
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 781–804. DOI:10.46586/tches.v2025.i2.781-804

New Quantum Cryptanalysis of
Binary Elliptic Curves

Kyungbae Jang1?, Vikas Srivastava2, Anubhab Baksi3∗,
Santanu Sarkar2 and Hwajeong Seo1?‡

1 Division of IT Convergence Engineering, Hansung University, Seoul, South Korea
2 Department of Mathematics, Indian Institute of Technology Madras, Chennai, India

3 School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore,
Singapore

starj1023@gmail.com, vikas.math123@gmail.com, anubhab.baksi@ntu.edu.sg,
santanu@iitm.ac.in, hwajeong84@gmail.com

Abstract. This paper improves upon the quantum circuits required for the Shor’s
attack on binary elliptic curves. We present two types of quantum point addition,
taking both qubit count and circuit depth into consideration.
In summary, we propose an in-place point addition that improves upon the work of
Banegas et al. from CHES’21, reducing the qubit count – depth product by more
than 73% – 81% depending on the variant. Furthermore, we develop an out-of-place
point addition by using additional qubits. This method achieves the lowest circuit
depth and offers an improvement of over 92% in the qubit count – quantum depth
product (for a single step).
To the best of our knowledge, our work improves from all previous works (including
the CHES’21 paper by Banegas et al., the IEEE Access’22 paper by Putranto et al.,
and the CT-RSA’23 paper by Taguchi and Takayasu) in terms of circuit depth and
qubit count – depth product.
Equipped with the implementations, we discuss the post-quantum security of the
binary elliptic curve cryptography. Under the MAXDEPTH metric (proposed by the
US government’s NIST), the quantum circuit with the highest depth in our work
is 224, which is significantly lower than the MAXDEPTH limit of 240. For the gate
count – full depth product, a metric for estimating quantum attack cost (proposed
by NIST), the highest complexity in our work is 260 for the curve having degree 571
(which is comparable to AES-256 in terms of classical security), considerably below
the post-quantum security level 1 threshold (of the order of 2156).

Keywords: Binary Elliptic Curves · Shor’s Algorithm · Quantum Cryptanalysis

?: This work is partially supported by the Institute for Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (〈Q|Crypton〉, No. 2019-
0-00033, “Study on Quantum Security Evaluation of Cryptography based on Computational Quantum
Complexity”, contribution to this project is about 25%) and the National Research Foundation of
Korea(NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00277994, “Quantum Circuit
Depth Optimization for ARIA, SEED, LEA, HIGHT, and LSH of KCMVP Domestic Cryptographic
Algorithms”, contribution to this project is about 25%) and the Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korean government (MSIT) (No. 2018-0-00264, “Research
on Blockchain Security Technology for IoT Services”, contribution to this project is about 25%).
∗: This project is partially supported by the Wallenberg – NTU Presidential Post-doctoral Fellowship.
‡: Corresponding author.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.781-804
mailto:starj1023@gmail.com
mailto:vikas.math123@gmail.com
mailto:anubhab.baksi@ntu.edu.sg
mailto:santanu@iitm.ac.in
mailto:hwajeong84@gmail.com
http://creativecommons.org/licenses/by/4.0/

782 New Quantum Cryptanalysis of Binary Elliptic Curves

1 Introduction

The Elliptic Curve Cryptography (ECC) [Kob94] makes use of the algebraic structure of
the elliptic curves over finite fields for public-key cryptography, and are crucial in modern
cryptography. The potential use of elliptic curves in cryptography was suggested over
three decades ago, independently by Miller [Mil85] and Koblitz [Kob87]. In the present
time, ECC has become a staple component in modern electronic communication, such as,
key exchange [DH22], or digital signatures [ElG85, JMV01].

The security of ECC is based on the difficulty of solving the discrete logarithms in
elliptic curve groups (known as the Elliptic Curve Discrete Logarithm Problem, or ECDLP
for short). The efficiency of ECC comes from the fact that the best-known algorithms
[GG16] for solving ECDLP have an exponential time complexity relative to the input
size. ECC is particularly appealing due to its efficiency. It offers strong security bound
while requiring smaller key sizes than RSA (and other public key cryptographic systems)
[RSA78]. For instance, Barker’s recommendations [Bar20], on behalf of the National
Institute of Standards and Technology (NIST) by the United States’ government, indicate
that a 224-bit elliptic curve offers comparable classical security as a 2048-bit RSA modulus.
Table 1 provides estimated classical security comparison for the ECC and RSA (here, the
order of generator point of the prime order subgroup of the elliptic curve group in number
of bits are considered for ECC). Note that classical security (in bits) is less than the length
of the key, unlike the (typical) symmetric key ciphers. We refer to [JSB+25, Appendix A]
for a non-exhaustive collection of use-cases of ECC in modern electronic communication.

Table 1: Comparison of classical security between ECC and RSA.
Classical security (bits) RSAT ECCU

80 1024 160 – 223
112 2048 224 – 255
128 3072 256 – 383
192 7680 384 – 511
256 15360 ≥ 512

T: Product of two primes (in number of bits).
U: Order of generator point (in number of bits).

We have seen the rapid progress of the quantum computers in the past few years. It is
already well-known that ECC based systems cannot withstand the threat posed by the
quantum computing paradigm. This realization, in turn, has motivated the researchers in
the community to look for quantum-secure alternatives to the public-key ciphers, ultimately
what is now known as the post-quantum cryptography (see [BL17] for reference). Specially,
one may notice from [RNSL17] that; when compared with cryptographically relevant
sizes (i.e., similar classical security), prime elliptic curves can be solved more easily on a
quantum computer than factoring an RSA modulus based on the currently-known best
results at that time. Recently, Gidney and Ekerå have reduced the cost of attacking RSA in
quantum in [GE21]. Additionally, Banegas, Bernstein, van Hoof and Lange have presented
a concrete quantum cryptanalysis of binary field ECCs [BBvHL20], demonstrating that it
is easier to attack than prime field ECCs with comparable classical security [RNSL17].

Given the accelerating improvements in achieving a functional quantum computer
relatively soon, one may wonder exactly how hard/easy it is to break ECC. In this work,
we humbly strive to answer that question by presenting new results on the quantum
cryptanalysis of binary field ECC, which has only become possible by standing on the
shoulder of giants (including but not limited to [BBvHL20, PWLK22, TT23]).

K. Jang et al. 783

Contribution
This paper improves quantum point addition on binary elliptic curves, with a primary
focus on optimizing quantum circuit depth, while the number of qubits is considered as a
secondary factor. Compared to previous works, we achieve the lowest Toffoli depth and
circuit depth. For the product of depth and qubit count, we achieve improvements of the
order of 73% – 81% in our in-place point addition and more than 92% in our out-of-place
point addition. These improvements (see Table 9) are realized through optimizations at the
following three logical levels. We begin by optimizing at the component level (Sections 3.2
and 3.3), where we use depth-efficient quantum circuits for binary field operations. This
includes an out-of-place squaring technique (with a proposed/used optimization, as detailed
in Section 3.2.1) and the depth-optimized multiplication method proposed by Jang et al.
in [JKL+23]. Moving on to the combination level (Section 3.4), the division algorithm
benefits from an inversion approach based on the Fermat’s Little Theorem (FLT). Our
inversion leverages a shallow technique that reuses qubits through reverse operations,
keeping the circuit depth unchanged. Moreover, we achieve further improvements when
multiple sequential multiplications are required, such as in the inversion process, as the
multiplication method by Jang et al. [JKL+23] is particularly effective due to its capability
to reuse the ancilla qubits. Finally, at the architecture level (Section 3.5), we present two
implementations: FLT-in and FLT-out. We modify the in-place point addition method
from [BBvHL20], FLT-in. We add a copy process for the control qubit in the Shor’s
quantum circuit and compress the conditional operations in the middle steps of [BBvHL20]
by using a pre-computed result. We also develop the out-of-place point addition, FLT-out,
which computes the result of point addition independently while preserving the input.
This approach significantly reduces both the circuit depth and gate count by allowing the
use of additional qubits.

We construct the quantum circuit required for running the Shor’s algorithm (Section 4)
using our point addition techniques and discuss its efficiency while evaluating the post-
quantum security of binary ECC (Section 5).

The paper concludes in Section 6 with a note on future directions. Our source codes are
written in ProjectQ [SHT18]1 and can be accessed online as an open-source project2. The
extended version of this paper, which is available as [JSB+25], contains further discussion
along with examples.

For clarity, the following major results are produced in this paper: Tables 3, 5, 6
(although this is a collection of algorithms), 7 and 8; Figures 3(b) and 3(c); and Algorithms
1 and 2; on top of our results being highlighted in Tables 5 and 9. Except for multiplication
(Section 3.3), the rest of the algorithms are newly proposed in this paper; thus the
algorithms used for squaring, inversion, and in-place & out-of-place point additions are
our innovation.

2 Background
2.1 Binary Elliptic Curves
Binary elliptic curves, as the name suggests, are defined over binary fields F2n . An ordinary
binary elliptic curve of degree n (i.e., it is defined over a binary field of order 2n) is given
by

Ba,b : y2 + xy = x3 + ax2 + b; where constants a, b ∈ F2n and b 6= 0. (1)

The above representation of binary elliptic curve is also called short/simplified Weierstrass
form. The curve is well-defined for any value of a and b, as long as b is a non-zero element.

1See also https://projectq.ch/ and https://github.com/ProjectQ-Framework/ProjectQ.
2Accessible at https://github.com/starj1023/Binary_ECC.

https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
https://github.com/starj1023/Binary_ECC

784 New Quantum Cryptanalysis of Binary Elliptic Curves

The elliptic curve includes all points (x, y) which satisfy the elliptic curve equation
(Equation 1) over F2n (where x and y ∈ F2n). An elliptic curve group consists of the points
on the elliptic curve, together with a point at infinity (denoted by ∞).

The point at infinity serves as the identity element in the elliptic curve group. In other
words, given an arbitrary point P ∈ Ba,b, P +∞ =∞+ P = P . For any point P = (u, v)
on Ba,b, the inverse point, denoted as −P , is (u, u+ v), and it satisfies P + (−P) =∞.

Let P1 = (u1, v1) and P2 = (u2, v2) be distinct points on Ba,b such that P1 6= ±P2.
Then, the point addition P1 + P2 yields the point Q = (u, v) where

u = δ2 + δ + a− u1 − u2 and v = δ(u1 + u)− u− v1, with δ = (v2 + v1)/(u2 + u1). (2)

For the case where P = (u1, v1) is a point on Ba,b such that P 6= −P . Then, the point
doubling operation, P + P = 2P is represented by Q = (u, v) where

u = δ2 + δ + a = u2
1 + b/u2

1 and v = δ(u1 + u)− u− v1, with δ = u1 + v1/u1. (3)

In point addition, arithmetic operations such as addition, squaring, multiplication
and division within the binary field are involved3. For faster point addition, efficient
implementations of multiplication and division are particularly crucial in the classical
computing.

Table 2: List of binary fields considered within context.
Degree Modulus Source/Reference
n = 8 x8 + x4 + x3 + x+ 1

CFADLNV [CFA+05]n = 16 x16 + x5 + x3 + x+ 1
n = 127 x127 + x+ 1
n = 163 x163 + x7 + x6 + x3 + 1

CMRRR [CMR+23]n = 233 x233 + x74 + 1
n = 283 x283 + x12 + x7 + x5 + 1
n = 571 x571 + x10 + x5 + x2 + 1

2.2 Key Establishment using ECC
The Elliptic Curve Diffie-Hellman (ECDH) key establishment protocol is an ECC-based
anonymous key agreement protocol that allows two parties (say Alice and Bob), each
possessing an elliptic curve public-private key pair, to establish a shared secret over an
insecure communication channel. Private keys are randomly chosen integer scalars, while
public keys are points on the curve. The security of ECDH depends on the variant of
discrete logarithm problem known as Elliptic Curve Discrete Logarithm Problem (ECDLP).
The ECDLP problem is states as follows: Let E be an elliptic curve defined over a finite
field Fq; and let G,H ∈ E(Fq) be points on the elliptic curve group such that H ∈ 〈G〉.
The ECDLP asks to find the integer m, such that H = [m]G. The ECDLP is a special
case of the discrete logarithm problem in which the cyclic group is represented by the
group 〈G〉 of points on an elliptic curve.

At the first step, all parties must agree on all the elements defining the elliptic curve
(also called, domain parameters) for the protocol. The binary field is determined by the
pair (n, m(x)) (i.e., F2n = F2[x]/m(x)). The binary elliptic curve Ba,b is determined by
the constants a, b used in the defining equation 1. The cyclic subgroup is defined by its

3Arithmetic operations on binary elliptic curves are well-suited for hardware implementation due to
the structure of the binary field. Notably, in quantum circuit implementations, these operations are highly
optimized. Indeed, the work in [BBvHL20] implement quantum circuits for binary curves and achieve
greater efficiency compared to those for prime curves [RNSL17, HJN+20].

K. Jang et al. 785

generator G = (Gx, Gy). The order of G is defined as the smallest positive number p
such that pG = ∞. For practical cryptography purposes, p is usually a prime number.
The cofactor h is set as |Ba,b(F2n)|/p4. Note that order of elliptic curve group is given by
hp. The domain parameters for binary ECC is given by (n,m(x), a, b,G, p, h). Once the
domain parameter has been decided, Alice and Bob proceed as follows. Alice randomly
selects an integer skA from {2, . . . , p− 1}, and computes PKA = [skA]G, and sends PKA

to Bob. Similarly, Bob selects an integer skB from {2, . . . , p−1}, computes PKB = [skB]G,
and sends PKB to Alice. Upon receiving PKB and PKA, Alice and Bob can compute
the shared secret key SK independently as,

S = [skA]PKB = [skB]PKA = [skA][skB]G = [skA · skB (mod p)]G

Both Alice and Bob arrive at the same S, thereby establishing the shared key.

2.3 Elliptic Curve Cryptography vs. Shor’s Algorithm
The elliptic curve cryptography (ECC) is renowned for its security, largely due to the
difficulty of solving the elliptic curve discrete logarithm problem (ECDLP) on a classical
computer. Given a binary elliptic curve E over a finite field F2n and two points P and Q
on E, the objective of ECDLP is to find an integer m such that

Q = [m]P,

where [m]P denotes the scalar multiplication of P by m. This problem is computation-
ally hard for classical algorithms.

However, the Shor’s algorithm [Sho94] poses a significant threat to ECC by efficiently
solving the discrete logarithm problem (on a powerful-enough quantum computer). The
algorithm leverages quantum parallelism (which differs from classical parallelism) and a
Quantum Fourier Transform (QFT) to achieve exponential speedup. The process involves
the following steps:

Initialization: Allocate three quantum registers: the first two registers, k and `, each of
size n+ 1 qubits, are initialized to the |0〉 state, and the third register is used for point
addition. After that, apply a Hadamard gate to each qubit in the first two registers (i.e.,
k and `), resulting in a uniform superposition state,

|ψ〉 = H⊗n+1 |k, `〉⊗n+1 = 1
2n+1

2n+1−1∑
k,`=0

|k, `〉.

Conditional Addition: Based on the qubits in the first two registers, add the corresponding
multiple of P and Q to the third register, implementing the map,

1
2n+1

2n+1−1∑
k,`=0

|k, `〉|[k]P + [`]Q〉.

In the Shor’s circuit, only the first and second registers are measured, while the third
register containing the state |[k]P + [`]Q〉 is discarded in the final stage (see Figure 1).

4Since p is the size of a subgroup of Ba,b(F2n), it follows from the Lagrange’s theorem that the number
h = 1

p
|Ba,b(F2n)| is an integer.

786 New Quantum Cryptanalysis of Binary Elliptic Curves

Figure 1: Circuit of Shor’s algorithm for solving ECDLP.

Quantum Fourier Transform (QFT): Apply the QFT to the first two registers, each
holding n+ 1 qubits. The QFT involves phase shift gates and Hadamard gates, enabling
the algorithm to determine the period r of the function. Using the period r, the discrete
logarithm m can be recovered through classical post-processing, as described in [Sho94].

The quantum circuit for Shor’s algorithm is shown in Figure 1. It illustrates the
initialization of quantum registers, the conditional addition of elliptic curve points, the
application of the QFT, and the measurement of the registers.

Shor’s quantum circuit can be implemented using only a single control qubit by
employing a semi-classical Fourier transform [GN96].

3 Quantum Circuit Construction for Binary Elliptic Curves
In this section, we present our quantum circuits for applying Shor’s algorithm to binary
ECC. We first introduce quantum circuits for binary field arithmetic. Following this,
we design a depth-optimized quantum circuit for point addition, which is essential for
Shor’s algorithm in ECC, using the previously introduced quantum circuits for binary field
arithmetic.

3.1 Addition & Binary Shift
In the integer domain (Z), efforts to design efficient adders have been made in both
classical and quantum computing, as demonstrated in [CDKM08, DKRS04, Dra00, TTK09].
However, in a binary field (F2n), addition is equivalent to the XOR operation, and hence,
it can be implemented using only n CNOT gates (incurring the depth of 1).

Shift and rotation operations can be implemented using a logical swap method, which
rearranges the indices of qubits without the use of quantum swap gates. Even when swap
gates are used for convenience in implementing shift and rotation operations in quantum
circuits, they are often ignored in resource estimation. In this work, we implement binary
shift operations by rearranging the indices of qubits, i.e., using logical swaps.

3.2 Squaring (Binary Non-Singular Matrix Multiplication)
Squaring over binary fields can be implemented using binary shift operations (e.g., 11112 =
1010101). As described in Section 3.1, binary shift operations are generally implemented
without additional cost, only the modular reduction of the shifted result is implemented
using CNOT gates.

K. Jang et al. 787

In previous works [BBvHL20, PWLK22, TT23], most squaring operations for point ad-
dition are implemented in-place using PLU factorization; except only two are implemented
out-of-place. In-place quantum circuits compute the result directly in the input qubits by
replacing the input with the output5. Thus, no ancilla qubit is required. However, this
often leads to the higher circuit depth due to the constrained space.

In contrast, we consider the out-of-place approach, computing the result on newly
allocated output qubits. The result of squaring can be represented as a matrix multiplication
due to the linear nature of the squaring operation. For an element in the binary field
a ∈ F2[x]/m(x), the results of single squaring a2 (mod m(x)) as well as multiple squaring
a2p (mod m(x)) can be represented as binary non-singular matrices. For example, the
results of a2 and a22 in the binary field F2[x]/(x8 + x4 + x3 + x+ 1) are represented as
follows:

a =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, a2 =



0 1 0 1 0 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0
1 1 0 0 0 0 0 0


, a22

=



1 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0
1 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0
0 1 1 1 0 1 1 0
0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0


.

CNOT gates operate on positions where there is 1. The input qubits (a) act as control
qubits, while the newly allocated output qubits (out) serve as target qubits (CNOT (control,
target)). For example, for the first row (corresponding to out0) in the squaring matrix a2,
CNOT(a0, out0), CNOT(a4, out0), and CNOT(a6, out0) are applied. By constructing the
matrix, we avoid redundant CNOT gate operations compared to the schoolbook squaring
method. The total number of CNOT gates required is equal to the Hamming weight of the
matrix6. Table 3 shows the quantum resources required for squaring using our proposed
out-of-place approach. The quantum resources in terms of CNOT gates and circuit depth
vary depending on the matrix, which is determined by the number of squaring operations
(i.e., p). For n = 8 and 16, we set p = 2; and for the rest (n = 127, . . . , 571), we set p = 8.

3.2.1 Out-of-Place Implementation

For the naïve out-of-place implementation of an n × n binary matrix, we first need to
introduce n ancilla qubits (effectively doubling the qubit count) initialized at |0〉. Then
the ancilla qubits are updated with the initial values of the first n qubits. This helps to
retain the original matrix on the initial n qubits, while the n qubits are overwritten.

The out-of-place squaring method typically results in a low quantum depth than the
in-place method, but requires newly allocated qubits for the output7. However, in our
case, we do not allocate new qubits each time squaring is performed in division and point
addition. Instead, we initialize the output qubits and reuse them in subsequent squaring
operations (i.e., manage it at the combination of the components level). This is described
in detail in Section 3.4.

In this work, we additionally propose/apply a compiler-friendly optimization to the
out-of-place squaring operations, through shuffling the sequence. As a result, our approach

5This corresponds to the so-called s1-XOR from [BDK+21].
6Note that, we only need ‘Hamming weight − number of rows’ CNOT gates to implement the naïve

classical circuit. However, for the naïve quantum circuit, we first need to copy to the ancilla qubits, that
would require additional ‘number of rows’ CNOT gates, totalling in ‘Hamming weight’ CNOT gates. See
[RBC23, Example 1] for a toy example.

7Note that, the naïve out-of-place implementation is used for the linear layer (which is effectively a
320× 320 binary non-singular matrix) in [OJBS24].

788 New Quantum Cryptanalysis of Binary Elliptic Curves

Table 3: Comparison of the quantum resources needed for squaring (matrix multiplication).
n Method #CNOT #Qubit (Reuse) Quantum depth

8 Naïve 13Out-of-place
{

Compiler-friendly※ 30 16 (8) 8

16 Naïve 22Out-of-place
{

Compiler-friendly※ 80 32 (16) 14

127 Naïve 175Out-of-place
{

Compiler-friendly※ 2529 254 (127) 125

163 Naïve 270Out-of-place
{

Compiler-friendly※ 11094 326 (163) 149

233 Naïve 158Out-of-place
{

Compiler-friendly※ 6743 466 (233) 97

283 Naïve 459Out-of-place
{

Compiler-friendly※ 32762 566 (283) 256

571 Naïve 772Out-of-place
{

Compiler-friendly※ 88183 1142 (571) 468
※: Proposed and used in this work.

reduces quantum depth by more than 38% on average compared to naïve implementation.
An overview of the compiler-friendly implementation is presented subsequently for the sake
of completeness, though a thorough description can be found in [JSB+25, Appendix C].

Compiler-Friendly Implementation (Optimization for Quantum Depth) We explore
the optimization of the out-of-place implementation of the squaring matrices in terms of
quantum depth. In process, we introduce and use a deterministic algorithm for compiler-
friendly implementation. Our optimization is motivated by the observation that quantum
programming tools often fail to find an optimal circuit depth for CNOT gates when the
same qubits are continuously involved (even when they can be parallelized with other
CNOT gates). By reordering CNOT gate operations to avoid iterative calls to the same
input and output qubits, the proposed method reduces the quantum depth.

3.2.2 In-Place Implementation

Our analysis on the in-place implementations of the matrices is summarized here8. We test
with the two legacy algorithms that are known to produce in-place implementations, namely
the Gauss-Jordan elimination and the PLU factorization (refer to [RBC23, Examples 4
and 5] for toy examples). In this work, we experiment with these two algorithms while
incorporating the following changes/adjustments:

• We consider random row and column permutations, then the obtained implementation
is adjusted accordingly.

• We run the inverse of the given matrix, and then reverse the sequence to get back
the given matrix.

• To reduce the quantum depth, we adopt a randomized shuffling of once an imple-
mentation is obtained (then choose that one with the least quantum depth).

Despite this, we observe that the quantum depth and the CNOT count × quantum depth
are high compared to what we get from the out-of-place method (the benchmarks are

8We are aware of the tool by [XZL+20] that finds in-place implementations for a given binary non-
singular matrix. However, its source-code uses a data structure (hard-coded) that works for matrices up
to dimension of 64× 64 only (the authors clearly state that their tool is not expected to scale-up beyond
that). Thus, in our context, this tool exclusively works for the trivial cases (viz., n = 8 and 16), and
hence is not considered here. The same goes for the follow-up work by [YWS+24]. The SMT/MILP model
proposed in [BKD21] does not scale-up either.

K. Jang et al. 789

omitted here for brevity) for the cases n ≥ 127. Consequently, we choose not to use the
in-place implementations for this work. Whether or not it is possible to find more efficient
in-place implementations is left as a future work.

3.3 Multiplication
Multiplication is used in the implementation of inversion and point addition, making its
efficiency crucial. In [BBvHL20], van Hoof’s space-efficient multiplication [vH19] is utilized.
In [PWLK22], a modified version of van Hoof’s multiplication is presented. Recently,
in [TT23], Kim et al.’s Toffoli gate count-optimized and space-efficient multiplication
[KKKH22] is adopted. These multiplications share the common feature of not using any
ancilla qubits except for the input and output qubits. Stated in other words, for multiplying
h = f · g of size n, only 3n qubits are used. Table 4 shows a comparison of the required
quantum resources for multiplications from [vH19, PWLK22, TT23, JKL+23].

Table 4: Comparison of the quantum resources required for multiplication.
n Source #CNOT #Toffoli #Qubit Toffoli depth Depth Full depth

8
vH [vH19] 200 27 24 N/A 124 N/A

P+ [PWLK22] 102 27 24 N/A 82 N/A
J+[JKL+23]※ 237 27 81 1 22 34

16

vH [vH19] 678 81 48 N/A 365 N/A
P+ [PWLK22] 655 81 48 N/A 286 N/A
K+ [KKKH22] 974 64 48 N/A 405 N/A
J+ [JKL+23]※ 828 81 243 1 29 43

127

vH [vH19] 20632 2185 381 N/A 8769 N/A
P+ [PWLK22] 20300 2183 381 N/A 7000 N/A
K+ [KKKH22] 49040 737 381 N/A 6953 N/A
J+ [JKL+23]※ 24660 2185 6555 1 36 50

163

vH [vH19] 37168 4387 489 N/A 17906 N/A
P+ [PWLK22] 36439 4355 489 N/A 13814 N/A
K+ [KKKH22] 76262 992 489 N/A 10210 N/A
J+ [JKL+23]※ 46329 4387 13161 1 52 66

233

vH [vH19] 63655 6323 699 N/A 29530 N/A
P+ [PWLK22] 60453 6307 699 N/A 19294 N/A
K+ [KKKH22] 154892 1441 699 N/A 16383 N/A
J+ [JKL+23]※ 71197 6323 18969 1 42 56

283

vH [vH19] 89620 10273 849 N/A 41548 N/A
P+ [PWLK22] 87929 10241 849 N/A 31894 N/A
K+ [KKKH22] 224246 1784 849 N/A 22050 N/A
J+ [JKL+23]※ 110571 10273 30819 1 56 70

571

vH [vH19] 270940 31171 1713 N/A 121821 N/A
P+ [PWLK22] 267771 31139 1713 N/A 95863 N/A
K+ [KKKH22] 862604 3813 1713 N/A 61771 N/A
J+ [JKL+23]※ 337968 31171 93513 1 60 74

※: Used in this work.

In this work, we use a depth-efficient Karatsuba algorithm proposed by Jang et al.
[JKL+23], which reduces the Toffoli depth to one by allocating an additional ancilla
qubits. The Karatsuba algorithm can recursively reduce the size of the multiplication. In
[JKL+23], the authors copied the operands of the divided (reduced-size) multiplications
and performed them simultaneously, optimizing both the Toffoli depth and the full depth
(for more details, the inquisitive readers are directed to [JKL+23, Figure 2]). We note
that this multiplication method is particularly effective for implementing inversion and
point addition, which require multiple multiplications, since the ancilla qubits used can be
reused. This is described in Section 3.4.2.

790 New Quantum Cryptanalysis of Binary Elliptic Curves

3.4 Division using Fermat’s Little Theorem (FLT)
For our quantum circuit implementation, we focus on the Fermat’s Little Theorem (FLT)-
based inversion algorithm to optimize circuit depth. We briefly review the method for
computing the multiplicative inverse in a binary field F2n based on FLT. This theorem
states that for any integer a and a prime number p, if a is not divisible by p, then
ap−1 ≡ 1 (mod p). From this, it follows that the multiplicative inverse of a modulo p is
given by a−1 ≡ ap−2 (mod p) since ap−1 = a · ap−2.

In binary fields F2n , we can apply a similar concept. The elements of the field can be
expressed as polynomials of degree n− 1 with coefficients in F2. Given an element a ∈ F2n ,
the multiplicative inverse a−1 can be computed as: a−1 = a2n−2.

3.4.1 Itoh-Tsujii Algorithm for Inversion

The Itoh-Tsujii algorithm [IT88] computes the inverse more efficiently instead of computing
a2n−2 in the nav̈e manner. The algorithm leverages on the following two mathematical
observations:

Recursive Reduction: The problem of computing a2n−2 can be recursively reduced by
expressing it as: a2n−2 =

(
a2n−1−1

)2
.

Multi-Level Exponentiation: The exponentiation required at each level can itself be

decomposed further using previously computed results: a22t
−1 =

(
a22t−1

−1
)22t−1

·

a22t−1
−1.

The Itoh-Tsujii algorithm can be outlined as follows:

1. Begin by expressing n − 1 as a sum of powers of 2, i.e., n − 1 =
∑t
i=1 2ki , where

k1 > k2 > · · · > kt ≥ 0. This step is equivalent to writing n − 1 in its binary
form, where each ki corresponds to the position of a binary 1. For example, n = 12
corresponds to [k1, k2, k3] = [3, 1, 0].

2. Compute the intermediate values a2k1−1, a2k2−1, . . . , a2kt−1 recursively. The key
advantage here is that each successive value can be computed using previously
calculated results, thus reducing the number of required multiplications.

3. Combine the intermediate results to compute the full exponentiation:

a2n−2 =



(a22k1−1

)22k2

· a22k2−1

22k3

· a22k3−1 . . .


22kt

· a22kt−1


2

.

3.4.2 Depth-Optimized Quantum Circuit for Inversion

We implement the depth-efficient quantum circuit of Itoh-Tsujii-based inversion using the
multiplication method from [JKL+23] and out-of-place squaring.

Let n = 8, which corresponds to [k1, k2, k3] = [2, 1, 0]. Following the Itoh-Tsujii
algorithm, we can compute the inverse of a as:

a−1 =


(a22k1−1

)22k2

· a22k2−1

22k3

· a2k3−1


2

K. Jang et al. 791

Following the second observation in the Itoh-Tsujii algorithm (Multi-Level Exponentia-
tion), we can represent the exponentiations a22k1

, a22k2
and a22k3

as follows:

a22k3−1 = a

A → a22k2−1 =
(
a22k3−1

)22k3

· a22k3−1 = a2 · a

B → a22k1−1 =
(
a22k2−1

)22k2

· a22k2−1 = A22
·A

Figure 2 illustrates the proposed quantum circuit for inversion using the Itoh-Tsujii
algorithm for n = 8. Here, M and S represent multiplication and squaring, respectively.
In M(result) and S(result), the result is the output derived from the operation. Here,
S†(result) denotes the reverse operation of S(result) to initialize the output qubits (i.e.,
result→ |0〉). Additionally, the quantum circuit for n = 16 is given in [JSB+25, Appendix
E].

Low-Depth Multiplication One may recall from Section 3.3 that the effectiveness of
the multiplication method from [JKL+23] for implementing division and point addition.
In [JKL+23], the authors mentioned a reuse technique that allows the initialization of
allocated ancilla qubits with trivial overhead (see Section 3.3 in [JKL+23]). We note that
this technique is particularly effective for implementing division and point addition, which
require multiple multiplications. This is because the ancilla qubits used in the initial
multiplication can be reused in subsequent operations without the need for additional
qubits.

For n = 8, a total of four multiplications are performed to compute A = a · a2,
B = A ·A2, a ·A2, and (a ·A2) ·B22 . In our quantum circuit, only one ancilla set (|Manc〉)
is allocated for the initial multiplication (A = a · a2) and reused for the rest (B = A ·A2,
a ·A2, (a ·A2) ·B22)9. We can achieve low-depth multiplications with only the initial qubit
overhead. Note that this ancilla set will also be reused in the point addition (Section 3.5).

Low-Depth Squaring We use the out-of-place squaring method described in Section 3.2.
In inversion, the result of squaring is used as an operand for multiplication but is no longer
needed afterward (i.e., it is an intermediate value). Thus, we initialize the output qubits
after their use and reuse them for subsequent squaring operations. For example, after
the multiplication A = a · a2, the output qubits containing the result of squaring a2 are
initialized using a reverse operation.

However, while the reverse operation is often used in quantum implementations to
reduce the number of qubits, it increases the circuit depth. For instance, in Figure 2,
assume that the initialized output qubits from the reverse operation S†(a2) are reused in
S(A22). To reuse initialized output qubits from the reverse operation S†(a2), the squaring
S(A22) is delayed.

To address this delay, we allocate two sets of output qubits, |Sanc0〉 and |Sanc1〉, and use
them alternately10 In Figure 2, when the reverse operation of the squaring S†(a2) initializes

9Even in inversion and point addition, the multiplications are performed sequentially, making the reuse
technique more effective. If the multiplications are not sequential (i.e., can be performed in parallel), each
multiplication would require its own set of ancilla qubits (for parallelization). In that case, implementing
space-efficient multiplications (e.g., [vH19, PWLK22, KKKH22]) in parallel might be more efficient,
depending on the degree of parallelization.

10This concept is first introduced in [JBK+22] (referred to as the shallow architecture) to eliminate the
depth overhead caused by the reverse operations of SubBytes in AES, and later adopted in [LPZW23, SF24].
In addition, it also serves as the inspiration behind the interval architecture of [JLO+24].

792 New Quantum Cryptanalysis of Binary Elliptic Curves

|Sanc0⟩ S(A22) • S†(A22) S(B23) • S†(B23) |0⟩

|Sanc1⟩ S(a2) • S†(a2) S(A2) • S†(A2) S((a ·A2 ·B23)2)
∣∣a−1

〉

|Manc⟩ • • • • |0⟩

|a⟩ • • • • /

|0⟩ M(a · a2) • • • • • /

|0⟩ M(A ·A22) • • /

|0⟩ M(a ·A2) • /

|0⟩ M(a ·A2 ·B23) • /

Figure 2: Proposed quantum circuit for inversion using FLT for n = 8.

the output qubits |Sanc1〉, the current squaring S(A22) is performed simultaneously using
the other output qubits |Sanc0〉. Thanks to this approach, low-depth squarings are achieved
with only two sets of output qubits (a total of 2n qubits).

Comparison with Previous Division Algorithms In Table 5, we compare the quantum
resources required for division, h = h+ f · g−1 (involving one inversion, one multiplication,
and one addition), with those in previous works11. Note that the division in Table 5
includes reverse operations12 (resulting in twice the cost) to initialize ancilla qubits.

For [BBvHL20] and [PWLK22] in Table 5 (corresponding to n = 163, 233, 283 and
571), we use the re-estimated quantum resources from [TT23]. In this re-estimation,
the multiplication methods in [BBvHL20] and [PWLK22] were replaced by the method
proposed by Kim et al. [KKKH22]. The reasons for using the results from [TT23] are as
follows. First, [BBvHL20] reported the upper bounds for gate count and circuit depth.
For a fair comparison, we rely on the re-estimated results from [TT23], which, in fact,
show improved performance.

Second, it is difficult to compare the results of [PWLK22] due to inconsistencies between
[PWLK22, Tables 3 and 4 (multiplication), 5 (inversion), 6 (point addition)]. However,
the authors in [TT23] provide corrected quantum resource estimates for [PWLK22].

As shown in Table 5, the Toffoli gate count is lower in previous works, but their CNOT
gate count is higher compared to ours. This difference arises from the use of the Toffoli
gate-optimized multiplication from [KKKH22] in their re-estimation. While our qubit
count (M) is higher, we achieve the lowest circuit depth (D) and Toffoli depth. In terms
of the product of circuit depth and qubit count (D-M), we observe a 31% improvement
for n = 8 and exceeding 72% – 78% in other cases.

Although we are unable to compare the full depth and the full depth-qubit count
product (as those are not reported in [BBvHL20, PWLK22, TT23, KKKH22]), we achieve
further improvements in these metrics. This is because our low Toffoli depth results in a
slight increase from the depth (D) to the full depth (after the decomposition of Toffoli
gates), which is not the case for the previous works.

3.5 Point Addition
In Shor’s quantum circuit, conditional point additions |[k]P+[`]Q〉 are performed according
to the control qubits in the first register (i.e., k’s and `’s in Section 2.3 and Figure 1).

11In [KH23], the authors present a quantum GCD-based inversion algorithm. However, we do not
include their algorithm in Table 5, as they do not provide estimates for the number of CNOT gates and
the circuit depth.

12These reverse operations are performed in the division for the in-place point addition (FLT-in,
Algorithm 1), but not for the out-of-place point addition (FLT-out, Algorithm 2).

K. Jang et al. 793

Table 5: Comparison of the quantum resources required for division.
n Source #Toffoli #CNOT #Qubit

(M)
Toffoli
depth

Depth
(D)

Full
depth

D-M

8
B+ [BBvHL20]

{
(FLT) 243 2212 56 N/A 1314 N/A 73584
(GCD) 3641 1516 67 N/A 4113 N/A 275571

This paper (FLT) 270 2762 213 10 238 358 50694

16
B+ [BBvHL20]

{
(FLT) 1053 10814 144 N/A 5968 N/A 859392
(GCD) 10403 5072 124 N/A 12145 N/A 1505980

This paper (FLT) 1134 13510 777 14 458 654 182595

127
B+ [BBvHL20]

{
(FLT) 50255 502870 1778 N/A 203500 N/A 361823000
(GCD) 277195 227902 903 N/A 378843 N/A 342095229

This paper (FLT) 52440 681717 30971 24 2423 2645 75042733

163

B+ [BBvHL20]
{

(FLT) 18848 1601716 1956 N/A 342516 N/A 669961296
(GCD) 438766 414586 1156 N/A 510628 N/A 590285968

P+ [PWLK22] (FLT) 18848 1558180 3097 N/A 300924 N/A 931961628

T+ [TT23]
{

(FLT-basic) 18848 1557528 2771 N/A 300920 N/A 833849320
(FLT-extended) 18848 1579944 1956 N/A 310830 N/A 607983480

This paper (FLT) 87740 1176499 53133 20 2801 3046 148825533

233

B+ [BBvHL20]
{

(FLT) 30261 3374430 3029 N/A 459709 N/A 1392458561
(GCD) 823095 834256 1646 N/A 992766 N/A 1634092836

P+ [PWLK22] (FLT) 30261 3346938 4660 N/A 435001 N/A 2027104660

T+ [TT23]
{

(FLT-basic) 30261 3345540 3961 N/A 434995 N/A 1723015195
(FLT-extended) 30261 3353750 3029 N/A 437747 N/A 1325935663

This paper (FLT) 139106 2114587 82898 22 3476 3716 288153448

283

B+ [BBvHL20]
{

(FLT) 41032 5644678 3962 N/A 985710 N/A 3905383020
(GCD) 1194498 1222600 1997 N/A 1449098 N/A 2893848706

P+ [PWLK22] (FLT) 41032 5492126 6226 N/A 837106 N/A 5211821956

T+ [TT23]
{

(FLT-basic) 41032 5489296 4811 N/A 837096 N/A 4027268856
(FLT-extended) 41032 5502090 3962 N/A 840612 N/A 3330504744

This paper (FLT) 246552 3705491 144671 24 5412 5685 782959452

571

B+ [BBvHL20]
{

(FLT) 102951 26043772 9136 N/A 4401901 N/A 40215767536
(GCD) 4434315 4857244 4014 N/A 5602181 N/A 22487154534

P+ [PWLK22] (FLT) 102951 25189566 14275 N/A 3556815 N/A 50773534125

T+ [TT23]
{

(FLT-basic) 95325 23458648 10849 N/A 3433263 N/A 37247470287
(FLT-extended) 95325 23514068 8565 N/A 3456469 N/A 29604656985

This paper (FLT) 872788 14649243 500450 28 11723 12087 5866775350

In conditional point addition, if the control qubit q is 1, the point addition P3(x3, y3) =
P1(x1, y1) + P2(x2, y2) is computed; otherwise, the input P1(x1, y1) remains unchanged.

In [BBvHL20], the authors presented an in-place point addition algorithm ([BBvHL20,
Algorithm 3]) by modifying Algorithm 1 from [RNSL17] to suit the binary case, and
subsequent works [PWLK22, TT23] have followed this algorithm.

In this work, we introduce the in-place point addition described in Algorithm 1, modified
from [BBvHL20, Algorithm 3] by us; with the presented quantum circuits for addition,
squaring, multiplication, and division. This approach has the advantage of reducing the
number of qubits while maintaining a reasonably low depth. For better clarity, Figure 3(a)
shows the unmodified version, whereas Figure 3(b) portrays the modifications proposed by
us.

Additionally, we develop the out-of-place point addition of Algorithm 2 (Figure 3(c)),
which computes P3(x3, y3) independently while preserving the input P1(x1, y1). This
significantly reduces both the circuit depth and gate count.

In Figure 3, D is the division (which includes inversion and multiplication), and C is
the copy operation for the control qubit q.

794 New Quantum Cryptanalysis of Binary Elliptic Curves

3.5.1 In-Place Implementation

The in-place point addition of Algorithm 1 computes the result on the input P1(x1, y1),
and this result changes based on the control qubit q. As a result, the point either
becomes P (x, y) = P3(x3, y3) or remains as P1(x1, y1). Compared to the point addition in
[BBvHL20], our modified point addition differs in two key aspects.

First, we copy the control qubit q to ancilla qubits used in multiplication. In [BBvHL20,
PWLK22, TT23], only a single control qubit q is used for controlled constant additions
and controlled additions, meaning all CNOT and Toffoli gates are applied sequentially.
Using a single control qubit for operations on arrays reduces the number of qubits but
significantly increases the circuit depth13. In contrast, we copy the control qubit q to
the ancilla qubits for multiplication (Algorithm 1; Steps 2, 8, 15) to optimize the circuit
depth. Since we already have a sufficient number of ancilla qubits (Manc) for the copy,
we can perform controlled constant addition (CTRL_CONST_ADD) and controlled
addition (CTRL_ADD) with depth 1 using these copies without additional allocation. As
a side note, an efficient tree-based copy is implemented, where previous copies are used in
subsequent copying steps (reducing the depth), and the copies are initialized to a clean
state after use.

Second, we optimize the middle steps of [BBvHL20, Algorithm 3] to compute x2 + x3
if q = 1, or x1 + x2 if q = 0. In the previous implementation, one controlled constant
addition for q(a+ x2) and two controlled additions for q · λ2 and q · λ are performed (see
Figure 3(a)). In Algorithm 1, Step 6, we compute λ2 + λ in a single squaring operation
by constructing the matrix for λ2 + λ through the addition of the matrices for λ2 and λ
(similar to the addition of the matrices for a and a2 in Section 3.2). Additionally, in Step
7, the constant a+ x2 is added to λ2 + λ, resulting in λ2 + λ+ a+ x2. Finally, in Step 9,
only one controlled addition is performed using this precomputed result λ2 + λ+ a+ x2.

Table 6?? presents the step-by-step procedure of Algorithm 1, and the quantum circuit
is shown in Figure 3(b).

3.5.2 Out-of-Place Implementation

The out-of-place point addition in Algorithm 2 preserves P1(x1, y1) and computes P3(x3, y3)
independently of the control qubit q. Recall that the in-place method (Algorithm 1)
requires reverse operations to revert the value to its intermediate state, which is necessary
to compute the conditional result of either P1(x1, y1) or P3(x3, y3). On the other hand, the
out-of-place approach avoids these additional operations by allocating output qubits during
the process and computing the intermediate values directly on them (see Figure 3(c)). As
a result, Algorithm 1 (in-place) requires 2 divisions, 2 squarings, and 2 multiplications;
whereas Algorithm 2 (out-of-place) consists of 1 division, 1 squaring, and 1 multiplication.

Additionally, the out-of-place point addition reduces the number of controlled operations
that use the control qubit q. In Algorithm 1 (in-place), 2 controlled constant additions
and 2 controlled additions are performed (3 controlled constant additions and 3 controlled
additions are required in [BBvHL20, PWLK22, TT23]).

In Algorithm 2, we swap the results P1(x1, y1) and P3(x3, y3) based on the control qubit
q in the final stage (Steps 13 and 14). A controlled-swap (CTRL_SWAP) is performed
twice: once for (x1, y1) and once for (x3, y3). These two controlled-swap operations are
performed in parallel, and similar to the in-place method, the same copy technique is
applied.

Table 6(b) presents the step-by-step walk-through of Algorithm 2, and the quantum
circuit is illustrated in Figure 3(c).

13In [BBvHL20], the authors consider this trade-off but retain the approach, as their focus is on
minimizing the qubit count. In our case, since we have a sufficient number of ancilla qubits (thanks to the
design of the components, which reuses idle qubits), it is more efficient to copy.

K. Jang et al. 795

Algorithm 1: Proposed in-place point addition on binary elliptic curves.
Classical input: A constant a from the elliptic curve, a fixed point P2(x2, y2).
Quantum input: A control qubit q, a point P1(x1, y1) on the elliptic curve, ancilla qubits Manc

for multiplication, ancilla qubits for inversion, ancilla qubits for λ.
Output: P1 + P2 = P3(x3, y3) if q = 1, P1(x1, y1) if q = 0, all ancilla qubits in a clean state.
1: x ← CONST_ADD(x2, x1) . x = x1 + x2
2: Manc ← COPY(q, Manc) . Copy q to Manc

3: y ← CTRL_CONST_ADD(Manc, y2, y1) . y = y1 + q · y2
4: λ ← DIV (x1 , y1 , 0) . λ = y/x
5: y ← MUL(x1, λ, y1) . y = y + x · (y/x) = 0
6: y ← SQR (λ2 + λ, y1) . y = λ2 + λ
7: y ← CONST_ADD(a+ x2, y1) . y = λ2 + λ+ a+ x2
8: Manc ← COPY(q, Manc) . Copy q to Manc

9: y ← CTRL_ADD(Manc, y1, x1) . x = x1 + x2 + q(λ2 + λ+ a+ x2)
10: y ← SQR (λ2 + λ, y1) . y = λ2 + λ+ a+ x2 + λ2 + λ = a+ x2
11: y ← CONST_ADD(a+ x2, y1) . y = a+ x2 + a+ x2 = 0
12: y ← MUL(x1, λ, y1) . y = x · λ
13: λ ← DIV (x1 , y1 , λ) . λ = λ+ (x · λ)/x = 0
14: x ← CONST_ADD(x2, x1) . x = x1 + q(λ2 + λ+ a+ x2)
15: Manc ← COPY(q, Manc) . Copy q to Manc

16: y ← CTRL_CONST_ADD(y2, y1) . y = y + q · y2
17: y1 ← CTRL_ADD(x1, y1) . y = y + q · x3
18: return (x, y)

3.6 Windowing Technique

The windowing technique is an effective method to optimize conditional point additions
by adding a superposition of a single point P2. Windowing utilizes quantum random
access memory (qRAM) and represents qubits in superposition over the indices i =
0, 1, 2, . . . , 2`− 1. The addition of points can then be described as adding [i]P2. To achieve
this, the lookup table consists of precomputed points: P2, [1]P2, [2]P2, . . . , [2` − 1]P2 (fixed
point T is used to avoid infinity). This table enables the addition of [i]P2 through a
look-up operation in superposition, significantly reducing the number of point additions
required. The efficiency of the windowing method depends on the chosen window size
`, which determines how many points are precomputed and stored. A larger value of `
reduces the number of point additions but increases the cost of constructing the lookup
using qRAM.

In [BBvHL20, PWLK22, TT23], the reduction in the number of Toffoli gates through
windowing is estimated for each field size n, by using the optimal window size `. For
windowing, the addition of precomputed points via look-ups must be considered. In
[BBvHL20], the additions of P2(x2, y2) in Figure 3(a) are replaced with lookup additions,
and the controlled additions are changed to regular additions. The same modification
applies to Algorithm 1. Similarly, for Algorithm 2 (out-of-place), additions of P2(x2, y2)
are replaced with lookup additions, and the controlled-swap operations in the final step
can be removed.

As in previous works [BBvHL20, PWLK22, TT23], we too estimate the results after
applying windowing (in Section 4). These works have reported a reduction in Toffoli gate
count due to windowing. Similarly, we report the reduced Toffoli gate count after applying
windowing and provide the total reduced quantum gate count after decomposing the Toffoli
gates.

796 New Quantum Cryptanalysis of Binary Elliptic Curves

Algorithm 2: Proposed out-of-place point addition on binary elliptic curves.
Classical input: A constant a from the elliptic curve, a fixed point P2(x2, y2).
Quantum input: A control qubit q, a point P1(x1, y1) on the elliptic curve, ancilla qubits Manc

for multiplication, qubits for (x, y), ancilla qubits for inversion, ancilla qubits for λ.
Output: P1 + P2 = P3(x3, y3) if q = 1, P1(x1, y1) if q = 0; ancilla qubits Manc in a clean state.
1: x ← CNOT(x1, x) . x = x1
2: y1 ← CONST_ADD(y2, y1) . y1 = y1 + y2
3: x ← CONST_ADD(x2, x) . x = x1 + x2
4: λ ← DIV (x, y1, 0) . λ = (y1 + y2)/(x1 + x2)
5: y1 ← CONST_ADD(y2, y1) . y1 = y1 + y2 + y2 = y1
6: x ← CONST_ADD(a+ x2, x) . x = x1 + x2 + a+ x2 = x1 + a
7: x ← SQR (λ2 + λ, x) . x = x1 + a+ λ2 + λ = x2 + x3
8: y ← MUL(x, λ, 0) . y = (x2 + x3)λ
9: x ← CONST_ADD(x2, x) . x = x1 + a+ λ2 + λ+ x2 = x3
10: y ← CONST_ADD(y2, y) . y = (x2 + x3)λ+ y2
11: y ← CNOT(x, y) . y = (x2 + x3)λ+ y2 + x3 = y3
12: Manc ← COPY(q, Manc) . Copy q to Manc

13: CTRL_SWAP(Manc, x1, x) . x = x3 (if q = 1) or x1 (if q = 0)
14: CTRL_SWAP(Manc, y1, y) . y = y3 (if q = 1) or y1 (if q = 0)
15: return (x, y)

Table 6: Steps of point addition.

Step q = 1 q = 0
1 x = x1 + x2
2, 3 y = y1 + y2 y = y1
4 λ = y1+y2

x1+x2
λ = y1

x1+x2

5 y = 0
6, 7 y = λ2 + λ+ a+ x2
8, 9 x = x2 + x3 x = x1 + x2
10, 11 y = 0
12 y = (x2 + x3)λ y = y1
13 λ = 0
14 x = x3 x = x1

15, 16, 17 y = y3 y = y1

(b) Algorithm 2 (out-of-place, by us).

Step q = 1 q = 0

1, 2, 3
{

x = x1 + x2
y1 = y1 + y2

4 λ = y1+y2
x1+x2

5 y1 = y1
6, 7 x = x2 + x3
8 y = (x2 + x3)λ
9 x = x3
10 y = (x2 + x3)λ+ y2
11 y = y3

12, 13, 14 (x, y) = (x3, y3) (x, y) = (x1, y1)

4 Results
Table 9 shows the quantum resources required for a single point addition on binary elliptic
curves. Similar to Table 5, for [BBvHL20, PWLK22] in Table 9, we use the re-estimated
results from [TT23].

Since [BBvHL20], two research works [PWLK22, TT23] have been reported. However,
it can be argued that the improvement (in terms of performance) over [BBvHL20] in these
subsequent works is not that significant or noteworthy. Indeed, in Table 9, the results by
[BBvHL20] achieve the best performance in terms of the product of depth and qubit count
(D-M) for n = 163, 283 and 571 in comparison to [PWLK22, TT23].

The point additions in this work demonstrate superior performance, surpassing previous
works [BBvHL20, PWLK22, TT23] with significantly lower Toffoli depth and circuit depth
by utilizing additional ancilla qubits. Our Toffoli gate count is higher than the re-estimated
result in [TT23] because they replace the Toffoli gate-optimized multiplication from
[KKKH22]. However, this multiplication method requires more CNOT gates. For the
product of depth and qubit count (D-M), we achieve improvements of 73% – 81% and

K. Jang et al. 797

|x1〉 /
n +x2 • • +a+x2 • • +x2 • |x3〉 or |x1〉

|q〉 • • • • • • |q〉

|y1〉 /
n +y2 • M S(+λ2) • S(+λ2) M • +y2 |y3〉 or |y1〉

|0〉 /
n

D • • • • • D |0〉
(a) Point addition in [BBvHL20, Algorithm 3] (in-place, used in [PWLK22, TT23]).

|x1〉 /
n

+x2 • • • • +x2 • |x3〉 or |x1〉
|q〉

C C C
|q〉

|Manc〉 • • • • • • • • |0〉
|y1〉 /

n
+y2 • M S(+λ2+λ)+a+x2 • S(+λ2+λ)+a+x2 M • +y2 |y3〉 or |y1〉

|0〉 /n
D • • • • D |0〉

(b) Algorithm 1 (in-place, modified from [BBvHL20, Algorithm 3] by us).

|q〉
C

|q〉

|Manc〉 • • • • |0〉
|x1〉 /

n • • × |x3〉 or |x1〉

|y1〉 /
n +y2 • +y2 × |y3〉 or |y1〉

|0〉 /n +x2 +a+x2 S(+λ2 +λ) • +x2 • × |x1〉 or |x3〉

|0〉 /n

D • • /

|0〉 /n

M +y2 × |y1〉 or |y3〉
(c) Algorithm 2 (out-of-place, by us).

Figure 3: Quantum circuits for point addition.

more than 92% for in-place and out-of-place point additions (FLT-in and FLT-out) in each
binary field F2n , respectively.

In Table 9, note that there is a slight increase from depth (D) to full depth in our
implementation (compared to [BBvHL20, PWLK22, TT23]), because of the low Toffoli
depth. Although the product of full depth and qubit count could not be reported in Table
9 due to insufficient data by the authors, we achieve further improvements in this metric.

Relation to Shor’s Algorithm

As mentioned in Section 2.3, 2n+ 2 point additions over the binary field Fn2 are required
to construct Shor’s quantum circuit for solving the ECDLP. Table 7 reports the required
quantum resources for Shor’s algorithm on binary elliptic curves. For the estimation, we
decompose the Toffoli gates and estimate the total number of quantum gates, consisting
of Clifford and T gates, as well as the full depth. We adopt one of the decomposition
methods from [AMM+13]; where a Toffoli gate is decomposed into 8 Clifford gates plus 7
T gates, incurring the T -depth of 4 and the full depth of 814.

As mentioned in Section 3.6, the number of point additions (steps) can be reduced to
2 · dn+1

` e. Each point addition requires 6 lookups, and each lookup involves 2 · (2` − 1)
Toffoli gates. Given these, we determine the optimal size for each of the binary fields.

14It is worth noting that further improvements can be achieved by replacing Toffoli gates with quantum
AND gates (as in [JNRV19, LPZW23, SF24, JBK+22]). Further details are given in [JSB+25, Appendix
B]

798 New Quantum Cryptanalysis of Binary Elliptic Curves

Table 8 presents the reduced Toffoli gate count and the total gate count for each binary
field based on the choice of window size `.

Table 7: Quantum resource requirement by Shor’s algorithm on binary elliptic curves.
Method n Qubits Total gates Full depth

T -depth Cost MAXDEPTH NIST
(G) (FD) (G-FD) security

FLT-in
(Algorithm 1)



8 1.67 · 27 1.14 · 218 1.83 · 213 1.83 · 210 1.04 · 232 

X
(≤ 240)



7V

16 1.52 · 29 1.13 · 221 1.47 · 215 1.13 · 212 1.66 · 236

127 1.89 · 214 1.51 · 229 1.34 · 220 1.69 · 215 1.02 · 250

163 1.62 · 215 1.66 · 230 1.95 · 220 1.84 · 215 1.62 · 251

233 1.26 · 216 1.98 · 231 1.69 · 221 1.43 · 216 1.67 · 253

283R 1.10 · 217 1.05 · 233 1.56 · 222 1.87 · 216 1.64 · 255

571S 1.91 · 218 1.99 · 235 1.70 · 224 1.06 · 218 1.70 · 260

FLT-out
(Algorithm 2)



8 1.60 · 211 1.22 · 216 1.04 · 212 1.97 · 28 1.27 · 228

16 1.42 · 214 1.18 · 219 1.67 · 213 1.20 · 210 1.97 · 232

127 1.75 · 222 1.53 · 227 1.36 · 218 1.75 · 213 1.04 · 246

163 1.90 · 223 1.69 · 228 1.02 · 219 1.92 · 213 1.72 · 247

233 1.06 · 225 1.00 · 230 1.73 · 219 1.49 · 214 1.74 · 249

283R 1.14 · 226 1.06 · 231 1.64 · 220 1.94 · 214 1.74 · 251

571S 1.00 · 229 1.98 · 233 1.76 · 222 1.12 · 216 1.74 · 256

R: Corresponds to 128-bit classical security (i.e., comparable to AES-128).
S: Corresponds to 256-bit classical security (i.e., comparable to AES-256).
V: Level 1 security is achieved if G-F D cost ≥ 2156 (based on [JBK+22]).

Table 8: Approximate quantum gate requirement after applying windowing technique.
Method n Window size (`) Steps Look-ups Toffoli gates Total gates (G)

FLT-in
(Algorithm 1)



8 5 4 24 1.01 · 212 1.35 · 216

16 6 6 36 1.24 · 214 1.86 · 218

127 10 26 156 1.56 · 221 1.30 · 226

163 11 30 180 1.56 · 222 1.30 · 227

233 12 40 240 1.68 · 223 1.46 · 228

283 13 44 264 1.66 · 224 1.42 · 229

571 14 82 492 1.26 · 227 1.20 · 232

FLT-out
(Algorithm 2)



8 3 6 36 1.54 · 210 1.04 · 215

16 5 8 48 1.03 · 213 1.45 · 217

127 8 32 192 1.94 · 219 1.61 · 224

163 10 34 204 1.97 · 220 1.58 · 225

233 10 48 288 1.01 · 222 1.78 · 226

283 11 52 312 1.97 · 222 1.70 · 227

571 12 96 576 1.48 · 225 1.39 · 230

5 Applicability & Impact of Shor’s Algorithm
It is important to note that in-place point addition has the advantage that the qubit count
does not increase during the 2n + 2 point additions in Shor’s quantum circuit. Simply
put, the required number of qubits for Shor’s algorithm (using the semi-classical Fourier
transform, see[JSB+25, Appendix F]) remains the same as shown in Table 9.

In contrast, in the case of out-of-place point additions, new output qubits must be
allocated for each execution in Shor’s quantum circuit. The continuous production of
garbage qubits during the process is a clear disadvantage in quantum computations [VP98].
However, their gate and depth complexity are much lower compared to in-place point
additions. Additionally, it should be noted that we do not manage all the qubits listed in
Table 7 throughout the entire computation.

In these considerations, a careful choice between the in-place and out-of-place point
additions should be made, and our work provides the best options for both approaches.

K. Jang et al. 799

Table 9: Quantum resources required for a single point addition on binary elliptic curves.
n Source #Toffoli #CNOT #Qubit

(M)
Toffoli
depth

Depth
(D)

Full
depth

D-M

8
B+ [BBvHL20] (GCD) 7360 3522 68 N/A 8562 N/A 582216

(FLT-in) 664 6580 214 26 517 831 110638This paper
{

(FLT-out) 178 1761 241 7 159 236 38319

16
B+ [BBvHL20] (GCD) 21016 11686 125 N/A 25205 N/A 3150625

(FLT-in) 2624 30560 778 34 959 1412 746102This paper
{

(FLT-out) 680 7953 859 9 283 402 243097

127
B+ [BBvHL20] (GCD) 559141 497957 904 N/A 776234 N/A 701715536

(FLT-in) 113874 1464162 30972 54 4994 5507 154674168This paper
{

(FLT-out) 28659 370120 33157 14 1267 1394 42009919

163

B+ [BBvHL20]
{

(FLT) 40169 3357029 1957 N/A 706512 N/A 1382643984
(GCD) 880005 982769 1157 N/A 1042736 N/A 1206445552

P+ [PWLK22] (FLT) 40169 3269957 3098 N/A 623328 N/A 1931070144

TT [TT23]
{

(FLT-basic) 40169 3268653 2772 N/A 623320 N/A 1727843040
(FLT-extended) 40169 3313485 1957 N/A 643140 N/A 1258624980

(FLT-in) 193354 2540458 53134 46 5685 6227 302066790This paper
{

(FLT-out) 48583 650277 57521 12 1495 1631 85993895

233

B+ [BBvHL20]
{

(FLT) 64103 7059764 3030 N/A 953699 N/A 2889707970
(GCD) 1649771 1979416 1647 N/A 2019813 N/A 3326632011

P+ [PWLK22] (FLT) 64103 7004780 4661 N/A 904283 N/A 4214863063

TT [TT23]
{

(FLT-basic) 64103 7001984 3962 N/A 904271 N/A 3582721702
(FLT-extended) 64103 7018404 3030 N/A 909775 N/A 2756618250

(FLT-in) 303970 4516616 82899 50 7059 7589 585184041This paper
{

(FLT-out) 76342 1158949 89222 13 1800 1942 160599600

283

B+ [BBvHL20]
{

(FLT) 86481 11739723 3963 N/A 2017360 N/A 7994797680
(GCD) 2393413 2895567 1998 N/A 2944136 N/A 5882383728

P+ [PWLK22] (FLT) 86481 11434619 6227 N/A 1720152 N/A 10711386504

TT [TT23]
{

(FLT-basic) 86481 11428959 4812 N/A 1720132 N/A 8277275184
(FLT-extended) 86481 11454547 3963 N/A 1727164 N/A 6844750932

(FLT-in) 534762 7856986 144672 54 10957 11556 1585171104This paper
{

(FLT-out) 134115 2007399 154945 14 2902 3025 449650390

571

B+ [BBvHL20]
{

(FLT) 215241 53816483 9137 N/A 8931056 N/A 81603058672
(GCD) 8877969 11443427 4015 N/A 11331616 N/A 45496438240

P+ [PWLK22] (FLT) 215241 52108071 14276 N/A 7240884 N/A 103370859984

TT [TT23]
{

(FLT-basic) 199989 48646235 10850 N/A 6993780 N/A 75882513000
(FLT-extended) 199989 48757075 8566 N/A 7040192 N/A 60306284672

(FLT-in) 1871402 30657812 500450 62 23596 24399 11808618200This paper
{

(FLT-out) 468707 7833731 531621 16 6313 6449 3356123373

NIST Post-Quantum Security
NIST has introduced criteria for quantum attacks. In particular, the MAXDEPTH
constraint15 involves limiting quantum attacks by setting a maximum quantum circuit
depth (corresponding to runtime). The lower limit of MAXDEPTH is ≤ 240 (though the
maximum allowable limit for MAXDEPTH is ≤ 296), and we can observe that none of
the full depths from Table 7 exceed this limit. Additionally, NIST employs post-quantum
security measures against quantum attacks to evaluate the robustness of cryptographic
algorithms16. For the post-quantum security level 1, the cost of a quantum key search
(using Grover’s algorithm) on AES-128 is used for evaluation. For the calculation of the
cost, the product of the total quantum gates and full depth is used (i.e., G-FD in Table 7),
and the cost for AES-128 is 2156, based on the results of [JBK+22] at the time of writing

15Refer to page 16 of the NIST documentation: https://csrc.nist.gov/csrc/media/Projects/pqc-
dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

16Refer to pages 15 – 17 of the NIST documentation: https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

800 New Quantum Cryptanalysis of Binary Elliptic Curves

this paper. Note that, the bound was formerly estimated as 2157 based on the results in
[JNRV19]; however, it was later found that this was overestimated due to a bug Q# (see
[JBK+22, Section 5] for more details)17 As anticipated, the costs in Table 7 are orders of
magnitude lower than this, and thus cannot achieve the post-quantum security.

6 Conclusion
It is expected that the common public key systems currently employed, including those
are based on the binary elliptic curves, will be broken with a powerful enough quantum
computer sometime in the near future. Few research works have been carried out in this
direction, still, arguably there has not been any remarkable advancement since the work
of Banegas et al. [BBvHL20], from where our work picks up.

We significantly reduce the quantum resources required to break binary field ECC. We
focus on FLT-based division and depth-efficient point addition on binary elliptic curves
using both in-place and out-of-place approaches. Compared to the previous best results,
our point addition achieve the lowest circuit depth and improvements of more than 73% –
81% (in-place, Algorithm 1) and 92% (out-of-place, Algorithm 2) in trade-off performance
(the product of depth and qubit count) for all binary fields, as shown in Table 7. As far as
we can tell, this work shows the most advanced results in quantum cryptanalysis of binary
ECC.

As a potential direction for future research, point addition on projective coordinates (see
[JSB+25, Section 2.3]). This method may reduce circuit depth at the expense of increasing
the qubit count, similar to our out-of-place point addition. It would be worthwhile to
adapt our implementations to projective coordinates and benchmark its efficiency. Another
interesting direction is to extend our approaches to other elliptic curves (such as the
Curve-25519 by Bernstein in [Ber06]), or RSA (e.g., following up on [YYT+23]). One
might also be curious by the work of [GE21], i.e., estimating the time required to break by a
quantum computer. At the circuit component level, it could be useful to find more efficient
in-place implementations than that of the Gauss-Jordan elimination or PLU factorization
for large (> 64× 64) binary matrices.

References
[AMM+13] Matthew Amy, Dmitri Maslov, Michele Mosca, Martin Roetteler, and Martin

Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal
quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(6):818–830, Jun 2013. 797

[Bar20] Elaine Barker. NIST special publication 800-57 part 1, revision 5, recommen-
dation for key management: Part 1 – general. NIST, Tech. Rep, page 171,
2020. 782

[BBvHL20] Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange.
Concrete quantum cryptanalysis of binary elliptic curves. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021:451–472, 12 2020.
782, 783, 784, 787, 789, 792, 793, 794, 795, 796, 797, 799, 800

[BDK+21] Anubhab Baksi, Vishnu Asutosh Dasu, Banashri Karmakar, Anupam Chat-
topadhyay, and Takanori Isobe. Three input exclusive-or gate support for
boyar-peralta’s algorithm. In Avishek Adhikari, Ralf Küsters, and Bart Preneel,
editors, Progress in Cryptology - INDOCRYPT 2021, Jaipur, India, December

17The authors of [JNRV19] subsequently corrected the bug and updated their paper.

K. Jang et al. 801

12-15, 2021, Proceedings, volume 13143 of Lecture Notes in Computer Science,
pages 141–158. Springer, 2021. 787

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public
Key Cryptography-PKC 2006: 9th International Conference on Theory and
Practice in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006.
Proceedings 9, pages 207–228. Springer, 2006. 800

[BKD21] Anubhab Baksi, Banashri Karmakar, and Vishnu Asutosh Dasu. POSTER:
optimizing device implementation of linear layers with automated tools. In
Applied Cryptography and Network Security Workshops - ACNS 2021 Satellite
Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT, and
SiMLA, Kamakura, Japan, June 21-24, 2021, Proceedings, volume 12809 of
Lecture Notes in Computer Science, pages 500–504. Springer, 2021. 788

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017. 782

[CDKM08] Steven Cuccaro, Thomas Draper, Samuel Kutin, and David Moulton. A new
quantum ripple-carry addition circuit. arXiv, 2008. https://arxiv.org/pd
f/quant-ph/0410184.pdf. 786

[CFA+05] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and hyperelliptic
curve cryptography. CRC press, 2005. 784

[CMR+23] Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid, and Angela
Robinson. Recommendations for discrete logarithm-based cryptography: Ellip-
tic curve domain parameters nist special publication nist sp 800-186, February
2023. 784

[DH22] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography,
page 365–390. Association for Computing Machinery, New York, NY, USA, 1
edition, 2022. 782

[DKRS04] Thomas G Draper, Samuel A Kutin, Eric M Rains, and Krysta M Svore.
A logarithmic-depth quantum carry-lookahead adder. arXiv preprint quant-
ph/0406142, 2004. 786

[Dra00] Thomas G Draper. Addition on a quantum computer. arXiv preprint quant-
ph/0008033, 2000. 786

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, pages 10–18. Springer, 1985.
782

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits. Quantum, 5:433, 2021. 782, 800

[GG16] Steven D Galbraith and Pierrick Gaudry. Recent progress on the elliptic curve
discrete logarithm problem. Designs, Codes and Cryptography, 78:51–72, 2016.
782

[GN96] Robert B Griffiths and Chi-Sheng Niu. Semiclassical fourier transform for
quantum computation. Physical Review Letters, 76(17):3228, 1996. 786

https://arxiv.org/pdf/quant-ph/0410184.pdf
https://arxiv.org/pdf/quant-ph/0410184.pdf

802 New Quantum Cryptanalysis of Binary Elliptic Curves

[HJN+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Math-
ias Soeken. Improved quantum circuits for elliptic curve discrete logarithms. In
Post-Quantum Cryptography: 11th International Conference, PQCrypto 2020,
Paris, France, April 15–17, 2020, Proceedings 11, pages 425–444. Springer,
2020. 784

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative
inverses in gf (2m) using normal bases. Information and computation, 78(3):171–
177, 1988. 790

[JBK+22] Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Gyeongju Song, Hwajeong Seo,
and Anupam Chattopadhyay. Quantum analysis of aes. Cryptology ePrint
Archive, Paper 2022/683, 2022. https://eprint.iacr.org/2022/683. 791,
797, 798, 799, 800

[JKL+23] Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, Yujin Yang, and
Hwajeong Seo. Optimized implementation of quantum binary field multipli-
cation with Toffoli depth one. In Information Security Applications: 23rd
International Conference, WISA 2022, Jeju Island, South Korea, August 24–26,
2022, Revised Selected Papers, pages 251–264. Springer, 2023. 783, 789, 790,
791

[JLO+24] Kyungbae Jang, Sejin Lim, Yujin Oh, Hyunjun Kim, Anubhab Baksi, Sumanta
Chakraborty, and Hwajeong Seo. Quantum implementation and analysis of
SHA-2 and SHA-3. Cryptology ePrint Archive, Paper 2024/513, 2024. 791

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security,
1:36–63, 2001. 782

[JNRV19] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on AES and LowMC.
Cryptology ePrint Archive, Report 2019/1146, 2019. https://eprint.iacr.
org/2019/1146. 797, 800

[JSB+25] Kyungbae Jang, Vikas Srivastava, Anubhab Baksi, Santanu Sarkar, and
Hwajeong Seo. New quantum cryptanalysis of binary elliptic curves (extended
version). Cryptology ePrint Archive, Paper 2025/017, 2025. 782, 783, 788,
791, 797, 798, 800

[KH23] Hyeonhak Kim and Seokhie Hong. New space-efficient quantum algorithm
for binary elliptic curves using the optimized division algorithm. Quantum
Information Processing, 22(6):237, 2023. 792

[KKKH22] Sunyeop Kim, Insung Kim, Seonggyeom Kim, and Seokhie Hong. Toffoli gate
count optimized space-efficient quantum circuit for binary field multiplication.
Cryptology ePrint Archive, 2022. 789, 791, 792, 796

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987. 782

[Kob94] Neal Koblitz. A course in number theory and cryptography, volume 114.
Springer Science & Business Media, 1994. 782

[LPZW23] Qun Liu, Bart Preneel, Zheng Zhao, and Meiqin Wang. Improved quantum
circuits for aes: reducing the depth and the number of qubits. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 67–98. Springer, 2023. 791, 797

https://eprint.iacr.org/2022/683
https://eprint.iacr.org/2019/1146
https://eprint.iacr.org/2019/1146

K. Jang et al. 803

[Mil85] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques, pages 417–426. Springer,
1985. 782

[OJBS24] Yujin Oh, Kyungbae Jang, Anubhab Baksi, and Hwajeong Seo. Depth-
optimized quantum circuits for ascon: Aead and hash. Mathematics, 12(9),
2024. 787

[PWLK22] Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma
Larasati, and Howon Kim. Another concrete quantum cryptanalysis of binary
elliptic curves. Cryptology ePrint Archive, 2022. 782, 787, 789, 791, 792, 793,
794, 795, 796, 797, 799

[RBC23] Soham Roy, Anubhab Baksi, and Anupam Chattopadhyay. Quantum imple-
mentation of ASCON linear layer. NIST Lightweight Cryptography Workshop,
2023. https://csrc.nist.gov/csrc/media/Events/2023/lightweight-c
ryptography-workshop-2023/documents/accepted-papers/06-quantum
-implementation-ascon-linear-layer.pdf. 787, 788

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter.
Quantum resource estimates for computing elliptic curve discrete logarithms.
In Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part II 23, pages 241–270.
Springer, 2017. 782, 784, 793

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
February 1978. 782

[SF24] Haotian Shi and Xiutao Feng. Quantum circuits of aes with a low-depth linear
layer and a new structure. Cryptology ePrint Archive, 2024. 791, 797

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994. 785, 786

[SHT18] Damian S Steiger, Thomas Häner, and Matthias Troyer. Projectq: an open
source software framework for quantum computing. Quantum, 2:49, 2018. 783

[TT23] Ren Taguchi and Atsushi Takayasu. Concrete quantum cryptanalysis of
binary elliptic curves via addition chain. In Cryptographers’ Track at the RSA
Conference, pages 57–83. Springer, 2023. 782, 787, 789, 792, 793, 794, 795,
796, 797, 799

[TTK09] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition
circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530, 2009. 786

[vH19] Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count. arXiv preprint
arXiv:1910.02849, 2019. 789, 791

[VP98] Vlatko Vedral and Martin B Plenio. Basics of quantum computation. Progress
in quantum electronics, 22(1):1–39, 1998. 798

[XZL+20] Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol.,
2020(2):120–145, 2020. 788

https://csrc.nist.gov/csrc/media/Events/2023/lightweight-cryptography-workshop-2023/documents/accepted-papers/06-quantum-implementation-ascon-linear-layer.pdf
https://csrc.nist.gov/csrc/media/Events/2023/lightweight-cryptography-workshop-2023/documents/accepted-papers/06-quantum-implementation-ascon-linear-layer.pdf
https://csrc.nist.gov/csrc/media/Events/2023/lightweight-cryptography-workshop-2023/documents/accepted-papers/06-quantum-implementation-ascon-linear-layer.pdf

804 New Quantum Cryptanalysis of Binary Elliptic Curves

[YWS+24] Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang, and Yu Zhang. A framework
to improve the implementations of linear layers. IACR Transactions on
Symmetric Cryptology, 2024(2):322–347, Jun. 2024. 788

[YYT+23] Junpei Yamaguchi, Masafumi Yamazaki, Akihiro Tabuchi, Takumi Honda,
Tetsuya Izu, and Noboru Kunihiro. Estimation of shor’s circuit for 2048-bit
integers based on quantum simulator. Cryptology ePrint Archive, 2023. 800

	Introduction
	Background
	Binary Elliptic Curves
	Key Establishment using ECC
	Elliptic Curve Cryptography vs. Shor's Algorithm

	Quantum Circuit Construction for Binary Elliptic Curves
	Addition & Binary Shift
	Squaring (Binary Non-Singular Matrix Multiplication)
	Multiplication
	Division using Fermat's Little Theorem (FLT)
	Point Addition
	Windowing Technique

	Results
	Applicability & Impact of Shor's Algorithm
	Conclusion

