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Abstract. With each new technology generation, the available resources on Field
Programmable Gate Arrays increase, making them more attractive for partial access
from multiple users. They get increasingly adopted as accelerators in various applica-
tion domains, embedded in shared Systems on Chip or remote cloud services. Thus,
some recent works have already explored Denial-of-Service and side-channel attacks,
where an FPGA fabric is shared among multiple users. In this work, we show how
fault attacks can be launched within an FPGA, through software-provided bitstreams
alone. Excessive voltage drops can be generated from legitimate logic mapped into the
FPGA to cause timing faults, reaching from spatially and logically isolated partitions
of one to another user of the FPGA fabric. To cause this voltage drop, we first
show how specific patterns to activate Ring Oscillators can cause timing failures in
simple test designs on various FPGA boards. Subsequently, we analyze and adapt an
existing fault model for the Advanced Encryption Standard to match the accuracy of
our fault attack. In the same multi-user scenario, we show as a proof-of-concept how
a successful Differential Fault Analysis attack on an AES module can be launched.
We perform experiments on three FPGA boards of the same model and confirm that
the attack adapts to all systems and is successful under process variation, but with
different susceptibility to faults. The paper is concluded by validating the attack on
another platform, and analyzing the vulnerability based on a timing analysis, proving
the applicability to different devices.

Keywords: FPGA - DFA - chosen-plaintext - fault attack - on-chip - remote - multi-user
- cloud - AES

1 Introduction

Field Programmable Gate Arrays (FPGAs) are increasingly used to accelerate computa-
tional hotspots of various applications, both in small Systems on Chip (SoCs), as well as
in the data-center. For the same efficiency reasons of virtualizing CPU resources in the
cloud, multi-user access to single FPGAs has been proposed in academic and industrial
studies [XMHP12, EV12, BSB*14, FVS15], and reconfigurable computers can distribute
accelerators from individual tasks in a similar fashion [YB18]. Among others, companies
such as Amazon [AWS] and the Alibaba Cloud [Cor| allow users to rent their FPGA com-
puting capacity for their own use, and all major vendors already provide SoCs including
FPGASs since several years.

Since the introduction of fault attacks, which break cryptographic implementations
without the need for finding algorithmic weakness, this class of attacks has quickly spread
to various devices and different types of security related algorithms [BDL97, AK97, BS97].
Fault attacks traditionally require access to the hardware that is attacked. However, the
famous rowhammer attack proved that software executed remotely can also cause faults
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in memory areas, that are restricted from access by the memory controller [KDKT14,
GMM15].

Due to the characteristics of on-chip Power Distribution Networks (PDNs), switching
activity on the chip leads to supply voltage fluctuations [ZSZF13]. This peculiarity can
affect not only the reliability of the system but also pose a potential security threat. Just
recently, it has been shown that activity of a small fraction of FPGA logic can cause a
sufficiently excessive voltage drop to crash an entire FPGA, together with an integrated
CPU, if the correct pattern of switching activity is applied [GOT17]. However, the authors
noted that their FPGA stopped working entirely, before any timing faults could be observed
in properly constrained designs. In other related work, it has been shown that voltage
fluctuations inside an FPGA can be measured using the existing FPGA primitives, which
allows to perform remote power analysis attacks [SGMT18, ZS18].

In this work, we present FPGAhammer. In analogy to rowhammer, we also cause faults
through repetitive activation patterns, here to affect the supply voltage of an FPGA. This
attack is precise enough to inject timing faults in FPGA logic, suitable to target specific
encryption rounds of the Advanced Encryption Standard (AES) and perform Differential
Fault Analysis (DFA). We carry out and elaborate this attack on various FPGA boards,
containing Intel Cyclone V SoCs with different configurable logic sizes. We conclude
that it is indeed possible to induce timing faults in a cryptographic core through remote
configuration, with a partial bitstream that can be easily generated with official FPGA
vendor tools.

In summary, our work makes the following contributions:

e We introduce a new category of software-initiated fault attacks in FPGA systems,
possible with remote access to the target only, based on supply voltage drops
generated by means of malicious yet legitimate switching activity.

e We establish a generic threat model for an attacker and a victim using a shared
FPGA resource in an active fault attack scenario.

e We show that a spatially and logically separated attacker in one region of the FPGA
fabric can attack a victim in another region.

e We test and prove the general vulnerability to on-chip voltage drop fault injection on
a range of FPGA platforms, and elaborate an automated way to inject faults more
precisely.

e We empirically prove that fault injections achieve a precision high enough for a
successful DFA and key recovery on the AES, regardless of FPGA model or process
variation within the tested devices.

The remaining paper is structured as follows: Section 2 explains the proposed threat
model, the related work, and background on how voltage fluctuations occur inside chips.
Moreover, we briefly outline the DFA method we apply in our attacks. In Section 3,
we present an initial attacker design and describe the behaviour of FPGA boards from
different manufacturers under the influence of malicious switching activity. In Section 4, we
elaborate on how a fault attack and subsequent DFA can be carried out with the proposed
method on an FPGA AES implementation. An overview of the hardware used in the
experiments and implementation details are provided. We also present results of analyzing
injection rates and key recovery success. We discuss some ideas for future research based
on our findings in Section 5 and conclude our work in Section 6.
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Figure 1: Overview of the threat model considered in this work: Attacker and victim
share an FPGA resource with a common power supply network, but isolated, logically
disconnected partitions on the fabric

2 Preliminaries

Before elaborating a full attack on the AES, we put our work in the context of other
publications, which are relevant to our findings or assume a similar threat model. Moreover,
we briefly explain the theoretical background of our experiments and the basics of causing
a voltage drop, leading to faults in FPGAs.

2.1 Threat Model

In this section, we further describe the attacker-victim scenario assumed throughout this
paper. A brief overview on this scenario is given in Figure 1. We assume the victim and
the adversary to have access to a fraction of an FPGA, in which they can load their own
arbitrary design, like a cryptographic accelerator. Both attacker and victim have their
respective processes in an operating system, and their designs on the FPGA are logically
and spatially separated, and follow other common best practices as explained in [HBWT07].
It is also assumed that the respective FPGA fabric is powered by a single common power
supply. This scenario includes both data-center applications, in which FPGAs are utilized
as standalone accelerators, as well as SoC platforms, in which multiple processes on the
CPU can utilize a fraction of the FPGA logic.

We assume the victim to utilize their part of the programmable logic for a security
related algorithm, such as a block cipher. A secret key used in this algorithm is either
hard-coded onto the FPGA or transferred at runtime.

If we consider a symmetric encryption module, such as an AES implementation on
the FPGA, used by the victim, we assume the following Adaptive-Chosen-Plaintext-
Scenario:

e The adversary can issue arbitrary plaintexts to a public interface of the victim process
either locally or remotely through a network.

e The victim outputs the ciphertext of the provided plaintext, encrypted with the
secret key, only known to the victim.
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Figure 2: Proposed classification of different hardware attacks with our work categorized
as an active attack, that does not require physical access to the attacked device

e The amount of requests is limited only by the attackers computational restrictions,
which we assume to be polynomial.

We remark that we assume an attacker that can encrypt arbitrary plaintexts in the
generic threat model. However, the actual content of the plaintext is irrelevant for a
successful DFA and may even be unknown. The attacker only needs to be able to enforce
encryption of the same plaintext twice, where one case is a fault-free encryption and in
the other case faults are injected. Therefore, a DFA based attack on AES like the one
presented in this paper, can be applied to situations where replaying encryption requests
to the target module is possible. Please keep in mind that attacks with faulty ciphertext
only are also possible [FJLT13], but are subject to future studies to reveal whether they
are feasible by internal voltage-drop based fault generation in FPGAs.

2.2 Related Work

Figure 2 illustrates how our work contributes to the broad area of fault and side-channel
attacks. We show attack categories based on physical and without physical access, and
further split them into active attacks, such as fault injection or tampering, and passive
attacks, such as side-channels.

We would like to mention that side-channel or fault attacks through remote access do
not only concern FPGA-based systems. In many devices, there exist opportunities from
software to observe system activity or trigger malicious behavior, where some have been
used to perform side-channel or fault attacks already [YF14, KGGT18, KDK'14, TSS17].
The specific category of remotely induced fault attacks is not yet widely explored. To
the best of our knowledge, only two other attack families can be categorized within this
class. One of them is the famous rowhammer attack that introduces faults in DRAM by
maliciously crafted access patterns [KDK™14]. These patterns lead to switching activity
in the memory that does usually not occur in normal operation, and invokes high stress
patterns causing bitflips in adjacent memory. In the end, privilege escalation is possible,
which can even be triggered with sandboxed javascript code [GMM15]. Another category is
introduced by a work that exploits power management functionality, that is not sufficiently
secured against parameter changes with malicious intent, to perform fault attacks in the
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same SoC [TSS17]. The introduced faults can be used for DFA on an AES module, finally
leading to privilege escalation within the SoC.

Few publications exist, which consider a similar threat model on FPGA-based systems,
in which no physical access to the FPGA device is possible or required for an attack [GOT17,
SGMT18, ZS18]. In two of these works, side-channel attacks have been shown that are
based on measuring a fraction of the internal power consumption of an FPGA within the
chip itself. In [SGMT18], voltage fluctuation sensors based on tapped delay lines [ZSZF13]
were implemented in FPGA logic, to sufficiently measure transient voltage fluctuations
for attacking an AES design in remote FPGA logic on the same chip. On the other hand,
[ZS18] showed that even simple ring oscillator-based voltage sensors, that achieve lower
sampling rates, are sufficient to attack a simple RSA implementation, running in software
on the CPU of a SoC containing FPGA logic, proving that not only the FPGA fabric itself
is vulnerable.

The work presented in [GOT17] evaluated the effectiveness of Ring Oscillator (RO)
designs for generating critical voltage variations and their potential use in fault attack
schemes. The authors were able to cause crashes and system resets, resulting in a Denial-
of-Service (DoS) attack on the FPGA, which can be triggered remotely, and for the tested
FPGAs requires access to only about 12% of logic resources. However, according to that
work, the FPGAs always crashed before timing faults could be observed. We show later,
that this might be due to the choice of analyzed FPGAs, and that not all of them are
equally vulnerable. Additionally, in an SoC shared between hard CPU cores and FPGA
logic, their attack did not only affect the FPGA, but also the CPU, suggesting a shared
power supply.

2.3 DFA on AES

As a proof-of-concept for successfully conducting an on-chip fault attack on a cryptographic
implementation, we evaluate a DFA method on an FPGA implementation of the block
cipher AES. In this work, we attack an implementation with 128 bit key length. The
encryption and decryption scheme is based on the circular application of four different
operations SubBytes, ShiftRows, MizColumns, and AddRoundKey on the data block, which
is stored in a four by four byte matrix called the state. This circular application is repeated
for 10 rounds as defined by the key length of 128 bits.

DFA is based on causing the same plaintext to be encrypted twice — the first time to
gain the correct ciphertext and the second time to acquire a faulty ciphertext as the result
of fault injection at a specific point of the algorithm. The ciphertext pairs, each consisting
of a correct and a faulty ciphertext of the same plaintext, are then evaluated to extract
information about the secret key of the cipher.

In 2003, a generic fault attack on Substitution-Permutation Network (SPN) ciphers
was introduced, which only requires two ciphertext pairs to recover the original secret
key [PQO03]. We apply this attack with multiple adaptions for practical feasibility to use it
on an AES module implemented on an FPGA, and therefore elaborate on this method in
detail.

The fault model of the attack is a random byte fault on a single byte occurring before
the 8th round of the AES algorithm. Before elaborating the eventual attack, which requires
only two faulty ciphertext pairs to be successful, we consider a random byte fault before
the 9th round. As depicted in the example in Figure 3, a single byte fault on the first byte
of the state matrix before the 9th round (as well as on bytes 5, 10 or 15) is propagated and
results in four faulty bytes at specific positions in the output ciphertext: 0, 7, 10 and 13.
With a single byte fault on one of those bytes, we can therefore compute candidates for
four bytes of the last round key. After recovering the entire 10th round key, it is possible to
compute the original AES secret key, since the key schedule is invertible. Similar relations
exist for the other bytes of the state matrix.
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Figure 3: Propagation of a faulty byte in the input of the 9th round of the AES algorithm

Exemplary, we consider single byte faults on the bytes 0, 5, 10 or 15 in the state matrix
before round 9, which can be used to recover bytes 0, 7, 10 and 13 of the last round key.
We initialize a set ./ containing all possible candidates for those bytes of the last round
key. This set of possible candidates is continuously reduced with the evaluation of each
pair of correct and faulty ciphertext (C,C’) by inverting the 10th AES round for the two
ciphertexts with a candidate k € .. The candidate is discarded, if the difference between
the two state matrices resulting from the inversion of the ciphertexts is not within the
set of possible differences resulting from a single byte fault on bytes 0, 5, 10 or 15 before
round 9.

In [PQO3], the number of candidates remaining after two ciphertext pairs was only
one (the correct) candidate in 98% of all cases. In the other 2% of cases, only two or a
maximum of four key candidates were left. Therefore, to recover the entire round key of
round 10 with faults injected before round 9, a minimum of eight ciphertext pairs are
required: For each of the four key bytes, two pairs are needed. This can be improved by
injecting single byte faults before round 8, which affect four bytes before round 9 and
therefore all bytes of the output at once. Then only two ciphertext pairs are required to
recover the full AES key.

2.4 Fault Injection using FPGA logic

A functional block in a synchronous FPGA design includes a common clock signal, which
is used to synchronize all memory components within the block. This means that combi-
national paths between registers (D-flipflops) are constrained in their delay by the clock
signal. If a signal takes longer than a clock cycle to traverse a combinational block, timing
violations may cause the output of the target register to be different from the desired
results — a timing fault occurs.

The constraints can be formulated with five parameters [ZDCT13]: The clock cycle
time t.k, the internal register delay dcikaq, the setup time tgetup, Which is the amount of
time an input signal has to be stable at a register input, the maximum data propagation
time through the combinational logic dpmax, and the clock skew tgiew, Which is the phase
difference of the clock signal between two different registers.

The timing constraints can then be expressed by Equation 1.

tclk > dc1k2q + dpMax + tsetup - tskew (1)

A higher data propagation time can be achieved by lowering the power supply voltage
Vbp [ASMO7]. The increased delay raises the right hand side of the above equation, leading
to a timing violation and a potential fault injection.

To understand how the supply voltage of an FPGA can be decreased with on-chip
logic elements, it is necessary to understand how the PDN of an FPGA behaves under the
influence of different designs on the fabric. The PDN includes a network from the voltage
regulation module on the board down to the internal power rails and every transistor on
the FPGA. Generally, the PDN can be modelled as a mesh of resistive, inductive and
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capacitive elements. Therefore, the power supply voltage depends on two parameters: The
average static current drawn by the implemented design (IR-drop) and the voltage drop
caused by switching activity and inductance (di/dt-drop). The relation is summarized in
the Law of Inductance: Varop = IR + Ldi/dt. With technology scaling, the effect of static
voltage drops has become less relevant compared to the voltage fluctuations caused by
switching activity and inductive components [ASMO7].

To evoke malicious switching activity on an FPGA and cause an excessive di/dt-drop,
we can deploy a massive amount of ROs to generate high frequency current oscillations.
In [GOT17], ROs were already used to induce voltage drops high enough to crash FPGA-
based systems. It was shown, how a singular activation of a large amount of ROs causes
the voltage to drop rapidly by a certain amount and then more slowly return to the original
value within about 50 us for the tested devices. Moreover, it was described, how a drop can
be increased significantly, by driving the entire grid of oscillators with a different, slower
frequency, constantly enabling and disabling the ROs. A dependency on the duty-cycle of
this RO toggle signal was demonstrated as well [GOKT16].

ROs are implemented by connecting any odd number of inverters circularly. An
additional enable signal allows enabling and disabling the oscillation, to connect each RO
to a common toggle signal. Figure 4a shows the schematic of an RO with an enable signal
and a single two-input NAND gate. The frequency of the oscillation depends on the gate
delay and the loopback routing from the output of the gate to the input. Since the gate
is usually implemented as a single Look-Up Table (LUT) in the FPGA, the oscillation
frequency depends mostly on the loopback routing.

3 Provoking Faults in FPGA Designs

Before developing a full DFA attack on the AES, we reproduce results from [GOT17]
about provoking crashes on Intel FPGAs, which has only been shown on Xilinx devices so
far. Moreover, we evaluate fault injection vulnerability of a broad range of FPGA devices
and boards from different manufacturers.

3.1 |Initial Design for Causing Voltage Drops

For stressing the PDN and inducing a voltage drop, we deploy an RO grid onto the FPGA
fabric, which can be enabled and disabled with a variable toggle signal. A schematic
overview on the design with multiple ROs is presented in Figure 4b. The characteristics of
the voltage fluctuation caused by the oscillators depend on the toggle signal frequency and
duty-cycle.
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during a frequency sweep leading to a crash of the device

Figure 5 shows a trace of the externally-measured supply voltage of an Intel Cyclone V
SoC device, when performing a sweep over different toggle frequencies for the RO activation
signal, until the device crashes. We toggle the RO grid with a decreasing frequency, and for
each frequency, increase the duty-cycle up to 75% until the voltage fluctuation significantly
exceeds the supply voltage limits of the device. After this point it crashes, leading to a
hard reset of the included ARM Hard Processor System and a loss of the configuration of
the FPGA device.

When developing in Hardware Description Languages (HDLs), the synthesis software
from most FPGA manufacturers deems the RO design entirely useless. Thus, it is necessary
to prevent the synthesis tools from optimizing the RO grid away. Initially, we conducted
experiments with different oscillator designs and found significant differences regarding
their effectiveness in causing the supply voltage to drop. We studied the following design
options on Intel FPGAs:

a) Implementation using an output pin: The first approach is to connect all ROs
through a reduction function to an arbitrary output pin of the FPGA. This approach
was discarded immediately, since the routing congestions limit the amount of ROs
significantly.

b) Implementation using virtual pins: Secondly, we can declare all outputs of the
ROs as virtual pins, which are implemented as a single LUT each on the FPGA.

¢) Implementation without additional elements (Bare ROs): Another possibil-
ity is to define output connections of each RO to the top-level entity, but not to
an output pin. The synthesis software then accepts the fanout-free LUTs without
additional elements.

In Figure 6, we present results of comparing the two RO variants with (b) and without
(¢) virtual output pins, where each implementation has the same amount of logic utilization.

Virtual pins (b) [ 1

Bare ROs (c) | F|-| ‘ ‘ ‘ 1
10° 10° 107 108 10°
#faults in a simple adder test design during 5s

Figure 6: Amount of errors detected in a simple adder test design during 5 seconds of RO
toggle activation with respect to the RO implementation option. Tested on DE1-SoC.
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Figure 7: Simple adder design to evaluate fault attack vulnerability

We stressed a simple test design, which is detailed in the next section. We collect the
number of faults in a series of 10 trials for 5 seconds each. The amount of recorded errors
in the test design proves the higher effectiveness of the virtual pin option. Despite less
ring oscillators are used in variant b, the additional interconnect resources connected to
each single oscillator cause more faults.

Voltage drops can be further increased by enforcing high interconnect utilization when
separating ROs from their respective virtual output pins. However, we have observed that
the design which works the best, strongly depends on the used device, especially if devices
from different manufacturers are considered.

3.2 Voltage Drop-based Timing Faults in a Simple Test Design

Before applying fault attack analysis to a cryptographic implementation on an FPGA,
we analyze the behaviour of various FPGA boards, while stressing them with a massive
amount of ROs. We find that all evaluated boards from different manufacturers are
susceptible to the oscillator grids in terms of showing unusual behaviour upon activation
of the oscillation.

An overview of a simple adder design for the evaluation of fault attack vulnerability
is depicted in Figure 7. Three register carry-chains of different lengths are driven in a
way that keeps them switching between their maximum and minimum values. When the
maximum value is incremented, the resulting overflow requires a carry bit to be propagated
from the Least Significant Bit (LSB) to the Most Significant Bit (MSB) through the entire
carry-chain. Likewise, decrementing the minimum value causes propagation of a carry bit
through the registers.

In the given design, we can now compare n of the uppermost bits of each adder with
the correct and expected result. When a voltage drop increases the propagation delay of
circuit elements, this comparison shows whether a timing fault occurred in the respective
adder.

We then investigate the behaviour of the adder design with different lengths and under
various frequencies. In these configurations, it is possible to find a setting, where the
timing analysis of the FPGA mapping tools shows a violation of the timing constraints,
yet the design works in a normal situation. ROs can then cause timing faults at runtime.

In production-stage cryptographic implementations, users are likely keen to avoid
timing-violations reported by the analysis tools during design synthesis, which makes the
vulnerability of devices in this situations less relevant to an adversary. We found that on
most of the tested platforms it is also possible to inject faults into designs that meet the
timing constraints of worst-case estimation models.

In Table 1, we summarize our results across several platforms, which we evaluated
regarding the feasibility of fault attacks in designs that do not meet the timing constraints
(unmet) and designs that meet the constraints. Although some platforms seem to be not
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vulnerable, it is more likely that we simply failed to find the appropriate parameters to
activate the oscillators in a way to trigger the necessary voltage drops yet. These initial
results promise a possible success regarding the application of fault injection and DFA to
cryptographic modules on FPGAs.
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Table 1: First results about general vulnerability of different platforms

Fault attack  Fault attack

Vendor Board Device possiblle pOSSib.le
(constraints  (constraints

unmet) met)
Intel Terasic DE4 Stratix IV Yes Yes
Xilinx XUP PYNQ-Z1 Zyng-7000 Yes No
Lattice iCE40HX8K-B-EVN iCE40HX8K Yes Yes
Intel Terasic DE1-SoC Cyclone V SoC Yes Yes
Intel ~ Terasic DEO-Nano-SoC  Cyclone V SoC Yes Yes

4 Fault Attack Evaluation on AES

In this subsection, we illustrate the details of performing a full key recovery attack on AES
using the RO design for fault injection and the DFA explained in Subsection 2.3 for key
recovery. We prove the concept of on-chip fault attacks by evaluating fault injection and
key recovery on the Intel Cyclone V SoC chip family. The following subsections describe
the general setup and detailed parameters for each experiment and present the acquired
results.

We initially detail how we achieve the required fault injection precision with an
automated calibration approach. Subsequently, we investigate the general fault injection
rate with respect to the amount of ROs in the attacker design and inter-die process
variations of three DE1-SoC boards. We continue by evaluating the success rate of a full
AES key recovery for 5000 keys. Additionally, we study the dependence of injection rates
on the operational frequency of the AES module on the smaller Cyclone V SoC device on
the DEO-Nano-SoC board.

4.1 Calibrating the Fault Injection Precision

The DFA attack from [PQO03], which was described in Subsection 2.3, allows to recover
a secret AES key with only two pairs of correct and faulty ciphertexts, if the fault is
injected according to the fault model of a single byte fault before the 8th round of the AES
encryption. In practice, we need to adapt parameters such as frequency, duty-cycle, and
activation time of the RO grid to provoke faults at the proper moment of the encryption.

Any fault before the 8th round of the AES leads to all bytes of the faulty output
ciphertext to be different from the correct one, whereas any fault after the 9th round leads
to less than four bytes to be different. Faults that are injected into the input state matrix
of the 9th round are revealed in exactly four bytes of the faulty output ciphertext being
different from the correct one. This allows us to verify a successful fault injection using
the output ciphertext. Therefore, we decide to aim for injecting faults not before the 8th
round of the AES but before the 9th round only.

To make use of the possibility for injection success verification, we develop an automated
calibration algorithm, to be executed before evaluating injection rates or attack success for a
given design and device. The algorithm allows to use the attacker design in different setups,
without the need for finding appropriate parameters in time-consuming trial-and-error
experiments manually.

In Figure 8, we present an overview of the full calibration algorithm we use before
evaluating injection rates or key recovery success. We adapt the signal for activating the
ROs in three parameters: The toggle frequency, the duty-cycle and the delay between
starting the encryption and activating the RO grid. On the left side of the flowchart, we
depict the process flow on the software side, whereas the right side enlists the actions
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Figure 8: Flowchart of the calibration algorithm to find the appropriate parameters for
injecting faults at the desired moment

carried out on the FPGA by both attacker and victim design. The algorithm performs as
follows:

a)

The attacker activates the calibration process on the FPGA. A random input
plaintext is drawn and encrypted without RO activity. The result is stored as the
correct ciphertext.

Afterwards the fault injection process on the FPGA is activated, to toggle RO
activity for the following encryptions.

Encryption of the same random plaintext is requested. The attacker design on the
FPGA activates the RO grid with an initial frequency and duty-cycle and no activa-
tion delay. If no fault is detected, the frequency/duty-cycle are decreased/increased.
Duty-cycle is increased for each frequency up to 75%. If a fault is detected, which
affects an undesired subset of bytes, the injection occurred too early or too late,
and the activation delay is increased/decreased. In any case, the attacker design
reports the injection success to the attacker process, which either requests another
encryption or continues the process.
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Figure 9: Trace of FPGA supply voltage VCCINT, measured externally with an oscilloscope
during a single fault injection attempt

d) If the injection was successful or a predefined maximum of injection attempts inj,,, .,
were unsuccessful, the attacker software deactivates the RO grid and either finishes
the successful scan or chooses another random plaintext for fault injection.

During experiments, we determined 4nj,,,, = 60 as an appropriate upper limit regarding
the number of encryptions needed until a fault is injected, since not all random plaintexts
result in a faulty output even with the ROs active. After a successful calibration process,
the three parameters are fixed and used for subsequent fault injections.

In Figure 9, we show an externally acquired trace of the FPGA supply voltage VCCINT
during a single fault injection by the attacker design on the FPGA. The AES reset signal
(aes_rst_n), which resets the AES encryption module when low, indicates the start of an
encryption. To provoke a fault, the attacker design pulses the RO grid (ro_ena signal)
with the previously determined frequency, duty-cycle and activation delay. The voltage
fluctuations (Vo) cause a critical delay at the desired moment with a higher probability
and therefore, a fault is injected.

In conclusion, our approach requires eight instead of only two ciphertexts compared
to [PQO3] to recover the secret key, but makes the attack feasible in practice, where a
lot more encryption requests are required to have the attacker design affect the AES
module at the desired moment. In all subsequent experiments, we apply this variant of
the attack, aiming to inject faults before the 9th encryption round. The calibration is
executed only once, at the beginning of any evaluation. However, we continue to filter
faults that have been injected at an earlier or later encryption round during the collection
of ciphertext pairs. This method maximizes key recovery success, although the injection
precision achieved by our calibration is very high, as we show in the results.

Furthermore, we remark that the acquired calibration parameters can even be reused
on different devices of the same type. Therefore, there is no need to perform specific
calibrations on the board on which the fault attack is to be performed. In our experiments
on the Terasic DE1-SoC for example, we find that a toggle frequency of 1.16 MHz with
a 56% duty-cycle is selected most frequently in a run of 1000 calibrations. Fixing those
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Table 2: STA corner timing-models available in the Quartus STA from fastest to slowest
model for a given device speed grade at 1100 mV supply voltage

Silicon speed (Process variation) Operation temperature

0° C
Fast
as 85° C
0° C
sl
ow 85° C

parameters and reusing the design on a different DE1-SoC board leads to similar or even
better fault injection rates, depending on the general vulnerability (process variation) of
the board.

Note that this method filters out all faults that are caused at the wrong AES encryption
round but does not necessarily discard ciphertexts, which result from fault injections that
affect multiple bytes before the 9th round. Some multi-byte faults can also lead to four
faulty bytes at the desired positions in the output ciphertext. Therefore, we still have
some amount of keys, which can not be recovered during evaluation, because multi-byte
faults are not covered by the theoretical fault model of the DFA. Further details regarding
unsuccessful key recoveries can be found in the results in Subsection 4.4.

4.2 Hardware and Software Environment

In this subsection, we specify the devices, which have been used in the further experiments,
and provide details on the implemented hardware designs and software tools.

The AES implementation we use as a proof-of-concept in this work is a simple, small
module for 128 bit key length encryption. It utilizes around 300 — 400 registers and about
750 — 850 LUTs in the tested Cyclone V FPGAs and takes 50 clock cycles to encrypt a
given plaintext. The module is not protected against side-channel or fault attacks.

We perform our experiments on systems based on the Intel Cyclone V SoC family,
which incorporate an Intel FPGA and a 925 MHz Dual-Core ARM Cortex-A9 processor
inside a single die. The 5CSEMA5F31C6 chip is embedded on the Terasic DE1-SoC board.
We studied injection rates and attacks on three Terasic DE1-SoC boards of different age
and usage history to account for process and aging variation. A smaller variant of the
Cyclone V SoC, the 5CSEMA4U23C6N, with only half the amount of logic elements is
present in the Terasic DEO-Nano-SoC board, which we investigated as well. The devices
are used with their standard, unmodified power supplies.

Both boards have an SD card slot, which we use to boot a Linux system and run user
applications, that interact with the FPGA fabric, on the ARM processor. We encapsulate
the AES cryptomodule as an Intel Avalon Memory-Mapped slave device, which allows
access from programs running within the Linux system on the CPU.

The Intel Quartus Prime software offers tools for Static Timing Analysis (STA), which
analyzes the design in terms of timing violations under four different models (corners) for
a given device with a specific speed grade [MW17]. We enlist the available timing-models
in Table 2. The fast/slow classification of silicon for the given device speed grade refers to
propagation delay variations caused by intra-die process variation.

If the timing analysis reports timing violations at the time of implementation, the
design is not guaranteed to work reliable under all operation corner cases in terms of
temperature and voltage levels, according to official chip specifications as found in the
FPGA datasheet. We focus on attacking designs that do not violate any timing constraints,
even at the worst-case 85° C corner, but investigate the influence of worst case path slack
in designs that violate the constraints as well. For each experiment, we explicitly report
whether timing constraints are violated in the respective subsection later.
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Figure 10: Implementation details of the RO attack design on the Intel Cyclone V SoC as
displayed in the Quartus Chip Planner

We implement the attacker design as a grid of ROs as described in Subsection 2.4.
A single RO is composed only of the combinational part of a single Adaptive Logic
Module (ALM) on the Cyclone V. The output is directly routed through local interconnect
back to the input. This way, we achieve the fastest possible switching frequency for the
oscillators. In Figure 10a, an example of how the Intel Quartus Prime software synthesizes
and fits a single RO into the bottom part of one ALM can be examined. The used output
on the right and input on the top left of the ALM are the same and the additional enable
signal is connected to the bottom left input of the ALM.

The Intel Quartus Prime software reports the worst case delay through the LUT to be
about 0.08 ns and the loopback routing delay through local interconnect around 0.21 ns.
Therefore, assuming a maximum delay of 0.3 ns through gate and loopback, the RO can
achieve frequencies of 3 GHz and more.

As explained in Subsection 3.1, an RO-based design with a virtual pin (variant b) is
most efficient to provoke critical voltage drops, which is why we choose this design variant
for our attack on AES as well. In Figure 10b, we show how several ROs defined as an
oscillating LUT and a virtual output pin are mapped into a Logical Array Block (LAB)
of the Cyclone V SoC as presented in the Quartus Chip Planner. The schematic shows
the loopback routing (dotted lines) of each RO and the routing to their respective virtual
output pins, two of which are placed in an adjacent LAB on the right (continuous lines)
and some in different regions of the FPGA fabric (dashed lines). The relevant Verilog
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code parts for implementing an RO grid on Intel FPGA devices can be found in the
Appendices A, B and C.

Moreover, it is necessary to drive the oscillator grid with a very specific frequency and
duty-cycle. We therefore add an enable signal to trigger each of the implemented ROs,
which is routed through a global clock buffer on the Cyclone V SoC. The use of this type
of signal, originally intended for distribution of clock signals on the FPGA, allows to save
on routing resources from the toggle frequency control design block to all of the ROs and
accelerates the compilation of the entire design significantly.

Since our attack scenario, elaborated in Section 2.1, assumes a shared multi-user FPGA
use-case, we constrain each design using the LogicLock feature of the Intel Quartus Prime
software to keep victim and attacker design blocks within designated areas of the FPGA
fabric. To avoid any variation from other components on the chip, we additionally activate
the region reservation parameter of the LogicLock region, that contains the AES module,
which prevents the fitter from placing any other logic than the AES module and its Avalon
MM encapsulation into this area. Figure 10c shows the ROs mapped into the top left area
and the AES module in the bottom region as displayed in the Quartus Chip Planner for
the design on the larger Cyclone V SoC on the Terasic DE1-SoC. On the software side, we
implement tools for controlling encryption and fault injection to be executed within the
Linux system on the ARM core of the Cyclone V SoC. The evaluation of the collected
ciphertext pairs and respective DFA is performed on a standard host computer with an
Intel i7-7700HQ Quad-Core processor.

4.3 General Fault Injection Efficiency on the DE1-SoC

In order to evaluate the general fault injection efficiency, we first generate bitstreams for
different percentages of logic utilization of the attacker logic in the range of 30% to 50%
for the DE1-SoC board. The victim module runs at a frequency of 111 MHz, which does
not violate any timing constraints as explained in the previous subsection, even in the
worst-case corner of the static timing analysis. Then we measure the number of faults
occurring for one million encryption requests from a previously generated set of random
plaintexts, which are reused for all experiments. We evaluate the experiment on three
different Terasic DE1-SoC boards of different age and usage history. The encryption key
remains the same for one test series, which is repeated for a second random key for each of
the DE1-SoC boards. Before every evaluation, the calibration algorithm as described in
Subsection 4.1 is executed, to find optimal parameters for provoking the desired kind of
faults, which can be used in the subsequent DFA.

Figure 11 shows the total number of faults out of 1M trials Fi., as well as the number
of faults usable for DFA with our described fault model Fpga. Both results are shown
dependent on the number of activated ROs in % of available LUTSs in the FPGA. We see that
both Fiot and Fppa initially increase at the same rate, starting from a different minimum
amount of required ROs for each board respectively. This proves the effectiveness of the
calibration algorithm before each evaluation. On all boards we see, how the calibration
algorithm is able to adapt to a variety of different setups with a very high precision.
However, if the amount of activated ROs exceeds a certain level, the effect is too strong to
allow precise injections. Fi still increases with more ROs, but can affect more than one
round or byte per round. Hence, the resulting ciphertext will have more than four byte
faults, which can not be used anymore to recover the secret AES key in the used fault
model.

4.4 Total Key Recovery Success Rates on the DE1-SoC

Subsequently, we evaluate the success of the full DFA attack including recovery of the
secret AES key. This evaluation reflects on the success of our entire algorithmic flow
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Figure 11: Total measured fault injection rates Fio; and measured injection rate of faults
usable in DFA Fppa with respect to the amount of logic utilization (percentage of total
LUTSs) by the attacker design for three different Terasic DE1-SoC boards and two different
random encryption keys

of injecting faults before the 9th AES encryption round, the calibration algorithm and
filtering of undesired faulty ciphertexts. For each of the three boards, which we already
used to investigate fault injection rates, we use the amount of ROs that lead to the highest
injection rate Fppa of faults usable for DFA. Again, the AES module has an operating
frequency of 111 MHz, where no timing violations are reported by the STA. We generate
a set of 5000 random AES keys and collect a minimum of two ciphertext pairs, which
exhibit faults at the desired positions, for each four bytes of the last AES round key. The
ciphertexts along with each key are stored on the SD card of the board and later transferred
to a host computer. After collecting the minimum amount of faults required, we apply the
DFA from [PQO03] with the slight adaption of assuming single byte faults before the 9th
round instead of the 8th round. In that case, we require a minimum theoretical limit of 8
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ciphertext pairs per key.

Figure 12 summarizes the results of the key recovery attempts on our three DE1-SoC
boards. On all three boards, we are able to deploy the attack completely successful for at
least 87.9% of the 5000 random keys. All recovered keys are correctly recovered, so no
false positives are encountered. On all boards, we have a small amount of around 2 — 3%
of all keys which can not be recovered, but less than four candidates for the last round
key remain. This ratio confirms the results in [PQ03], showing that in about 2% of the
cases more than two ciphertext pairs are necessary to recover the AES key. If a sufficiently
small amount of key candidates remains, the correct key can be easily recovered with
an exhaustive search. We encounter, however, some keys, where more than 232 or even
264 candidates remain. Across all our experiments, an average of 22 usable faults were
required to gather the required two ciphertext pairs per four bytes of the round key. To
collect these pairs, the attacker design needs to issue 17979 encryption requests on average
to the AES module, which took on average 2344 ms. The average time for the evaluation
of one attack until key recovery on the described host machine is about 107 ms.

Ultimately, the attack can therefore recover a secret AES key in about 90% of cases. In
the remaining cases, fault injection itself fails. Our calibration algorithm and subsequent
filtering of faults, which can not be used in DFA, prevents the gathering of faults that have
been injected at any other stage of the AES encryption than before the 9th encryption
round. However, as mentioned in Subsection 4.1, the method is unable to distinguish some
multi-byte from single-byte fault injections. The adapted fault model from [PQO03] assumes
single byte faults before the 9th encryption round, which is why key recovery attempts are
unsuccessful, if the faulty ciphertext is the result of a multi-byte fault.

4.5 Slack-dependent Fault Injection Vulnerability of the DEQ-Nano-
SoC

The DEO-Nano-SoC provides about half the amount of logic elements than the DE1-SoC.
Since the power supply is, as the experiments suggest, equal or at least similar to the one
of the DE1-SoC, we need to utilize a huge percentage of LUTSs to attack a design, which
does not violate any timing constraints in the four timing models during the Quartus STA.
Therefore, we additionally study the fault injection rates using an attacker design which
always occupies only exactly 50% of logic resources with respect to different operational
frequencies f,p, for the victim AES module, assuming an FPGA split exactly between two
users. The STA reports violation of the two worst-case timing corners (slow silicon speed,
0°/85° operating temperature), whereas the timing constraints are fulfilled within the fast
silicon speed models.

We implement the evaluation design as described first with an initial clock frequency of
finitiar = 160 MHz for the AES module and its ARM interconnect. We direct the fitter to
use maximum effort to fulfill the given timing constraints for the AES module, therefore
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Figure 13: Total measured fault injection rates Fio,t+ and measured injection rate of faults
usable in DFA Fppp as well as setup slacks reported by Quartus STA for different AES
operating clock frequencies f,, with preserved design placement but remaining routing
randomization on the DEO-Nano-SoC

optimizing placement of logic elements w.r.t. timing constraints. Then we prevent the
fitter algorithm from changing the placement of logical components within the partitions
for each recompilation of the design. The randomization during the placement algorithm
can make a design running on a higher frequency cause less timing violations, than a design
running on a lower frequency. However, since the routing can not be fixed completely, the
routing algorithm still causes some derivation from the desired outcome.

The operating clock frequency f,, for the mapped and placed design with remaining
routing variations is decreased in steps of 1 MHz to a frequency of f,, = 142 MHz and for
each design the fault injection rates for one million total encryption requests are recorded.
Furthermore, we note the setup slack values for each design as provided by the STA in the
worst-case corner (slowest silicon, 85° C) and in the best-case corner (fastest silicon, 0° C).
For reference, we also show the worst-case path slack value for the design running at 111
MHz on the DE1-SoC.

In Figure 13, we show the fault injection results together with the respective slack
values at different operating frequencies. The results show that the reported worst-case
and best-case slacks for the design do not directly correspond to the respective operating
frequency fop linearly, due to the remaining heuristic algorithm in the routing stage.
However, the trend is that slack values increase for lower frequencies and decrease for
higher frequencies. Both Fio; and Fpra increase together with operating frequency fop.
However, the increase is more steep within the threshold range 145 MHz < f,, < 151 MHz.
A divergence between Fppa and Fio; with increasing frequency is not as significant as in
the experiments with respect to logic utilization. Single experiments with f,, = 170 MHz
imply, however, that the injection becomes less precise with increasing f,, as well. We
were unable to inject faults into the design running at f,, = 142 MHz.

5 Discussion and Future Work

Our results show the effectiveness of provoking voltage drops with ROs and launching a
DFA attack. The most effective RO design makes use of virtual pins and benefits from
added load through toggling activity on interconnect wires. However, in this work we
just elaborated three variants of RO designs to cause high load. As our results suggest,
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future work should look into toggling more interconnect wires. Alternatively, we may
consider other on-chip methods for provoking a decrease in supply voltage. For example
in [BKT10], short circuits are caused by maliciously crafted bitstreams. Those illegal
bitstreams can, however, be detected by software tools easily. Furthermore, the calibration
algorithm can be replaced by more advanced methods, possibly including machine learning
approaches, to make injection as precise as possible. On the other hand, a more generic
fault model, that covers all possible occurring faults before the 9th AES encryption round,
may also raise the key recovery success rate to 100% [MSS06]. Using self-heating elements
for example from [AHT14], we may also increase the temperature of the FPGA remotely,
improving the fault injection rates as shown for AVR microcontrollers in [HS14].

Just like in [ZS18], where a passive side-channel attack on the integrated ARM processor
of a Xilinx Zynq SoC was carried out through voltage monitors on the FPGA, we also
need to consider extensions of our given threat model to hardware that is tightly coupled
with the FPGA, and shares a significant part of the power supply network. In [GOT17],
crashes of a full SoC could also be provoked from the FPGA part of the system. From that,
we can conclude that these systems are basically vulnerable to RO based attacks. In the
future, it will have to be proven if fault attacks are also possible in this configuration, or if
there are reasons that the integrated CPU will crash before showing any timing violations.

Because these attacks are a risk to any multi-user FPGA applications, proper counter-
measures will have to be investigated in the future. Fortunately, a remote attacker that has
only access to the FPGA fabric is more limited than an attacker with full physical access.
Thus, significantly increasing timing margins might be a sufficient countermeasure to this
attack, with the possibly high cost of reducing the speed of the circuit. However, adding
arbitrary timing margins just reduces the risk, but does not ensure no timing violations.
To give more guarantees, delay elements can be added to an FPGA design, that will
invalidate an output result when the design is close to timing faults [SBGT09, ELH'12].
In these cases, the cost of reducing the circuit speed might also be less, with only small
area overhead.

Internal sensors allow the user to detect critical path timing failures in their designs,
which has been used for dynamic voltage scaling features and detecting transistor ag-
ing [EKD103, AT11]. Similarly, sensing timing failures can enable detection of voltage
drops and delay line sensors have been already shown to detect possible fault injection
attempts for local fault attacks [ZSZF13].

On the FPGA hardware design level, in the generic threat model of remote attacks
on FPGAs, vendors might consider to only allow shared FPGAs when the regions of each
user are residing in their own respective voltage island. However, this might defeat the
purpose of an efficient way to utilize FPGA resources.

Another idea, that previous works already mentioned briefly, would require to check
each bitstream that is loaded to an FPGA [GOT17, ZS18]. By essentially restricting the
available basic logic circuits and, for example, prohibit or limit the implementation of
combinational loops and ROs, the attack presented in our work could be mitigated. In a
more complex attacker design, however, an algorithm to verify the bitstream for potentially
malicious implementations would not be limited to polynomial complexity, since attacker
logic can also be hidden within legitimate logic, as existing research on hardware trojans
suggests [KRRT10]. Furthermore, the reduced flexibility of FPGA implementations may
be too big of a disadvantage for this restriction to be considered as a countermeasure.

Some of the mentioned ideas might already be sufficient for mitigation, but finally, we
also believe that our work is just the beginning, and more effective attacks are yet to come.
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6 Conclusion

FPGAs are getting increasingly adopted in larger computing systems, as accelerators in
the cloud or Systems on Chip. In such scenarios, multiple isolated users will share a
single FPGA fabric and Power Distribution Network. Previous works have already shown
power analysis side-channel attacks in this scenario, without requiring dedicated sensors.
In this work, we additionally prove fault attacks on shared FPGAs possible by applying
a Differential Fault Analysis attack on the Advanced Encryption Standard in a similar
scenario, also implemented with standard FPGA tools. We demonstrated that FPGAs will
not just crash if voltage drops are injected with Ring Oscillators, but in fact timing faults
can be injected with sufficient precision for DFA. First, we showed an effective way to inject
timing faults in simple test designs with the focus on reducing required FPGA resource
use. Based on this method and given precision of the injections, we adapted an existing
fault model for AES, and performed a successful DFA with a fully automated calibration
of the injections. We evaluated the general injection rate and precision with respect to the
percentage of logic utilization by the attacker design and the operating frequency of the
target AES module. Evaluating the injection rates showed how an attacker can provoke
sufficient faults for a key recovery, with logic utilization in the range of only 35% to 45% of
the Look-Up Tables on a Terasic DE1-SoC board based on an Intel Cyclone V SoC. Since
our calibration algorithm allows precise injections, independent of target parameters, we
were able to recover at least 90% of secret AES keys from a set of 5000 randomly drawn
keys on three different boards. The results in this work highlight the importance of further
research, before FPGAs can be adopted widely in multi-user scenarios.
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A Single Ring Oscillator Verilog Source Code

module osc ( enablein, dummyout );
input enablein;
output dummyout;
wire enablein_lut;
wire loop_lut, 1loop;
lut_input enable_lutin(enablein, enablein_lut);
lut_input loop_lutin(loop, loop_lut);
lut_output loop_lutout(~loop_lut & enablein_lut, loop);
assign dummyout = loop;
endmodule

Listing 1: Single RO module Verilog source code using low-level primitives to implement a
two-input NAND gate

B Ring Oscillator Grid Generation Verilog Source Code

module osc_array ( clkin, enablein, rstin, dummyout, [...] );
parameter amount = 10000;
[...]
reg enable_oscs = 1’b0;

wire enable_oscs_g;

//Global clock buffer routing:

global enable_oscs_glob (.in(enable_oscs), .out(enable_oscs_g));
output [amount-1:0] dummyout;

genvar ij;

generate

for (i=0; i < amount; i=i+1) begin : oscs_gen
osc osc_inst(.enablein(enable_oscs_g), .dummyout (dummyout([i]));
end
endgenerate
[...]

endmodule

Listing 2: Relevant parts of the RO grid generation Verilog source code with global clock
buffer routing and dummy output signals

C Top-Level RO Instantiation Verilog Source Code

parameter ro_amount = 10000;
output [ro_amount-1:0] dummyout /#* synthesis noprune=1
altera_attribute="-name VIRTUAL_PIN ON" x/;

osc_array osc_array_inst ( .clkin(clk), .rstin(rst_n),
.enablein(enable_oscs), .dummyout(dummyout), [...] );
defparam osc_array_inst.amount = ro_amount;

Listing 3: Instantiation of ROs with virtual pins in the top-level module; To generate bare
ROs without virtual pins, the dummyout output declaration is removed and the respective
port of the osc__array module instance left unconnected
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