
Differential Fault Attacks on Deterministic
Lattice Signatures

Leon Groot Bruinderink1 and Peter Pessl2

1 Technische Universiteit Eindhoven, The Netherlands, l.groot.bruinderink@tue.nl
2 Graz University of Technology, Austria, peter.pessl@iaik.tugraz.at

Abstract. In this paper, we extend the applicability of differential fault attacks to
lattice-based cryptography. We show how two deterministic lattice-based signature
schemes, Dilithium and qTESLA, are vulnerable to such attacks. In particular, we
demonstrate that single random faults can result in a nonce-reuse scenario which
allows key recovery. We also expand this to fault-induced partial nonce-reuse attacks,
which do not corrupt the validity of the computed signatures and thus are harder to
detect.
Using linear algebra and lattice-basis reduction techniques, an attacker can extract
one of the secret key elements after a successful fault injection. Some other parts
of the key cannot be recovered, but we show that a tweaked signature algorithm
can still successfully sign any message. We provide experimental verification of our
attacks by performing clock glitching on an ARM Cortex-M4 microcontroller. In
particular, we show that up to 65.2% of the execution time of Dilithium is vulnerable
to an unprofiled attack, where a random fault is injected anywhere during the signing
procedure and still leads to a successful key-recovery.

Keywords: Differential fault attacks · post-quantum cryptography · lattice-based
cryptography · digital signatures

1 Introduction
Large-scale quantum computing is a major threat to currently used public-key cryptosys-
tems. While it is uncertain when large-enough quantum computers will see the light of day,
there is steady progress as, e.g., shown by the recent unveiling of a 72 qubit device [Kel18].
For this reason, the search for quantum-secure alternatives to discrete-logarithm and
factoring-based solutions for public-key primitives is in full swing. This is demonstrated by
the high interest in the NIST Post-Quantum Cryptography standardization process1 [NIS].
In total 82 submissions were received at the very recent first-round deadline [Moo17]. This
number trumps previous cryptographic competitions such as for AES and SHA-3 by far. A
particularly interesting area of post-quantum research is lattice-based cryptography, as it
appears to offer comparatively compact keys and ciphertexts as well as high computational
performance. Possibly due to this reason, lattice-based cryptography is the largest category
in terms of submissions.

∗Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf. This work was supported by the Commission of the European Communi-
ties through the Horizon 2020 program under project number 645622 (PQCRYPTO) and by the Austrian
Research Promotion Agency (FFG) via the K-project DeSSnet, which is funded in the context of COMET
– Competence Centers for Excellent Technologies by BMVIT, BMWFW, Styria and Carinthia.

1NIST repeatedly stated that this process is not supposed to be a competition [Moo17].

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 21–43
DOI:10.13154/tches.v2018.i3.21-43

mailto:l.groot.bruinderink@tue.nl
mailto:peter.pessl@iaik.tugraz.at
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.21-43

22 Differential Fault Attacks on Deterministic Lattice Signatures

There are ongoing discussions on the black-box security of these submissions2. In
addition, secure implementations are another important aspect of the standardization
process. The proposals should be easy to implement both correctly (ideally also misuse
resistant) and securely. Proposals that offer such characteristics on a wide variety of
platforms, including PCs as well as constrained devices like smart cards, are more desirable.
Naturally this requires analysis of many implementation attacks, such as passive side-
channel attacks (cf. [MOP07]) as well as active fault attacks (cf. [BCN+06]). The latter
are a well-known threat to embedded devices. Rowhammer, a remote software-only fault
attack [KDK+14, GMM16], demonstrated that also high-performance PCs are vulnerable.
As implementations are evaluated in terms of both security and performance, they should
be made resistant to such attacks with minimal costs.

In this regard, an interesting property of many lattice-based signature schemes is
that they make use of the classic Fiat-Shamir transform [FS86]. Concretely, two NIST
submissions, qTESLA [BAA+17] and Dilithium [LDK+17], use a variant of the transform
called Fiat-Shamir with Aborts [Lyu09]. However, signature schemes built using the
Fiat-Shamir transform, such as ECDSA, have a well-known caveat: signing requires a
nonce and reuse for different messages leads to trivial key recovery. This requirement was
sometimes violated in the past, as, e.g., shown by the infamous attack on the PlayStation3
console [bms10]. In order to sidestep this problem, the signature scheme can be made
entirely deterministic. That is, the nonce is derived by hashing the message and the key,
which leads to each input having a unique signature. Both Dilithium and qTESLA3 use
this approach and thus follow in the footsteps of proposals such as EdDSA [BDL+11] and
deterministic ECDSA [Por13].

This solution, however, creates problems when it comes to fault attacks. An attacker
can let a victim sign the same message twice, but introduce a computational fault in one of
the signature computations. This results in different signatures using the same nonce and
thus in a key recovery. In fact, recent work [BP16, ABF+18, PSS+17, SB18] explored the
vulnerability of elliptic-curve signatures against such differential fault attacks, including
Rowhammer-based ones [PSS+17].

The vulnerability of lattice-based deterministic signatures, however, is less clear. The
possibility of such differential attacks was already hinted at [LDK+17, BAA+17], yet
many questions remain open. Concretely, the abortion technique introduced by Lyuba-
shevsky [Lyu09] and used by both qTESLA and Dilithium may hamper the attack.
Furthermore, the different algebraic structure might open up new attack venues. Under-
standing the possibilities of such fault attacks is relevant in the standardization process
and possible deployment of these schemes.

Our contributions. In this paper, we show the applicability of differential fault attacks on
deterministic lattice-based signature schemes. We focus on Dilithium, but all our attacks
apply to qTESLA as well. We explore how and where these schemes are vulnerable to
single random faults and show how fault-induced nonce reuse allows extracting the secret
key. Furthermore, we show attacks that can easily create and then efficiently exploit a
partial nonce-reuse. This scenario yields valid signatures and thus allows to bypass some
generic countermeasures.

In Dilithium and qTESLA, a unique signature vector z = y + cs is constructed out of
a challenge c, a secret element s, and a deterministically computed nonce y. The attack is
focused on faulting the computation of challenge c, leaving the nonce y untouched and
thus creating a nonce reuse scenario. By carefully examining two signatures of the same

2Official forum at https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
3Following the initial publication of this paper, a very recent update of the qTESLA specification added

a mandatory countermeasure which makes the algorithm non-deterministic and prohibits our attacks.
We refer to the originally submitted version of qTESLA for the remainder of the paper, and discuss the
countermeasure and update in Section 6

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum

Leon Groot Bruinderink and Peter Pessl 23

message yet with a (due to a fault) different challenge c, s can be extracted using linear
algebra. We identify multiple operations inside the Dilithium signing algorithm that are
vulnerable, i.e., where a random fault can lead to nonce reuse. We say "can", as the use
of the Fiat-Shamir with Aborts framework leads to not all faults being exploitable. We
determine the success probabilities for all fault scenarios, they range from 14% to 91%.
In addition to these scenarios, we also explore fault-induced partial nonce reuse. There,
the fault attack is specifically focused on the computation of nonce y, but in such a way
that only a portion of the computation is different. We exploit this by transforming key
recovery into a unique shortest-vector problem, and show how to solve it using the BKZ
lattice-reduction algorithm. While previous work already exploited such partial reuse
scenarios for ECC [ABF+18], our attacks are much less restrictive regarding injected faults.

Successful extraction of s alone, however, does not directly allow to run the signing
algorithm. This is due to Dilithium’s public-key compression, which causes that some
additional elements of the secret key cannot be computed from just s. Thus, we show
a tweaked signature algorithm that can still sign any new message despite lacking some
parts of the key.

We verified the vulnerabilities by performing clock glitching on an ARM Cortex-M4
microcontroller. In particular, we induced random faults during polynomial multiplication
and in the SHAKE extendable output function. We show that an attacker with detailed
knowledge of the executed code can easily inject faults at correct locations despite some
non-constant time behavior. Still, an unprofiled attacker who injects a fault anywhere
during the signing process still has a high chance of succeeding. Up to 65.2 % of the
execution time of Dilithium is vulnerable to our attacks.

We finally give a discussion on generic countermeasures against the attacks and reason
about their applicability and implementation costs. We conclude that probably the simplest
yet most effective countermeasure is a rerandomization of deterministic sampling, which,
however, is not covered by the security proof of Dilithium.

Outline. In Section 2, we give the necessary background to understand the remainder of
the paper. In Section 3, we explore the possibilities of differential fault attacks on Dilithium.
In Section 4, we show how to modify the signature algorithm such that the secret key
element extracted by our attacks suffices to compute valid signatures for any message.
In Section 5 we verify the vulnerabilities with real experiments on an ARM Cortex-M4
microcontroller. In Section 6 we end the paper with a discussion on countermeasures.

2 Background
In this section, we introduce the necessary background on lattices and the Dilithium
signature scheme. We also provide a summary of previous attacks on implementations of
lattice-based cryptography.

2.1 Lattice-Based Cryptography
For any positive integer q, we define the polynomial ring Rq = Zq[x]/(xn + 1). The
elements in R are naturally represented as polynomials of degree less than n. For each
polynomial f ∈ Rq, we can define the corresponding vector of coefficients in Zq as
f = (f0, f1, . . . , fn−1). Addition of polynomials f + g corresponds to addition of their
coefficient vectors. Multiplication of two polynomials f · g mod (xn + 1) can be written
in matrix-vector notation as f · g = gF = fG, where F,G ∈ Zn×nq are matrices, whose
columns are nega-cyclic rotations of f, g.

Two hard problems underlying many lattice-based cryptography schemes are Ring-
LWE/Ring-SIS, which are defined over the ring Rq. Given a public key (a, t) ∈ R2

q, for

24 Differential Fault Attacks on Deterministic Lattice Signatures

Algorithm 1 Dilithium Key Generation
Output: Keypair (pk, sk)
1: ρ← {0, 1}256,K ← {0, 1}256

2: (s1, s2)← Slη × Skη
3: A ∈ Rk×`q := ExpandA(ρ)
4: t := As1 + s2
5: (t1, t0) := Power2Roundd(t)
6: tr ∈ {0, 1}384 := CRH(ρ||t1)
7: return (pk = (ρ, t1), sk = (ρ,K, tr , s1, s2, t0))

Ring-LWE an attacker is asked to find short polynomials s1, s2 such that t ≡ a·s1+s2 mod q.
With short, we mean polynomials whose coefficients are small, i.e. in absolute value less
or equal to some small η > 0. Module-LWE/Module-SIS are generalizations of Ring-
LWE/Ring-SIS, respectively. There the problems are defined over Rk×`q for some positive
integers k, ` > 1: given a matrix A ∈ Rk×`q and a vector t ∈ Rkq , find two short elements
s1 ∈ R`q, s2 ∈ Rkq such that t ≡ A · s1 + s2 mod q. For the attacks described in this paper,
this means that an attacker needs to find multiple secret key elements.

Additional Notation. With := we denote deterministic assignments, with ← we refer
to uniform probabilistic sampling from some set. We define the `2 and `∞ norm for
w ∈ Rq by ||w||2 =

√∑n−1
i=0 w

2
i and ‖w‖∞ = max{|w0|, |w1|, . . . , |wn−1|}, where all wi are

represented by an element in the interval [− q−1
2 , q−1

2]. This definition can be naturally
expanded to vectors of polynomials. Sη denotes the subset of Rq that includes all elements
w that satisfy ‖w‖∞ ≤ η, i.e. the short polynomials described in the previous paragraph.

2.2 Deterministic Lattice Signatures
We now describe the two deterministic lattice-based signature schemes Dilithium [LDK+17]
and qTESLA [BAA+17], both of which were submitted to the NIST call. For design
rationale, associated security proofs, and more details (e.g., on various subroutines) we
refer to the respective submission documents.

Dilithium. In this work we focus mainly on Dilithium, which is why we give a more in-
depth description of this scheme. Dilithium is based on the Module-LWE/SIS assumption.
It operates over the fixed base ring Rq = Zq[x]/(x256 + 1), q = 8380417 and allows for
flexibility by allowing different module parameters (k, `). This means that code used for
arithmetic in Rq can be reused for any module Rk×`q , which makes an adaptation to other
security levels easier.

Key generation is given in Algorithm 1. First, two random seeds ρ, K, and two key
elements s1, s2 are sampled. The function ExpandA deterministically expands the seed ρ
into a matrix A ∈ Rk×`q using the extendable-output function (XOF) SHAKE128. This is
done to minimize public and private key sizes as only ρ needs to be stored instead of the
full A. The public key t = As1 + s2 is compressed by feeding it into the Power2Roundq
function, which computes a pair (t1, t0) such that t = t1 · 2d + t0. Only the upper part t1
is published. The lower bits t0 and a hash of the public key tr = CRH(ρ||t1) are included
in the private key sk. CRH is shorthand for Collision Resistant Hash, Dilithium uses
SHAKE256 with an output length of 384 bits.

Dilithium is based on the Fiat-Shamir with Aborts Framework [Lyu09]. Simply speaking,
in this framework a signature σ is rejected and signing restarted if σ does not follow some
fixed distribution. This rejection sampling statistically hides any secret information in

Leon Groot Bruinderink and Peter Pessl 25

Algorithm 2 Dilithium Sign (simplified4)
Input: Message M , private key sk = (ρ,K, tr , s1, s2, t0)
Output: Signature σ = (z,h, c)
1: A ∈ Rk×`q := ExpandA(ρ) . fAρ, fAE
2: µ ∈ {0, 1}384 := CRH(tr ||M)
3: κ := 0, (z,h) := ⊥
4: while (z,h) = ⊥ do
5: y ∈ Slγ1−1 := DeterministicSample(K||µ||κ) . fY
6: w := Ay . fW
7: w1 := HighBits(w)
8: c ∈ B60 := H(µ||w1) . fH
9: z := y + cs1
10: h := MakeHint(−ct0,w− cs2 + ct0)
11: (r1, r0) := Decompose(w− cs2)
12: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then (z,h) := ⊥
13: κ := κ+ 1
14: return σ = (z,h, c)

Algorithm 3 Dilithium Verify (simplified4)
Input: Public key pk = (ρ, t1), message M , signature σ = (z,h, c)
1: A ∈ Rk×`q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(CRH(ρ||t1)||M)
3: w1 := UseHint(h,Az− ct1)
4: accept iff c = H(µ||w1)

the signature and thus provides the zero-knowledge property. The structure of rejection
sampling can be easily seen in Algorithm 2, which shows a slightly simplified4 version
of the Dilithium signature algorithm. The comments in Algorithm 2 refer to our attack
scenarios and can be ignored for now.

Signature generation starts off by recomputing A and hashing the message M to-
gether with the hashed public key tr . The abort loop starts off by using the function
DeterministicSample to generate the noise y ∈ S`γ1−1. The product w = Ay is compressed
to w1 using HighBits. The hint h later allows the verifier to recompute this w1. The
hash function H instantiates the random oracle needed in the proof. It returns a sparse
ternary polynomial c ∈ B60, i.e., a polynomial with Hamming weight 60 and all non-zero
coefficients in ±1. The function Decompose returns both HighBits and LowBits of its input.
Finally, several checks are performed that determine if the current signature is accepted or
rejected.

Note that all operations in Algorithm 2 are completely deterministic and thus generate
a unique signature for message M5. This property is also used in the proof of Dilithium
in the Quantum Random Oracle Model (QROM) [KLS18]. The proof does allow a non-
deterministic version, albeit at the cost of tightness and a loss in security proportional to
the number of distinct signatures an adversary can observe per message.

For completeness, we also provide a simplified version of the verification procedure
(Algorithm 3). Throughout this paper we use the recommended Dilithium parameter set
III shown in Table 1. It claims 128 bits of security against a Quantum adversary. Other
parameter sets are given in Appendix A. They mainly differ in the used (k, `), so our later
attacks are possible for all proposed sets.

4Some additional checks and constant subroutine arguments are omitted.
5A previous Dilithium description [DLL+17] is probabilistic, but did not include a proof in the QROM.

26 Differential Fault Attacks on Deterministic Lattice Signatures

Table 1: Dilithium Parameter Set III (recommended)

n q d weight(c) γ1 γ2 (k, `) η β

256 8380417 14 60 523776 261888 (5, 4) 5 325

qTESLA. Structurally, the signature scheme qTESLA [BAA+17] is very similar to
Dilithium. It also uses a variant of the Fiat-Shamir with Aborts framework and is
deterministic. Unlike Dilithium, its proof in the QROM model [ABB+17] allows for a
non-deterministic version as well (without losing tightness). The main difference however
is that qTESLA is based on the Ring-LWE/SIS assumptions instead of the module coun-
terparts. Thus, it operates on Rq = Zq[x]/(xn + 1) (so k = ` = 1) with n ≥ 1024. We
will later demonstrate our attacks on the example of Dilithium. Still, with some minor
modifications they all also apply to qTESLA. We defer the description of qTESLA to
Appendix B, where we also highlight the similarities to Dilithium.

2.3 The SHAKE Extendable Output Function
Dilithium makes heavy use of the SHAKE Extendable Output Function (XOF). It is also
an important target of our fault attack, which is why we now very briefly describe it.
SHAKE uses the sponge construction [BDPV07]. The sponge construction has two internal
parameters r and c called the rate and the capacity, where the capacity is chosen such that
the sponge construction meets a desired level of security. We call the internal state of the
sponge x, consisting of r + c bits, with all bits initialized to zero. The sponge starts with
the absorb phase. Any input to the sponge function is first padded, using some injective
padding function, resulting in k ≥ 1 input blocks m1||m2|| . . . ||mk. These message blocks
are then XORed with the first r bits of the state x, interleaved with applications of a
permutation f : {0, 1}r+c → {0, 1}r+c. In SHAKE, the Keccak-f permutation is used.
After all message blocks are processed, the squeeze phase starts. Depending on the desired
output length, the function iteratively returns the first r bit blocks of the internal state x,
interleaved with applications of the permutation f . In Figure 1, we show an example for
three input blocks and three output blocks. Note that this construction allows for any
number of input and output blocks.

0r

0c
f f f f f f

⊕

m0

⊕

m1

⊕

m2 H0 H1 H2

...

Absorb Squeeze

Figure 1: Sponge construction with three block input m0||m1||m2 and three block output
H0||H1||H2. With 0r, 0c we denote the all-zero bit string of length r, c. The application of
the padding function is not shown.

In the context of fault attacks, the important thing to note is that any manipulations
in f corrupt the state x and thus affect all subsequent operations. For instance, faulting
the first application of f in the squeeze phase leads to a correct H0 but faulty H1, H2,

2.4 Implementation Security of Lattice-Based Cryptography
Since lattice-based cryptography has gained traction in recent years, interest in its
implementation-security aspect is also increasing. For the case of passive side-channel

Leon Groot Bruinderink and Peter Pessl 27

attacks, previous works showed, e.g., the applicability of cache attacks to lattice-based signa-
tures [GBHLY16, PBY17, BBK+17] and specialized power analysis of lattice-based cryptog-
raphy [PPM17]. Countermeasures, such as masked implementations [OSPG18, RRVV15]
as well as shuffling and other randomization techniques [Saa18], are also being proposed.

Many lattice-based schemes require high-precision sampling from a discrete Gaussian
distribution. However, it appears to be difficult to implement discrete Gaussian samplers
securely. In fact, previous attacks [GBHLY16, Pes16, PBY17, EFGT17] exploited the
non-constant time nature of samplers. While there do exist first approaches to imple-
menting discrete Gaussian samplers securely [MW17, HLS18, KRR+18], both Dilithium
and qTESLA opt to use samples from the uniform distribution for signing instead. This
does not only allow much easier (constant-time) sampling, but also drastically simplifies
the signature rejection step. In fact, non-constant time rejection was also exploited in
previous work [EFGT17]. The downside of using the uniform distribution is slightly
larger signatures. Compared to a Gaussian-based instantiation of Dilithium described in
[DLL+17], signatures of the uniform version are larger by approximately 10%.

Active implementation attacks on lattice-based cryptography also received some prior
attention. Two concurrent works [BBK16, EFGT16] investigated fault attacks on non-
deterministic lattice-based signature schemes, such as BLISS [DDLL13], GLP [GLP12],
PASSSign [HPS+14], and ring-TESLA [ABB+16]. Espitau et al. [EFGT16] investigated
loop-abort faults in the generation of the noise-polynomial y ∈ Rq. This means that
the sampling algorithm for this polynomial is cut off after the m’th noise coefficient, i.e.
y = (y0, . . . , ym−1, 0, . . . , 0). A key-recovery is possible if m� n. The target distribution
of y is not relevant; the general attack framework applies to both BLISS (which uses the
discrete Gaussian distribution) and the other previously mentioned schemes (which all use
the uniform distribution).

Like Dilithium and qTESLA, the above mentioned lattice-based signatures compute
z = y + cs, where c, z are part of the signature σ and s ∈ Rq is a small secret key element.
We can rewrite this equation as:

c−1z ≡ c−1y + s mod q (1)

where we assume that c ∈ Rq is invertible (which is true with very high probability). As s
is a small element, the target t = c−1z is close to a point in the lattice generated by the
vectors {wi = c−1xi mod q |i ∈ {0, . . . ,m− 1}} and qZn, and the difference is exactly s.
This means that the closest-vector problem in (1) can be solved by, e.g., a lattice reduction
followed by application of Babai’s nearest plane algorithm. As this sub-lattice is of full
dimension and too hard to solve at once, one can reduce the size of the problem to solve
(1) for a subset I ⊆ {0, . . . , n − 1} of indices, using the projection ψI : Zn → ZI given
by ψI((ui)0≤i<n) = (ui)i∈I . It can be shown that if the cardinality of any subset I is
slightly larger than m (see the analysis in [EFGT16]), then (1) is solvable for subset I. By
repeating this for multiple subsets, the complete secret key element s can be recovered.
With knowledge of s the full secret key could be recovered using linear algebra.

2.5 Differential Fault Attacks on ECC
In this work we concentrate on differential fault attacks, in which the difference between a
faulty and a correct output is used to determine information about the secret key. Previous
work [BP16, ABF+18, PSS+17, SB18] explored such attacks on two deterministic elliptic
curve signature schemes: EdDSA and deterministic ECDSA. Both of these signature
schemes use the Fiat-Shamir transform, thus requiring the usage of a unique nonce per
message. The fault attacks mainly focus on achieving nonce reuse, as this leads to a very
efficient key-recovery.

Concretely, Poddebniak et al. [PSS+17] exploit the fact that the message is hashed
twice in EdDSA. By manipulating the message in between these hashing operations with

28 Differential Fault Attacks on Deterministic Lattice Signatures

Rowhammer, one can induce a nonce reuse and thus key recovery. Ambrose et al. [ABF+18]
inspect a wider range of scenarios. They show that even random faults in certain operations
can allow attacks. Additionally, they show that faults affecting the nonce itself are also
usable. However, for this they require a very restrictive fault model. They need that the
resulting error is limited to a few bits, as an exhaustive search is required to find the exact
difference between the faulty and correct nonce.

3 Differential Faults on Deterministic Lattice Signatures

In this section, we present our differential fault attacks on Dilithium. As previously
mentioned, these attacks apply to qTESLA as well, as we provide the attacks for general
`, k. First, we briefly describe our fault model. Then we explain the main intuition of our
attacks. We identified multiple vulnerable operations, for each of them we finally describe
how faulting can lead to key recovery. We also discuss additional properties, such as ease
of fault injection, for the scenarios.

Fault Model. In this work we assume the possibility of injection a single random fault.
These can encompass instruction skips, arithmetic faults, glitches in storage, and more.
The faults are not restricted to specific operations but can be applied during a large section
of execution time. This model is also used for some of the previously mentioned attacks
on EdDSA [ABF+18] (some scenarios require a more restrictive fault model). In contrast,
previous active attacks on lattice-based signatures required more control, such as the
ability to abort a loop [EFGT16].

3.1 Intuition

The intuition behind our fault attacks is as follows. We let the signer sign the same
message M twice. In the first invocation we do not inject any fault and receive a valid and
proper signature σ = (z,h, c). We inject a fault in the second run; we use ′, e.g., z′, to
denote variables in this faulted invocation. More concretely, we inject a fault such that y′
is undisturbed and due to the determinism equal to y, yet c′ 6= c and thus z′ = y + c′s1.

Thus, the fault induces a nonce-reuse scenario. When defining ∆z = z−z′ (and ∆c,∆y
analogously), we have ∆z = ∆y + ∆c · s1 = ∆c · s1. Thus, under the requirement that ∆c
is invertible, which is true with very high probability, then s1 = ∆c−1 ·∆z.

The Fiat-Shamir with Abort structure, however, introduces an additional hurdle. We
require that both the valid as well as the faulty signature computation terminate in the
same iteration of the abortion loop. In other words, when using κf to denote the final
value of the loop counter κ, we need that ∆κf = κf −κ′f = 0. Observe that in Algorithm 2,
loop counter κ is input to DeterministicSample. Hence, to achieve y = y′ we have the
requirement that ∆κf = 0. Due to faulty intermediates and the influence of the rejection
tests, this is obviously not guaranteed.

In the remainder of this section we discuss concrete fault scenarios. That is, we explain
which operations in Algorithm 2 can be faulted such that key-recovery is possible. For
each scenario we will give the exploitation technique as well as state its success probability,
i.e., the chance that it terminates in the same loop iteration and thus ∆κf = 0. This
probability was estimated using at least 10 000 fault simulations per scenario. An overview
of the scenarios is given in Table 2, they are listed in order of appearance in Algorithm 2.
The order of description will be different.

Leon Groot Bruinderink and Peter Pessl 29

Table 2: Fault scenarios discussed in this paper

Name Section Description

fAρ 3.4 Corrupt ρ during import of sk
fAE 3.4 Random fault in expansion A := ExpandA(ρ)
fY 3.5 Random fault in sampling y := DeterministicSample(·)
fW 3.3 Random fault in polynomial multiplication w := Ay
fH 3.2 Random fault in call to H

3.2 Scenario: fH

Probably the most intuitive way to achieve a nonce-reuse is the fH scenario, where a
random fault is injected into the computation c ∈ B60 := H(µ||w1). This can be achieved
by either manipulating one of the inputs µ,w1 immediately before they are being used in
H, or by directly injecting a fault into the hash function H itself.

We will show in Section 5.1 that it is a very reasonable assumption that an attacker can
inject a fault in the correct iteration κf , i.e., the last one in the non-faulty computation.
If the rejection step is then passed with the different c′, secret element s1 can be recovered
as described in Section 3.1.

Since c is a sparse ternary polynomial and s1 ∈ Slη has small coefficients, their product
is also small. We depict its coefficient-wise probability distribution in Figure 2, it can be
approximated with a (discretized) Gaussian distribution having zero mean and σ ≈ 24.3.
As ‖cs‖2 � ‖y‖2, ‖w‖2, the rejection conditions for z and r0 are likely to hold for a
different c as well. This results in a high success probability of over 90 %.

-100 -50 0 50 100
v

0

0.01

0.02

P
ro

b
(c

s
=

v
)

Figure 2: Coefficient-wise probability distribution of cs

Determining Success. There are two ways to test if ∆κf = 0 and thus key recovery
is successful. The first method is to simply recover s1 and then test if it is small, i.e.,
s1 ∈ Slη. If ∆y 6= 0 then the recovered key will be a random vector in R`q which will not
fulfill the bound on the `∞ norm. Alternatively, one can also exploit the small norm of cs
by computing ‖∆z‖2 (or also ‖∆z‖∞) and test if it is below a certain threshold. Again,
∆y 6= 0 will lead to a very large value of ‖∆z‖2.

Apart from ∆κf = 0, we also require that ∆c is invertible. This is true with very high
probability. The fraction of invertible polynomials in Rq is (1− 1/q)n [LPR13], which is
about 1− 2−15 for the Dilithium parameters. In the remainder of this paper, we assume
this fraction also holds for the polynomials described by ∆c (i.e. the difference of two
random sparse ternary polynomials c, c′ ∈ B60). We test for invertibility and consider the
attack to have failed in the rare case that ∆c is not invertible.

30 Differential Fault Attacks on Deterministic Lattice Signatures

3.3 Scenario: fW

Instead of directly faulting the hash function H, it is also possible to alter c := H(µ||w1) by
manipulating the computation of its inputs µ,w1. The message/public key hash µ is also
used as seed for DeterministicSample, hence faults in the computation µ := CRH(tr ||M)
are not exploitable.

Faults in the computation of w := Ay which lead to an incorrect w1, however, can be
exploited. The required polynomial multiplications in Rq can be efficiently implemented
using the Number Theoretic Transform (NTT). Still, the runtime of multiplication is
higher than that of hashing, thus it can be a more viable target for fault attacks. An NTT
is essentially an FFT-like transform over a prime field and uses similar implementation
techniques, i.e., butterfly networks. Due to these techniques, the number of coefficients in
w affected by a single random fault can range from 1 to all n · k.

As unaffected coefficients of w clearly pass rejection and a single altered one is sufficient
to achieve ∆c 6= 0, minimizing the number of faulty coefficients increases the success
probability. Thus, unlike in our other scenarios the concrete fault position has a much
stronger impact. To give a sense of possible success probabilities, we evaluated the two
most extreme cases. First, we inject a fault in the forward-NTT of y. Such a fault spreads
to all n · k coefficients of w and thus leads to a low success probability (25.3%). Second,
we fault the inverse-NTT applied to w such that only two coefficients are affected. With a
success probability of over 90%, this sub-scenario is similar to directly faulting H. Note
that while single-coefficient faults are also possible, they are slightly less likely to lead to a
successful key-recovery. This is due to the chance that a faulty coefficient w′ still rounds
to the correct w′1 = w1, which results in ∆c = 0 and the fault not being exploitable.

3.4 Scenarios: fAρ, fAE

Another possibility to achieve a faulty w = Ay is to manipulate the expansion of seed
ρ into the matrix A. As seen in Algorithm 2, this is done before entering the abort
loop and is thus always executed at the same time. Furthermore, ExpandA is a major
contributor to overall runtime (cf. Section 5.2). Both these properties drastically simplify
fault injection for this scenario. Also, A has a larger footprint (20 kB in Dilithium-III) than
other variables and is potentially kept in memory for a prolonged time, i.e., by caching it
one does not need to re-run ExpandA for every singing operation. These properties make
A a particularly interesting target for memory-based faults, such as Rowhammer.

When focusing on more traditional faulting techniques, then differences in A can be
achieved by either manipulating the seed ρ, e.g., during loading of the private key (scenario
fAρ), or by inserting a glitch into the expansion A ∈ Rk×`q := ExpandA(ρ) (scenario fAE).
On first glance these scenarios might seem identical. There are, however, some major
differences. Observe that in Algorithm 4, which sketches the method for expanding ρ into
A, the k · ` polynomials comprising A are generated using independent calls to SHAKE.
Thus, any single fault in the SHAKE permutation leads to just one corrupted polynomial.
Consequently, after the matrix-vector multiplication Ay we have n differing coefficients of
w. This leads to a success probability of approximately 54%.

Directly faulting ρ, either during import or in storage, obviously results in an all
different A and thus w. This decreases the success probability to just 14%. However, this
type of fault has a major advantage when it comes to defeating countermeasures. It is
potentially (semi-)permanent and can thus, at least under certain circumstances, not be
detected by the generic double-computation or verification-after-sign countermeasures. In
Section 6 we discuss this in more detail.

Leon Groot Bruinderink and Peter Pessl 31

Algorithm 4 ExpandA(ρ)
Input: Seed ρ
Output: uniform A ∈ Rk×`q

1: for i := 0 . . . k − 1 do
2: for j := 0 . . . `− 1 do
3: Ai,j := SamplePoly(ρ||i||j)
4: return A
5: function SamplePoly(s)
6: t ∈ {0, 1}5·SHAKErate := SHAKE128(s)
7: u := 0
8: while u < n do
9: v := next dlog2 qe bits of t
10: if v < q then
11: ai := v
12: u := u+ 1
13: return a

3.5 Scenario: fY
So far, we have only discussed fault-induced nonce-reuse scenarios, i.e. the case where
y′ = y. For our final scenario, we will switch to partial nonce-reuse. Unlike all previous
scenarios, inducing a partial reuse still leads to valid signatures and is thus not detectable
with a signature verification.

We introduce some additional notation for element t ∈ R`q: we define tu ∈ Rq to be
the u’th element of t and (tu)v ∈ [− q−1

2 , q−1
2] to be its v’th coefficient, for 0 ≤ u < ` and

0 ≤ v < n. We define ej for 0 ≤ j < n to be the j-th unit vector, i.e. the vector with a 1
at position j and zero otherwise.

Simple Example. First, let us assume the following. We inject a fault in y′ ∈ S`γ1−1 such
that only a single coefficient (y′

u
)v ∈ y (with index u ∈ {0, . . . , `−1} and v ∈ {0, . . . , n−1})

is changed to a random value (while preserving |(y′
u
)v| ≤ γ1 − 1). Still, this leads to a

completely different w1, and therefore to a different c′ and z′ = y′ + c′s1.
We then compute s1 = ∆c−1 · ∆z and determine u by simply using the one index

for which s1,u /∈ Sη. For all i 6= u we have that ∆yi = 0, thus recovery of these key
polynomials succeeds. If we now compute the difference ∆zu, we will notice the following:
for indices i 6= v we see |∆zi| ≤ 2δ for some threshold δ chosen such that ‖cs1‖∞ ≤ δ holds
for any c and s1. Concretely, we can set δ = 60η. The injected fault in (y′

u
)v can cause

any difference to the value, but on average it will be large. On expectation |(y′
u
)v − (y

u
)v|

will be 2γ1−1
3 , as both of these coefficients are random values in [−(γ1 − 1), (γ1 − 1)] (by

our assumption). Since ‖cs1‖∞ ≤ δ � 2γ1−1
3 , we can detect index v and thus the position

of the fault by using the index of maximum |∆zu|.
We finally recover s1,u as follows. Simply speaking, we eliminate row v of the linear

system s1,u = ∆c−1 ·∆zu, guess the value of (s1,u)v (exhaustive search), solve for the full
s1,u and test if it is in Sη. Note that similarly we could also directly guess the value of
(∆y

u
)v (instead of (su)v), albeit there the search-space is much larger. This latter scenario

is the direct counterpart to the partial nonce reuse fault attack on elliptic curve signatures
(as described in [ABF+18] and mentioned in Section 2.5): an exhaustive search is used to
determine the exact error in the faulted nonce.

We will show next that for lattice-based signatures these partial-reuse attacks are way
more powerful. The exhaustive search can be replaced with solving a lattice problem,

32 Differential Fault Attacks on Deterministic Lattice Signatures

Algorithm 5 DeterministicSampleγ1−1(s) (simplified6)
Input: Seed s
Output: y ∈ S`γ1−1
1: for u := 0 . . . `− 1 do . Sample ` nonce polynomials
2: t ∈ {0, 1}5·SHAKErate := SHAKE256(s||u)
3: v := 0
4: while v < n do . Rejection sampling
5: r := next 2dlog2 γ1e bits of t
6: if r ≤ 2(γ1 − 1) then
7: (y

u
)v := q + γ1 − 1− r

8: v := v + 1
9: return a

which is much more efficient. The far larger number of tolerable errors allows replacing the
very restrictive fault model (influencing a small number of bits of the nonce) with random
faults in SHAKE.

Efficient Partial Nonce Reuse Attack. The nonce y ∈ S`γ1−1 is generated by function
DeterministicSample, a simplified6 version is given in Algorithm 5. Note that input seed
s changes whenever a signature is rejected (Algorithm 2), and the counter u will change
the individual elements of y. The idea is that we now fault SHAKE (Line 2), but in such
a way that it only changes a few coefficients of yu for some u ∈ {0, . . . , `− 1}. Since all
coefficients of (y

u
) are sampled sequentially, a fault that only affects the last few bytes of

t′ will only change the last few coefficients of (y
u
).

As mentioned in Section 2.3, SHAKE operates on a state x of r + c bits and consists
of an absorb phase and a squeeze phase. If a fault is injected during the absorb phase,
the output of SHAKE will be completely different. However, if the fault is injected
near the end of the squeeze phase, only the last few applications of f will operate on
a faulty state x and thus return an erroneous output (cf. Section 2.3). In particular,
as DeterministicSample requests 5 output blocks of SHAKE (Line 2), an injected fault in,
e.g., the last or second-to-last application of Keccak-f during the squeeze phase will cause
changes in the last few bytes of t′. Thus, only the last few coefficients of y′u will differ
i.e. ∆yu = (0, . . . , 0, ζv, ζv+1, . . . , ζn−1) for some index v ∈ {0, . . . , n− 1}. Note that the
index v for which the values start to differ will vary depending on how many elements were
accepted from the first few output blocks of SHAKE. We can again detect index v similarly
as mentioned previous: by taking the first index where |∆zu| ≥ 2δ. However, we cannot
apply the brute-force search for the corresponding elements in (s1,u)v≤i<n anymore: the
search-space will be too large.

Instead, we will transform the search for these n − v secret coefficients to a lattice
problem similarly as described in Section 2.4. Thus, when writing:

t = ∆c−1∆zu = ∆c−1∆yu + s1,u

we have a target t and want to determine the closest point on the lattice generated by
∆c−1. The difference between t and its closest lattice point is exactly s1,u. Solving this
closest-vector problem is made possible by using that the first v coefficients of ∆yu are 0.
We use the lattice generated by basis vectors {wi = ∆c−1xi mod q |i ∈ {v, v+1, . . . , n−1}}
and qZn. Take I = {m,m+ 1, . . . , n− 1} to be the target subset of indices, where m < v
and apply ψI to these basis vectors, where ψI as defined in Section 2.4. We then cast the

6For example, with very small probability the 5 · SHAKErate bits are not enough to generate enough
values for any yi. In that case, another call to SHAKE and more rejection sampling is done.

Leon Groot Bruinderink and Peter Pessl 33

Table 3: Results of injecting faults in DeterministicSample
Squeeze phase iteration Average number of errors

in yu
Average running time

lattice reduction
1P (last) 39 2.3s
2P (second to last) 93 35.8s

Table 4: Fault-attack success probability in percent

fAρ fAE fY-1P fY-2P fW fH

14.3 54.4 24.8 23.9 25.4 - 90.3 91.0

problem at hand to a unique shortest-vector problem as, e.g., described by Albrecht et
al. [AFG13], and then apply a lattice-reduction algorithm (like LLL or BKZ). If successful,
we retrieve a small n−m dimensional vector sguess, whose coefficients correspond to the
last n−m coefficients of s1,u. To get the full s1,u, we replace the last n−m coefficients of
∆zu by the coefficients of sguess, transform rotation-matrix ∆C of ∆c into C by replacing
the last n−m columns by the identity columns em, em+1, . . . , en−1 and compute the full
sguess = ∆zC−1. We can verify correctness by checking that sguess ∈ Sη.

In our experiments, we injected a random fault in the last (denoted by 1P) or second-to-
last (denoted by 2P) application of Keccak-f inside SHAKE (called in Algorithm 5, line 2).
Since the input to SHAKE is shorter than the rate r, out of the total five applications
of Keccak-f these are the fourth (2P) and fifth (1P), respectively. Faults in the 3 earlier
applications of Keccak-f did not yield a solvable lattice problem. We performed 1000
experiments for both 1P and 2P and determined the average number of errors (so n− v)
and the average running time for BKZ (on an Intel Xeon E5-4669 v4 @ 2.20GHz). In
our experiments, we took m such that the cardinality of I is about 1.4(n − v). For the
lattice reduction, we used BKZ with block-size 25 but included an early abort, i.e., we
abort reduction as soon as a potential key-candidate (a vector in Sη) is found. The results
are shown in Table 3. The success probability of the lattice reduction was 100%. Thus, if
a fault is correctly injected and ∆κf = 0, then the key s1 can always be recovered. The
probability that ∆κf = 0 is between 24 and 25% (Table 4).

3.6 Summary of Scenarios
We now give a summary of the different fault scenarios. In Table 4 we restate the success
probability of all fault scenarios. Recall that in scenario fW a large number of outcomes is
possible, but we analyzed the best and worst possible outcomes. For scenarios fY, fH, and
fW we assume that the fault is injected in the last iteration κf .

fH is the most intuitive scenario and also achieves the highest success probability.
However, it is also the smallest of all targets (cf. Section 5.2). The lowest success probability
is achieved for fAρ, yet with the huge advantage of being potentially permanent. Faulting
the expansion of A offers both a large and fixed-time target. Finally, scenario fY lead to
valid yet still exploitable signatures.

4 Signing with the Recovered Key
In the previous sections we showed how to recover s1 after a successful fault injection.
However, s1 is only one component of the private key sk = (ρ,K, tr , s1, s2, t0). The seed
ρ, which is used for generating the matrix A, is also part of the public key. tr can be

34 Differential Fault Attacks on Deterministic Lattice Signatures

trivially recomputed as CRH(ρ||t1) (cf. Algorithm 1). K is used as a secret input to the
deterministic sampler and cannot be recovered with our attack. However, an attacker can
just choose any random K and still produce valid signatures. The only downside here is
that the owner of the full private key can test whether or not a signature is forged. He
simply runs the signature algorithm and tests for equivalence, a new K will obviously
result in a different yet still valid signature.

The situation for the two remaining components, namely s2 and t0, is less clear. Recall
that t := As1 + s2 (cf. Algorithm 1). If t is known, then recovering s2 boils down to
simple linear algebra. However, for compression one computes a pair (t1, t0) satisfying
t1 · 2d + t0 = t and includes only the upper part t1 in the public key. Thus, the equation
t1 · 2d + t0 = As1 + s2 cannot be directly solved.

Note also that during signature computation s2 and t0 are only used for hint generation
and rejection purposes. Thus, there are no simple equations that can be exploited for
recovering this part of the private key. This obviously does not imply that there is no
information on s2 present. For instance, in a valid signature we have that ‖r0‖∞ < γ2 − β,
with (r1, r0) := Decompose(w − cs2). As w is recoverable since s1 is already known,
an attacker will get constraints for the possible values for s2. A large number of such
constraints could result in a fully determined s2. However, we expect that a very large
number of valid signatures and high computational effort is needed to perform such a
recovery.

Instead, we now present a modified signing procedure (Algorithm 6) that does not
require knowledge of s2. Thus, the property that only a single valid/faulty signature pair is
needed for the attack is preserved. Algorithm 6 starts off by recomputing tr and sampling
a random K, as described earlier. Then we compute u := As1 − t1 · 2d, which is exactly
the difference of the unknown quantities, i.e., u = t0 − s2. Signature generation then
continues as usual up until the computation of the hint h.

In the original signing algorithm we have h := MakeHint(−ct0,w − cs2 + ct0). The
second argument to MakeHint can be trivially rewritten as w− cs2 + ct0 = w + cu. The
first argument −ct0 cannot be computed without knowledge of t0. We get around this
by exploiting the fact that t0 is vastly larger than s2, with coefficients in the intervals
[±2d−1] and [±η], respectively. Thus, we have that u = t0− s0 ≈ t0 and simply substitute
−ct0 with −cu.

We then skip all rejection conditions that cannot be tested without knowing s2 or t0.
Essentially, we just test that if ‖z‖∞ ≥ γ1 − β and reject the signature if this is the case.
Finally, we perform a verification of the signature to catch the very improbable case that
MakeHint(−cu,w + cu) 6= MakeHint(−ct0,w + cu).

Due to the removal of rejection conditions, this modified signing algorithm potentially
leaks secret information. Thus, anyone being aware of the fact that signatures are computed
by our modified algorithm could maybe also recover the secret key. Since all produced
signatures are valid, there is no trivial way to test for this condition (without already
knowing the key, as explained earlier).

5 Experimental Verification

In this section, we back up our previous theoretical expositions and simulations by running
our attack on an actual device. After discussing our platform, we show how an attacker
can inject a fault in the iteration κf without determining the concrete value. This requires
at least some knowledge of the implementation. For this reason, we also demonstrate
that a random fault anywhere during the signing procedure has a high chance of being
exploitable.

Leon Groot Bruinderink and Peter Pessl 35

Algorithm 6 Dilithium Sign with Recovered Key s1

Input: Message M , private key part s1, public key pk = (ρ, t1)
Output: Signature σ = (z,h, c)
1: tr ∈ {0, 1}384 := CRH(ρ||t1) . Recompute tr from public information
2: K ← {0, 1}256 . Sample a random seed
3: u := As1 − t1 · 2d . As1 − t1 · 2d = t0 − s2
4: A ∈ Rk×`q := ExpandA(ρ)
5: µ ∈ {0, 1}384 := CRH(tr ||M)
6: κ := 0, (z,h) := ⊥
7: while (z,h) = ⊥ do
8: y ∈ Slγ1−1 := DeterministicSample(K||µ||κ)
9: w := Ay
10: w1 := HighBits(w)
11: c ∈ B60 := H(µ||w1)
12: z := y + cs1
13: h := MakeHint(−cu,w + cu) . MakeHint(−c(s2 − t0,),w− cs2 + ct0)
14: if ‖z‖∞ ≥ γ1 − β then . Remove rejection conditions
15: (z,h) := ⊥
16: else
17: if not Verify(pk,M, (z,h, c)) then (z,h) := ⊥ . Test for correctness
18: κ := κ+ 1
19: return σ = (z,h, c)

Platform. For our experiments, we use an STM32F405 microcontroller (ARM Cortex-
M4F) running on a ChipWhisperer CW308 side-channel evaluation board. We run the
Dilithium C reference implementation7 (compiled with -O3) and clock our device at 30MHz.
For attack evaluation, we signal the start and end of signing with a trigger pin. As faulting
method we make use of clock glitches.

We mounted attacks for all scenarios except fAρ, all with success. For the scenarios
targeting the SHAKE XOF, i.e., fAE, fY, and fH, the ability to precisely time clock glitches
and thus to attack very specific instructions is not needed. A single such permutation
takes approximately 40 000 clock cycles and we only require that its output is different,
thus any random fault suffices. In fact, we did not determine the exact location or effect of
the fault. Attacks on the polynomial multiplication (scenario fW) can benefit from more
precise fault injection (see Section 3.3). However, even random faults yield a high success
rate (Section 5.2).

5.1 Injecting a Fault in the Correct Iteration
Recall that a fault is only exploitable if both the faulted and the non-faulted execution
of the signing algorithm terminate in the same iteration of the abort loop, i.e., ∆κf = 0.
Clearly, in the scenarios fY, fW, and fH, an attacker can maximize the success probability
by injecting the fault in this last iteration κf .

The Dilithium reference implementation is constant (read: key-independent) time. The
individual rejection conditions (line 12 of Algorithm 2) are still tested as soon as possible.
This minimizes the runtime of failed iterations but does not leak sensitive information on
the key. Quite on the contrary, this non-constant-time behavior somewhat complicates the
fault attack. Even an attacker knowing κf cannot exactly pinpoint the time of execution
of vulnerable operations and thus the best time to inject a fault.

7Reference implementation available at https://pq-crystals.org/dilithium/software.shtml

https://pq-crystals.org/dilithium/software.shtml

36 Differential Fault Attacks on Deterministic Lattice Signatures

Table 5: Runtime-percentage of vulnerable code

fAE fY fW fH Sum

κf = 1 47.4 3.8 11.2 2.9 65.2
Overall 24.3 2.0 5.7 1.5 33.5

We get around this by using the observation that the last loop iteration κf is, unlike
the previous ones, constant time. Only there all operations are guaranteed to be performed
and apart from the rejections the code is constant time. Thus, we determine the time of
execution of vulnerable operations as follows. First, we perform the undisturbed signing
and measure its runtime. And second, we simply subtract a fixed offset (depending on the
to-be-faulted operation) from this overall runtime. We used this method for our attacks in
the scenarios fY, fH, and fW, and were successful for any κf .

5.2 Unprofiled Attacks
The above method is highly accurate, yet requires some device/code profiling. Concretely,
an attacker needs to determine the time offsets (either from the start or finish of the
signing operation) of the vulnerable code. This might not always be a realistic assumption.
For this reason, we now show that an attacker injecting a random fault anywhere in the
signing process still has a high chance of succeeding. We do so by measuring the runtime
(in cycles) of the vulnerable code and relating it to the overall execution time (Table 5).

In the best-case scenario for such an attacker, the signing algorithm terminates in
the first iteration (κf = 1). In this case, 65.2% of execution time are vulnerable. In the
general case (no restriction to κf = 1), the success probability goes down to one-third of
the total execution time.

In both cases, sampling of the matrix A takes by far the most time. Additionally, it
is performed at a fixed time in the execution, shortly after the invocation of the signing
algorithm. Thus, in reality an unprofiled attacker faulting somewhere in this region has a
much higher chance of hitting ExpandA than stated in Table 5.

In Figure 3, we further visualize the general case and compare runtime to success
probability for different scenarios. Recall that depending on the concrete fault position,
the success probability of scenario fW varies drastically (see Table 4). For the case of the
unprofiled attacker, we narrowed down this probability by performing 1000 fault attacks
on our target device, with faults at random positions inside fW. Approximately 62% of
these faults were exploitable. Faulting the call to H yields the highest success probability
(Table 4), but also has the smallest footprint. As discussed in Section 3.5, 2/5 of the time
spent on the SHAKE call by DeterministicSample is vulnerable to the attack. This makes
it a slightly larger target compared to fH, but also with a much lower success probability.
In total, a fault inside the vulnerable portions can be exploited with a probability of 56%.
These cover 33.5% of execution time, thus approximately 19% of random faults anywhere
during signing lead to key recovery.

6 Countermeasures
When presenting new attacks, a discussion on potential countermeasures should never be
missing. For this reason, we present the applicability and effectiveness of three generic
countermeasures against the fault attacks described in this work. For each of these
methods, we give the runtime costs and state which fault scenarios will be mitigated by it.
A summary of the latter is shown in Table 6.

Leon Groot Bruinderink and Peter Pessl 37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Portion of total signing time

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

p
ro

b
a
b
il
it
y

0.01
0.05

0.10

0.15

fAE

fH

fY

fW
Total

Figure 3: Comparison of scenarios regarding runtime as portion of total signing time (from
Table 5) vs. success probability (from Table 4). Lines of constant product are drawn in
solid gray.

Double computation. While determinism leads to the applicability of differential fault
attacks in the first place, it can also be used as a countermeasure against such attacks.
Concretely, many faults can be detected by running the signature algorithm twice and
testing the output for equality. This obviously doubles execution time. The countermeasure
can be defeated by either injecting an identical fault twice, which can be challenging, or
by using a permanent fault, e.g., in scenario fAρ with the seed ρ.

Verification-after-sign. Many of the presented attack scenarios lead to signatures being
invalid. Thus, performing signature verification after signing is an effective countermeasure.
As runtime costs of verification are less than one-third of signing (see [LDK+17]), this option
is also much more efficient than double computation. As a downside, however, it cannot
detect faults injected into the sampling of y as this yields valid signatures. Permanent
faults in ρ can be detected if tr = CRH(ρ||t1) is computed during key generation and then
stored as part of the private key (as described in Algorithm 1). If tr is recomputed in the
signing algorithm using the public key, then faults in ρ are not detectable.

Additional randomness. A final and very simple countermeasure is to re-randomize the
deterministic sampling of the noise y. One can simply sample a random r ← 0, 1256 and
then invoke y := DeterministicSample(K||µ||κ||r). This effectively mitigates the differential
fault attack as the faulted call to the signing algorithm uses different y and thus ∆y 6= 0.

Whats more, this method might also hamper further side-channel attacks coming
as side-effects of determinism. As observed by Seuschek et al. [SHS16] and Samwell et
al. [SBB+18], mixing the known message µ with the secret seed K in a hash function
(in Dilithium this is SHAKE in DeterministicSample) opens the gates for DPA-like attacks.
Hash functions are hard to protect against such attacks; using an additional random input
can be a cheap alternative. How r needs to be introduced to maximize the protection while
keeping the necessary size of r small likely depends on the used hash function, further
investigations are needed to answer this question for the case of SHAKE.

The added protection against implementation attacks does not negate the protection
against incorrect implementation and resulting nonce reuse (using the same y for different
messages). For instance, using a constant r effectively reverts signing to its deterministic
version. Additional upsides of this countermeasure are its simplicity and negligible runtime
overhead. Furthermore, unlike straight-forward implementations of the two previous

38 Differential Fault Attacks on Deterministic Lattice Signatures

Table 6: Applicable countermeasures

fAρ fAE fY fW fH

Double computation 7 3 3 3 3

Verification-after-sign 3/7∗ 3 7 3 3

Additional randomness† 3 3 3 3 3

∗ Under certain conditions.
† Not supported by proof of Dilithium [KLS18].

countermeasures, it is single-pass and so does not require to keep a copy of the message
in memory. Note that this countermeasure was already proposed in the context of
EdDSA [ABF+18, SBB+18], but it can also be applied to lattice-based signatures. In
fact, a very recent update of the qTESLA specification made use of this countermeasure
mandatory and cites the presented attacks as reason.

There are, however, also considerable downsides of this countermeasure. First, unlike
the two previous countermeasures, this countermeasure is probabilistic and requires some
source of entropy, i.e., a true random number generator. Such a generator might not be
available on all devices, especially low-resource ones. And second, this countermeasure
violates the security proof of Dilithium. Kiltz, Lyubashevksy, and Schaffner [KLS18]
present a tight proof in the quantum random oracle model (QROM) based on the hardness
of MLWE, MSIS, and a new problem called SelfTargetMSIS. They require the signature
scheme to be deterministic. They do give an alternative proof for a probabilistic version of
Dilithium, yet it is not tight and loses security linearly in the number of observed unique
signatures per message.

Thus, introducing this countermeasure voids provable security guarantees, albeit no
concrete attack is known. The Dilithium authors "still recommend using deterministic
signatures except in environments that may be vulnerable to the aforementioned side-channel
attacks" [LDK+17]. However, determining whether or not an environment is vulnerable is
not easy, as clearly shown by the Rowhammer bug.

References
[ABB+16] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and

Giorgia Azzurra Marson. An Efficient Lattice-Based Signature Scheme with
Provably Secure Instantiation. In AFRICACRYPT, volume 9646 of LNCS,
pages 44–60. Springer, 2016.

[ABB+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA
in the Quantum Random Oracle Model. In PQCrypto, volume 10346 of LNCS,
pages 143–162. Springer, 2017. Full version available at https://ia.cr/
2015/755.

[ABF+18] Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter,
and Bruce Murray. Differential Attacks on Deterministic Signatures. In
CT-RSA, volume 10808 of LNCS, pages 339–353. Springer, 2018.

[AFG13] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the Efficacy
of Solving LWE by Reduction to Unique-SVP. In ICISC, volume 8565 of
LNCS, pages 293–310. Springer, 2013.

https://ia.cr/2015/755
https://ia.cr/2015/755

Leon Groot Bruinderink and Peter Pessl 39

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick Longa,
Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA. Submission
to the NIST Post-Quantum Cryptography Standardization [NIS], 2017. https:
//qtesla.org.

[BBK16] Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. Lattice-Based
Signature Schemes and Their Sensitivity to Fault Attacks. In FDTC, pages
63–77. IEEE Computer Society, 2016.

[BBK+17] Nina Bindel, Johannes A. Buchmann, Juliane Krämer, Heiko Mantel, Johannes
Schickel, and Alexandra Weber. Bounding the Cache-Side-Channel Leakage of
Lattice-Based Signature Schemes Using Program Semantics. In FPS, volume
10723 of Lecture Notes in Computer Science, pages 225–241. Springer, 2017.

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of
the IEEE, 94(2):370–382, 2006.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-Speed High-Security Signatures. In CHES, volume 6917 of LNCS,
pages 124–142. Springer, 2011.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. ECRYPT Hash Workshop, 2007.

[bms10] "bushing", "marcan", and "sven". PS3 epic fail. 27th Chaos Communica-
tion Congress, 2010. https://events.ccc.de/congress/2010/Fahrplan/
events/4087.en.html.

[BP16] Alessandro Barenghi and Gerardo Pelosi. A Note on Fault Attacks Against
Deterministic Signature Schemes. In IWSEC, volume 9836 of LNCS, pages
182–192. Springer, 2016.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice Signatures and Bimodal Gaussians. In CRYPTO (1), volume 8042 of
LNCS, pages 40–56. Springer, 2013.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures
from module lattices. Cryptology ePrint Archive, Report 2017/633, 2017.
Publication to [LDK+17].

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signa-
tures. In SAC, volume 10532 of LNCS, pages 140–158. Springer, 2016.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-Channel Attacks on BLISS Lattice-Based Signatures: Exploiting Branch
Tracing against strongSwan and Electromagnetic Emanations in Microcon-
trollers. In CCS, pages 1857–1874. ACM, 2017.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO, volume 263 of LNCS,
pages 186–194. Springer, 1986.

https://qtesla.org
https://qtesla.org
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html

40 Differential Fault Attacks on Deterministic Lattice Signatures

[GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based
Signature Scheme. In CHES, volume 9813 of LNCS, pages 323–345. Springer,
2016.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In
CHES, volume 7428 of LNCS, pages 530–547. Springer, 2012.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in JavaScript. In DIMVA, volume 9721
of LNCS, pages 300–321. Springer, 2016.

[HLS18] Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded Gaussians. In PKC,
volume 10770 of LNCS, pages 728–757. Springer, 2018.

[HPS+14] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and
William Whyte. Practical Signatures from the Partial Fourier Recovery
Problem. In ACNS, volume 8479 of LNCS, pages 476–493. Springer, 2014.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ISCA, pages 361–372. IEEE Computer Society, 2014.

[Kel18] Julian Kelly. A Preview of Bristlecone, Google’s New Quan-
tum Processor, 2018. https://research.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A Concrete Treat-
ment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model. In
EUROCRYPT (3), volume 10822 of LNCS, pages 552–586. Springer, 2018.

[KRR+18] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren,
and Ingrid Verbauwhede. Constant-time Discrete Gaussian Sampling. IEEE
TC, 2018.

[LDK+17] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium. Submis-
sion to the NIST Post-Quantum Cryptography Standardization [NIS], 2017.
https://pq-crystals.org/dilithium.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for Ring-
LWE Cryptography. In EUROCRYPT, volume 7881 of Lecture Notes in
Computer Science, pages 35–54. Springer, 2013.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In ASIACRYPT, volume 5912 of LNCS, pages
598–616. Springer, 2009.

[Moo17] Dustin Moody. The Ship has Sailed - The NIST Post-Quantum Crypto
"Competition". Invited Talk at ASIACRYPT 2017, 2017. https:
//csrc.nist.gov/CSRC/media//Projects/Post-Quantum-Cryptography/
documents/asiacrypt-2017-moody-pqc.pdf.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://pq-crystals.org/dilithium
https://csrc.nist.gov/CSRC/media//Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
https://csrc.nist.gov/CSRC/media//Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
https://csrc.nist.gov/CSRC/media//Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf

Leon Groot Bruinderink and Peter Pessl 41

[MW17] Daniele Micciancio and Michael Walter. Gaussian Sampling over the Integers:
Efficient, Generic, Constant-Time. In CRYPTO (2), volume 10402 of LNCS,
pages 455–485. Springer, 2017.

[NIS] NIST. Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-Secure and Masked Ring-LWE Implementation. TCHES,
2018(1):142–174, 2018.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not
to be: Attacking strongSwan’s Implementation of Post-Quantum Signatures.
In CCS, pages 1843–1855. ACM, 2017.

[Pes16] Peter Pessl. Analyzing the Shuffling Side-Channel Countermeasure for Lattice-
Based Signatures. In INDOCRYPT, volume 10095 of LNCS, pages 153–170,
2016.

[Por13] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979, 2013.
https://tools.ietf.org/html/rfc6979.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-Trace Side-Channel
Attacks on Masked Lattice-Based Encryption. In CHES, volume 10529 of
LNCS, pages 513–533. Springer, 2017.

[PSS+17] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking Deterministic Signature Schemes using Fault
Attacks. Cryptology ePrint Archive, Report 2017/1014, 2017.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A Masked Ring-LWE Implementation. In CHES, volume 9293 of
LNCS, pages 683–702. Springer, 2015.

[Saa18] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures
for lattice signatures - Engineering a side-channel resistant post-quantum
signature scheme with compact signatures. J. Cryptographic Engineering,
8(1):71–84, 2018.

[SB18] Niels Samwel and Lejla Batina. Practical Fault Injection on Deterministic
Signatures: The Case of EdDSA. In AFRICACRYPT, volume 10831 of LNCS,
pages 306–321. Springer, 2018.

[SBB+18] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero
Susella. Breaking Ed25519 in WolfSSL. In CT-RSA, volume 10808 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2018.

[SHS16] Hermann Seuschek, Johann Heyszl, and Fabrizio De Santis. A Cautionary
Note: Side-Channel Leakage Implications of Deterministic Signature Schemes.
In CS2@HiPEAC, pages 7–12. ACM, 2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://tools.ietf.org/html/rfc6979

42 Differential Fault Attacks on Deterministic Lattice Signatures

A Dilithium Parameter Sets

Table 7 shows all parameter sets specified by the Dilithium authors [LDK+17]. Parameters
(n, q,weight(c), γ1, γ2) are identical across all sets and thus allow for simpler implementation
and switching of security levels.

Table 7: Dilithium Parameter Sets

I II III IV
weak medium recommended high

n 256 256 256 256
q 8380417 8380417 8380417 8380417
d 14 14 14 14

weight(c) 60 60 60 60
γ1 523776 523776 523776 523776
γ2 261888 261888 261888 261888

(k, `) (3, 2) (4, 3) (5, 4) (6, 5)
η 7 6 5 3
β 375 325 275 175
ω 64 80 96 120

B Description of qTESLA

In this section we briefly describe the qTESLA signature scheme [BAA+17]. Please note
that we give the originally submitted version of qTESLA. Following the initial publication of
this paper, in a very recent update of the qTESLA specification the additional randomness
countermeasure was incorporated as part of the algorithm description. As the security
proof of qTESLA allows for a probabilistic version, this countermeasure can be used
without violating any security guarantees. Hence the attacks are no longer applicable.

In Algorithms 7, 8, and 9, we give slightly simplified versions of key generation, signing,
and verification, respectively. Note its similarity to Dilithium, we highlight this similarity
by stating the corresponding variable and function names in Table 8. The main difference
between Dilithium and qTESLA is that the latter is based on Ring-LWE and thus operates
on polynomials in Zq[x]/(xn + 1) with n ≥ 1024. Dilithium is based on the Module-LWE
assumption and uses vectors/matrices of polynomials in a fixed base ring Zq[x]/(x256 + 1).

Algorithm 7 qTESLA Key Generation
Output: Keypair (pk, sk)
1: seeda ← {0, 1}256, seedy ← {0, 1}256

2: a ∈ Rq := GenA(seeda)
3: do
4: s ∈ Rq ← Dσ, e ∈ Rq ← Dσ . Discrete Gaussian distribution Dσ

5: while s and e do not fulfill certain criteria
6: t := as+ e mod q
7: return (pk = (seeda, t), sk = (s, e, seedy, seeda)

Leon Groot Bruinderink and Peter Pessl 43

Algorithm 8 qTESLA Sign (simplified)
Input: Message M , private key sk = (s, e, seedy, seeda)
Output: Signature σ = (c, z)
1: a ∈ Rq := GenA(seeda)
2: counter := 0
3: rand := PRF1(seedy,M)
4: do
5: y := PRF2(rand, counter)
6: v := ay mod q
7: c := H(Round(v),M)
8: z := y + sc
9: counter := counter + 1
10: while Reject(z, v, c, sk)
11: return σ = (c, z)

Algorithm 9 qTESLA Verify (simplified)
Input: Public key pk = (seeda, t), message M , signature σ = (c, z))
1: a ∈ Rq := GenA(seeda)
2: w := az − tc mod q
3: return c = H(Round(w),M)

Applicability of our attacks. All attacks for Dilithium described in Section 3 can easily
be adapted to the original deterministic version of qTESLA, with obviously differing success
probabilities due to different parameter sets, rejection conditions, and algebraic structure.
In particular, the major fault scenario (a random fault in SHAKE) would be the same:
SHAKE is used in qTESLA in a similar way to build the functions described in Table 8.
A subtle difference however is that Dilithium samples multiple smaller polynomials, e.g.,
y ∈ R`q, using independent calls to SHAKE, whereas qTESLA uses just one call to SHAKE
to sample a single but larger polynomial. This affects success rates and also the available
time for fault injection. For instance, in scenario fY in Dilithium one can inject a fault in
the last 2 permutations in any one of the ` independent SHAKE calls, whereas in qTESLA
only the last permutations of the single SHAKE call can be faulted.

After faulting, key recovery is exactly the same, i.e., computing s = ∆c−1 ·∆z. Note
that in qTESLA the public key t is not compressed, thus recovering e (which corresponds to
s2 in Dilithium) is trivial as soon as s (corresponds to s1) is known. No adapted signature
algorithm (as described in Section 4) is needed.

Table 8: Comparison of variable/parameter names and function names for Dilithium and
qTESLA. Only differing names are listed.

Variables:
Dilithium ρ K s1 s2 κ µ w
qTESLA seeda seedy s e counter rand v

Functions:
Dilithium ExpandA CRH DeterministicSample HighBits
qTESLA GenA PRF1 PRF2 Round

	Introduction
	Background
	Lattice-Based Cryptography
	Deterministic Lattice Signatures
	The SHAKE Extendable Output Function
	Implementation Security of Lattice-Based Cryptography
	Differential Fault Attacks on ECC

	Differential Faults on Deterministic Lattice Signatures
	Intuition
	Scenario: fH
	Scenario: fW
	Scenarios: fA, fAE
	Scenario: fY
	Summary of Scenarios

	Signing with the Recovered Key
	Experimental Verification
	Injecting a Fault in the Correct Iteration
	Unprofiled Attacks

	Countermeasures
	Dilithium Parameter Sets
	Description of qTESLA

