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Masking (e.g., Boolean 𝒙 = 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒅) 1

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Probing security:

Sets of (𝑑-1) probes are       of 𝑋 (ideally)

𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑑
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[Barthe et al.,
Eurocrypt 2017]

[Duc et al.,
Eurocrypt 2014]

𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑑
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What can go wrong? (e.g., when computing 𝒂. 𝒃) 3

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding a « non-
completeness » property
[≈ Theshold Implementations]

• abstract property: can be
analyzed in the probing model! 

Issue #2. Physical defaults
(can break the independence assumption)
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𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the 
protected circuit is independent  
of any sensitive variable 

Problem: the cost of testing 
probing security increases (very) 
fast with circuit size and the # of 
shares (since ∃many tuples) 
[Barthe et al., Eurocrypt 2015]
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• Composable masking 
schemes ignore physical 
defaults such as glitches
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• Design & prove masked implementations that are 
(jointly!) robust against glitches and composable
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(Refined) model and security definition 6

Glitch-extended probes: probing 
any output of a combinatorial sub-
circuit allows the adversary to 
observe all the sub-circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is 
𝑞-SNI in the “glitch-extended” probing model 

𝒑𝟏

Technical clarification: non-extended probes on the stable 
registers’ values have to be considered in the simulation too

⇒ Shares’ fan in of robust gadgets should be minimum 
⇒ Outputs of SNI gadgets should be stored in registers 

𝒑𝟐
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The adversary can observe:

• 12 glitch-extended probes
• 𝑢𝑖,𝑗’s and 𝑐𝑖’s

• 3 stable (output) probes 𝑐𝑖’s

⇒We need to describe a 
simulator using 𝑞1 shares/input
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to simul. with 2 shares/input
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• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
 𝑟1,2: random value
 𝑐1: random value (simulation 

with 1 share/input impossible 
with an extended probe on 𝑐1)
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How to compose (simply) 8

• Multiplications: use only 
robust-SNI multiplications 
with one input refreshed in     
a robust-SNI manner

• Perform linear operations 
independently on each share

[Goudarzi & Rivain, Eurocrypt 2018],
[Cassiers & Standaert, ePrint 2018]

⇒ Allows building arbitrary 
circuits without risk of glitches  

nor compositional flaws
(Sufficient but not necessary!)
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• Main contributions:

1. Robust probing model
• Allows analyzing formally and confirming the 

relevance of many designs ideas (e.g., Threshold 
Implementations, Domain Oriented Masking, Unified 
Masking Approach, Generic Low Latency Masking, …)

• Not only a theoretical concern! 
• Higher-order flaws in many published designs

• https://eprint.iacr.org/2018/490

2. A 1st multiplication algorithm/implementation proven 
robust against glitches and composable at any order

https://eprint.iacr.org/2018/490
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• “Glitch Locality Principle”
• Glitch-robust NI + SNI (wo glitches) = glitch-robust SNI

• By contrast, glitch-robust probing security                      
+ SNI (wo glitches) ≠ glitch-robust SNI

• More general model to capture other physical defaults 
(e.g., transitions-based leakages, coupling) 
• And a discussion of how they are combined

• Empirical validation (for 2-share and 3-share designs)

• More results on Threshold Implementations
• Pseudo-composability and reduced randomness
• # of cycles vs. randomness tradeoff
• More TI decompositions based on Feistel nets.
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Pseudo-composability a

𝑐2 = 𝑥2 ∙ 𝑦2 + 𝑥2 ∙ 𝑦3 + 𝑥3 ∙ 𝑦2 + 𝑧2

• Typical example: Toffoli gate 𝑐 = 𝑥 ∙ 𝑦 + 𝑧

• Threshold implementation:

𝑐1 = 𝑥1 ∙ 𝑦1 + 𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1 + 𝑧1

𝑐3 = 𝑥3 ∙ 𝑦3 + 𝑥1 ∙ 𝑦3 + 𝑥3 ∙ 𝑦1 + 𝑧3
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𝑐2 = 𝑥2 ∙ 𝑦2 + 𝑥2 ∙ 𝑦3 + 𝑥3 ∙ 𝑦2 + 𝑧2

• Typical example: Toffoli gate 𝑐 = 𝑥 ∙ 𝑦 + 𝑧

• Threshold implementation:

• Not NI nor SNI (e.g., it is impossible to simulate a probe on 

𝑐1 with a single share per input (lack of internal rand)
• But “pseudo-NI/pseudo-SNI” if the monomials of 𝑧 are used 

once and one assumes that can be considered as random
• Can lead to nice randomness optimizations at low orders!

𝑐1 = 𝑥1 ∙ 𝑦1 + 𝑥1 ∙ 𝑦2 + 𝑥2 ∙ 𝑦1 + 𝑧1

𝑐3 = 𝑥3 ∙ 𝑦3 + 𝑥1 ∙ 𝑦3 + 𝑥3 ∙ 𝑦1 + 𝑧3


