On Recovering Affine Encodings in
White-Box Implementations

Patrick Derbez!*, Pierre-Alain Fouque'!, Baptiste Lambin'* and
Brice Minaud?$

! Univ. Rennes, CNRS, IRISA, Rennes, France
{baptiste.lambin, patrick.derbez}@irisa.fr, pierre-alain.fouque@univ-rennesl.fr
2 Royal Holloway University of London, Egham, United Kingdom
brice.minaud@gmail.com

Abstract. Ever since the first candidate white-box implementations by Chow et al. in
2002, producing a secure white-box implementation of AES has remained an enduring
challenge. Following the footsteps of the original proposal by Chow et al., other
constructions were later built around the same framework. In this framework, the
round function of the cipher is “encoded” by composing it with non-linear and affine
layers known as encodings. However, all such attempts were broken by a series of
increasingly efficient attacks that are able to peel off these encodings, eventually
uncovering the underlying round function, and with it the secret key.

These attacks, however, were generally ad-hoc and did not enjoy a wide applicability.
As our main contribution, we propose a generic and efficient algorithm to recover affine
encodings, for any Substitution-Permutation-Network (SPN) cipher, such as AES,
and any form of affine encoding. For AES parameters, namely 128-bit blocks split
into 16 parallel 8-bit S-boxes, affine encodings are recovered with a time complexity
estimated at 23? basic operations, independently of how the encodings are built.
This algorithm is directly applicable to a large class of schemes. We illustrate this on
a recent proposal due to Baek, Cheon and Hong, which was not previously analyzed.
While Baek et al. evaluate the security of their scheme to 110 bits, a direct application
of our generic algorithm is able to break the scheme with an estimated time complexity
of only 2%° basic operations.

As a second contribution, we show a different approach to cryptanalyzing the Baek
et al. scheme, which reduces the analysis to a standalone combinatorial problem,
ultimately achieving key recovery in time complexity 23'. We also provide an
implementation of the attack, which is able to recover the secret key in about 12
seconds on a standard desktop computer.

Keywords: White-Box Cryptography - Cryptanalysis - AES
1 Introduction
Historically, cryptanalysis is performed within the black-box model: the cryptographic

algorithm under attack is executed in a trusted environment, and the view of the attacker
is limited to the input-output behavior of the algorithm. Depending on the type of

*Patrick Derbez was supported by the French Agence Nationale de la Recherche through the CryptAudit
project under Contract ANR-17-CE39-0003.

TPierre-Alain was supported by the French Agence Nationale de la Recherche through the BRUTUS
project under Contract ANR-14-CE28-0015.

{Baptiste Lambin was supported by the Direction Générale de I’ Armement (Pole de Recherche CYBER).

$Brice Minaud was supported by EPSRC Grant EP/M013472/1.

Licensed under Creative Commons License CC-BY 4.0. [@)ev |
TACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,

Vol. 2018, No. 3, pp. 121-149

DOI:10.13154 /tches.v2018.i3.121-149

mailto:baptiste.lambin@irisa.fr,patrick.derbez@irisa.fr
mailto:pierre-alain.fouque@univ-rennes1.fr
mailto:brice.minaud@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.121-149

122 On Recovering Affine Encodings in White-Box Implementations

attack under consideration, the attacker may be able to observe the inputs and outputs
of encryption or decryption queries, and perhaps choose the corresponding inputs, but
nothing more. Such attack models are particularly relevant in scenarios where the attacker
does not have direct access to an implementation of the scheme, whether because it is
executed remotely, or within a protected hardware environment such as a secure enclave.

Since the advent of side-channel attacks however, new attack models have come into
the light, wherein the attacker has access to some auxiliary information leaked by the
implementation. These models are sometimes called gray-box models, in contrast with the
black-box model outlined in the previous paragraph. Attacks in the gray-box model may
exploit physical leakage such as computation time, power consumption, or electromagnetic
leakage, among many others. Such attacks can result in practical breaks against schemes
that would otherwise appear secure in the standard black-box model.

White-box cryptography. Going one step further, in 2002, Chow et al. introduced the
white-box model [CEJVO02a, CEJVOO02b]. In this model, the attacker has full access to
an implementation of the target cryptographic algorithm, including the ability to control
its execution environment. Therefore he can observe memory content, set breakpoints
in the execution flow, change arbitrary values in the code or the memory, etc. In this
setting, the security assumptions of the black-box model clearly no longer hold. However,
it may still be desirable that the adversary should be unable to extract the secret key of
the cryptographic algorithm under attack.

This model is relevant in the context of software distribution, whenever a piece of
software containing sensitive cryptographic information (such as an encryption algorithm)
is to be widely distributed, and hence can be downloaded and analyzed by adverse parties.
The most prominent application occurs in Digital Rights Management, where attackers
may wish to recover a decryption key used to protect copyrighted content (digital music,
TV broadcasts, video games, etc). A successful attacker is then able to distribute the
secret key to unauthorized users, providing them with illegitimate access to the protected
content. In effect, the goal is to protect sensitive functions within the deployed software,
such as cryptographic algorithms, in much the same way that a trusted environment would
protect security-critical functions in a hardware context.

In order to achieve this goal, white-box cryptography techniques attempt to obfuscate
the implementation of the target cryptographic algorithm. Ideally, an attacker in possession
of the obfuscated cipher should be unable to interact with it in any meaningful way, beside
simply executing it on chosen inputs. While Barak et al. have shown that general program
obfuscation is impossible [BGIT01], the context of white-box cryptography presents two
key differences. The first is that white-box cryptography merely attempts to obfuscate
particular function families (such as block ciphers), which Barak et al.’s result has no bearing
on. Another key difference is that white-box models do not generally require guarantees as
strong as those offered by black-box obfuscation: in the case of a white-box implementation
of AES for instance, it may be enough that the adversary is unable to recover the secret
key (for a detailed discussion of white-box models, see e.g. [DLPR13, FKKM16]).

The CEJO framework. In their original 2002 articles, Chow et al. proposed such a
white-box scheme for DES and AES [CEJVO02a, CEJVO02b]. While their proposals were
quickly broken [JBF02, BGECO04], their work opened the path to white-box encryption.
Follow-up works often reused the same general framework, which we will call the “CEJO
framework”.

In the CEJO framework, each round function is obfuscated by being composed with
carefully crafted input and output encodings. That is, the round function E() at round r
is replaced in the white-box implementation by]‘(T‘Hr1 o EM o f() where (),]‘(T‘Hr1
are bijections called respectively to the input and output encoding. By design, the output

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Brice Minaud 123

encoding of each round is canceled out by the input encoding of the next round.

o fUHD TG B0 o f(0) o p TG B o pr=D)

Fr Frfl
Figure 1: The CEJO framework.

For each round, the white-box implementation gives access to the encoded version of
the round function F" = f(’"'Hr1 o E() o (") but not directly to the underlying round
function E().

Chow et al. proposed to define the encodings f(") as the composition of a non-linear
mapping and an affine mapping. The idea is to follow a classic concept in symmetric
cryptography : the non-linear mapping will add some confusion on the intermediate values
of the state, while the affine mapping will add some diffusion (see Sec. 3.3 and 3.4 in
[CEJVOO02b]). In addition, in a typical SPN block cipher, round keys are XORed into
the inner state of the cipher. In that case, whenever the constant of the affine encoding
is uniformly random, a single obfuscated round completely hides the value of the round
key, which implies that a successful key-recovery attack must target multiple rounds
simultaneously. Thus the CEJO framework is a natural approach to attempt to obfuscate
a block cipher, especially in the case of SPN ciphers such as AES.

In addition to the above, some external input/output encodings M,,:/M;, can be
added before and after the cipher. In that case, the implementation provides a map from
encoded plaintexts to encoded ciphertexts. These encodings are merged into the tables used
for the initial and final encoded round function. The implementation is then equivalent to
an encoded version of the cipher, which can be expressed as My, 0 B o0 EMW o M;,,.

External encodings can be used to increase security, as the attacker is denied direct
access to raw plaintexts/ciphertexts. On the other hand, external encodings assume that
the implementation surrounding the white-box cipher takes these encodings into account.
As such, a white-box implementation with external encodings is not properly speaking an
implementation of the cipher it contains. For this reason, in this work, we shall explicitly
signal the presence of external encodings, and use the term white-box implementation with
external encodings when appropriate.

It is crucial that, given the encoded round function F", the adversary should be unable
to compute and peel off the encodings f (r+1)~! and f(). Indeed, for typical ciphers such
as AES, granting direct access to a single round FE would allow the adversary to easily
recover the corresponding round key, and from there the secret key of the cipher. However
attacks on white-box implementations typically achieve precisely this, by taking advantage
of the specific structure of the encodings A and B. In white-box implementations following
the CEJO framework, encodings are composed of a very simple non-linear layer, together
with a more complex affine layer. Attacks generally peel off the non-linear component,
then proceed to recover the affine layer. This is typically achieved in an ad-hoc way, by
exploiting specific properties of the scheme under attack.

Our Contribution.

As our main contribution, we propose a generic algorithm to recover affine encodings for
any white-box implementation of a cipher following the CEJO framework, independent of
the way the encodings are built. More generally, our algorithm solves the affine equivalence
problem (given two maps F' and S with the promise that they are affine equivalent, compute
affine maps A, B, such that F' = Bo S o .A) whenever one of the two maps is composed of
the parallel application of distinct S-boxes.

124 On Recovering Affine Encodings in White-Box Implementations

Our main algorithm is very similar to one of the steps of the structural cryptanalysis
of SASAS by Biryukov and Shamir [BS01], combined with a generic affine equivalence
algorithm; for this purpose, we use the recent algorithm by Dinur [Din18], but the same
attack would also work with the classic affine equivalence algorithm by Biryukov, De
Cannieére, Braeken and Preneel [BCBP03]. Thus the components we use are not essentially
new. However, to the best of our knowledge, the fact that they enable breaking all
white-box schemes following the design of Chow et al. in a generic way has not yet been
explicitly pointed out in the literature, or analyzed in detail, despite the fact that the
SASAS algorithm predates both these schemes and their attacks. As a result, in our
experience, this fact is also largely ignored by practitioners in the industry.

By design, our attack applies to a large class of white-box schemes following the CEJO
framework, including [CEJVO02a, CEJVO02b, XL09, Kar10]. Beyond the previously cited
schemes, which were already broken by ad-hoc attacks, we illustrate our attack on a new
white-box design by Baek, Cheon and Hong [BCH16]. One distinctive feature of this design
that makes it particularly attractive to illustrate our attack (beside not being previously
cryptanalyzed) is that it increases the state size by obfuscating two parallel rounds of AES,
precisely to prevent generic attacks from being able to recover the affine encodings of the
scheme. Indeed Baek et al. estimate the security level of their proposal to 110 bits based
on their own specialized version of an affine equivalence algorithm. However our generic
attack on this scheme requires only about 23° basic operations.

As a second contribution, we analyze the scheme by Baek et al. more closely, and
introduce another technique able to break this scheme. This new technique extracts and
solves a standalone problem from the scheme by Baek et al.. Ultimately, it is able to
recover the secret key of the scheme in time complexity 23!. This is verified with an
implementation. This dedicated attack on Baek et al.’s scheme is also more powerful as
it allows us to fully recover the key, while the generic attack only creates a decryption
function without recovering the key.

In more detail, our two contributions are as follows.

(1) In an SPN cipher, a round function is composed of an affine layer (in which we
include key addition), and a non-linear S-box layer. The S-box layer S consists of the
application of k parallel m-bit S-boxes, where n = km is the block size. As a result, when
encoding a round function using affine encodings, the encoded round function may be
written as F' = B o S o A, folding the affine layer into one of the encodings. A natural
problem in this setting is the affine equivalence problem: namely, to recover affine encodings
A and B, given F' = Bo S o A, and knowing S. More precisely, since A and B may not be
uniquely defined, the problem can be stated as: given S and F' as before, find affine maps
A’ B' such that F =B oSo A’

The general affine equivalence algorithm by Dinur solves precisely this problem, without
assuming any special structure on S [Din18] (this is also the case of the classic algorithm by
Biryukov et al. [BCBP03]). However its complexity is O (n32”), which makes it unsuitable
for recovering encodings on a typical block size of 128 bits. In contrast, we focus on
the case where S is made up of k parallel m-bit S-boxes. In this setting, we propose an
algorithm that solves the affine equivalence problem with a (typically much lower) time

complexity of O (2’"113 + %4 + 2mm2n). For the AES parameters n = 128, m = 8, k = 16,

this yields a time complexity of 232 basic operations! (to be compared with 2149 basic

operations if the generic algorithm by Dinur were applied naively).

As noted earlier, due to its genericity, our attack applies to essentially all white-box
schemes following the CEJO framework: this includes the original designs by Chow et al.
[CEJVO02a, CEJVOO02b], and later proposals [XL09, Karl0]. In the case of Karroumi’s
scheme [Kar10], while it does not seems to follow the CEJO framework at first glance, it

n practice the constants hidden in the O () notation for our algorithm are quite small, and we disregard
them when giving complexity estimates.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Brice Minaud 125

has been later shown that this scheme is equivalent to the CEJO framework [LRDM™13,
DMRP13], and hence our technique applies directly.

The main limitation of our attack is that it only targets affine encodings, whereas
most white-box schemes following the CEJO framework also use non-linear encodings in
addition to affine encodings ([CEJVO02a, CEJVO02b, Kar10, BCH16] do, while [XL09]
only uses linear encodings). When non-linear encodings are used, our attack does not
break the scheme by itself. However, even in the presence of non-linear encodings, the
first step of attacks typically consists of peeling off the non-linear encoding layer first
[BGEC04, BCH16], which do not apply to the state as a whole, and leaves the attacker with
an instance of the previous problem. In this context, our algorithm provides a powerful
tool, which is able to recover affine encodings in a very general setting.

(2) As a second contribution, we take a closer look at the scheme by Baek et al.. We
identify another angle from which the scheme can be attacked. At the core of this second
approach lies the following problem. Let F', hi, hy be three non-linear mappings from
m bits to m bits, and let Ay, As be two linear mappings on m bits. Given oracle access
to G(z,y) = F(A1(z) ® A2(y)) @ hi(x) @ ha(y), recover Ay and Az (up to equivalence).
We solve this problem and deduce an attack against the white-box scheme by Baek et al.
with time complexity ~ 23! operations. We implemented the full attack, and were able to
recover the secret key (and external encodings) in about 12 seconds on a standard desktop
computer. Our implementation is available at http://yaawai.tk/.

Related Work.

Literature on white-box cryptography, especially designs and attacks following the frame-
work of Chow et al., is quite extensive. The first white-box candidate constructions by Chow
et al. [CEJVO02a, CEJVO02b] were quickly broken in practical time [JBF02, BGEC04].

In 2009, Xiao and Lai proposed to rely on larger affine encodings covering two S-boxes
at once [XL09]. However, their proposal was broken in about 232 operations by De Mulder
et al. [DMRP12]. To thwart this attack, Karroumi proposed to use a dual representation
of the AES round function in order to change the structure of each AES round [Karl0].
But this was also broken in about 222 operations by Lepoint et al. [LRDM*13].

The previous attack also applies to the original scheme by Chow et al.; and another
work by De Mulder et al. also provides improvement on the original BGE attack [DMRP13].
Note that all aforementioned attacks exploit the specific structure of the encodings used in
the scheme under attack. As a result, they are more efficient than our generic algorithm,
which works regardless of the structure of the encodings. Our algorithm also applies
to these schemes and succeeds in practical time; but the point is that it is much more
general: it does not require any structure in the affine encodings, and applies to all
previous schemes at once, and more generally to all schemes in the CEJO framework. This
includes Karroumi’s scheme as it has been shown to be equivalent to the CEJO framework
[DMRP13, LRDM*13].

A useful tool in the context of white-box cryptanalysis is the linear and affine equivalence
algorithm by Biryukov et al. [BCBP03]. Their algorithm solves the following problem:
given two bijections S, .Sy on n bits, find affine (or linear, depending on the variant of the
problem) mappings A, B such that Sy = Bo.Sj oA, if they exist. Biryukov et al.’s algorithm
is both able to ascertain whether such mappings exist, and enumerate all solutions. The
time complexity of their solution is O (n32”) when A, B are linear, and O (n322") when
they are affine. In both cases, these complexities are practical when considering standard
S-box sizes, such as n = 8.

This algorithm has been further improved in the affine case by Dinur [Dinl18], bringing
the complexity down to O (n3 2"). Note however that this improved algorithm was designed
for random permutations. Indeed, the AES S-box being self-affine equivalent, which is

http://yaawai.tk/

126 On Recovering Affine Encodings in White-Box Implementations

fairly rare in the random case, will lead to a failure of the algorithm. This was mentioned
by the author, who also proposed a workaround. However our own implementation of
the algorithm shows that it still fails on the AES S-box even when using the workaround.
Hence, in that case of the AES S-box, we use the algorithm from [BCBP03] which has a
higher complexity, but works on the AES S-box.

The main algorithm we propose in this article is essentially the same as the algorithm
appearing in Section 2.3 of the structural cryptanalaysis of SASAS by Biryukov and
Shamir [BS01]. However it is worth noting that this algorithm, from 2001, predates the
first white-box constructions, due to Chow et al. in 2002; and a fortiori later constructions
in the CEJO framework. Yet, to the best of our knowledge, it has not yet been clearly
pointed out in the literature that this older algorithm actually solves the critical step in
attacks on white-box schemes in the CEJO framework, as we show in this article. And
indeed this algorithm is not referred to in any of the attacks mentioned above. Thus, we
regard as a worthwhile contribution for practitioners in the field to point out that all
known constructions in the CEJO framework can be uniformly broken (as far as recovering
affine layers, which is the critical step in most cases) by combining this algorithm with a
generic affine equivalence algorithm.

Our attack is also related to the attack by Minaud et al. [MDFK15] on the ASASA
construction [BBK14], as well as the followup work by Biryukov and Khovratovich [BK15].
However, the ASASA attack would only recover the output spaces of S-boxes, not their
input spaces, which we also need. In the setting where the ASASA (and SASAS) attack
was developed, this was inconsequential, because the attacker had access to both the
ASASA function and its inverse, so the problem was symmetric between input and output.
However for us this is not the case: a key feature of our setting is that we only have access
to an ASA mapping, but not its inverse. This difference is significant, as recovering the
input spaces of the S-boxes from their output spaces seems as hard as breaking the scheme
in the first place. And indeed, in the designs by Chow et al. to realize white-box AES
and DES [CEJVO02a, CEJVO02b], we are not aware of any way to invert the encoded
round function without also breaking the scheme. In addition to qualitative differences in
the setting considered, the algorithm by Minaud et al. is also more expensive for typical
parameters (e.g. n = 128 or 256), as it costs about 2n? + n% operations, where the last
term is due to having to solve a quadratic system in n variables. Running the ASASA
algorithm on the scheme by Baek et al., recovering only the output spaces of S-boxes,
would require 24% operations instead of 23° with our attack. Thus the SASAS algorithm
[BSO01], which we use, is the better approach in our setting.

At SAC 2008, Michiels, Gorissen and Hollmann also proposed a generic algorithm to
break white-box implementations following the framework by Chow et al. [MGHO8]. Their
work considers non-linear encodings, but requires two extra hypotheses: (1) the input
space of each individual S-box through the input encoding should be known; and (2) the
diffusion matrix of the scheme should satisfy a property called disjoint spanning block
sets. In particular, that work does not solve the general problem of recovering arbitrary
affine encodings surrounding a known S-box layer. Moreover, no overall complexity bound
is provided?, as some steps of the algorithm are not accompanied by a time complexity
bound. There is also no implementation, which further prevents assessing performance.

The idea of considering a specialized variant of Biryukov et al.’s generic affine equivalence
algorithm in the context we have described thus far (i.e. where the inner non-linear layer
is composed of distinct S-boxes) was also proposed by Baek, Cheon and Hong in [BCH16],
who proposed the specialized affine equivalence algorithm (SAEA) for solving this problem.
However, SAEA is very inefficient for larger n in our setting, with a time complexity of
O (min(n™*422™ /m,nlog(n)2"/?)). Baek et al. used SAEA to assess the security of their

2In Section 7, there is a claim that in the particular case of AES and Serpent, the time complexity of
their algorithm would be dominated by the generic affine equivalence algorithm for each S-box. However
that claim is not backed by any analytical bound, nor is it backed by an implementation.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Brice Minaud 127

own white-box implementation with external encodings of AES, predicting a security level
of 210 operations. Our own generic algorithm, however, merely requires an estimated 23°
basic operations, breaking the scheme with practical complexity.

Incidentally, both the previously cited works by Michiels et al. and by Baek et al.,
while introducing interesting new techniques, also illustrate the lack of awareness around
the fact that the SASAS technique by Biryukov and Shamir [BS01], combined with a
generic affine equivalence algorithm, solves the ASA problem generically. In this respect
our work may be regarded as filling a gap in the literature.

Finally, an interesting and recent line of work has exhibited side-channel attacks on
white-box implementations [BHMT16, BBIJ17]. These approaches are quite powerful in
that they require only “gray-box” access to the implementation, but are not generic attacks
in the sense of our work. For example they are not applicable to the scheme by Baek et al.
(not only because the scheme obfuscates two parallel executions of AES simultaneously,
but also because it uses external encodings on both ends of the cipher). By nature this
approach also relies on experimentation, rather than providing analytical bounds as we do.

Recent work in this direction has shed more light on the success of the gray-box approach
outlined above, and studied more closely the effect of affine and non-linear encodings on the
resistance of a white-box implementation against side-channel attacks [SMG16, BBMT18].
These works show that 4-bit non-linear encodings, which were recommended in the original
scheme by Chow et al. for size reasons, are insecure in that context. Both works focus their
analysis mainly on non-linear encodings, and on the (practically highly relevant) case of a
white-box implementation of AES following [CEJVOO02b]. By contrast our work considers
only affine encodings and requires full white-box access, but does so within a more general
CEJO framework with an arbitrary SPN cipher and arbitrary (affine) encodings.

Structure of the Article.

In Section 2, we describe our generic algorithm to recover affine encodings in SPN ciphers in
detail, together with its complexity analysis. In Section 3, we describe the white-box scheme
by Baek et al.. In Section 4, we first point out that our algorithm from Section 2 breaks
this scheme in a generic manner, then develop a second dedicated attack underpinned by
a different technique, and discuss its implementation.

2 A Generic Algorithm to Recover Affine Encodings in
SPN Ciphers

In this section, we present our algorithm for solving the affine equivalence problem in the
case where the inner non-linear layer is composed of parallel S-boxes. As discussed in the
introduction, solving this problem amounts to recovering affine encodings from a white-box
implementation of any SPN cipher based on Chow et al.’s approach, regardless of the way
the encodings are built. More precisely, our algorithm solves the following problem.

Problem 1. Let F' be an n-bit to n-bit permutation such that F' =B oS o A, where:
1. A and B are n-bit affine layers;

2. S =(S1,...,Sk) consists of the parallel application of k permutations S; on m bits
each (called S-bozxes). Note that n = km.

Knowing S, and given oracle access to F (but not F~'), find affine A', B’ such that
F=BoSoA.

Before we move on to the algorithm itself, a few remarks are in order.

128 On Recovering Affine Encodings in White-Box Implementations

Remark 1. First, our statement of the problem allows the algorithm to query F, but
not F~!. This is tailored to match the real situation of recovering an affine white-box
encoding. Indeed, white box schemes following the CEJO framework allow access to
F, but not to F~!, as the output of F is computed as a sum of some hard-coded table
outputs, and inverting F would require knowing how to split a given output of F into the
appropriate sum. To the best of our knowledge, the most straightforward way to achieve
this is actually to break the scheme.

Of course, in other contexts, a variant of Problem 1 where the algorithm is granted
access to both F' and F~! may also be worth considering. If n is small, it should be noted
that =1 can be computed exhaustively in 2" operations, so if we are willing to pay 2"
calls to F', both variants of the problem become equivalent. In fact, our own algorithm
will first isolate the input and output space of each S-box, then exhaust that space in 2™
operations for each S-box, which will allow us to access the inverse mapping of each S-box.
Thus, essentially, our own algorithm will allow us to revert back to the case where the
direct and inverse mappings are both available. In particular, it is not obvious how our
algorithm could be improved even if F~! were accessible. In this regard, we note that
Baek et al. explicitly provide an algorithm to solve Problem 1 when F and F~! are both
available, in O (n*23™ /m) operations [BCH16]. However this is slower than our algorithm
for all reasonable parameter ranges, even though our algorithm does not require access to
F~1 (as noted in the introduction, Baek et al. also propose an algorithm when only F is
accessible, but it is much slower).

Remark 2. As stated, Problem 1 asks to recover some affine encodings A’, B’ such
that F' = B’ 0 S o A, but not necessarily A and B. This is because A and B may not be
uniquely defined. In fact, if all S-boxes are identical (as is common in SPN ciphers), and
as soon as there is more than one S-box, A and B cannot be uniquely defined: indeed,
any solution (A, B) can be replaced by (P o A, Bo P~!), where P is any permutation
swapping S-box inputs. Problem 1 merely asks to recover a solution. However, because our
algorithm eventually reduces the problem to the affine equivalence problem for each S-box,
which is solved using the algorithm by Dinur, and that algorithm is able to enumerate all
solutions if desired, it is straightforward to adapt our algorithm so that it outputs every
solution.

Remark 3. The special case of Problem 1 where encodings are linear instead of
affine may also be worth considering. As mentioned in the previous remark however, our
algorithm eventually reduces Problem 1 to the affine equivalence problem for each S-box
separately. As such, our algorithm can be trivially adapted to the linear variant of the
problem by using a linear equivalence algorithm on each S-box, instead of an affine one.

Remark 4. In the special case where k£ = 1, i.e. S is composed of a single S-box,
Problem 1 is precisely the affine equivalence problem tackled by Biryukov et al. [BCBP03]
and Dinur [Din18], with the caveat that F~1 is not accessible. However, as mentioned in
the introduction, the O (n32") time complexity of the faster algorithm by Dinur precludes
its use on full 128-bit blocks. From this perspective, the point of our algorithm is to
achieve better time complexity, and in particular, practical complexity for n upwards of
128 bits, by using the fact that S is split into relatively small m-bit S-boxes.

2.1 Overview of the Algorithm

In a nutshell, the idea of the algorithm is to first isolate the input and output subspaces of
each S-box, then apply the generic affine equivalence algorithm by Dinur to each S-box
separately.

Thus, the first step of the algorithm is to find the input subspace of each S-box. More
precisely, we want to build a subspace of dimension m of the input space, such that this
subspace spans all 2™ possible values at the input of a single fixed S-box, and yields a
constant value at the input of all other S-boxes. To achieve this, we use a differential

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Brice Minaud 129

cryptanalysis approach. Namely, we pick uniformly at random an input difference A. With
probability 27 A yields a zero difference at the input of a particular S-box. We can
easily ascertain whether this is the case by checking that the set of output differences
generated by input difference A spans a subspace of dimension n — m. If that is the case,
then A yields a zero difference at the input of one S-box, and non-zero differences at the
output of all other k — 1 S-boxes3.

By repeating this process a few times, we can eventually find n —m linearly independent
input differences that yield a zero difference at the input of the same S-box. By going
through this process for each S-box, we recover k spaces of dimension n — m, each yielding
a zero difference at the input of a distinct S-box. Now if we pick any k — 1 of these
spaces and compute their intersection, we obtain a space of dimension m that yields a zero
difference at the input of £ — 1 S-boxes, and spans all values at the input of the remaining
S-box. This is precisely the space we wanted to build.

Indeed, if we query the overall permutation F' on all 2™ values forming such a subspace,
we obtain a mapping that is affine equivalent to the corresponding S-box. It remains to
apply the affine equivalence algorithm by Dinur to recover affine mappings witnessing the
affine equivalence for that S-box. We repeat this process for all S-boxes. Finally we merge
together the affine mappings thus recovered for each S-box to obtain the overall solution.

2.2 Description of the Algorithm

We will first detail our algorithm in the case that all S-boxes are the same, and then explain
how to adapt it to the case of different S-boxes. The main idea to solve this problem is to
find all input difference spaces I; which activate only one of the S-boxes. That is, for a
difference A € I, and any message x € Fy, the difference after the application of A, i.e.
A= A(z) @ A(x @ A), is zero except on m consecutive bits corresponding to the input of
the i-th S-box. Indeed for such an input difference space I; C Fg, since the S-boxes are
bijective, the output difference space O; = F'(z) @ F(z @ I;) C Fy is of dimension m, for
any x € F. Note that this output space O; does not depend on the choice of x. Therefore
we can compute affine mappings P; (from F3* to I;) and Q; (from O; to F3") such that
S" = Qj o F oPjis a bijection over F5* which is affine equivalent to the S-box S. We can
then use the affine equivalence algorithm by Dinur to recover two affine mappings A;, B;
such that S’ = B; 0 S o A;. By doing this for each S-box, we will be able to build two
affine layers A’ and B’ such that £ =B 0o (S,...,5) o A’

Computing the I;’s. To compute the input spaces that we are looking for, we will begin
by computing all input spaces V; which activate at most £ — 1 S-boxes. More precisely,
for i from 1 to k the space V; is such that, for any A € V; and x € F}, we have that
A(z) ® A(x @ A) is zero on m bits corresponding to the input of the i-th S-box. There is
k such spaces and once we have them, we can recover all the input spaces I; by computing
the intersection of £ — 1 spaces V;.

Computing the V;’s. We first remark that if we have a difference A € V;, then the
output vector space of differences O; will be of dimension n — m instead of n since one
S-box will be inactive. This is the test we will use to construct the V;’s. The idea is to
pick a difference A at random as well as n — m + [messages and then check whether the
dimension of the output is lower or equal to n —m. For a large enough value [, a difference
A will satisfy the condition if and only if it belongs to one of the V;’s. Repeating this
procedure enough time would allow us to fully recover the spaces V;. However this would

3Tt should be noted that our algorithm makes a (very mild) assumption about the non-linearity of
S-boxes: namely, we assume that, for most differences at the input of one S-box, the corresponding set of
reachable output differences spans the whole output space of that S-box. In particular, this requires that
the S-box does not have a linear approximation of probability one (in the sense of linear cryptanalysis).
By construction, cryptographic S-boxes are expected to fulfill this requirement.

