## Composable Masking Schemes in the Presence of Physical Defaults \& the Robust Probing Model



Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier Standaert

TU Darmstadt (Germany), Radbout University Nijmegen (The Netherlands), DarkMatter LLC (UAE), UCLouvain (Belgium)

CHES 2018, Amsterdam, The Netherlands

## Masking (e.g., Boolean $x=x_{1}+x_{2}+\cdots+x_{d}$ )



Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}(X ; L)}$
Goal (ideally): $\operatorname{MI}(X ; \boldsymbol{L})<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}$

## Masking (e.g., Boolean $x=x_{1}+x_{2}+\cdots+x_{d}$ )



Bounded moment security:

(d-1)th order statistical moment (ideally)


## Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}_{(X ; L)}}$

$$
\text { Goal (ideally): } \operatorname{MI}(X ; L)<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}
$$

## Masking (e.g., Boolean $x=x_{1}+x_{2}+\cdots+x_{d}$ )



## Probing security:

Sets of (d-1) probes are $\Perp$ of $X$ (ideally)

## Bounded moment security:


(d-1)th order statistical moment (ideally)
trace


Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}(X ; L)}$
Goal (ideally): $\operatorname{MI}(X ; \boldsymbol{L})<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}$

## Security reductions



## What can go wrong? (e.g., when computing a.b)

Issue \#1. Lack of randomness (can break the independence assumption)
$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$
Example: probing $c_{1}=a_{1} .\left(b_{1}+b_{2}+b_{3}\right)$ reveals information on $b$ (when $c_{1}=1$ )

## What can go wrong? (e.g., when computing $a . b$ )

Issue \#1. Lack of randomness (can break the independence assumption)

$$
\left(\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right)+\left(\begin{array}{ccc}
0 & r_{1} & r_{2} \\
r_{2} & 0 & r_{3} \\
r_{2} & r_{3} & 0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

- mitigated by adding «refreshing gadgets»
- can be analyzed in the probing model


## What can go wrong? (e.g., when computing $a . b$ )

Issue \#1. Lack of randomness (can break the independence assumption)
$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

- mitigated by adding «refreshing gadgets »
- can be analyzed in the probing model


## Issue \#2. Physical defaults

(can break the independence assumption)
Example: glitches (transcient values) «re-combine » the shares such that:

$$
L_{i}=\delta\left(x_{1} \cdot x_{2} \cdot x_{3}\right)
$$

(detected in the bounded moment model)


## What can go wrong? (e.g., when computing $a . b$ ) <br> Issue \#1. Lack of randomness (can break the independence assumption)

$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

- mitigated by adding «refreshing gadgets»
- can be analyzed in the probing model

Issue \#2. Physical defaults
(can break the independence assumption)

- mitigated by adding a « noncompleteness » property [ $\approx$ Theshold Implementations]
- abstract property: can be analyzed in the probing model!



## Security notions (and scalability)


q-probing security [ISW, 2004]: any $q$-tuple of shares in the protected circuit is independent of any sensitive variable

## Security notions (and scalability)


q-probing security [ISW, 2004]: any $q$-tuple of shares in the protected circuit is independent of any sensitive variable
Problem: the cost of testing probing security increases (very) fast with circuit size and the \# of shares (since $\exists$ many tuples)
[Barthe et al., Eurocrypt 2015]

## Security notions (and scalability)


$\boldsymbol{q}$-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., $\mathrm{f}_{1}$ ) is $\mathrm{NI}(\mathrm{SNI})$ if any set of $q_{1}+q_{2}$ probes can be simulated with at most $q_{1}+q_{2}$ (only $q_{1}$ ) shares of each input

D (input shares||probes) $\approx \mathrm{D}$ (input shares\|simulation)

## Security notions (and scalability)


$\boldsymbol{q}$-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., $\mathrm{f}_{1}$ ) is $\mathrm{NI}(\mathrm{SNI})$ if any set of $q_{1}+q_{2}$ probes can be simulated with at most $q_{1}+q_{2}$ (only $q_{1}$ ) shares of each input

D (input shares||probes) $\approx \mathrm{D}$ (input shares\|simulation)

## Problem statement (simplified)

- Composable masking $\begin{aligned} & \text { schemes ignore physical } \\ & \text { defaults such as glitches }\end{aligned}\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right)$


## Problem statement (simplified)

Composable masking schemes ignore physical defaults such as glitches

$$
\left(\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{1} b_{1} & a_{2} b_{2} & a_{2} b_{3}
\end{array}\right)+\left(\begin{array}{cc}
r_{1} \\
r_{3} b_{1} & a_{3} b_{3}
\end{array} a_{2} a_{3} b_{3}\right)+\left(\begin{array}{cc}
r_{2} \\
r_{2} & r_{3} \\
\hline
\end{array}\right)
$$



- Treshold implementations mitigate glitches but are only proven "uniform"
( $\approx$ probing secure)
$\Rightarrow$ testing scales badly


## Problem statement (simplified)

- Composable masking schemes ignore physical defaults such as glitches

$$
\left(\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right)+\left(\begin{array}{ccc}
0 & r_{1} & r_{2} \\
r_{2} & 0 & r_{3} \\
r_{2} & r_{3} & 0
\end{array}\right)
$$



- Treshold implementations mitigate glitches but are only proven "uniform" ( $\approx$ probing secure) $\Rightarrow$ testing scales badly
- Design \& prove masked implementations that are (jointly!) robust against glitches and composable


## (Refined) model and security definition



Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: $p_{1}$ gives $a, b$ and $c$

## (Refined) model and security definition



Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: $p_{1}$ gives $a, b$ and $c$

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

## (Refined) model and security definition



Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: $p_{1}$ gives $a, b$ and $c$

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is glitch-robust $\boldsymbol{q}$-SNI if it is $q$-SNI in the "glitch-extended" probing model

## (Refined) model and security definition



Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: $p_{1}$ gives $a, b$ and $c$

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is glitch-robust $q-S N I$ if it is $q-\mathrm{SNI}$ in the "glitch-extended" probing model
$\Rightarrow$ Shares' fan in of robust gadgets should be minimum

## (Refined) model and security definition



Glitch-extended probes: probing any output of a combinatorial subcircuit allows the adversary to observe all the sub-circuit inputs

Example: $p_{1}$ gives $a, b$ and $c$

Technical clarification: non-extended probes on the stable registers' values have to be considered in the simulation too

Definition: a gadget is glitch-robust $q-S N I$ if it is q-SNI in the "glitch-extended" probing model
$\Rightarrow$ Shares' fan in of robust gadgets should be minimum
$\Rightarrow$ Outputs of SNI gadgets should be stored in registers

## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust $q$-SNI in 2 cycles



## ISW mult. is glitch-robust q-SNI in 2 cycles



## How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in a robust-SNI manner
- Perform linear operations independently on each share
[Goudarzi \& Rivain, Eurocrypt 2018], [Cassiers \& Standaert, ePrint 2018]



## How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in
a robust-SNI manner
Perform linear operations
independently on each share
[Goudarzi \& Rivain, Eurocrypt 2018],
[Cassiers \& Standaert, ePrint 2018]
$\Rightarrow$ Allows building arbitrary circuits without risk of glitches nor compositional flaws



## How to compose (simply)

- Multiplications: use only robust-SNI multiplications with one input refreshed in a robust-SNI manner
- Perform linear operations independently on each share [Goudarzi \& Rivain, Eurocrypt 2018], [Cassiers \& Standaert, ePrint 2018]
$\Rightarrow$ Allows building arbitrary circuits without risk of glitches nor compositional flaws
(Sufficient but not necessary!)



## Conclusions

- Main contributions:

1. Robust probing model

- Allows analyzing formally and confirming the relevance of many designs ideas (e.g., Threshold Implementations, Domain Oriented Masking, Unified Masking Approach, Generic Low Latency Masking, ...)
- Not only a theoretical concern!
- Higher-order flaws in many published designs
- https://eprint.iacr.org/2018/490

2. $A 1^{\text {st }}$ multiplication algorithm/implementation proven robust against glitches and composable at any order

## Other results

- "Glitch Locality Principle"
- Glitch-robust NI + SNI (wo glitches) = glitch-robust SNI
- By contrast, glitch-robust probing security
+ SNI (wo glitches) $=$ glitch-robust SNI
- More general model to capture other physical defaults (e.g., transitions-based leakages, coupling)
- And a discussion of how they are combined
- Empirical validation (for 2-share and 3-share designs)
- More results on Threshold Implementations
- Pseudo-composability and reduced randomness
- \# of cycles vs. randomness tradeoff
- More TI decompositions based on Feistel nets.


## THANKS

http://perso.uclouvain.be/fstandae/

## Pseudo-composability

- Typical example: Toffoli gate $c=x \cdot y+z$
- Threshold implementation:

$$
\begin{aligned}
& c_{1}=\left(x_{1} \cdot y_{1}\right)+\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+z_{1} \\
& c_{2}=\left(x_{2} \cdot y_{2}\right)+\left(x_{2} \cdot y_{3}\right)+\left(x_{3} \cdot y_{2}\right)+z_{2} \\
& c_{3}=\left(x_{3} \cdot y_{3}\right)+\left(x_{1} \cdot y_{3}\right)+\left(x_{3} \cdot y_{1}\right)+z_{3}
\end{aligned}
$$

## Pseudo-composability

- Typical example: Toffoli gate $c=x \cdot y+z$
- Threshold implementation:

$$
\begin{aligned}
& c_{1}=\left(x_{1} \cdot y_{1}\right)+\left(x_{1} \cdot y_{2}\right)+\left(x_{2} \cdot y_{1}\right)+z_{1} \\
& c_{2}=\left(x_{2} \cdot y_{2}\right)+\left(x_{2} \cdot y_{3}\right)+\left(x_{3} \cdot y_{2}\right)+z_{2} \\
& c_{3}=\left(x_{3} \cdot y_{3}\right)+\left(x_{1} \cdot y_{3}\right)+\left(x_{3} \cdot y_{1}\right)+z_{3}
\end{aligned}
$$

- Not NI nor SNI (e.g., it is impossible to simulate a probe on $c_{1}$ with a single share per input (lack of internal rand)
- But "pseudo-NI/pseudo-SNI" if the monomials of $z$ are used once and one assumes that can be considered as random
- Can lead to nice randomness optimizations at low orders!

