
SIDH on ARM: Faster Modular Multiplications
for Faster Post-Quantum Supersingular Isogeny

Key Exchange
Hwajeong Seo1, Zhe Liu2, Patrick Longa3 and Zhi Hu4

1 Hansung University, South Korea
hwajeong84@gmail.com

2 Nanjing University of Aeronautics and Astronautics, China
sduliuzhe@gmail.com

3 Microsoft Research, USA
plonga@microsoft.com

4 School of Mathematics and Statistics, Central South University, China
huzhi_math@csu.edu.cn

Abstract. We present high-speed implementations of the post-quantum supersingular
isogeny Diffie-Hellman key exchange (SIDH) and the supersingular isogeny key
encapsulation (SIKE) protocols for 32-bit ARMv7-A processors with NEON support.
The high performance of our implementations is mainly due to carefully optimized
multiprecision and modular arithmetic that finely integrates both ARM and NEON
instructions in order to reduce the number of pipeline stalls and memory accesses, and
a new Montgomery reduction technique that combines the use of the UMAAL instruction
with a variant of the hybrid-scanning approach. In addition, we present efficient
implementations of SIDH and SIKE for 64-bit ARMv8-A processors, based on a
high-speed Montgomery multiplication that leverages the power of 64-bit instructions.
Our experimental results consolidate the practicality of supersingular isogeny-based
protocols for many real-world applications. For example, a full key-exchange execution
of SIDHp503 is performed in about 176 million cycles on an ARM Cortex-A15 from
the ARMv7-A family (i.e., 88 milliseconds @2.0GHz). On an ARM Cortex-A72 from
the ARMv8-A family, the same operation can be carried out in about 90 million
cycles (i.e., 45 milliseconds @1.992GHz). All our software is protected against timing
and cache attacks. The techniques for modular multiplication presented in this work
have broad applications to other cryptographic schemes.
Keywords: Post-quantum cryptography, SIDH, SIKE, Montgomery multiplication,
ARM, NEON.

1 Introduction
Modular multiplication is one of the performance-critical building blocks of many public-key
cryptographic schemes. Although efficient techniques such as Montgomery multiplica-
tion [Mon85] have been widely studied for many years in an effort to engineer faster
cryptographic implementations on different CPU architectures [KAK96, BP99, GAST05,
SG08, BMSZ13, LG14, SLG+14, SLGK16], speeding up the modular multiplication opera-
tion still remains an important challenge, especially for computing-intensive cryptographic
schemes.

One particularly attractive example of those computing-intensive schemes is the in-
creasingly popular supersingular isogeny Diffie-Hellman key exchange (SIDH) protocol
proposed by Jao and De Feo in 2011 [JF11]. SIDH is the basis of the supersingular isogeny

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 1–20
DOI:10.13154/tches.v2018.i3.1-20

mailto:hwajeong84@gmail.com
mailto:sduliuzhe@gmail.com
mailto:plonga@microsoft.com
mailto:huzhi_math@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.1-20

2 SIDH on ARM

key encapsulation (SIKE) protocol [ACC+17], which is currently under consideration
by the National Institute of Standards and Technology (NIST) for inclusion in a future
standard for post-quantum cryptography [The18]. One of the attractive features of SIDH
and SIKE is their relatively small public keys which are, to date, the most compact among
well-established quantum-resistant algorithms. On the downside, these protocols are much
slower than other popular candidates for post-quantum cryptography, such as those based
on ideal lattices. Therefore, speeding up modular multiplication, which is a fundamental
arithmetic operation in SIDH, has become one of the critical tasks from which depends
the practicality of these isogeny-based cryptographic schemes.

In this work, we focus on optimizing the modular multiplication, with special focus
on SIDH and SIKE, for the popular 32-bit ARMv7-A and 64-bit ARMv8-A architectures,
which are widely used in smartphones, mini-computers, wearable devices, and many others.
Many advanced ARMv7-A processors include the NEON engine, which comprises Single
Instruction Multiple Data (SIMD) instructions capable of processing heavy multimedia
workloads with high efficiency. In order to exploit the parallel computing power of SIMD
instructions, traditional serial implementations need to be rewritten in a vectorized way.
One approach is to use so-called redundant representations to guarantee that sums of partial
results fit in “vector” registers, as suggested in [Int06]. However, this can be inconvenient
in some settings in which vectorized implementations of low-level arithmetic operations
need to be integrated into libraries that use canonical (i.e., non-redundant) representations
for the upper layers. In this work, one important goal is to facilitate the integration
of modular arithmetic functions into the SIDH library [CLN18]. This state-of-the-art
supersingular isogeny-based library implements the SIDH and SIKE protocols with support
for two parameter sets based on the primes p503 = 22503159 − 1 and p751 = 23723239 − 1.
Accordingly, we adopt non-redundant representations for all the proposed algorithms and
implementations targeting these parameters sets.

Some works in the literature have studied algorithms for modular arithmetic based
on non-redundant representations. The basic idea of these methods is to split modular
arithmetic operations in two or more parts, such that intermediate computations do not
overflow. For example, in [BMSZ13] Bos et al. introduced a novel implementation of
Montgomery multiplication using vector instructions that flipped the sign of the precom-
puted Montgomery constant and accumulated the result in two separate intermediate
values that are computed in parallel. In [MS14, MS15], Martins and Sousa proposed a
product-scanning based Montgomery multiplication that computes a pair of 32-bit multi-
plications at once. One critical disadvantage of all these algorithms is the high number of
Read-After-Write (RAW) dependencies, which makes the execution flow suboptimal. In
order to minimize these RAW dependencies, Seo et al. [SLG+14] introduced a novel 2-way
Cascade Operand Scanning (COS) multiplication that performs the partial products of
two modular multiplications in an interleaved way. The method was further improved
in [SLGK16] by using the additive Karatsuba method for integers as long as 1024 and
2048 bits.

In this work, we take a different approach for the case of 32-bit ARMv7-A processors.
We split operations into smaller sub-products either using Karatsuba (for multipreci-
sion multiplication) or schoolbook multiplication (for Montgomery reduction), and then
distribute these to the ARM and NEON engines for processing. Since the goal is to
minimize pipeline stalls due to data hazards, ARM and NEON instructions are carefully
interleaved to maximize the instruction level parallelism (ILP). In each case, initial and
final computations are processed using ARM instructions. This approach favors the use of a
non-redundant representation, which makes representation conversion routines unnecessary
and facilitates integration into existing libraries, as pursued. We then specialize these
techniques to Montgomery multiplication over the “SIDH-friendly” primes p503 and p751
to realize high-speed implementations of the SIDH and SIKE protocols.

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 3

Finally, we also report efficient implementations of SIDH and SIKE for 64-bit ARMv8-A
processors, based on a high-speed Montgomery multiplication that leverages the power of
64-bit instructions.

Our main contributions can be summarized as follows:

1. We propose a unified ARM/NEON multiprecision multiplication for 32-bit ARMv7-A
processors that finely integrates ARM and NEON instructions to exploit ARM’s
instruction level parallelism. We show that this approach reduces the number
of memory accesses by employing both ARM and NEON registers for temporary
storage, and reduces the number of pipeline stalls even in processors with out-of-order
execution capabilities, such as the ARM Cortex-A15 CPU.

2. We introduce a new Montgomery reduction algorithm for 32-bit ARMv7-A processors
that combines the use of the UMAAL instruction with a variant of the hybrid-scanning
approach. We then use this algorithm to engineer a generic Montgomery reduction
that combines the use of ARM and NEON instructions.

3. We specialize the new Montgomery reduction for ARMv7-A to the setting of super-
singular isogeny-based protocols using the primes p503 and p751.

4. We design efficient multiprecision multiplication and Montgomery reduction algo-
rithms specialized to the setting of supersingular isogenies using the prime p503 for
64-bit ARMv8-A.

The proposed non-redundant modular arithmetic algorithms, which were implemented
on top of the most recent version of Microsoft’s SIDH library [CLN18] (version 3.0),
demonstrates that the supersingular isogeny-based protocols SIDH and SIKE are practical
for the myriad of applications that use 32-bit and 64-bit ARM-powered devices. For
example, a full key-exchange using SIDHp503 is performed in about 176 million cycles
on an ARM Cortex-A15 from the ARMv7-A family (i.e., 88 milliseconds @2.0GHz). The
same computation is executed in about 90 million cycles on an ARM Cortex-A72 from the
ARMv8-A family (i.e., 45 milliseconds @1.992GHz). Our software does not use conditional
branches over secret data or secret memory addresses and, hence, is protected against
timing and cache attacks.

Our software for 64-bit ARMv8-A processors has been integrated to the SIDH library
which is available in https://github.com/Microsoft/PQCrypto-SIDH.

The remainder of this paper is organized as follows. In Section 2, we briefly describe
the 32-bit ARMv7-A and 64-bit ARMv8-A architectures. Sections 3 and 4 describe the
proposed multiprecision multiplication and Montgomery reduction algorithms, respectively,
and Section 5 presents the specialized Montgomery multiplications for the setting of
supersingular isogeny-based protocols. Thereafter, we summarize our experimental results
on several ARMv7-A and ARMv8-A processors in Section 6, and conclude the paper in
Section 7.

2 ARM architecture
With over 100 billion ARM-based chips shipped worldwide as of 2017 [ARM17a], ARM
has consolidated its hegemony as the most popular instruction set architecture (ISA) in
terms of quantity. In this work, we focus on the popular 32-bit ARMv7-A and 64-bit
ARMv8-A architecture families, which belong to the “application” profile implemented by
cores from the Cortex-A series.

https://github.com/Microsoft/PQCrypto-SIDH

4 SIDH on ARM

2.1 ARMv7-A architecture
As other traditional 32-bit ARM architectures, the ARMv7-A ISA [ARM14] is equipped
with 16 32-bit registers (R0∼R15), from which 14 are available for use, and an instruction
set supporting 32-bit operations or, in the case of Thumb and Thumb2, a mix of 16- and
32-bit operations. Since the maximum capacity of the register set is of only 448 bits, it
is of critical importance to engineer techniques and algorithms that use efficiently the
available registers in order to minimize memory accesses.

ARMv7-A processors support powerful unsigned integer multiplication instructions. Our
implementation of modular multiplication makes use of the following multiply instructions:

• UMULL (unsigned multiplication):
UMULL R0, R1, R2, R3 computes (R1 ‖ R0) ← R2 × R3.

• UMLAL (unsigned multiplication with accumulation):
UMLAL R0, R1, R2, R3 computes (R1 ‖ R0) ← (R1 ‖ R0) + R2 × R3.

• UMAAL (unsigned multiplication with double accumulation):
UMAAL R0, R1, R2, R3 computes (R1 ‖ R0) ← R1 + R0 + R2 × R3.

Of particular interest is the UMAAL instruction, which performs a 32 × 32-bit multi-
plication followed by accumulations with two 32-bit values (note that the result can be
held in a 64-bit register without producing an overflow). This instruction achieves the
same latency and throughput of the other two multiply instructions, which means that
accumulation is virtually executed for free.

A multiply instruction that is followed by a multiply-and-add with a dependency on the
accumulator triggers a special accumulator forwarding that produces that both instructions
are issued back-to-back. For example, on Cortex-A8 and Cortex-A9 cores the multiply
and multiply-and-add instructions listed above have a latency of 5 cycles. If the special
accumulator forwarding is exploited, a series of multiply and multiply-and-add instructions
can achieve a throughput of 3 cycles per instruction.

NEON engine for ARMv7-A. Many ARMv7-A cores include NEON [ARM14], a powerful
128-bit SIMD engine that comes with 16 128-bit quadruple-word registers (Q0∼Q15) which
can also be viewed as 32 64-bit double-word registers (D0∼D31). NEON includes support
for 8-, 16-, 32- and 64-bit signed and unsigned integer operations that are executed in a
vectorized fashion.

Our implementation of modular multiplication makes extensive use of the following
two multiply instructions:

• VMULL.U32 (vectorized unsigned multiplication):
VMULL.U32 Q0, D2, D3[0] computes D1 ← D2[1] × D3[0], D0 ← D2[0] × D3[0].

• VMLAL.U32 (vectorized unsigned multiplication with accumulation):
VMLAL.U32 Q0, D2, D3[0] computes D1← D1 + D2[1]× D3[0], D0← D0 + D2[0]
× D3[0].

The instructions VMULL.U32 and VMLAL.U32 have a latency of 6 cycles. However, if
any of these two instructions is followed by a multiply-and-add instruction (in this case,
by VMLAL.U32) that depends on the result of the first instruction then the instructions
are issued back-to-back thanks to a special accumulator forwarding. In this case, a series
of multiply and multiply-and-add instructions can achieve a throughput of 2 cycles per
instruction.

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 5

2.2 ARMv8-A architecture

ARMv8-A, or simply ARMv8, is the latest generation of ARM architectures targeted at the
“application” profile. It includes the typical 32-bit architecture, called “AArch32”, and a
64-bit architecture named “AArch64” with its associated instruction set “A64” [ARM17b].
AArch32 preserves backwards compatibility with ARMv7 and supports the so-called
“A32” and “T2” instructions sets, which correspond to the traditional 32-bit and Thumb
instruction sets, respectively. AArch64 comes equipped with 31 general purpose 64-bit
registers (X0∼X31), and an instruction set supporting 32-bit and 64-bit operations. The
significant register expansion means that with AArch64 the maximum register capacity is
expanded to 1,984 bits, a 4x increase with respect to ARMv7.

ARMv8-A processors started to dominate the smartphone market soon after their first
release in 2011, and nowadays they are widely used in various smartphones (e.g., iPhone
and Samsung Galaxy series). Since this architecture is used primarily in embedded systems
and smartphones, efficient and compact implementations are of special interest.

ARMv8-A supports powerful unsigned integer multiplication instructions. Our imple-
mentation of modular multiplication uses the AArch64 architecture and makes extensive
use of the following multiply instructions:

• MUL (unsigned multiplication, low part):
UMULL X0, X1, X2 computes X0 ← (X1 × X2) mod 264.

• UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264.

The two instructions above are required to compute a full 64-bit multiplication of the
form 128-bit← 64× 64-bit, namely, the MUL instruction computes the lower 64-bit half of
the product while UMULH computes the higher 64-bit half.

3 Multiprecision multiplication

There is a plethora of works in the literature that study the use of NEON instructions to
implement multiprecision multiplication or the full Montgomery multiplication on 32-bit
ARMv7-A processors [BMSZ13, MS14, MS15, SLG+14, SLGK16]. However, we point out
that it is possible to achieve relatively good performance by exploiting efficient ARM
instructions, such as UMAAL, especially if one limits the analysis to the use of non-redundant
representations.

In Table 1, we summarize the results of our experiments with state-of-the-art techniques
to realize ARM-only and NEON-only implementations of 256- and 512-bit multiprecision
multiplications. For the ARM-only implementation we adapted the implementation by Fujii
and Aranha [FA17] that uses the UMAAL instruction with the Consecutive Operand Caching
(COC) method. In the case of NEON-only multiplication, we adapted the implementation
by Seo et al. [SLGK16] that uses Karatsuba multiplication with the sub-products carried
out with the Cascade Operand Scanning (COS) method proposed in [SLG+14].

The results in Table 1 show that, in the case of methods using non-redundant represen-
tations, ARM-based implementations of multiprecision multiplication can be more efficient
than their NEON-based counterparts. Next, we propose an approach for multiprecision
multiplication that takes into account this observation. Moreover, in contrast to most
previous works, the proposed method finely mixes ARM and NEON instructions to improve
performance further.

6 SIDH on ARM

Table 1: Comparison of 256-bit and 512-bit multiprecision multiplications using non-
redundant representations and implemented with either ARM or NEON instructions
(32-bit ARMv7-A architecture). The results (in clock cycles) were obtained on an ARM
Cortex-A15 processor.

Bitlength Reference Instruction Timings [cc]

256-bit [FA17] ARM 158
[SLGK16] NEON 188

512-bit [FA17] ARM 596
[SLGK16] NEON 632

3.1 Unified ARM/NEON multiplication for ARMv7-A
A well-known technique to improve CPU usage in certain ARM processors consists of
exploiting the instruction-level parallelism of ARM and NEON instructions. For example,
in cryptography the idea of mixing ARM and NEON instructions has been exploited to
speed up the Salsa20 stream cipher [BS12]. In [FLS15], Faz et al. used the technique
to optimize the arithmetic over the extension field Fp2 by interleaving ARM-only and
NEON-only multiplication and modular reduction routines. And Longa [Lon17] engineered
implementations of extension field multiplication and squaring using NEON that were
interleaved with other less expensive operations such as additions and subtractions over
Fp implemented with ARM instructions.

In the following, we will use m to denote the maximum bitlength of the input operands
to the multiprecision multiplication (we refer to the corresponding operation as an m-bit
multiplication). In order to simplify the description we will assume that m is some even
integer value.

In this section, we show how to use the ARM/NEON mixing technique with the
Karatsuba multiplication for realizing the multiprecision multiplication. For this, some
Karatsuba sub-products are implemented with ARM instructions and others with NEON
instructions, and these different routines are then finely interleaved. Sub-products run by
ARM are implemented with the UMULL/UMAAL instructions and the Consecutive Operand
Caching (COC) method [FA17], while sub-products run by the NEON engine are imple-
mented with the VMULL/VMLAL instructions and the Cascade Operand Scanning (COS)
method [SLG+14]. After corresponding computations are concluded, the results are com-
bined together using ARM instructions. The proposed unified ARM/NEON multiplication
is depicted in Algorithm 1. Additional details follow below.

Algorithm 1 Unified ARM/NEON multiplication
Input: Two m-bit operands A = (AH ||AL) and B = (BH ||BL)
Output: 2m-bit result C
1: AM ← |AL −AH | {ARM}
2: BM ← |BL −BH | {ARM}

Interleaved section begin
3: CL ← AL ·BL {ARM}
4: CM ← AM ·BM {NEON}
5: CH ← AH ·BH {ARM}

Interleaved section end

6: return C ← CL + (CL + CH − CM) · 2 m
2 + CH · 2m {ARM}

The method applies 1-level Karatsuba at the top layer [KO62]. Accordingly, we split

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 7

an m-bit operand multiplication into m/2-bit operand multiplications, which reduces the
cost of multiplication from four m/2-bit multiplications to three m/2-bit multiplications.
There are two well-known approaches to realize Karatsuba, namely additive and subtractive.
Assume a multiplication of two operands A = AH · 2

m
2 + AL and B = BH · 2

m
2 + BL. The

multiplication C = A ·B can be computed according to the following equation with the
additive Karatsuba algorithm:

AH ·BH · 2m + [(AH + AL)(BH + BL)−AH ·BH −AL ·BL] · 2 m
2 + AL ·BL

And with the subtractive Karatsuba algorithm [HS15]:

AH ·BH · 2m + [AH ·BH + AL ·BL − |AH −AL| · |BH −BL|] · 2
m
2 + AL ·BL

In our implementations, we use the subtractive Karatsuba algorithm, which avoids
the carry bits in the computation of CM but requires two absolute differences and one
conditional negation (see Algorithm 1). As shown in Algorithm 1, the computations of
the two absolute differences are performed by the ARM processor at the beginning of the
execution, and then the results are directly transferred to NEON registers. Thus, the
corresponding m/2-bit multiplication is assigned to the NEON engine, and the remaining
two m/2-bit multiplications are assigned to the ARM processor. These NEON and ARM
routines are finely interleaved to exploit the instruction-level parallelism. As stated before,
we use the COC method with UMAAL for the ARM routines, while the COS method is
used for the NEON routine. A word-level (32-bit) depiction of the algorithm for a 256-bit
multiprecision multiplication is presented in Figure 1.

C[0]

C[6]

ARM

C[4]C[10]

NEON

A[0]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]A[7]B[7]

C[7]C[14]

A[7]B[0]

2

4

3

Operand
subtraction

Operand
passing

Result
accumulation

Result
passing

C[14]

C[8]

ARM
NEON

Operand
passing

Operand
passing

Result
passing

Result
Accumulation

C[4]C[10] C[0]

C[6]

C[10]

C[4]
C[8]C[14]

C[0]

C[6]

ARM

C[4]C[10]

NEON Operand subtraction
Operand
passing

Result accumulation

Result
passing

C[14]

C[8]

1

5

C[0]

24

3
2

4

12

34

5

1

3

1

5

2

4

3

Figure 1: Unified 256-bit ARM/NEON multiplication at the word-level, 1©: operand
subtraction; 2© 4©: two sub-products on ARM; 3©: sub-product on NEON; 5©: result
accumulation.

The method is depicted using the execution structure from Algorithm 1 and also in
rhombus form (see Figure 1), where the following notation is required. Let A and B
be operands of length m bits each. Each operand is written as A = (A[n − 1], ..., A[1],
A[0]) and B = (B[n − 1], ..., B[1], B[0]), where n = dm/we is the number of words to
represent operands, and w is the computer word size. The result C = A ·B is represented
by C = (C[2n − 1], ..., C[1], C[0]). In the rhombus, the lowest indices (i, j = 0) of the
product appear at the rightmost corner, whereas the highest indices (i, j = n− 1) appear
at the leftmost corner. A black arrow over a point indicates the processing of a partial
product. The lowermost points represent the results C[i] from the rightmost corner (i = 0)
to the leftmost corner (i = 2n−1). For the ARM routines —executed as Single Instruction
Single Data (SISD)— one partial product is performed per row, whereas for the NEON
routine —executed as Single Instruction Multiple Data (SIMD)— two partial products are
performed per row.

The sub-sections corresponding to the three Karatsuba sub-products are denoted by
2©, 4© (ARM using COC method), and 3© (NEON using COS method). The execution in
Figure 1 is as follows.

8 SIDH on ARM

- In Step 1©, the operand subtraction to generate the middle results AM [0 ∼ 3] ←
|A[0 ∼ 3] − A[4 ∼ 7]| and BM [0 ∼ 3] ← |B[0 ∼ 3] − B[4 ∼ 7]| is performed using
ARM instructions.

- After Step 1©, the interleaved section begins. In Step 3©, the middle part of Karatsuba
multiplication (CM [0 ∼ 7]← AM [0 ∼ 3]× BM [0 ∼ 3]) is performed on the NEON
engine, while in Steps 2© and 4© the lower and higher parts (resp.) of Karatsuba are
performed by ARM instructions.

- Straightforward Karatsuba multiplication requires 3n addition/subtraction operations
for the calculation of (CL + CH − CM) · 2 m

2 ; see Algorithm 1. We store partially
accumulated intermediate results in order to save some computations and memory
accesses. First, the higher and lower parts are accumulated and stored as T ←
CL + CH · 2

m
2 , which allows us to save n/2-word additions, n-word load and n-

word save operations. Second, the intermediate results of ARM are accumulated
together with the intermediate results of NEON as follows: C ← TL + (((TL + TM) +
(TM + TH) · 2 m

2) + CML) · 2 m
2 , where TL ← T mod 2 m

2 , TM ← (T mod 2m) div 2 m
2 ,

TH ← T div 2m, and CML ← CM mod 2 m
2 . The intermediate result CML is directly

transferred from NEON to ARM registers, saving n-word memory accesses (n/2-word
load and n/2-word save operations).

- Lastly, the remaining part from the NEON computation (i.e., CMH ← CM div 2 m
2)

is used to compute C ← C + (CMH + TH) · 2 3m
2 in Step 5©. The intermediate result

CMH is also directly transferred from NEON to ARM registers, which saves n-word
memory accesses (n/2-word load and n/2-word save operations).

Even though ARM processors such as the Cortex-A15 support out-of-order execution,
we observed experimentally that manual scheduling significantly improves performance.
Since the number of lines of the ARM routines is roughly twice the number of lines of the
NEON routine, we mixed two ARM instructions per each NEON instruction (i.e., ...; ARM
instruction; ARM instruction; NEON instruction; ..., and so on). For example,
for the 512-bit multiplication the straight version without interleaving is computed in 590
cycles on a Cortex-A15. After interleaving as explained above, the cost is reduced to only
470 cycles (i.e., multiplication is executed 1.25x faster).

In Table 2, we compare the results of the proposed method for 512-and 768-bit
multiprecision multiplication with other implementations based on ARM and NEON
instructions. For example, the proposed unified ARM/NEON approach is about 1.3x
faster than methods based on ARM-only or NEON-only instructions for computing 512-bit
multiprecision multiplication.

Table 2: Comparison of implementations of 512-bit and 768-bit multiprecision multiplication
on an ARM Cortex-A15 processor (32-bit ARMv7-A architecture). Timings are reported
in clock cycles.

Bit Length Method Instruction Timings [cc]

512-bit

Fujii et al. [FA17] ARM 596
GMP-6.1.2 [GMP18] ARM 1,138
Seo et al. [SLGK16] NEON 632

This work ARM/NEON 470

768-bit GMP-6.1.2 [GMP18] ARM 2,408
This work ARM/NEON 912

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 9

3.2 Multiprecision multiplication for ARMv8-A

The extended register space and the new support for operations with 64-bit arguments
introduce a significant performance improvement on 64-bit ARMv8-A processors. However,
it can also be observed a widening in the gap between the cost of multiply instructions
and the cost of other simple instructions such as addition. We summarize the performance
of a few representative instructions on the ARM Cortex-A72 processor in Table 3. While
it is possible to execute instructions such as addition and subtraction at an optimal rate
of 2 instructions per cycle, a full 64× 64-bit multiplication operation can only run at a
rate of 4 + 3 = 7 cycles per operation (recall that to obtain a 128-bit product, one requires
a MUL instruction to compute the lower 64-bit half of the product while UMULH computes
the higher 64-bit half; cf. Section 2.2).

Table 3: Performance comparison of various instructions on the ARM Cortex-A72 processor
(64-bit ARMv8-A architecture). Timings are in clock cycles.

AArch64 instruction Instruction group Latency [cc] Throughput [cc]
ADD/ADC/SUB/SBC ALU, basic 1 2

MUL multiply 3 1/3
UMULH multiply high 6 1/4

Based on the observation above we engineer a multiprecision multiplication that
minimizes the use of multiplication instructions by making extensive use of Karatsuba
multiplication. Specifically, we use two-level additive Karatsuba to implement a 512-bit
multiprecision multiplication. At the lowest level, we implement a 128× 128-bit multipli-
cation using the Comba method [Com90] based on the following multiplication/addition
instruction sequence

...
MUL X0, X4, X5
UMULH X1, X4, X5
ADDS X10, X10, X2
ADCS X11, X11, X3
ADC X12, XZR, XZR

MUL X2, X6, X7
UMULH X3, X6, X7
ADDS X10, X10, X0
ADCS X11, X11, X1
ADC X12, X12, XZR
...

where the last accumulation sequence performs the computation (X12‖X11‖X10)← (X1‖X0)+
(X12‖X11‖X10). Note that the two registers X0 and X1 hold the lower and higher parts of the
product X4× X5, respectively, which are computed by the first multiplication pair placed
in the upper sequence. This is done in order to hide the cost of the addition instructions
using the multiply instructions. Thus, each 5-instruction multiplication/addition sequence
requires 7 clock cycles (of reciprocal throughput) to execute on an ARM Cortex-A53 or
Cortex-A72 processor. This means that a 128-bit Comba multiplication can be executed
in approximately 28 cycles. Experimental results of this approach in the context of SIDH
and SIKE are reported in Section 6.

10 SIDH on ARM

4 Modular reduction
Multiprecision modular multiplication is a performance-critical building block in pre-
quantum (e.g. RSA) and post-quantum (e.g. SIDH) cryptography. One of the most
well-known techniques used for its implementation is Montgomery reduction [Mon85]. A
basic description is depicted in Algorithm 2.

Algorithm 2 Montgomery reduction
Require: An odd modulus M , the Montgomery radix R > M , an operand T ∈ [0, M2−1],

and the pre-computed constant M ′ = −M−1 mod R
Ensure: Montgomery product Z = MonRed(T, R) = T ·R−1 mod M
1: Q← T ·M ′ mod R
2: Z ← (T + Q ·M)/R
3: if Z ≥M then Z ← Z −M
4: return Z

The efficient implementation of Montgomery multiplication has been actively studied
for both SISD and SIMD architectures. For the case of SISD architectures, such as
8-bit AVR and some 32-bit ARM processors, one of the most efficient approaches is the
hybrid Montgomery multiplication. This method organizes the computation in a two-level
routine comprising an inner and an outer loop [GAST05, LG14]. One can choose different
approaches to implement each routine, but recent hybrid implementations have utilized
the product-scanning method for both routines. When it comes to SIMD architectures,
such as ARM with NEON, some works [SLGK16, SLG+14, KJA+16] have employed the
COS method, issuing two multiplications at once and finely re-ordering the computation
routines to avoid pipeline stalls.

One crucial difference with previous works is that we exploit both ARM and NEON
instructions to implement the Montgomery reduction. For the NEON part we adopt the
COS method. However, for the ARM part, neither hybrid-scanning nor COC appears to
be efficient. On one hand the use of the UMAAL instruction favors a row-wise (operand
scanning) execution. On the other hand, the COC method does not facilitate an efficient
interleaved implementation with NEON. To overcome these issues we propose a more
efficient variant of the hybrid-scanning approach using the UMAAL instruction. The details
are depicted in Algorithm 3.

Unlike previous hybrid approaches, the outer loop of the proposed algorithm applies
operand-scanning (for loop in line 2) while the inner loop applies product-scanning (for
loop in line 15). For simplicity and efficiency, the algorithm is described for the case in
which the operand-scanning width is 3 and the word length of the operand is divisible by
3 1; but these settings can be easily modified.

We now show how to exploit the new hybrid-scanning method to realize a more efficient
Montgomery reduction that mixes ARM and NEON instructions. In the following, we fix
the bitlength of the Montgomery radix to s = wn, where w is the computer word size and
n = dm/we is the number of words needed to represent an m-bit modulus M .

As stated before, the NEON part can be implemented efficiently with the COS method.
For the ARM part, we use the proposed variant of the hybrid-scanning method. The
proposed unified ARM/NEON algorithm for Montgomery reduction is detailed in Algo-
rithm 4. As can be seen, after the initial multiplication performed by the ARM processor,
the results are transferred to NEON registers. Then, the s/2-bit multiplications with the
lower half of the modulus M (i.e., with ML) are performed with the new hybrid-scanning
method using the ARM instruction set, while the remaining two s/2-bit multiplications

1The operand-scanning width set to 3 ensures the efficient use of UMAAL with a limited number of 32-bit
general purpose registers for the column-wise multiplication without the need of carry handling.

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 11

Algorithm 3 Hybrid-scanning algorithm for Montgomery reduction targeting 32-bit
ARMv7-A processors with support for the UMAAL instruction. Operand-scanning width is
set to 3
Input: n-word modulus M = (mn−1, ..., m1, m0) with 3|n, operand T = (t2n−1, ..., t1, t0)

with T < M2 − 1, and pre-computed constant m′0 = −m−1
0 mod 2w with w = 32

Output: Montgomery residue Z = T · 2−wn mod M
1: (p, u, v)← (0, 0, 0)
2: for i from 0 by 3 to n− 1 do
3: qi ← ti ·m′0 mod 2w {MUL}
4: (p, u, v)← m0 · qi + ti + (p, u, v) {UMAAL}
5: (p, u, v)← (0, p, u)
6: (p, u, v)← m0 · qi+1 + ti+1 + (p, u, v) {UMAAL}
7: qi+1 ← v ·m′0 mod 2w {MUL}
8: (p, u, v)← m1 · qi + (p, u, v) {UMAAL}
9: (p, u, v)← (0, p, u)
10: (p, u, v)← m0 · qi+2 + ti+2 + (p, u, v) {UMAAL}
11: (p, u, v)← m1 · qi+1 + (p, u, v) {UMAAL}
12: qi+2 ← v ·m′0 mod 2w {MUL}
13: (p, u, v)← m2 · qi + (p, u, v) {UMAAL}
14: (p, u, v)← (0, p, u)
15: for j from 3 by 1 to n− 1 do
16: (p, u, v)← mj−1 · qi+2 + ti+j + (p, u, v) {UMAAL}
17: (p, u, v)← mj · qi+1 + (p, u, v) {UMAAL}
18: (p, u, v)← mj+1 · qi+0 + (p, u, v) {UMAAL}
19: ti+j ← v
20: (p, u, v)← (0, p, u)
21: (p, u, v)← mn−2 · qi+2 + ti+n + (p, u, v) + (c1, c0) {UMAAL}
22: (p, u, v)← mn−1 · qi+1 + (p, u, v) {UMAAL}
23: ti+n ← v
24: (p, u, v)← (0, p, u)
25: (p, u, v)← mn−1 · qi+2 + ti+n+1 + (p, u, v) {UMAAL}
26: ti+n+1 ← v
27: (p, u, v)← (0, p, u)
28: (c1, c0)← (u, v)
29: for j from 0 by 1 to n− 2 do
30: zj ← pj+n

31: (zn, zn−1)← (c1, c0)
32: if Z ≥M then
33: Z ← Z −M
34: return Z

12 SIDH on ARM

(with MH) are performed with the COS method using NEON. These NEON and ARM
routines are finely interleaved to exploit the instruction-level parallelism.

Algorithm 4 Unified ARM/NEON Montgomery reduction
Input: An odd m-bit modulus M = (MH‖ML), the Montgomery radix R = 2s, where

s = wn with w = 32 and n = dm/we, an operand T ∈ [0, M2 − 1], and pre-computed
constant M ′ = −M−1 mod R

Output: m-bit Montgomery product Z = T ·R−1 mod M
1: Q = (QH‖QL)← T ·M ′ mod R {ARM}

Interleaved section begin
2: Z1 ←ML ·QL {ARM}
3: Z2 ←MH ·QL {NEON}
4: Z3 ←ML ·QH {ARM}
5: Z4 ←MH ·QH {NEON}

Interleaved section end

6: Z ← (T + Z1 + (Z2 + Z3) · 2 s
2 + Z4 · 2s)/2s {ARM}

7: if Z ≥M then
8: Z ← Z −M {ARM}
9: return Z

C[0]

C[6]

ARM

C[4]C[10]

NEON

Q[0]M[0]

Q[0]M[7]

Q[7]M[7]

T[0]T[7]T[14]

A[0]B[0]A[7]B[7]

C[7]C[14]

Q[7]M[0]

2

4

3

Operand
subtraction

Operand
passing

Result
accumulation

Result
passing

C[14]

C[8]

ARM
NEON

Operand
passing

Operand
passing

Result
passing

Result
Accumulation

T[4]T[10] T[0]

T[6]

T[10]

T[4]
T[8]T[14]

C[0]

C[6]

ARM

C[4]C[10]

NEON Operand subtraction
Operand
passing

Result accumulation

Result
passing

C[14]

C[8]

1

5

C[0]

24

3
2

4

12

34

5

1

3

1

5

2

4

3

Figure 2: Unified 256-bit ARM/NEON Montgomery reduction at the word-level (8-word
operand), 1© 3©: two sub-products on ARM; 2© 4©: two sub-products on NEON; 5©: result
accumulation.

A word-level depiction of the algorithm with an 8 32-bit word input operand is
presented in Figure 2 using the execution structure from Algorithm 4 and also in rhombus
form, where the following notation is required. Let T be the input operand, written
as T = (T [2n − 1], ..., T [1], T [0]), Q be the result in line 1 of Algorithm 4, written as
Q = (Q[n− 1], ..., Q[1], Q[0]), and M be the modulus, written as M = (M [n− 1], ..., M [1],
M [0]). As before, the lowest indices (i, j = 0) of the product appear at the rightmost corner
of the rhombus, whereas the highest indices (i, j = n− 1) appear at the leftmost corner.
A black arrow over a point indicates the processing of a partial product. The lowermost
points represent the results Z[i] from the rightmost corner (i = 0) to the leftmost corner
(i = 2n− 1). For the ARM routines —executed as Single Instruction Single Data (SISD)—
one partial product is performed per row, whereas for the NEON routine —executed as
Single Instruction Multiple Data (SIMD)— two partial products are performed per row.
The sub-sections in the “interleaved” section are denoted by 1© 3©, computed by the ARM
processor using hybrid-scanning, and 2© 4©, computed by the NEON engine using COS.

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 13

5 Modular multiplication for SIDH
In this section, we adapt the techniques described in previous sections to implement modular
multiplication for the supersingular isogeny-based protocols SIDH and SIKE. Specifically,
we target the parameter sets based on the primes p503 and p751 [CLN16, ACC+17]. For
more information about SIDH, SIKE and their efficient implementation, the reader is
referred to [JF11, CLN16, ACC+17, CLN18].

Multiprecision modular multiplication is a basic and central operation for the implemen-
tation of SIDH [JF11, CLN16]. In this setting, Montgomery multiplication can be efficiently
exploited and further simplified by taking advantage of so-called Montgomery-friendly
modulus. There are three cases that admit efficient computation:

- When the lower word of the modulus is 2w − 1 (i.e., 0xFFFFFFFF for w = 32),
the pre-computed Montgomery constant m′ = −m−1

0 mod 2w is equal to 1. This
optimizes away the multiplication T ·m′ in a radix-2w Montgomery multiplication.

- Multiplications with an all-ones word can be replaced by a simpler operation with
shifts and subtractions (e.g., T × 0xFFFFFFFF→ T × 232 − T).

- Assuming a modulus M + 1 turns the lower part of the modulus into all-zero words,
which directly eliminates several multiplications and additions/subtractions.

The optimizations above, which were first pointed out by Costello et al. [CLN16] in the
setting of SIDH when using moduli of the form 2x · 3y − 1 (referred to as “SIDH-friendly”
primes), are exploited by the SIDH library to reduce the complexity of Montgomery
reduction from O(n2 + n) to roughly O(n

2
2) [CLN18].

The advantage of using Montgomery multiplication for SIDH-friendly primes was also
recently confirmed by Bos and Friedberger [BF17], who studied and compared different
approaches, including Barrett reduction. In [BF17] they also explored fast modular
arithmetic for generalized moduli of the form 2xpy ± 1 with p ≥ 3. Their most efficient
results are reported for the case p = 19. However, it is still unclear how this parameter
choice affects the performance of the full SIDH protocol. Karmakar et al. [KRVV16]
proposed a modular reduction algorithm based on the radix 2 x

2 · 3
y
2 . Unfortunately, their

technique has an interleaved execution and only works efficiently with moduli of the form
2 · 2x · 3y with x and y even (e.g., this modulus shape is incompatible with the primes
proposed for SIDH and SIKE [CLN16, ACC+17]). Bos and Friedberger fixed these issues
with a variant of the 2 x

2 3
y
2 -radix approach, but their method requires on-the-fly conversion

of the inputs to these special radix representations.
Based on this analysis, we choose Montgomery multiplication to implement SIDH-

friendly modular arithmetic, following [CLN16, BF17, FHLOJRH17]. Moreover, we further
reduce the complexity of modular multiplication by employing the unified ARM/NEON
approach.

As previously stated, we focus on efficient algorithms that have inputs/outputs expressed
in non-redundant representation. This is done with the goal of facilitating integration of our
field arithmetic implementation into existing libraries, such as the SIDH library. Between
interleaved and non-interleaved Montgomery multiplication, the latter is the preferred
approach for SIDH since this favors the use of Karatsuba and lazy reduction at the Fp2

level. Accordingly, for the multiplication part we use the multiprecision multiplication
algorithm described in Section 3.1, in which two s/2-bit multiplications are executed by
ARM instructions using the COC method, and one s/2-bit multiplication is executed
by NEON using the COS method. For the Montgomery reduction part, we adapt the
Montgomery reduction algorithm described in Section 4 to SIDH-friendly primes. In this
case, one s/2-bit multiplication is executed with ARM instructions using our variant of
the hybrid-scanning method, and one s/2-bit multiplication is executed by NEON using

14 SIDH on ARM

the COS method. The method is detailed in Algorithm 5. As in [CLN16], our approach
uses the transformed modulus M̃ = M + 1 during intermediate computations in order to
convert the lower words of p503 and p751 to all-zero words and, thus, save a significant
number of multiplications and additions.

Algorithm 5 Unified ARM/NEON Montgomery reduction for SIDH-friendly primes

Input: M̃ = M + 1 = (M̃H‖M̃L) for an odd m-bit modulus M , the Montgomery radix
R = 2s, where s = wn with w = 32 and n = dm/we, an operand T ∈ [0, M2 − 1], and
pre-computed constant M ′ = −M−1 mod R

Output: m-bit Montgomery product Z = T ·R−1 mod M
1: Set Q = (QH‖QL)← T ·M ′ mod 2s

Interleaved section begin
2: T ← T + (M̃H ·QL) · 2 s

2 {ARM}
3: Z4 ← M̃H ·QH {NEON}

Interleaved section end

4: Z ← (T + Z4 · 2s −Q)/2s {ARM}
5: if Z ≥M then
6: Z ← Z −M {ARM}
7: return Z

A word-level depiction of the algorithm with an 8 32-bit word input operand is presented
in Figure 3 using the execution structure from Algorithm 5 and also in rhombus form.
The execution flow is divided into three sub-sections (1© 2© 3©). The sub-sections in the
“interleaved” section, namely 1© and 2©, are computed by the ARM processor using hybrid-
scanning and by the NEON engine using COS, respectively. Note that we assume that the
lower words of the transformed modulus M̃ = (M [n− 1], ..., M [1], M [0]) are all zeroes; i.e.,
M̃ [0] ∼ M̃ [3]← 0 in Figure 3, which eliminates half of the multiplications in the rhombus.

Q[0]M[4]

Q[0]M[7]

T[4]T[11]T[14]

Q[7]M[4]

ARM
NEON

Operand
passing

Result
Accumulation

T[8] T[4]

T[11]

1

2 1 2

Q[7]M[7]
3

T[14] ~

~

~

~

Figure 3: Unified 256-bit ARM/NEON Montgomery reduction at the word-level (8-word
operand) for SIDH-friendly primes, 1©: sub-product on ARM; 2©: sub-product on NEON;
3©: result accumulation.

6 Performance evaluation
In this section, we evaluate the performance of the proposed algorithms for 32-bit ARMv7-
A and 64-bit ARMv8-A processors. All our implementations were written in assembly
language and compiled with GCC 5.4.0 with optimization level -O3.

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 15

First, we implemented generic 512-bit and 768-bit Montgomery multiplications using the
multiprecision multiplication algorithm described in Section 3.1 and the modular reduction
algorithm described in Section 4. Table 4 summarizes our results an compares them
with other efficient implementations on an ARM Cortex-A15 from the ARMv7-A family.
The column “Approach” indicates whether the corresponding Montgomery multiplication
implementation interleaves the multiplication and reduction routines. As can be seen,
in the 512-bit case Fujii et al. [FA17] achieves the highest efficiency among ARM-only
implementations, while Seo et al.’s COS method achieves the best performance in the case
of NEON [SLGK16]. Our implementation exploiting mixed ARM/NEON instructions is
roughly 1.3x and 1.4x faster than [FA17] and [SLGK16], respectively.

Table 4: Comparison of different 512-bit and 768-bit Montgomery multiplication imple-
mentations. Results (in clock cycles) were obtained on an ARM Cortex-A15.
Bit Length Instruction Method Approach Timings [cc]

512-bit

ARM
GMP-6.1.2 [GMP18] - 2,900
Bos et al. [BMSZ13] Interleaved 2,373
Fujii et al. [FA17] Separated 1,332

NEON

Martins et al. [MS14, MS15] Interleaved 4,206
Bos et al. [BMSZ13] Interleaved 2,473
Seo et al. [SLG+14] Interleaved 1,485
Seo et al. [SLGK16] Separated 1,408

ARM/NEON This work Separated 1,034

768-bit ARM GMP-6.1.2 [GMP18] Separated 5,561
ARM/NEON This work Separated 2,006

SIDH on ARMv7-A. To evaluate the performance of the proposed Montgomery multi-
plication specialized to the setting of SIDH (cf. Section 5), we integrate it into the SIDH
library [CLN18], version 3.0. This library implements the SIDH and SIKE protocols using
the parameters sets SIDHp503 and SIDHp751 (resp. SIKEp503 and SIKEp751) based on
the 503-bit and 751-bit primes p503 and p751, respectively [CLN16, ACC+17].

Table 5 shows the results of software implementations of the SIDHp503 and SIDHp751
protocols on ARM Cortex-A15. We include implementation results from Koziel et
al. [KJA+16] which presented an implementation of Montgomery multiplication using
NEON and the COS method from [SLGK16]. In comparison, our implementation of
Montgomery multiplication for p503 is about 1.8x faster than Koziel et al.’s. This speedup
directly reflects on the full protocol: an SIDHp503 key exchange is executed approximately
1.7x faster. In the case of p751, Koziel et al.’s only reported an implementation using generic
C. In this case, SIDHp751 runs approximately 2.8x faster with our assembly-optimized
ARM/NEON based Montgomery multiplication.

As reference, we also include results of the unoptimized reference implementation
written in C using the Microsoft SIDH library [CLN18]. We mention than in this case the
proposed implementation is roughly 13x faster for the computation of a full SIDH key
exchange.

SIDH on ARMv8-A. For this case, we implemented the multiprecision multiplication
algorithm described in Section 3.2, and the shifted 2Bw-radix Montgomery reduction pro-
posed by [BF17], with B = 4. As in the previous section, we integrated our implementation
of the Montgomery multiplication for ARMv8-A into the SIDH library [CLN18], version
3.0.

Table 6 summarizes the results of different software implementations of the SIDHp503
protocol on two ARMv8-A processors: (i) a 1.512GHz ARM Cortex-A53 processor with

16 SIDH on ARM

Table 5: Comparison of implementations of the SIDHp503 and SIDHp751 protocols on
ARM Cortex-A15 (ARMv7-A architecture). Timings are reported in terms of clock cycles.

Implementation Language Instruction Timings [cc] Timings [cc× 106]
Fp mul Alice R1 Bob R1 Alice R2 Bob R2 Total

SIDHp503
SIDH v3.0 [CLN18] C generic 8,947 597 657 487 555 2,296
Koziel et al. [KJA+16] ASM NEON 1,372 83 87 66 68 302
This work ASM ARM/NEON 780 46 50 38 42 176

SIDHp751
SIDH v3.0 [CLN18] C generic 36,592 2,006 2,256 1,650 1,924 7,836
Koziel et al. [KJA+16] C generic N/A 437 474 346 375 1,632
This work ASM ARM/NEON 1,502 150 170 120 144 584

in-order execution, and (ii) a 1.992GHz ARM Cortex-A72 processor with out-of-order
capability. We include results for the ARMv8-A implementation by Campagna [ACC+17],
which was submitted to the NIST post-quantum standardization process [The18] as an
“additional implementation” in the SIKE submission package [ACC+17]. As can be seen,
our implementation of Montgomery multiplication for the 503-bit prime is up to 1.2x faster
than the assembly-optimized implementation by Campagna. Moreover, a full SIDHp503 key
exchange based on our efficient multiplication is 1.23x and 1.27x faster on the Cortex-A72
and Cortex-A53 processors, respectively. Our results are similar for the SIKE protocol (see
Table 7): our implementations are between 1.23x and 1.28x faster on the same ARMv8-A
processors for computing SIKEp503’s encapsulation and decapsulation operations.

As reference, we also include results of the unoptimized reference implementation written
in C using the Microsoft SIDH library [CLN18]. In this case, the proposed implementation
is between 5 and 6 times faster for the computation of the SIDH and SIKE protocols.

Table 6: Comparison of implementations of the SIDHp503 protocol on ARMv8-A based
processors. Timings are reported in terms of clock cycles.

Implementation Language Processor Timings [cc] Timings [cc× 106]
Fp mul Alice R1 Bob R1 Alice R2 Bob R2 Total

SIDH v3.0 [CLN18] C
Cortex-A53

4,453 167.2 136.2 184.5 155.9 643.8
Campagna [ACC+17] ASM 1,187 44.0 35.9 48.7 41.2 169.8
This work ASM 971 34.5 28.1 38.3 32.4 133.3

SIDH v3.0 [CLN18] C
Cortex-A72

3,942 149.1 121.5 164.3 139.4 574.3
Campagna [ACC+17] ASM 865 28.8 23.4 31.7 26.9 110.8
This work ASM 753 23.4 19.1 25.9 21.9 90.3

Table 7: Comparison of implementations of the SIKEp503 protocol on ARMv8-A based
processors. Timings are reported in terms of clock cycles.

Implementation Language Processor Timings [cc] Timings [cc× 106]
Fp mul KeyGen Encaps Decaps Total

SIDH v3.0 [CLN18] C
Cortex-A53

4,453 184.5 303.3 323.0 626.3
Campagna [ACC+17] ASM 1,187 48.8 80.0 85.3 165.3
This work ASM 971 38.4 62.7 66.9 129.6

SIDH v3.0 [CLN18] C
Cortex-A72

3,942 164.4 270.6 287.9 558.5
Campagna [ACC+17] ASM 865 31.8 52.2 55.6 107.8
This work ASM 753 25.9 42.5 45.3 87.8

Finally, we remark that the comparisons above do not take into account energy and
power consumption. The analysis of these metrics, especially for the proposed ARM/NEON
algorithms in comparison with ARM-only and NEON-only implementations, is particularly
relevant but requires further study. For example, while NEON instructions consume more

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 17

power than regular instructions their use may reduce code density and execution time,
which in turn can have a positive effect on power reduction. Moreover, mixing ARM and
NEON instructions, as done in our algorithms, reduces the number of power-expensive
memory accesses. This analysis is left as future work.

7 Conclusion
This paper presented unified ARM/NEON algorithms for high-speed Montgomery multi-
plication on 32-bit ARMv7-A processors, and an efficient implementation of Montgomery
multiplication for 64-bit ARMv8-A processors. A combination of these optimizations
yields very efficient Montgomery multiplications that are shown, for example, to be ap-
proximately 1.3x faster than the previously best implementations on an ARM Cortex-A15
processor. We integrated our fast modular arithmetic implementations into Microsoft’s
SIDH library and reported the fastest performance on 32-bit and 64-bit ARM proces-
sors to date. For example, a full key-exchange execution of SIDHp503 is performed in
about 88 milliseconds on a 2.0GHz ARM Cortex-A15 from the ARMv7-A family. On
a 1.992GHz ARM Cortex-A72 from the ARMv8-A family, the same operation can be
carried out in about 45 milliseconds. These results, which push further the performance
of post-quantum supersingular isogeny-based protocols, are 1.7x and 1.2x faster than
the previously fastest assembly-optimized implementations of SIDH/SIKE on the same
Cortex-A15 and Cortex-A72 processors, respectively.

Acknowledgments
We would like to thank Erkay Savas and the reviewers for their valuable and helpful feedback.
Hwajeong Seo was partially supported by the National Research Foundation of Korea (NRF)
with grant funded by the Korea Government (MSIT) (No. NRF-2017R1C1B5075742)
and by the Institute for Information & Communications Technology Promotion (IITP)
with grant funded by the Korea Government (MSIT) (No. 2018-0-00264, Research on
Blockchain Security Technology for IoT Services). Zhe Liu (corresponding author of this
paper) was supported by the Natural Science Foundation of Jiangsu Province of China (No.
SBK2018043466) and Fundamental Research Funds for the Central Universities (Grant
No. NE2018106). Zhi Hu was partially supported by the Natural Science Foundation of
China (Grant No. 61602526).

References
[ACC+17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,

Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular Isogeny Key Encapsulation – Submission
to the NIST’s post-quantum cryptography standardization process,
2017. Available at https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.
zip.

[ARM14] ARM Limited. ARM architecture reference manual ARMv7-A and ARMv7-
R edition. https://static.docs.arm.com/ddi0406/c/DDI0406C_C_
arm_architecture_reference_manual.pdf, 2007–2014.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf
https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf

18 SIDH on ARM

[ARM17a] ARM Holdings. Q1 2017 roadshow slides. https://www.arm.
com/company/-/media/arm-com/company/Investors/Quarterly%
20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.
pdf, 2017.

[ARM17b] ARM Limited. ARM architecture reference manual ARMv8, for ARMv8-
A architecture profile. https://static.docs.arm.com/ddi0487/ca/
DDI0487C_a_armv8_arm.pdf, 2013–2017.

[BF17] Joppe W Bos and Simon Friedberger. Fast arithmetic modulo 2xpy ± 1. In
IEEE Symposium on Computer Arithmetic (ARITH’17), pages 148–155.
IEEE, 2017.

[BMSZ13] Joppe W Bos, Peter L Montgomery, Daniel Shumow, and Gregory M
Zaverucha. Montgomery multiplication using vector instructions. In
Selected Areas in Cryptography - SAC 2013, pages 471–489. Springer, 2013.

[BP99] Thomas Blum and Christof Paar. Montgomery modular exponentiation
on reconfigurable hardware. In IEEE Symposium on Computer Arithmetic
(ARITH ’99). IEEE, 1999.

[BS12] Daniel J Bernstein and Peter Schwabe. NEON crypto. In E. Prouff and
P.R. Schaumont, editors, Cryptographic Hardware and Embedded Systems
- CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages
320–339. Springer, 2012.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016, volume 9814 of
Lecture Notes in Computer Science, pages 572–601. Springer, 2016.

[CLN18] Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library. https:
//github.com/Microsoft/PQCrypto-SIDH, 2016–2018.

[Com90] P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems
Journal, 29(4):526–538, 1990.

[FA17] Hayato Fujii and Diego F Aranha. Curve25519 for the Cortex-M4 and
beyond. Progress in Cryptology - LATINCRYPT 2017, 2017.

[FHLOJRH17] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Fran-
cisco Rodríguez-Henríquez. A faster software implementation of the super-
singular isogeny Diffie-Hellman key exchange protocol. IEEE Transactions
on Computers (to appear), 2017.

[FLS15] Armando Faz-Hernández, Patrick Longa, and Ana H. Sánchez. Efficient
and secure algorithms for GLV-based scalar multiplication and their im-
plementation on GLV-GLS curves (extended version). J. Cryptographic
Engineering, 5(1):31–52, 2015.

[GAST05] Johann Großschädl, Roberto Maria Avanzi, Erkay Savas, and Stefan Tillich.
Energy-efficient software implementation of long integer modular arithmetic.
In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2005, volume 3659 of Lecture Notes in Computer
Science, pages 75–90. Springer, 2005.

[GMP18] GMP. The GNU Multiple Precision Arithmetic Library. Available for
download at https://gmplib.org/, 2018.

https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://gmplib.org/

Hwajeong Seo, Zhe Liu, Patrick Longa and Zhi Hu 19

[HS15] Michael Hutter and Peter Schwabe. Multiprecision multiplication on AVR
revisited. J. Cryptographic Engineering, 5(3):201–214, 2015.

[Int06] Intel. Using streaming SIMD extensions (SSE2) to perform big multipli-
cations. https://software.intel.com/sites/default/files/14/4f/
24960, 2006.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography (PQCrypto 2011), volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011.

[KAK96] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski. Analyzing and
comparing Montgomery multiplication algorithms. IEEE Micro, 16(3):26–
33, 1996.

[KJA+16] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran
Mozaffari-Kermani. NEON-SIDH: efficient implementation of supersingular
isogeny Diffie-Hellman key exchange protocol on ARM. In International
Conference on Cryptology and Network Security (CANS 2016), pages 88–
103. Springer, 2016.

[KO62] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers
on automata. Soviet Physics Doklady, 7:595, 1962.

[KRVV16] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. Efficient finite field multiplication for isogeny based post
quantum cryptography. In International Workshop on the Arithmetic of
Finite Fields, pages 193–207. Springer, 2016.

[LG14] Zhe Liu and Johann Großschädl. New speed records for Montgomery
modular multiplication on 8-bit AVR microcontrollers. In International
Conference on Cryptology in Africa (Africacrypt 2014), pages 215–234.
Springer, 2014.

[Lon17] Patrick Longa. FourQNEON: faster elliptic curve scalar multiplications
on ARM processors. In Roberto Avanzi and Howard M. Heys, editors,
Selected Areas in Cryptography - SAC 2016, volume 10532 of Lecture Notes
in Computer Science, pages 501–519. Springer, 2017.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985.

[MS14] Paulo Martins and Leonel Sousa. On the evaluation of multi-core sys-
tems with SIMD engines for public-key cryptography. In Symposium
on Computer Architecture and High Performance Computing Workshop
(SBAC-PADW), pages 48–53. IEEE, 2014.

[MS15] Paulo Martins and Leonel Sousa. Stretching the limits of programmable em-
bedded devices for public-key cryptography. In Workshop on Cryptography
and Security in Computing Systems, page 19. ACM, 2015.

[SG08] Robert Szerwinski and Tim Güneysu. Exploiting the power of GPUs
for asymmetric cryptography. In Elisabeth Oswald and Pankaj Rohatgi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 79–99. Springer,
2008.

https://software.intel.com/sites/default/files/14/4f/24960
https://software.intel.com/sites/default/files/14/4f/24960

20 SIDH on ARM

[SLG+14] Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, and Howon
Kim. Montgomery modular multiplication on ARM-NEON revisited. In
Information Security and Cryptology (ISC 2014), pages 328–342. Springer,
2014.

[SLGK16] Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. Efficient
arithmetic on ARM-NEON and its application for high-speed RSA im-
plementation. Security and Communication Networks, 9(18):5401–5411,
2016.

[The18] The National Institute of Standards and Technology (NIST).
Post-quantum cryptography standardization, 2017–2018.
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

	Introduction
	ARM architecture
	ARMv7-A architecture
	ARMv8-A architecture

	Multiprecision multiplication
	Unified ARM/NEON multiplication for ARMv7-A
	Multiprecision multiplication for ARMv8-A

	Modular reduction
	Modular multiplication for SIDH
	Performance evaluation
	Conclusion

