Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model

Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, *François-Xavier Standaert*

TU Darmstadt (Germany), Radbout University Nijmegen (The Netherlands), DarkMatter LLC (UAE), UCLouvain (Belgium)

CHES 2018, Amsterdam, The Netherlands

Noisy leakages security: $N \propto \frac{c}{MI(X;L)}$ Goal (ideally): $MI(X;L) < MI(X_i;L_i)^d$

Noisy leakages security: $N \propto \frac{c}{MI(X;L)}$ Goal (ideally): $MI(X;L) < MI(X_i;L_i)^d$

Masking (e.g., Boolean $x = x_1 + x_2 + \cdots + x_d$)

Probing security:

Sets of (d-1) probes are \bot of X (ideally)

Bounded moment security:

Noisy leakages security: $N \propto \frac{c}{MI(X;L)}$ Goal (ideally): $MI(X;L) < MI(X_i;L_i)^d$

Security reductions

What can go wrong? (e.g., when computing a.b) 3

Issue #1. Lack of randomness (can break the independence assumption)

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} \Rightarrow \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Example: probing $c_1 = a_1 \cdot (b_1 + b_2 + b_3)$ reveals information on b (when $c_1 = 1$)

What can go wrong? (e.g., when computing a.b) 3

Issue #1. Lack of randomness (can break the independence assumption)

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} + \begin{pmatrix} 0 & r_1 & r_2 \\ r_2 & 0 & r_3 \\ r_2 & r_3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

- mitigated by adding «refreshing gadgets »
- can be analyzed in the probing model

Issue #1. Lack of randomness (can break the independence assumption)

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} + \begin{pmatrix} 0 & r_1 & r_2 \\ r_2 & 0 & r_3 \\ r_2 & r_3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

mitigated by adding «refreshing gadgets »
can be analyzed in the probing model

Issue #2. Physical defaults

(can break the independence assumption)

Example: glitches (transcient values) « re-combine » the shares such that:

$$L_i = \delta(x_1 \cdot x_2 \cdot x_3)$$

(detected in the bounded moment model)

Issue #1. Lack of randomness (can break the independence assumption)

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} + \begin{pmatrix} 0 & r_1 & r_2 \\ r_2 & 0 & r_3 \\ r_2 & r_3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

mitigated by adding «refreshing gadgets »
can be analyzed in the probing model

Issue #2. Physical defaults

(can break the independence assumption)

- mitigated by adding a « noncompleteness » property
 [≈ Theshold Implementations]
- abstract property: can be analyzed in the probing model!

q-probing security [ISW, 2004]: any *q*-tuple of shares in the protected circuit is independent of any sensitive variable

q-probing security [ISW, 2004]: any *q*-tuple of shares in the protected circuit is independent of any sensitive variable

Problem: the cost of testing probing security increases (very) fast with circuit size and the # of shares (since ∃ many tuples) [Barthe et al., Eurocrypt 2015]

 $q_1 + q_2 \le q$

 q_1 internal probes

 q_2 output probes

q-probing security [ISW, 2004]: any *q*-tuple of shares in the protected circuit is independent of any sensitive variable

q-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., f1) is NI (SNI) if any set of $q_1 + q_2$ probes can be simulated with at most $q_1 + q_2$ (only q_1) shares of each input

 $D(\text{input shares}||\text{probes}) \approx D(\text{input shares}||\text{simulation})$

 $q_1 + q_2 \le q$

 q_1 internal probes

 q_2 output probes

q-probing security [ISW, 2004]: any *q*-tuple of shares in the protected circuit is independent of any sensitive variable

q-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., f1) is NI (SNI) if any set of $q_1 + q_2$ probes can be simulated with at most $q_1 + q_2$ (only q_1) shares of each input

 $D(\text{input shares}||\text{probes}) \approx D(\text{input shares}||\text{simulation})$

Problem statement (simplified)

 Composable masking schemes ignore physical defaults such as glitches

(a_1b_1)	$a_{1}b_{2}$	a_1b_3		0	r_1	r_2
a_2b_1	$a_{2}b_{2}$	a_2b_3	+	r_2	0	r_3
$\langle a_3 b_1 \rangle$	$a_{3}b_{2}$	$a_3b_3/$		$\langle r_2$	r_3	0/

Problem statement (simplified)

 Composable masking schemes ignore physical defaults such as glitches

(a_1b_1)	a_1b_2	a_1b_3		0	r_1	r_2
a_2b_1	a_2b_2	a_2b_3	+	r_2	0	r_3
$\langle a_3 b_1 \rangle$	$a_{3}b_{2}$	$a_3b_3/$		$\langle r_2$	r_3	0 /

Treshold implementations
mitigate glitches but are
only proven "uniform"
(≈ probing secure)
⇒ testing scales badly

Problem statement (simplified)

 Composable masking schemes ignore physical defaults such as glitches

- $\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix} + \begin{pmatrix} 0 & r_1 & r_2 \\ r_2 & 0 & r_3 \\ r_2 & r_3 & 0 \end{pmatrix}$
- Treshold implementations
 mitigate glitches but are
 only proven "uniform"
 (≈ probing secure)
 ⇒ testing scales badly
- Design & prove masked implementations that are (*jointly*!) robust against glitches and composable

Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: p_1 gives a, b and c

Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: p_1 gives a, b and c

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: p_1 gives a, b and c

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is **glitch-robust** *q***-SNI** if it is *q*-SNI in the "glitch-extended" probing model

Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: p_1 gives a, b and c

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is **glitch-robust** *q***-SNI** if it is *q*-SNI in the "glitch-extended" probing model

 \Rightarrow Shares' fan in of robust gadgets should be minimum

Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: p_1 gives a, b and c

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is **glitch-robust** *q***-SNI** if it is *q*-SNI in the "glitch-extended" probing model

⇒ Shares' fan in of robust gadgets should be minimum
 ⇒ Outputs of SNI gadgets should be stored in registers

- 2nd example: 1 extended probe
 - $G(u_{1,2}) \coloneqq (a_1, b_2, r_{1,2})$
 - Non-extended c_1
- to simul. with 1 share/input

How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in a robust-SNI manner
- Perform linear operations independently on each share

[Goudarzi & Rivain, Eurocrypt 2018], [Cassiers & Standaert, ePrint 2018]

How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in a robust-SNI manner
- Perform linear operations independently on each share

[Goudarzi & Rivain, Eurocrypt 2018], [Cassiers & Standaert, ePrint 2018]

⇒ Allows building arbitrary circuits without risk of glitches nor compositional flaws

How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in a robust-SNI manner
- Perform linear operations independently on each share

[Goudarzi & Rivain, Eurocrypt 2018], [Cassiers & Standaert, ePrint 2018]

⇒ Allows building arbitrary
 circuits without risk of glitches
 nor compositional flaws
 (Sufficient but not necessary!)

- Main contributions:
 - 1. Robust probing model
 - Allows analyzing formally and confirming the relevance of many designs ideas (e.g., Threshold Implementations, Domain Oriented Masking, Unified Masking Approach, Generic Low Latency Masking, ...)
 - Not only a theoretical concern!
 - Higher-order flaws in many published designs
 - <u>https://eprint.iacr.org/2018/490</u>
 - 2. A 1st multiplication algorithm/implementation proven robust against glitches and composable at any order

Other results

- "Glitch Locality Principle"
 - Glitch-robust NI + SNI (wo glitches) = glitch-robust SNI
 - By contrast, glitch-robust probing security
 + SNI (wo glitches) ≠ glitch-robust SNI
- More general model to capture other physical defaults (e.g., transitions-based leakages, coupling)
 - And a discussion of how they are combined
- Empirical validation (for 2-share and 3-share designs)
- More results on Threshold Implementations
 - Pseudo-composability and reduced randomness
 - # of cycles vs. randomness tradeoff
 - More TI decompositions based on Feistel nets.

THANKS http://perso.uclouvain.be/fstandae/

- Typical example: Toffoli gate $c = x \cdot y + z$
- Threshold implementation:

$$c_{1} = (x_{1} \cdot y_{1}) + (x_{1} \cdot y_{2}) + (x_{2} \cdot y_{1}) + z_{1}$$

$$c_{2} = (x_{2} \cdot y_{2}) + (x_{2} \cdot y_{3}) + (x_{3} \cdot y_{2}) + z_{2}$$

$$c_{3} = (x_{3} \cdot y_{3}) + (x_{1} \cdot y_{3}) + (x_{3} \cdot y_{1}) + z_{3}$$

- Typical example: Toffoli gate $c = x \cdot y + z$
- Threshold implementation:

$$c_1 = (x_1 \cdot y_1) + (x_1 \cdot y_2) + (x_2 \cdot y_1) + z_1 c_2 = (x_2 \cdot y_2) + (x_2 \cdot y_3) + (x_3 \cdot y_2) + z_2 c_3 = (x_3 \cdot y_3) + (x_1 \cdot y_3) + (x_3 \cdot y_1) + z_3$$

- Not NI nor SNI (e.g., it is impossible to simulate a probe on C₁ with a single share per input (lack of internal rand)
 - But "pseudo-NI/pseudo-SNI" if the monomials of z are used once and one assumes that can be considered as random
 - Can lead to nice randomness optimizations at low orders!