b ® y) behaves like a random function and then is constant with overwhelmingly low
probability. Therefore, by choosing any (a,b) € F§ x F§, one can check if z € Ker A;; by
computing f, and checking whether or not f, is constant. Obviously, the same method
can be applied to recover Ker A; ;11.

Once Ker A;; and Ker A; ;11 are recovered, one can recover the remaining elements
(z,y) € Ker L; with « ¢ Ker A, ; and y ¢ Ker A; ;11 by using the third implication: if
(z,y) ¢ Ker L;, we can assume that the resulting value of the equation behaves like a
random variable over F§ and is then equal to 0 with probability 278. Therefore, one can
check if (x,y) € Ker L; by choosing a few* values for (a,b) and checking if the equation
stands for all these (a,b). Pseudo-code for this step is provided in Appendix F.

In that way, we can recover Ker L; in roughly ~ 2!8 table lookups using the method
described above and which is summarized in Algorithm 1. Since we need to repeat this

operation 32 times, we end up with a complexity of ~ 223 table lookups to decompose A
into A = Bo A.

4In practice, 4 values are sufficient.
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4.1.2 Building an Equivalent Representation of the Round Function

At this point, our encoded round function is FF = Mo (S,...,5)oBo A where A is
known and B is block diagonal, built with 8 x 8 affine mappings By, ..., Bs1, but is
still secret. Our goal is to find an equivalent representation of the round function, that
is, finding affine mappings M’ and B’ which behave like M and B in the sense that
F=Mo(S,...,5) 0B oA.

The idea is to find 32 affine mappings B, of size 8 to build B’. Note that here, these B}
will not necessarily be equal to B;, but we will see that we can then build M’ in a way
that solves this problem.

Recall that we can evaluate the encoded round function F' by summing over the tables
T;. For z; € F§, let consider the function

Since B is block diagonal with blocks of size 8, only one S-box will be active, and so this
function is a 8-bit to 256-bit mapping of the form H o S o B; where H is some affine
function of size 8 x 256. Note that H, S and B; are all injective (at least) by construction.
So we can compute this function and deduce an affine projection P such that PoHo SoB;
is a bijection over F§. This bijection is then affine equivalent to the AES S-box, and we
can use the affine equivalence algorithm from [BCBP03] to recover B; in ~ 225.

However, there are some self-equivalence relations on the AES S-box, which means
there exist some® affine mappings A;, Ay of size 8 x 8 such that Ay 0S0.4; = S. Therefore,
the affine equivalence algorithm will not exactly recover B;, but one B, = A; o B; without
knowing which 4; is used. In our present case where we only want to provide an equivalent
representation of the round function, this does not really matter. We can choose any
candidate for each B, and we will show how to build an affine mapping M’ to compensate
the action of A;.

So we are looking at our equivalent round-function M’ o (S,...,S5)o B o ﬁ, where B’
and A are known, but we still need to find M’. The overall strategy for that is depicted in
Fig. 3 and detailed below. As in the description of the scheme, let us split the linear part
of M" into (M{... Mj;) where M/ is of size 256 x 8. Algorithm 2 gives the procedure to
compute M/. The idea is just to compute the image each vector of the canonical basis
through M’, which can be done using the fact that we fixed one candidate for each 5.

Algorithm 2 Computing M/

z? + random element in F5
29+ (0...29...0) € F3°¢
2D @PTo A1 (20)
yY <+ S(BLi(zY)) since we know B
for each e; = (0...1...0) € F§ do with a 1 at the j-th position
vl ee
@]« BN (ST (y))
2/« (0...2]...0)
2 @T oA (ad)
Azl 20 @27
j-th column of M/ + Az’ since Ay? = (0...¢ej...0)
: end for

o
M 2 e

5There are 2040 such pairs (A1,.A2), see [BCBP03].
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Figure 3: Building ]\Ajz

We can apply this method for all 32 blocks B} to recover the linear part of M’. After
that, to recover the affine translation m’ of M’, we only need to compute

2 =M .(S,...,58) 0 BoAz)

and z = @T;(z) for one x € F3°%, then we can easily recover m’ since in that case
z=z &m'.

So we are able to provide a computationally easy to invert equivalent representation of
the encoded round function as M’ o (S,...,S) o B’ o A. The complexity of building M’
and B’ is dominated by the 32 calls to the affine equivalence algorithm to get each B,
which lead to a complexity of about 32 x 225 = 230, which is therefore the complexity of
this whole 1-round attack.

4.1.3 Building an Equivalent Representation of the Scheme

Therefore, we can already provide an attack on the full 10-round scheme: indeed, we
just need to apply the above method on each encoded round function F("). Note that
the external encodings do not pose any problem here. For the external input encoding
M, recall that we know the affine mapping F(©) = (A(O))_l o M,,. Using the previous
technique, we are able to recover an equivalent representati0n~}~7 @D of FMW, such that
FM) = ) while F) is easy to invert. So since we then have F(1) o F(0) = (1) o p(0))
we do not need to do anything about M, to provide an equivalent representation of the
scheme.

For the external output encoding M,,;, recall that the last encoded round function
FU19) is defined by

FAO — M0 (AES<1°>, AES<10>) 0 A10) = M0 6 (5. §) 0 A400)

where M0 = M_; 0 @11 o SR. Then our technique applied on F(19 gives us 3 affine
mappings M’(10) B/(10) and A’(10) guch that

F0) _ F(10) _ A q(10) (S,...,8) 0 B0 o 4/10)

while F(19) ig easy to invert, so again, M,,; does not pose any problem here.
All in all, we have built 10 easy to invert equivalent round-functions F(") such that

FA0O 5. o FO) o O = pA0) .. o () o FO) = Af,.; 0 (AES, AES) 0 M,
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Figure 4: Identifying correct blocks.

which is the original scheme. The cost for doing this is to repeat 10 times the 1-round
attack, which gives us a complexity of 10 x 239, While this is already practical, we only
have an equivalent representation of the scheme, but we did not recover the key nor the
encodings.

4.2 Recovering the Key

While we could just use the previous method 10 times on each encoded round function to
provide an easy to invert representation of the full scheme, we can do better and fully break
the scheme by recovering the key in a more efficient way by exploiting two consecutive
rounds.

So let us start at the point where we decomposed one round into FF'= Mo (S,...,S)o
Bo g, with A known and B an affine diagonal mapping. Recall that using the affine
equivalence algorithm from [BCBPO03] for each block does not give us exactly B;, but
roughly 2!! candidates B;. If we want to recover exactly the key and the encodings, we
need to identify which candidate is exactly B;. Note that since we have 2!' candidates for
each of the 32 B;, we cannot exhaust them all.

To be able to quickly identify the correct candidate, one can first apply the previous
method on two consecutive rounds. By doing so, we decompose these two rounds into

FOtD) = MO+t 6 (S, S)oBo A
F(r):M(T)o(S,...,S)oCoA\

where g, A are known and B ,C are affine block diagonal mappings, which are still secret,
but for which we know 2! candidates for each block B; and C;.
In that case, we can write F(") as

A'oB o (MCoSR,MCoSR)o (S,...,S5)0Co A.

Since B is block diagonal, so is its inverse, and we know A and A. Our problem in then
reduced to block diagonal input and output encodings for one encoded round function,
with 2 candidates for each block B; and C;. We now need to recover which are the correct
B; and C;. To do so, we will use a Meet-in-the-Middle approach depicted in Fig.4 and
detailed below.

The MixColumns operation of AES works on words of four bytes, so we restrict our work
on four B; and the corresponding four C; that will be used as input of the same MixColumns
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operation. For example, as depicted in Fig.4, we can first consider By, By, By, B3 and
Cop, Cs, C19, C15 which will be on the same MixColumns operation after the application of
ShiftRows. For an easier understanding, we will describe our MITM method using these
blocks, as it will be exactly the same for the other B; and C;. The detailed procedure is
given in Algorithm 3.

Algorithm 3 Identifying correct blocks

20, ..., 2™ < messages with byte x% taking different values and :Cf =0ifi#0
for each candidate for Cy do
Awg_ +— S_(CO(J:_(O))) ® S(Co(x)) _ ) is constant if i # 0, so Aw! =0 if i #0
(AZ), Az, Az), Az]) + MC.(Aw},0,0,0)
Store Cp in a hash table T, indexed by Az}, ..., Az
end for
Y Ao F() o g_l(xj) F™) can be evaluated using the tables T;
Ayj  y3 © g
for each candidate for By do
AZ) «— Bo.Ay}
if AZ},...,AZ" € T, then
We have the correct By and Co = T,[AZ}, ..., AZ]
break
end if
: end for
Once we have the correct Cy, we know the correct values of Azf, so we do not need

e e e e o e
@ gk w2 o

any hash table
17: for each candidat(_e for B;,i=1,2,3 do
18:  if B;.Ay! = Az] then

19: We have the correct B;
20: end if
21: end for

22: Once we have all the correct By, B1,Bs, Bs, we can use the same kind of computation
to identify the correct remaining C; using messages with x} taking different values and
x] constant for 1 # i

We want to use the MITM to identify the correct (By,Cp), for which we have 2%2
candidates in total. As we will search a match with Az{,..., Az]" where each Az is an
8-bit value, taking m = 4 leads to a 32-bit filter, which is enough to leave only the right
candidates. Building the hash table costs ~ 2!, and so does the matching step. Once By
and Cy are recovered, we only need to go through all the candidates for the remaining B;
and C;, which is done separately. Since we have 2'! candidates for each of them, the total
cost of this step is roughly 8 x 2'! = 214, Finally, we need to do this method on each of
the 8 groups of 4 B; and 4 C;, leading to a complexity of ~ 217 to recover B and C.

Extracting the Key

Note that the reason why we used the differences Az; instead of the values are because
when we decomposed F"+1) into MUY o (S,...,8) 0o Bo A, B contains the key in its
affine translation: that is, we have B(z) = B.z® (b K1) such that B.A.z®b = AL,
The same phenomenon happens with C, which we recover as C(z) = C.x @ (c® K™). So
when we need to use B; for the MITM, the affine translation will not be the good one,
while the linear part is. However, once we recovered the correct B and C, we can use this
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Mous © (AES,AES) o My,
z Y T

tables lookup

Figure 5: Recovering M,

fact to recover the key K"+ and thus also recovering exactly the affine translation of B
and C. Indeed, denote z = (MC o SR,MCoSR)o (S,...,S)oCo A(x) and y = Ao F(")(z)
where again, F(") is computed using the tables. Then we know that B.z &b = y, and
since we know B,y and z, we can easily compute b. Finally, since we previously recovered
B(z) = Bax @ (b® KtY), we get K(+1),

Since the key schedule of AES is invertible, one can do this procedure on the first two
rounds, given through the tables 7™ and T(?). That way we can compute K (1), which
is the master key used in AES, from K. This only leaves the external encodings to be
recovered, which is an easy task now. We can recover exactly which affine translation was
used for C for which we knew C(z) = C.x @ (c® K™M). Then we can recover the first input
encoding AM as AW (z) = C.A.z & c. Now recall that the external input encoding we
knew was F(©) = (_,4(1))71 o M;y. We recovered A1) so it is easy to compute My,.

Recovering M,,; is not hard either, see Fig. 5. We know the key, meaning we can
easily compute the two parallel AES, and we also know M,,,. So for any y € F3°%, one
can compute x such that y = (AES, AES) o M;,,(z), then z = M, (y) from x by using
the tables. Therefore, we only need to do this for 257 values of y: the zero vector to get
the affine translation of M,,; and then each of the 256 canonical basis vectors.

All in all, we recovered the key of the AES as well as both external encodings. The cost
of doing this is dominated by the cost of the 64 calls to the affine equivalence algorithm to
get some candidates for B; and C;, which leads to complexity of ~ 231

In Appendix E, we consider a natural extension of the scheme by Baek et al., where
more than two AES instances are encoded together. We show that our attack remains
efficient even in that case.

Implementation. We implemented the attack in C++, relying on NTL [Sho01] for
linear algebra. The total time to recover both the key and the external encodings is
about 12 seconds, with roughly 10 seconds spent on the 64 affine equivalences, and using a
negligible amount of memory. This was run on a Intel Core i7-6600U CPU @ 2.60GHz
on a single core. Our implementation is available at http://yaawai.tk/.

5 Conclusion

In this article, we propose a generic algorithm to recover affine encodings for SPN ciphers,
in the context of white-box schemes following the framework of Chow et al. More generally,
our algorithm solves the affine equivalence problem in the special case where one of the
two maps is composed of the parallel application of distinct S-boxes. We illustrate the
efficiency of our attack on a white-box implementation of AES with external encodings
proposed by Baek, Cheon and Hong, which was precisely designed to make a generic ASA
approach out of computational reach. Nevertheless our generic attack breaks the scheme
in 235 basic operations, compared to the assessment by its authors that 2''° would be
required. We then took a closer look at the Baek et al. scheme, and identified another
attack vector, which reduces the attack to a simple standalone problem. This second
approach results recovers the secret key in time complexity 23!. A full implementation of
the attack confirms the complexity estimate.
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It may be fair to suggest that a secure white-box implementation in anything resembling
the CEJO framework is implausible, considering every attempt to date has been closely
followed by a devastating attack. In a nutshell, in this work we showed that obfuscating
the round function of an SPN cipher (such as AES) using affine encodings is essentially
impossible. In this light, our result suggests that non-linear encodings should play a central
role in any future endeavor in this direction.
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A Computing all Intersections of kK — 1 Subspaces among
k Subspaces

In our algorithm from Section 2, we have k vector spaces V; C Fy of dimension n —m,
and we need to compute each intersection of (k — 1) spaces V;. Let B; be the n x (n — m)
matrix such that its columns are the vector of a basis of V;. In order to save computations,
we begin by echelonizing each matrix (B; | I,,) where I,, denote the identity matrix of size
n. This leads to matrices with the following structure:

where C; is a matrix of size (n —m) X n and D; is of size m x n. We note that a vector z
belongs to V; if and only if it belongs to Ker D;. Therefore, with D the matrix built as
D,
D={:[,
Dy,

if x € Ker D, then for all 4, z € Ker D;, which leads to x € V; and thus z € Vi N---N V.

In our case, we do not need the intersection of all V7, ..., V}, but all the intersection of
k — 1 spaces V;. To do so, instead of building D from all the matrices D;, one can build
D from only k — 1 matrices D;, leading to the intersection [ V; for each j =1...k.

K3

The complexity of this whole computation is as follows?’é ]VVe first need to echelonize
each (B;|I,,) on their first n — m columns. Note that this computation can be done at
the same time as the line 10 in the previous algorithm: since we need to draw A linearly
independent from the previous computed vectors of V;, we can echelonize the basis of V;
as we build it. Since B; is of size n x (n —m), the cost of doing this for each ¢ is thus
kn?(2n —m) = O(kn®). Then we need to compute the kernel of the matrices D built from
k — 1 matrices D;. Note that, those matrices being of size (k — 1)m x n, computing the k
kernels needs about ((k — 1)m)?n = O(n®) operations. However, by doing this in a clever
way, one can avoid repeating the same computations and thus improve the constant hidden
in the O() notation.

First, denote by K; the kernel computed from the matrices D; with j # ¢, and

D,
D=1 :
Dy,
Remark that computing K; with i # 1 (i.e. all kernels containing D;) is the same as

removing one block D;,j # 1 from D and echelonizing the resulting matrix. Thus by
doing this naively, one would echelonize several times from the m rows of D;. So we want
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Figure 6: Efficient computation of the kernels

to avoid those redundant computation. Therefore, we first echelonize D on the m rows of
D1, leading to the matrix D’ with the following structure

\\ Df
-
/
!
D2
|

' Di

D' =

This matrix D’ can be used to compute all kernels containing D; by removing one of the
block D;. Again, doing this naively would result in a lot of redundant echelonization on
the rows of D}, therefore we repeat the previous procedure by echelonizing D’ on the rows
of D) once for all, leading to a matrix D" which we will use to compute all the kernels
containing D7 and Dy. A summary of this procedure is depicted in the Figure 6, along
with the complexity of each step in the tree. To be more precise about this complexity,
let give a look at the operations we need to do on the i-th level of the tree. We need to
compute the kernel K; from a (k — 1)m x n matrix which has already be echelonized on
im rows, thus leading to a complexity of (k — 1 — i)?m?n operations. We also need to
echelonize on m rows of a matrix of total size km x n, which is also already echelonized
on im rows, which needs (k — i)m?n operations. Therefore, the total complexity of this
way to compute the kernels is

k—2 ‘
Z(k —i—1)*m*n + (k —i)m?*n = men (K ; 2k~ 1)
i=0

To compare, the naive way to do, i.e. computing each kernel independently, would lead to
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a complexity of
k(k —1)*m*n = m*n(k® — 2k + k)

leading to a speed up of about 3 for this step.

B Handling Distinct S-Boxes

In Section 2, we have presented our generic algorithm for the case where all S-boxes in the
scheme are the same. In this section, we describe how our algorithm would change if each
S-box is different, that is, having the function F built as F' = Bo(Sy,...,S;)o.A. The only
step where the concrete definition of the S-boxes is used is when we want to use the affine
equivalence algorithm by Dinur. Recall that given two permutations S and S’ = B; 0S50 A;
where A; and B; are unknown, this algorithm finds A}, B} such that S’ = B 0.5 o A}. Note
that when we compute the input spaces I;, we do not know which S-box remains active.
Thus for each I}, we need to call the affine equivalence algorithm for each possible S-box
S; which may seems costly. However, the affine equivalence algorithm scales very well
in the case we want to search for an equivalence from a set of S-boxes. That is, given
S’ = B; 05; 0 A; where 7 is also unknown, find which S-box is affine equivalent to S’.

To compute the affine equivalence between two S-boxes S and S’, we use the algorithm
from [BCBPO03]. However, our problem is actually to find affine equivalences between two
sets of k S-boxes: namely the k S-boxes S1,..., S, known in advance, and the k& S-boxes

1,---, S} which we recover from F using our algorithm. Each one of the S;’s is affine
equivalent to one of the S;-’s, but we do not know a priori which one. We could simply

try all (g) possible matches, however there is a better algorithm. Indeed, as observed in
[BCBPO3, Section 3.1], in this setting their algorithm can be made to only grow linearly
in k, rather than quadratically. A brief summary of how this is achieved is provided in
Algorithm 4; we refer to [BCBP03] for more details about how a canonical representative
is computed. For simplicity, Algorithm 4 only outputs the set of affine equivalent pairs,
but it can be easily modified to also output the corresponding affine mappings. In the end,
we have an overall complexity O(km322™) to match all pairs of S-boxes. Note that the
same idea can be applied to the improved affine equivalence algorithm from Dinur [Din18],
which thus lead to a complexity of O(km32™).

Algorithm 4 Given S, ..., Sk, and S, ..., S, find all affine equivalent pairs (S;, 57).

1: T < empty map

2: fori=1...k do

3:  for all a € F3* do

4: R + canonical representative of the linear equivalence class of S; & a
5: Append i to T[R] (viewed as a set)

6: end for

7: end for

8 for j=1...kdo

9: for all b € FJ* do
10: R <+ canonical representative of the linear equivalence class of S ]’ @b
11: for i in T[R] do
12: Output (i, 7)
13: end for
14:  end for
15: end for
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All in all, this adds a factor k in the overall complexity, which becomes

4 4
@) (2”%3 +2™in3 4+ + k22mm2n) =0 (2mln3 + n + 22mmn2>
m

n
m

when using the algorithm from Biryukov et al., and O (2mln3 + % + 2mmn2) when using

the improved affine equivalence algorithm from Dinur.

C Probability of Failure for Algorithm 1

In this section, we study the probability of failure of our main algorithm, Algorithm 1.

In Algorithm 1, the number of messages we use is parametrized by the value [, and the
probability of failure decreases with [. Failures in our algorithm stem e.g. from generating
n —m + [ output differences activating all S-boxes, and these output differences spanning
a subspace of dimension n — m despite all S-boxes being active. Intuitively, it seems clear
that the probability of such an event decreases exponentially with {. However the exact
probability of a failure depends on the S-boxes under consideration, and more specifically,
it depends on their differential distribution table. As a result, an exact analysis of the
failure probability is quite complex.

In what follows, to keep the analysis in check, when a random input difference activates
all S-boxes, we approximate output differences by uniformly random vectors. We submit
that for cryptographic S-boxes, this is a reasonable approximation of reality as far as
the dimension of the output space is concerned, which is what matters for our algorithm.
Moreover, we have successfully run experiments (using the AES S-box, as well as random
ones) to validate that failure probability behaves as expected.

During the computation of the O;’s. When we search the output space O;, we draw
n —m + [ random elements to test whether the output space is of dimension lower or equal
to n — m. Here, a false positive would be a difference A such that rank(O;) = n —m
while A activates all S-boxes. Therefore the probability of a false positive at this step is
upper-bounded by 27 for one value of A. Since we do this step for about 2™ values of
A, the probability that a false positive occurs in this step over all the algorithm is upper
bounded by 272" = gm(1-1)

During the computation of the V;’s. For each value of A, we want to test whether
F(z) @ F(x ® A) € span(0;) for [ values of z. In that case, a false positive is a value of A
such that this test is verified while A activates all S-boxes. Again, since dim(O;) =n —m,
the probability of a false positive of a specific value of A is 2=™. We try about 2
values of A on average, and need to do this to find all the n — m basis vectors for each of
the k spaces V;. So the probability of a false positive at this step is upper bounded by
k(n —m)2mt-b,

Overall failure probability. The probability of failure of our algorithm is upper-bounded
by the sum of the two previous probabilities, which is to say:

(k(n —m) 4 1)2m3=D,

As noted in Section 2.2, for the Baek et al. proposal, the parameters are n = 256, m = 8
and k = 32. Thus, using only [ = 5 messages, the failure probability is 2716.
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D Proof of Lemma l

We recall the statement of Lemma 1, reusing notation from Section 4.

Lemma 1. For any (a,b) € F§ x F5:
l.xeKerA,; =y—T(adz,bdy) ®Ti(a,bdy) is constant,
2.yeKerAjjv1 =z Ti(adz,bdy) ®T;(a®x,y) is constant,
3. (x,y) € Ker L; = T;(a,b) ® Ti(a ® z,b) ® T;(a,b®y) ® Ti(a ® x,b B y) = 0.

Proof. We will only prove the first and the last points, since the second one is very similar
to the first. From the construction of T;, we can write it as

Ti(xv y) = §z [Az,z(x) ©® Ai,i+1(y) (&3] Ci] D hl(m) & hi+1(y)

where 5‘1 =M;oS.
1. Let us take (a,b) a fixed element in F§ x F§ and x € Ker A; ;. Then for any y € F§
we have
Ti(a®z,bdy) ®Ti(a,bdy)
= 5i[A41i(a®2) & A1 (0B y) @] © hi(a®©2) & hisa (b D)
® S [4;:(a) ® Aii11(b© y) @ ci] © hila) © hig1 (b D y)
= Si [Aii(a) ® Aiis1(D®y) © ci] ® hi(a® 2)
® S [A;i(a) ® Aii11(b© y) @ ci] © ha(a)
= hi(a ® z) ® hi(a),
which does not depend on y, therefore y — T;(a ® z,b® y) ® T;(a,b D y) is constant.
3. First note that (z,y) € Ker L; & Li(z,y) =0 < A, i(z) = A i +1(y)-
So let take (a,b) a fixed element in F§ x F§ and (x,y) € Ker L;, then
(a byeTi(a®x,b)®Ti(a,bdy)®Ti(adz,bdy)
S [ i(a) ® A it (b) ® ¢i] ® hi(a) ® hiy1(D)
SilAii(a® ) ® Ajir1(b) & ci] @ hi(a & ) & hi1 (D)
Si[Aii(a) ® A i1 (b @ y) © ;] & hi(a) © hipa (b @ y)
[A i(0®1) S Aiin(b®y) @]l ®hila® ) S hita(bdy)
) ® Aiita1(b) @ ci
[ (@) ® Asi(x) ® Aiig1(b) @ ¢
Si[Aii(a) ® Aii1(b) ® Ai i1 (y) © i
Si[Aii(@) ® Aii(@) @ A i1 (0) © Asiga (y) @ i
)
Si [Asi(a) @ Aii(2) ® A i1 (D) @ ¢
S;[Aii(a
(

3

)

(b

i )
[ ii(a) ® Ajip1(0) @ ¢

)

(

)

)
) @ Az Ji+1 b) 2] AZ 1(‘r) S ci]
[Az i a) &) Az z(

3

© Aiir1(0) ® A i(x) © ;] = 0. O
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Diagonal decomposition ~n-222
Inverting one encoding ~n3. 22
Affine equivalence ~n-230
MITM ~n-216
Implementation size n? . 160 MB

Figure 7: Complexity of our attack and implementation size for n parallel AES instances.

E Using More AES Instances in Parallel

A natural question is whether the white-box scheme by Baek et al. could be made secure
by increasing the number n of AES instances encoded in parallel. However in this section,
we show that this is not the case, as the storage requirement of storing the actual white-box
implementation quickly becomes limiting.

More precisely, Table 7 shows the complexity of each step of our dedicated attack as n
increases, together with the size of the corresponding white-box implementation. Recall
that in this section, n denotes the number of parallel AES instances (rather than the total
block size).

So the dominating cost comes from either the computation of the inverse of one encoding
or the calls to the affine equivalence algorithm. For n < 22, the affine equivalence is
dominating and lead to a complexity of ~ 235 for an implementation of size ~ 64 GB when
n = 22. Otherwise the inversion is dominating, and obtaining even a 60-bit security would
need n = 2'3 parallel AES, which lead to an implementation of size ~ 2'3 TB, which is
definitely not realistic.
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F Pseudo-Code for Computing Ker L;

The pseudo-code is given in Algorithm 5. We refer the reader to Section 4.1.2 for a textual
explanation of the algorithm and its use.

Algorithm 5 Computing Ker L;

: Compute Ker A, ; using implication 1
(a,b) < random element in F§ x F5
. for z € F§ do
if f, is constant then
Ker A;; < Ker A;; U{z}
end if
end for

I I T

%

Compute Ker A; ;11 using implication 2
9: (a,b) + random element in F§ x F3

10: for y € F§ do

11:  if f, is constant then

12: Ker Ai,i+1 <« Ker Ai,i+1 U {y}

13:  end if

14: end for

15: Compute the remaining elements of Ker L; using implication 3

16: Ker L; + (F§ x F§)\(Ker A;; x Ker A; ;41)
17: fori=1..4 do

18 (a,b) + random element in F§ x F§

19: for (z,y) € Ker L; do

20: if the equation does not holds then
21: Ker L; + Ker L\{(z,y)}

22: end if

23:  end for

24: end for

25: return Ker L; U (Ker A4, ; x Ker A; ;41)
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