
Composable Masking Schemes in the Presence of
Physical Defaults & the Robust Probing Model

Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo,
Clara Paglialonga, François-Xavier Standaert

TU Darmstadt (Germany), Radbout University Nijmegen (The
Netherlands), DarkMatter LLC (UAE), UCLouvain (Belgium)

CHES 2018, Amsterdam, The Netherlands

Masking (e.g., Boolean 𝒙 = 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒅) 1

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Masking (e.g., Boolean 𝒙 = 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒅) 1

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Bounded moment security:

𝑖1,𝑖2,…,𝑖𝑑−1

𝐿𝑖 𝑋

(𝑑-1)th order statistical moment (ideally)

Bounded moment security:

𝑖1,𝑖2,…,𝑖𝑑−1

𝐿𝑖 𝑋

(𝑑-1)th order statistical moment (ideally)

Masking (e.g., Boolean 𝒙 = 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒅) 1

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Probing security:

Sets of (𝑑-1) probes are of 𝑋 (ideally)

𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑑

Security reductions 2

n
o

is
y

le
ak

ag
es

b
o

u
n

d
ed

m
o

m
en

t
p

ro
b

in
g

a
b

st
ra

ct
-q

u
a

lit
a

ti
ve

p
hy

si
ca

l-
q

u
a

lit
a

ti
ve

p
hy

si
ca

l-
q

u
a

n
ti

ta
ti

ve

[Barthe et al.,
Eurocrypt 2017]

[Duc et al.,
Eurocrypt 2014]

𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑑

What can go wrong? (e.g., when computing 𝒂. 𝒃) 3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⇒

𝑐1
𝑐2
𝑐3

Example: probing 𝑐1 = 𝑎1. 𝑏1 + 𝑏2 + 𝑏3
reveals information on 𝑏 (when 𝑐1 = 1)

Issue #1. Lack of randomness (can break the independence assumption)

What can go wrong? (e.g., when computing 𝒂. 𝒃) 3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

What can go wrong? (e.g., when computing 𝒂. 𝒃) 3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

Example: glitches (transcient values)
« re-combine » the shares such that:

(detected in the bounded moment model)

𝐿𝑖 = 𝛿(𝑥1 ∙ 𝑥2 ∙ 𝑥3)

Issue #2. Physical defaults
(can break the independence assumption)

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

What can go wrong? (e.g., when computing 𝒂. 𝒃) 3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding a « non-
completeness » property
[≈ Theshold Implementations]

• abstract property: can be
analyzed in the probing model!

Issue #2. Physical defaults
(can break the independence assumption)

Security notions (and scalability) 4

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Security notions (and scalability) 4

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (since ∃many tuples)
[Barthe et al., Eurocrypt 2015]

Security notions (and scalability) 4

𝑞1 internal probes

𝑞2 output probes

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent of
any sensitive variable

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit
gadget (e.g., f1) is NI (SNI) if any set of 𝑞1 + 𝑞2 probes can be

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Security notions (and scalability) 4

𝑞1 internal probes

𝑞2 output probes

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent of
any sensitive variable

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit
gadget (e.g., f1) is NI (SNI) if any set of 𝑞1 + 𝑞2 probes can be

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Problem statement (simplified) 5

• Composable masking
schemes ignore physical
defaults such as glitches

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+
0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

Problem statement (simplified) 5

• Composable masking
schemes ignore physical
defaults such as glitches

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+
0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

x1 y1

x2

x3

y2

y3

f2

f1

f3

• Treshold implementations
mitigate glitches but are
only proven “uniform”
(≈ probing secure)
⇒ testing scales badly

• Treshold implementations
mitigate glitches but are
only proven “uniform”
(≈ probing secure)
⇒ testing scales badly

Problem statement (simplified) 5

• Composable masking
schemes ignore physical
defaults such as glitches

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+
0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

x1 y1

x2

x3

y2

y3

f2

f1

f3

• Design & prove masked implementations that are
(jointly!) robust against glitches and composable

(Refined) model and security definition 6

Glitch-extended probes: probing
any output of a combinatorial sub-
circuit allows the adversary to
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

𝑝1

(Refined) model and security definition 6

Glitch-extended probes: probing
any output of a combinatorial sub-
circuit allows the adversary to
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

𝑝1

Technical clarification: non-extended probes on the stable
registers’ values have to be considered in the simulation too

𝑝2

(Refined) model and security definition 6

Glitch-extended probes: probing
any output of a combinatorial sub-
circuit allows the adversary to
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝑝1

Technical clarification: non-extended probes on the stable
registers’ values have to be considered in the simulation too

𝑝2

(Refined) model and security definition 6

Glitch-extended probes: probing
any output of a combinatorial sub-
circuit allows the adversary to
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝒑𝟏

Technical clarification: non-extended probes on the stable
registers’ values have to be considered in the simulation too

⇒ Shares’ fan in of robust gadgets should be minimum

𝑝2

(Refined) model and security definition 6

Glitch-extended probes: probing
any output of a combinatorial sub-
circuit allows the adversary to
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝒑𝟏

Technical clarification: non-extended probes on the stable
registers’ values have to be considered in the simulation too

⇒ Shares’ fan in of robust gadgets should be minimum
⇒ Outputs of SNI gadgets should be stored in registers

𝒑𝟐

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

Example with:
• 𝑑 = 3
• 𝑞 = 2

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

The adversary can observe:

• 12 glitch-extended probes
• 𝑢𝑖,𝑗’s and 𝑐𝑖’s

• 3 stable (output) probes 𝑐𝑖’s

⇒We need to describe a
simulator using 𝑞1 shares/input

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

to simul. with 2 shares/input

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

 𝑢2,1 (𝑎2𝑏1): use a 2nd share of 𝑎
 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

 𝑢2,1 (𝑎2𝑏1): use a 2nd share of 𝑎
 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

 to simul. with 1 share/input

ISW mult. is glitch-robust 𝒒-SNI in 2 cycles 7

• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑐1: random value (simulation

with 1 share/input impossible
with an extended probe on 𝑐1)

How to compose (simply) 8

• Multiplications: use only
robust-SNI multiplications
with one input refreshed in
a robust-SNI manner

• Perform linear operations
independently on each share

[Goudarzi & Rivain, Eurocrypt 2018],
[Cassiers & Standaert, ePrint 2018]

How to compose (simply) 8

• Multiplications: use only
robust-SNI multiplications
with one input refreshed in
a robust-SNI manner

• Perform linear operations
independently on each share

[Goudarzi & Rivain, Eurocrypt 2018],
[Cassiers & Standaert, ePrint 2018]

⇒ Allows building arbitrary
circuits without risk of glitches

nor compositional flaws

How to compose (simply) 8

• Multiplications: use only
robust-SNI multiplications
with one input refreshed in
a robust-SNI manner

• Perform linear operations
independently on each share

[Goudarzi & Rivain, Eurocrypt 2018],
[Cassiers & Standaert, ePrint 2018]

⇒ Allows building arbitrary
circuits without risk of glitches

nor compositional flaws
(Sufficient but not necessary!)

Conclusions 9

• Main contributions:

1. Robust probing model
• Allows analyzing formally and confirming the

relevance of many designs ideas (e.g., Threshold
Implementations, Domain Oriented Masking, Unified
Masking Approach, Generic Low Latency Masking, …)

• Not only a theoretical concern!
• Higher-order flaws in many published designs

• https://eprint.iacr.org/2018/490

2. A 1st multiplication algorithm/implementation proven
robust against glitches and composable at any order

https://eprint.iacr.org/2018/490

Other results 10

• “Glitch Locality Principle”
• Glitch-robust NI + SNI (wo glitches) = glitch-robust SNI

• By contrast, glitch-robust probing security
+ SNI (wo glitches) ≠ glitch-robust SNI

• More general model to capture other physical defaults
(e.g., transitions-based leakages, coupling)
• And a discussion of how they are combined

• Empirical validation (for 2-share and 3-share designs)

• More results on Threshold Implementations
• Pseudo-composability and reduced randomness
• # of cycles vs. randomness tradeoff
• More TI decompositions based on Feistel nets.

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

Pseudo-composability a

𝑐2 = 𝑥2 ∙ 𝑦2 + 𝑥2 ∙ 𝑦3 + 𝑥3 ∙ 𝑦2 + 𝑧2

• Typical example: Toffoli gate 𝑐 = 𝑥 ∙ 𝑦 + 𝑧

• Threshold implementation:

𝑐1 = 𝑥1 ∙ 𝑦1 + 𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1 + 𝑧1

𝑐3 = 𝑥3 ∙ 𝑦3 + 𝑥1 ∙ 𝑦3 + 𝑥3 ∙ 𝑦1 + 𝑧3

Pseudo-composability a

𝑐2 = 𝑥2 ∙ 𝑦2 + 𝑥2 ∙ 𝑦3 + 𝑥3 ∙ 𝑦2 + 𝑧2

• Typical example: Toffoli gate 𝑐 = 𝑥 ∙ 𝑦 + 𝑧

• Threshold implementation:

• Not NI nor SNI (e.g., it is impossible to simulate a probe on

𝑐1 with a single share per input (lack of internal rand)
• But “pseudo-NI/pseudo-SNI” if the monomials of 𝑧 are used

once and one assumes that can be considered as random
• Can lead to nice randomness optimizations at low orders!

𝑐1 = 𝑥1 ∙ 𝑦1 + 𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1 + 𝑧1

𝑐3 = 𝑥3 ∙ 𝑦3 + 𝑥1 ∙ 𝑦3 + 𝑥3 ∙ 𝑦1 + 𝑧3

