

FPGAhammer: Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES

Jonas Krautter, Dennis R.E. Gnad, Mehdi B. Tahoori | 10.09.2018

INSTITUTE OF COMPUTER ENGINEERING - CHAIR OF DEPENDABLE NANO COMPUTING

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Motivation

• More resources per FPGA \Rightarrow **Multi-user** environments:

- Amazon, Microsoft and introduce FPGA usage in cloud computing
- System-on-Chip (SoC) variants, tightly coupled FPGA based systems (Xilinx PYNQ, Intel Xeon FPGA, Intel/Altera-SoCs...)
- Accelerators deployed to partitions through partial reconfiguration
 - \Rightarrow Multi-tenant FPGAs

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Motivation

- More resources per FPGA \Rightarrow **Multi-user** environments:
 - Amazon, Microsoft and introduce FPGA usage in cloud computing
 - System-on-Chip (SoC) variants, tightly coupled FPGA based systems (Xilinx PYNQ, Intel Xeon FPGA, Intel/Altera-SoCs...)
 - Accelerators deployed to partitions through partial reconfiguration ⇒ Multi-tenant FPGAs
- New attack scenarios:

....

- Passive on-chip side-channels¹
- Denial-of-Service²
- This work: Fault attacks

¹ Schellenberg et al., "An Inside Job: Remote Power Analysis Attacks on FPGAs", DATE 2018

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Motivation

- More resources per FPGA \Rightarrow **Multi-user** environments:
 - Amazon, Microsoft and introduce FPGA usage in cloud computing
 - System-on-Chip (SoC) variants, tightly coupled FPGA based systems (Xilinx PYNQ, Intel Xeon FPGA, Intel/Altera-SoCs...)
 - Accelerators deployed to partitions through partial reconfiguration ⇒ Multi-tenant FPGAs
- New attack scenarios:
 - Passive on-chip side-channels¹
 - Denial-of-Service²
 - This work: Fault attacks

• ...

Proof-of-Concept work: Successful DFA on AES

¹ Schellenberg et al., "An Inside Job: Remote Power Analysis Attacks on FPGAs", DATE 2018

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

■ Shared FPGA fabric ⇒ Shared Power Distribution Network (PDN)

- Shared FPGA fabric ⇒ Shared Power Distribution Network (PDN)
- Attacker and victim design logically isolated

- Shared FPGA fabric ⇒ Shared Power Distribution Network (PDN)
- Attacker and victim design logically isolated
- Victim software process has a public interface

- Shared FPGA fabric ⇒ Shared Power Distribution Network (PDN)
- Attacker and victim design logically isolated
- Victim software process has a public interface
- Chosen-Plaintext Attack scenario

Outline

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

4 Results

2

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Outline

1 Background

Fault Injection and Analysis

Experimental Setup

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Power Distribution Network (PDN)

- Interconnections from the voltage regulator down to logic elements
- Model: RLC-mesh (Resistive, Inductive and Capacitive elements)

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Power Distribution Network (PDN)

- Interconnections from the voltage regulator down to logic elements
- Model: RLC-mesh (Resistive, Inductive and Capacitive elements)

• Law of Inductance: $V_{drop} = I \cdot R + L \cdot \frac{dI}{dt}$

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Interconnections from the voltage regulator down to logic elements
- Model: RLC-mesh (Resistive, Inductive and Capacitive elements)

- Law of Inductance: $V_{drop} = I \cdot R + L \cdot \frac{dI}{dt}$
- High current variation \Rightarrow Power supply voltage variation

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Power Distribution Network (PDN)

- Interconnections from the voltage regulator down to logic elements
- Model: RLC-mesh (Resistive, Inductive and Capacitive elements)

- Law of Inductance: $V_{drop} = I \cdot R + L \cdot \frac{dI}{dt}$
- High current variation \Rightarrow Power supply voltage variation
- Lower supply voltage ⇒ **Timing faults**

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Malicious Logic

 Logic element to cause high current variation²: Ring Oscillators (ROs)

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Malicious Logic

 Logic element to cause high current variation²: Ring Oscillators (ROs)

• Oscillation \Rightarrow Gate switching \Rightarrow Current variation \Rightarrow Voltage drop

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Malicious Logic

 Logic element to cause high current variation²: Ring Oscillators (ROs)

- Oscillation \Rightarrow Gate switching \Rightarrow Current variation \Rightarrow Voltage drop
- RO-grid must be toggled in a very specific way (freq, duty-cycle, delay)

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Malicious Logic

 Logic element to cause high current variation²: Ring Oscillators (ROs)

- Oscillation \Rightarrow Gate switching \Rightarrow Current variation \Rightarrow Voltage drop
- RO-grid must be toggled in a very specific way (freq, duty-cycle, delay)
- ightarrow ightarrow Calibration of fault injection parameters required

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Malicious Logic

 Logic element to cause high current variation²: Ring Oscillators (ROs)

- Oscillation \Rightarrow Gate switching \Rightarrow Current variation \Rightarrow Voltage drop
- RO-grid must be toggled in a very specific way (freq, duty-cycle, delay)
- ightarrow ightarrow Calibration of fault injection parameters required

²Gnad et al., "Voltage drop-based fault attacks on FPGAs using valid bitstreams", FPL 2017

Outline

J. Krautter, D.R.E. Gnad and M.B. Tahoori

2 Fault Injection and Analysis

Experimental Setup

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

Differential Fault Analysis on AES³

³ Piret et al., "A Differential Fault Attack Technique against SPN Structures, with Application to the AES and Khazad", CHES 2003

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

- Original scheme: Single-byte faults before 8th round
 - \Rightarrow All output bytes faulty

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

- Differential Fault Analysis on AES³
- Original scheme: Single-byte faults before 8th round
 - \Rightarrow All output bytes faulty
- Injection requires high precision
 - \Rightarrow Fault injection before 9th round

³ Piret et al., "A Differential Fault Attack Technique against SPN Structures, with Application to the AES and Khazad", CHES 2003

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

- Differential Fault Analysis on AES³
- Original scheme: Single-byte faults before 8th round
 - \Rightarrow All output bytes faulty
- Injection requires high precision
 - \Rightarrow Fault injection before 9th round

Successful injection can be verified

³Piret et al., "A Differential Fault Attack Technique against SPN Structures, with Application to the AES and Khazad", CHES 2003

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

 Attacker issues encryption request to get correct ciphertext

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

 Attacker issues encryption request to get correct ciphertext

 Attacker issues encryption requests while activating RO grid

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

- Attacker issues encryption request to get correct ciphertext
- Attacker issues encryption requests while activating RO grid
- Fault injection is calibrated until desired faults appear

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection and Analysis

- Attacker issues encryption request to get correct ciphertext
- Attacker issues encryption requests while activating RO grid
- Fault injection is calibrated until desired faults appear
- Calibration is done only once for a specific board

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Outline

Background

Fault Injection and Analysis

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Experimental Setup

- FPGA boards: 3× Terasic DE1-SoC, 1× Terasic DE0-Nano-SoC
 - 3 boards of the same type
 - 2 different boards
 - \Rightarrow Show generality of attack
- Cyclone V FPGA and ARM Cortex-A9 on one chip
- Linux environment on ARM Cortex-A9

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Experimental Setup

- ARM CPU RO grid
- FPGA boards: 3× Terasic DE1-SoC, 1× Terasic DE0-Nano-SoC
 - 3 boards of the same type
 - 2 different boards
 - \Rightarrow Show generality of attack
- Cyclone V FPGA and ARM Cortex-A9 on one chip
- Linux environment on ARM Cortex-A9
- Entire threat model in one SoC:
 - Attacker and victim software on ARM core
 - Respective IP cores on FPGA fabric

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Experimental Setup

- FPGA boards: 3× Terasic DE1-SoC, 1× Terasic DE0-Nano-SoC
 - 3 boards of the same type
 - 2 different boards
 - \Rightarrow Show generality of attack
- Cyclone V FPGA and ARM Cortex-A9 on one chip
- Linux environment on ARM Cortex-A9
- Entire threat model in one SoC:
 - Attacker and victim software on ARM core
 - Respective IP cores on FPGA fabric
- Fault injection on SoC, Key recovery on PC

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Outline

Background

Fault Injection and Analysis

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection Rate vs #RO

Experiments on DE1-SoC, design fully constrained

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Experiments on DE1-SoC, design fully constrained
- Evaluate usable (for DFA) faults and total amount of faults

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Experiments on DE1-SoC, design fully constrained
- Evaluate usable (for DFA) faults and total amount of faults
- Injection rate increases with amount of ROs

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Experiments on DE1-SoC, design fully constrained
- Evaluate usable (for DFA) faults and total amount of faults
- Injection rate increases with amount of ROs
- Injection accuracy decreases after a certain amount

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Fault Injection Rate vs #RO

 Extended experiments: 3 different boards

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Extended experiments: 3 different boards
- All boards vulnerable, Calibration finds params

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Extended experiments: 3 different boards
- All boards vulnerable, Calibration finds params
- Process variation ⇒ Different optimal #RO

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Key Recovery on 5000 random keys

Experiments on DE1-SoC with best fault injection configuration

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Key Recovery on 5000 random keys

Experiments on DE1-SoC with best fault injection configuration

Majority of 5000 keys can be recovered

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Key Recovery on 5000 random keys

Experiments on DE1-SoC with best fault injection configuration

- Majority of 5000 keys can be recovered
- Unrecovered keys due to multi-byte faults

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Outline

Background

Fault Injection and Analysis

Experimental Setup

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Discussion and Future Work

• Attack on fully constrained design on DE1-SoC with < 50% resources

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Attack on fully constrained design on DE1-SoC with < 50% resources
- Smaller DE0-Nano-SoC: Fully constrained design not vulnerable
 - \Rightarrow Not all devices are equally vulnerable

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Attack on fully constrained design on DE1-SoC with < 50% resources</p>
- Smaller DE0-Nano-SoC: Fully constrained design not vulnerable
 - \Rightarrow Not all devices are equally vulnerable
- Alternatives to using ROs may exist

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Attack on fully constrained design on DE1-SoC with < 50% resources
- Smaller DE0-Nano-SoC: Fully constrained design not vulnerable
 - \Rightarrow Not all devices are equally vulnerable
- Alternatives to using ROs may exist
- Attack may be extended to hard cores (ARM SoC)

J. Krautter, D.R.E. Gnad and M.B. Tahoori

- Attack on fully constrained design on DE1-SoC with < 50% resources
- Smaller DE0-Nano-SoC: Fully constrained design not vulnerable
 - \Rightarrow Not all devices are equally vulnerable
- Alternatives to using ROs may exist
- Attack may be extended to hard cores (ARM SoC)
- Possible mitigation:
 - Internal sensors
 - Bitstream checking
 - Voltage islands

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Outline

Background

Fault Injection and Analysis

Experimental Setup

4 Results

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Conclusion

• High precision fault injection on shared FPGAs is possible

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Conclusion

• High precision fault injection on shared FPGAs is possible

• Logical isolation is not enough to prevent manipulation

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Conclusion

- High precision fault injection on shared FPGAs is possible
- Logical isolation is not enough to prevent manipulation
- Threat model must be considered for FPGA multi-user environments

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Conclusion

- High precision fault injection on shared FPGAs is possible
- Logical isolation is not enough to prevent manipulation
- Threat model must be considered for FPGA multi-user environments
- Mitigation may require new/modified hardware

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Thank you for your attention!

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Additional Slides – Complete Scan Flow

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Additional Slides – Slack Dependent Analysis

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Additional Slides – Slack Dependent Analysis

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Σ

Additional Slides – Injection Process

- Externally measured FPGA supply voltage V_{CC} during fault injection
- AES reset logic signal (active low)
- RO grid activation signal

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Additional Slides – RO Floorplan

J. Krautter, D.R.E. Gnad and M.B. Tahoori

Additional Slides – Adder Test Design

