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Abstract. In this paper, we introduce AETHER, an authenticated encryption scheme
that achieves ultra-high throughput and low energy consumption, supporting a 256-
bit key and a 128-bit tag. While inspired by an AEGIS-like structure, AETHER
stands out with a completely redesigned round-update function. We replace the AES
round function with a new inner function optimized for ultra-low latency and energy
consumption. This function incorporates Orthros’s S-box and a 16×16 binary matrix
from Akleylek et al., leading to a 1.56 times reduction in energy consumption and
a 1.25 times reduction in delay compared to the AES round function. To further
optimize hardware performance, we design the general construction of the round-
update function to be more hardware-friendly, allowing parallel execution of the
inner function on all 128-bit words, thereby enhancing both throughput and security
against collision-based forgery attacks. AETHER achieves a throughput of 2.1 Tbit/s
and an energy consumption of only 204.31 nJ, in the Nangate 15 nm standard cell
library and a throughput of 5.23 Tbit/s and energy consumption of 1.83 nJ using the
CNFET-OCL 5nm library, outperforming all existing AEADs.
Keywords: Authenticated encryption · Low energy · High throughput · AEGIS-like
construction

1 Introduction
1.1 Background
Demanding Ultra High-Speed Data Processing. The rapid growth of data consumption,
fueled by high-definition streaming, cloud computing, and the Internet of Things (IoT),
demands unprecedented data processing speeds from data centers. Cisco’s Annual internet
report forecasts global IP traffic to reach 3 zettabytes in 2021, while cloud-stored data
is projected to swell to 100 zettabytes by 2025, which is half of the total amount of
data in the world1. To meet this surging demand for real-time data processing and high-
bandwidth applications, data center networks must evolve to handle terabits-per-second
(Tbps) throughput. Consequently, an ultra-high-throughput encryption scheme is essential

†This work was partially done while the author was at TuneInsight SA, Lausanne, Switzerland.
1https://cybersecurityventures.com/the-world-will-store-200-zettabytes-of-data-by-2025/
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for data centers managing large-scale data while ensuring the privacy of processed data.
Specifically, to guarantee confidentiality, integrity, and authenticity, an authenticated
encryption scheme is mandatory. Additionally, the emerging 6G landscape and the pursuit
of Tbps wireless communications by 20302 necessitate terabit-per-second encryption speeds
across various applications.

Looming Energy Problem. Data centers are the backbone of the digital age, but their
ever-growing energy demands pose a significant environmental, societal, and economic
challenge. The annual electricity report from the International Energy Agency (IEA) states
that data centers consumed 460 TWh in 2022, a figure that could rise to more than 1,000
TWh by 2026 in a worst-case scenario3. The European Union’s energy efficiency directive,
published in September 2023, imposes new obligations on data center operators on the
continent. The first of these is a requirement for emissions reports to be filed by any data
center larger than 500 kW. The U.S. Department of Energy emphasizes the importance of
developing energy-efficient technologies to mitigate the environmental footprint of data
centers. Beyond environmental concerns, energy efficiency is crucial for economic viability.
Lower energy consumption translates to reduced operational costs, enhancing the long-term
sustainability of data centers. Consequently, encryption should be performed with low
energy consumption.

Towards Low-Energy Authenticated Encryption. Energy consumption in cryptographic
circuits (and general in ASIC implementations) is characterized by the total switching
activity, i.e., the number of 0/1 transistions of logic elements, in a synthesized netlist over a
specified time interval, with power consumption being the average thereof. Although some
adjustments are necessary after the place-and-routing of the netlist to account for the circuit
wiring and parasitic effects, performing energy measurements on a netlist is a reasonably
precise affair and thus gives rise to the optimisation discipline of tailoring circuits as to
reduce their overall energy consumption. In cryptographic hardware, optimizing energy
requires a multi-pronged approach on both the algorithmic and circuit level; a problematic
which is best illustrated by looking at some existing AEAD circuits:

• High-throughput AEAD circuits such as Rocca-S [ABC+23] and AEGIS-256 [WP13a]
can process large chunks of data in few clock cycles and thus achieve impressive
performance levels in the 1-2 Tbps range. They achieve this by duplicating important
modules such as the AES round function as part of the AEGIS update function in
parallel which is reflected in a area footprint which naturally increases the switching
activity of the circuit. Hence, this kind of parallelization does not result in an energy-
efficient circuit if the area/switching activity is not optimised concurrently (both
Rocca-S and AEGIS exclusively focus on the optimization of the throughput). On the
other hand, simplifying functions as to produce concise circuits is cryptanalytically
delicate endeavour. At the present time, the canon of high-throughput encryption
circuits lacks a dedicated low-energy solution.

• Standard AEAD schemes, in the same vein as AES-OCB or AES-GCM can also be
parallelized and unrolled to decrease the latency and increase the throughput but
again, this results in circuits that switch considerably offsetting the energy-gains.

• Stream ciphers were an early target for energy-optimization efforts. In fact, it was
shown that when it comes to the encryption of large amounts of the Trivium-like
constructions appear to be the most energy-efficient constructions [CP08, BMA+18,

2https://www.6gflagship.com/white-paper-on-rf-enabling-6g-opportunities-and-challenges-from-
technology-to-spectrum/

3https://www.datacenterdynamics.com/en/news/global-data-center-electricity-use-to-double-by-2026-
report/
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CBT+21], which is the consequence of a lightweight state update function which
can be massively unrolled without incurring a forbidding area penalty. Naturally,
Trivium only offers 80-bit security and thus quantum resistance is not achievable
without significant design changes. Additionally, achieving terabit-per-second-level
throughput with these ciphers appears challenging.

Open Problem. Considering these points, there is currently no authenticated encryption
that offers terabit-per-second-level throughput while maintaining low energy consumption
for the 6G era, ensuring sustainability and privacy protection, especially for data centers.
At the same time, security against quantum computing threats must be addressed.

1.2 Our Contribution
In this paper, we present an ultra-high throughput yet low energy-consumption authen-
ticated encryption scheme dubbed AETHER, featuring a 256-bit key and a 128-bit tag.
AETHER is based on an AEGIS-like structure [WP13a], which absorbs the message and
outputs the ciphertext for every state update. To achieve ultra-high throughput and
low energy consumption, we redesigned the round-update function from scratch. The
redesigning procedure is summarized as follows:

• We replace the AES round function in the round-update function with a novel
cryptographic function, termed the inner function, optimized for ultra-low latency
and energy consumption. This enhancement directly benefits the overall AEAD
scheme’s performance since AEGIS-like constructions process message and ciphertext
blocks synchronously with state updates, akin to stream ciphers. To minimize both
delay and energy consumption, we devise an SPN-based inner function utilizing
Orthros’s S-box and a 16×16 binary matrix from Akleylek et al. [ARSÖ17]. Our
choice of components is grounded in a comprehensive evaluation of various S-boxes
and matrices for their delay and energy efficiency. The resulting inner function
achieves approximately 1.56 and 1.25 times lower energy consumption and delay,
respectively, compared to the AES round function, while preserving the security
properties essential for thwarting internal collision-based forgery attacks.

• To be more hardware-friendly, we revisit the general construction of the round-
update function in Rocca [SLN+21] and Rocca-S [ABC+23]. Specifically, the inner
function is applied to all 128-bit words in our general construction because these
inner functions can be fully executed in parallel in a hardware environment, whereas
Rocca and Rocca-S limit the number of AES round functions to take advantage of
hardware acceleration for AES, such as AESNI on Intel CPUs. Additionally, we
apply both the inner function and an XOR to each 128-bit word, while Rocca and
Rocca-S apply either the AES round function or an XOR. This approach can be
realized with negligible overhead in a hardware environment and enhances security
against internal collision-based forgery attacks. Finally, we explore the class of
round-update functions that meet our security and implementation requirements
with the redesigned inner function.

In short, AETHER is a AEAD circuit whose parallelized state update module provides
the basis for high throughput rates while, at the same time, offsetting the area/switching
activity with a carefully chosen round function that allows for a concise circuit after
synthesis. AETHER thus is the first construction that fills that gap in the literature with
respect to low-energy, high-throughput encryption. More specifically, by integrating these
novel design strategies, AETHER achieves a remarkable throughput of 2.1 Tbit/s while
consuming only 204.31 nJ of energy (for processing 1024 bits of AD and 1.28 Mbits of
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plaintext) when implemented using the Nangate 15nm library. When implemented using
the CNFET-OCL 5nm library, it offers a throughput of 5.23 Tbps and consumes only 1.83
nJ for processing the same amount of data. This achieves both the highest throughput and
the lowest energy consumption among AEGIS-like and existing AEADs (a fact, established
in a comprehensive comparison with related schemes), while also providing 128-bit security
against key-recovery attacks in a Q1 setting4 (see Table 9 and 10). AETHER is the first
authenticated encryption scheme targeting 6G technology, while maintaining low energy
consumption.

2 Specification
In this paper, a block denotes a 16-byte value as the round update function of AETHER
consists of 9 16-bytes values denoted by S = (S[0], S[1], . . . , S[8]).

2.1 The Round-Update Functions
The round-update function of AETHER consists of nine internal states denoted S =
(S[0], S[1], · · · , S[8]) and accepts three states denoted X = (X0, X1, X2) in every state
update. The round-update function R(S,X)is shown in Fig. 1 and defined as

Snew[0] = F (S[8])⊕X0, Snew[1] = F (S[0])⊕ S[3], Snew[2] = F (S[1])⊕ S[6],
Snew[3] = F (S[2])⊕X1, Snew[4] = F (S[3])⊕ S[4], Snew[5] = F (S[4])⊕X2,

Snew[6] = F (S[5])⊕ S[8], Snew[7] = F (S[6])⊕ S[2], Snew[8] = F (S[7])⊕ S[0],

where F denotes the inner function described in Sect. 2.2.

S[0] S[1] S[2] S[3] S[4] S[5]

S[0]new S[1]new S[2]new S[3]new S[4]new S[5]new

F F F F F F

X0 X2

S[6] S[7]

S[6]new S[7]new

S[8]

S[8]new

F F F

X1

Figure 1: The round-update function of AETHER.

2.2 The Inner Functions
The inner function consists of a 128-bit state; the functions ApplySbox, MatrixMul, and
Permutation are applied consecutively; they are defined below:

F = Permutation ◦ ApplySbox ◦MatrixMul ◦ ApplySbox.

The illustration of the inner function is shown in Fig. 2. We provide a detailed explanation
of ApplySbox, MatrixMul, and Permutation as follows:

ApplySbox. 32 4-bit S-boxes are applied to the 128-bit state in parallel. We use Orthros’s
4-bit S-box in ApplySbox as shown in Table 1.

4The adversary can access the offline quantum computer but cannot query the quantum oracle.
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Table 1: The 4-bit S-box in F .
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sbox(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

MatrixMul. The 128-bit state is first divided into two sets of 16 nibbles. Then, the same
two 16× 16 matrices over nibbles are applied to them in parallel. 16× 16 matrix
Mb applied in MatrixMul is defined as

Mb =



1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1



.

16 nibbles (x0, x1, x2, . . . , x15) will be updated as follows:

(x0, x1, x2, . . . , x15)T ←Mb · (x0, x1, x2, . . . , x15)T ,

where (x0, x1, x2, . . . , x15)T denotes a transposition matrix.

Permutation. The nibble permutation Pn shown in Table 2 is applied to the 128-bit state.

Table 2: The nibble permutation Pn.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn(x) 0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pn(x) 8 24 9 25 10 26 11 27 12 28 13 29 14 30 15 31
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Figure 2: The illustration of F .

The detailed procedure of the inner function F is given in Algorithm 1.
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Algorithm 1 Procedure of F . X denotes the 128-bit state.
1: function F (X) in R(R,X)
2: (x0‖x1‖x2‖ . . . ‖x31)← X
3: for i = 0 to 31 do
4: xi ← Sbox(xi)
5: end for
6: (x0, x1, x2, . . . , x15)T ←Mb · (x0, x1, x2, . . . , x15)T

7: (x16, x17, x18, . . . , x31)T ←Mb · (x16, x17, x18, . . . , x31)T

8: for i = 0 to 31 do
9: xi ← Sbox(xi)
10: end for
11: (x∗1, x∗2, x∗3, . . . , x∗15)← (x1, x2, x3, . . . , x15)
12: for i = 0 to 31 do
13: xPn(i) ← x∗i
14: end for
15: X ← (x0‖x1‖x2‖ ← ‖x31)
16: return X
17: end function

2.3 Specification of AETHER
AETHER consists of four phases: initialization, processing the associated data, encryption,
and finalization. We first explain the padding process for the associated data and message.

Padding Process. The padding is applied independently to associated data AD and the
message M when their sizes are not a multiple of 384 bits. Each AD and M are padded
by appending 0x100...000 independently into the end to be their sizes as a multiple of
384 bits. The padded associated data and message are denoted AD and M , respectively.
For a better understanding, we give examples of the padding regarding four cases: 1) the
sizes of both AD and M are not a multiple of 384 bits, 2) the size of only AD is not a
multiple of 384 bits, 3) the size of only M is not a multiple of 384 bits, and 4) the sizes of
both AD and M are a multiple of 384 bits.

1) AD = 0x9495a...1c0d97︸ ︷︷ ︸
AD (336 bits)

100000000000︸ ︷︷ ︸
The padding

, M = 0x6f8a...993ab︸ ︷︷ ︸
M (328 bits)

10000000000000︸ ︷︷ ︸
The padding

.

2) AD = 0xb3987...8cce0︸ ︷︷ ︸
AD (704 bits)

1000000000000000︸ ︷︷ ︸
The padding

, M = 0x492ba20ff...8fa38bcf︸ ︷︷ ︸
M (1152 bits)

.

3) AD = 0x49bd02fff...ce9aa234︸ ︷︷ ︸
AD (384 bits)

, M = 0x93bd238...9abc38f︸ ︷︷ ︸
M (344 bits)

1000000000︸ ︷︷ ︸
The padding

.

4) AD = 0xabff7eeca...1100f80d︸ ︷︷ ︸
AD (384 bits)

, M = 0x95f2b5129...ec5819df︸ ︷︷ ︸
M (768 bits)

.

Initialization. The input consists of the 256-bit key K and the 128-bit nonce N . Ad-
ditionally, three constant blocks are used for the initialization process as given below.
Z0 =0x428a2f98d728ae227137449123ef65cd, Z1 =0xb5c0fbcfec4d3b2fe9b5dba58189
dbbc, and Z2 =0x7137449123ef65cd428a2f98d728ae22. Z0 and Z1 are the same as in
Rocca-S, and Z2 is generated by the concatenation of the last half and first half parts of
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Z0. K is divided into two 128-bit keys, i.e., K = K0‖K1. K0, K1, and N are first loaded
into the state S as follows:

S[0] = Z1, S[1] = K0, S[2] = N +K0, S[3] = 0, S[4] = Z0,

S[5] = 0, S[6] = N, S[7] = K1, S[8] = Z2.

Then, 20 iterations of the round-update function R(S,Z) where Z = (Z0, Z1, Z2) are
applied to the state S. After 20 iterations of the round update function, K0 and K1 are
XORed with the state S as follows:

S[0] = S[0]⊕K0, S[1] = S[1]⊕K0, S[2] = S[2]⊕K0,

S[3] = S[3]⊕K0, S[4] = S[4]⊕K1, S[5] = S[5]⊕K0,

S[6] = S[6]⊕K1, S[7] = S[7]⊕K1, S[8] = S[8]⊕K1.

Processing the Associated Data. The associated data AD is first padded for |AD| being
a multiple of 384 bits. Then, AD is divided into the set of 128-bit words AD as follows:

AD = (AD0‖AD1‖AD2‖ . . . ‖ADi−1), i = |AD|128 .

AD is loaded into the round update function, i.e., R(R, AD3·j , AD3·j+1, AD3·j+2) for
0 ≤ j < |AD|

384 . If AD is empty, this phase will be skipped.

Encryption. The message M is first padded for |M | being a multiple of 384 bits. Then,
M is divided into the set of 128-bit words M as follows:

M = (M0‖M1‖M2‖ . . . ‖Mi−1), i = |M |128 ,

The divided message blocks are absorbed into the round update functions, i.e.,
R(R,M3·j ,M3·j+1,M3·j+2) for 0 ≤ j < |M |

384 . During this procedure, the ciphertext blocks
Ci are generated in the following way:

Cj = F (S[0]⊕ S[1])⊕ S[4]⊕Mj

Cj+1 = F (S[2]⊕ S[6])⊕ S[7]⊕Mj+1

Cj+2 = F (S[3]⊕ S[5])⊕ S[8]⊕Mj+2

If the message is padded p bits, the ciphertext blocks generated before the last round
update function are truncated to 384− p bits. If M is empty, this phase will be skipped.

Finalization. K0 and K1 are first XORed with the internal state S as follows:

S[0] = S[0]⊕K0, S[1] = S[1]⊕K0, S[2] = S[2]⊕K1,

S[3] = S[3]⊕K1, S[4] = S[4]⊕K0, S[5] = S[5]⊕K0,

S[6] = S[6]⊕K1, S[7] = S[7]⊕K0, S[8] = S[8]⊕K1.

Then, 20 iterations of the round-update function R(R,K0, Z0,K1) are applied to the state
S. Before the tag generation, K0 and K1 are XORed with the internal state S again as
follows:

S[0] = S[0]⊕K1, S[1] = S[1]⊕K0, S[2] = S[2]⊕K0,

S[3] = S[3]⊕K0, S[4] = S[4]⊕K1, S[5] = S[5]⊕K0,

S[6] = S[6]⊕K0, S[7] = S[7]⊕K1, S[8] = S[8]⊕K1.
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Lastly, the authentication tag T is generated as follows:

8⊕
i=0

S[i] = T.

The detailed algorithm and overview of AETHER are given in Algorithm 2 and Fig. 3,
respectively. In Algorithm 2, we omit the descriptions of padding and truncating denoted
by Padding() and Truncate(), both of which follow the explanations in Initialization and
Encryption, respectively. In the decryption of AETHER, if the received T does not match
the tag calculated by the ciphertext C, the message M decrypted by C is never returned.
Test vectors of AETHER will be given in Appendix A.

R20
N

R

K

AD

R

AD

R

AD

. . . R

M⊕

C

R

⊕

R

⊕

. . . R20 T⊕

M M

C C

⊕ ⊕

Figure 3: Overview of AETHER.

Security Claims. AETHER provides 256-bit security against key recovery and 128-bit
security against distinguishing and forgery attacks in the nonce-respecting setting. We do
not claim any security in the related-key and known/chosen-key settings. For the length
of the message and associated data, we limit them up to 2128 and 264 for a fixed key,
respectively. We also limit the number of different messages produced for a fixed key up
to 2128. AETHER has not been designed to be key-committing since AEGIS-like AEADs
are inherently hard to ensure it as shown in [DFI+24, TTI24]. To meet the demand for
a key-committing scheme, we provide a key-committing variant of AETHER with the
methodology in [ADG+22] in Appendix F.

3 Design Rationale
Our primary goal is to design an Authenticated Encryption with Associated Data (AEAD)
scheme that achieves high throughput and low-energy consumption in hardware while
maintaining 128-bit security against key recovery attacks in a quantum setting.

3.1 Existing Results
Regarding energy efficiency, Banik et al. investigate low-energy cryptographic primitives
and find that stream ciphers implemented on unrolled circuits consume less energy due to
their ability to produce multiple keystream bits per clock cycle [BMA+18]. Caforio et al.
further explore the relationship between state-update functions and energy consumption,
presenting energy-optimized variants of several existing stream ciphers, namely Trivium-LE
and Triad-LE [CBT+21]. However, these do not provide post-quantum security, namely a
256-bit key, and are not optimized for high throughput.

For the throughput aspect, Rocca-S, designed for ultra-high throughput in software,
achieves impressive results exceeding 1 Tbps even in hardware with 128-bit quantum
security. Rocca-S is based on AEGIS-like structure [WP13b], which typically outputs many
ciphertext bits while updating the round function only once. Caforio et al. highlight
the connection between high throughput (achieved through small-delay round functions)
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Algorithm 2 Encryption procedure of AETHER.
1: function AETHER enc(K, N, AD, M)
2: S ← Initialization(K, N)
3: if |AD| > 0 then
4: AD ← Padding(AD)
5: S ← ProcessAD(S, AD)
6: end if
7: if |M | > 0 then
8: M ← Padding(M)
9: (S, C)← Encryption(S, M)
10: C ← Truncate(C)
11: end if
12: T ← Finalization(S, K)
13: return (C, T )
14: end function
15: function AETHER dec(K, N, AD, C, T )
16: S ← Initialization(K, N)
17: if |AD| > 0 then
18: AD ← Padding(AD)
19: S ← ProcessAD(S, AD)
20: end if
21: if |C| > 0 then
22: C ← Padding(C)
23: (S, M)← Encryption(S, C)
24: M ← Truncate(M)
25: end if
26: if T = Finalization(S, K) then
27: return M
28: else
29: return ⊥
30: end if
31: end function
32: function Initialization(K, N)
33: K0‖K1 ← K
34: (S[0], S[1], S[2], S[3])← (Z1, K0, N + K0, 0)
35: (S[4], S[5], S[6], S[7], S[8])← (Z0, 0, N, K1, Z2)
36: for i = 0 to 19 do
37: S ← R(S, Z)
38: end for
39: (S[0], S[1], S[2], S[3])← (S[0]⊕K0, S[1]⊕K0, S[2]⊕K0, S[3]⊕K0)
40: (S[4], S[5], S[6], S[7], S[8])← (S[4]⊕K1, S[5]⊕K0, S[6]⊕K1, S[7]⊕K1, S[8]⊕K1)
41: return S
42: end function
43: function ProcessAD(S, AD)
44: d← |AD|

384
45: for i = 0 to d− 1 do
46: S ← R(R, AD3i, AD3i+1, AD3i+2)
47: end for
48: return S
49: end function
50: function Encryption(S, M)
51: m← |M|

384
52: for i = 0 to m− 1 do
53: C3i ← F (S[0]⊕ S[1])⊕ S[4]⊕M3i

54: C3i+1 ← F (S[2]⊕ S[6])⊕ S[7]⊕M3i+1
55: C3i+2 ← F (S[3]⊕ S[5])⊕ S[8]⊕M3i+2
56: S ← R(S, M3i, M3i+1, M3i+2)
57: end for
58: C ← (C0‖C1‖ . . . ‖C2m−1)
59: return (S, C)
60: end function
61: function Finalization(S, K)
62: (S[0], S[1], S[2], S[3])← (S[0]⊕K0, S[1]⊕K0, S[2]⊕K1, S[3]⊕K1)
63: (S[4], S[5], S[6], S[7], S[8])← (S[4]⊕K0, S[5]⊕K0, S[6]⊕K1, S[7]⊕K0, S[8]⊕K1)
64: for i = 0 to 19 do
65: S ← R(S, K0, Z0, K1)
66: end for
67: (S[0], S[1], S[2], S[3])← (S[0]⊕K1, S[1]⊕K0, S[2]⊕K0, S[3]⊕K0)
68: (S[4], S[5], S[6], S[7], S[8])← (S[4]⊕K1, S[5]⊕K0, S[6]⊕K0, S[7]⊕K1, S[8]⊕K1)
69: T ←

⊕8
i=0 S[i]

70: return T

71: end function
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and low energy consumption [CBT+21], noting that energy is roughly estimated as the
product of delay and area required to process the message. Recognizing this connection, we
believe AEGIS-like structures offer an opportunity for redesign to achieve both ultra-high
throughput and energy efficiency while maintaining a sufficient security level. Therefore,
we start by revisiting AEGIS-like structure to reduce energy consumption.

3.2 Revisiting AEGIS-like Structures
The round-update function of an AEGIS-like AEAD typically employs a combination of
XOR operation and the AES round function. This design leverages the efficiency of the
XOR operation and the availability of hardware acceleration for AES (e.g., AESNI on Intel
CPUs) in software environments. However, while the XOR operation remains low-cost in
both hardware and software, the delay, area, and energy consumption of the AES round
function, particularly due to the complex S-box lookups, become bottlenecks for hardware
implementations (as shown in Table 3).

In response to this limitation, we propose a redesign of the round-update function. This
redesign aims to significantly improve hardware performance, as detailed in this section.
This redesign involves replacing the AES round function with a more hardware-friendly
alternative, referred to as the inner function. This inner function will be optimized for
various metrics, such as latency, area, and energy consumption. In the following section,
we will explore how to construct such a hardware-friendly inner function and how to design
the round-update function suitable for this inner function.

3.2.1 The Inner Function.

To achieve both low energy consumption and high throughput in our AEAD design, the
round-update function needs to have minimal delay and area as indicated in [BBI+15].
Since the inner function significantly impacts these aspects, we aim to design an inner
function with ultra-low delay and minimal area footprint (small energy consumption) while
providing strong security.

Performance requirements. Banik et al. demonstrate that Substitution-Permutation
Networks (SPNs) offer better energy efficiency and smaller delay than Feistel networks [BBI+15].
This is further supported by the fact that many low-latency primitives, such as the block
ciphers PRINCE [BCG+12] and QARMA [Ava17, ABD+23], utilize SPNs for their per-
formance benefits. Moreover, since the AEGIS-like structure absorbs message blocks and
outputs ciphertext blocks every state update, achieving a small delay in the inner function
plays a crucial role in increasing throughput. Therefore, to optimize implementation
performance for energy efficiency and throughput, we need to develop an SPN-based inner
function consisting of a low-delay S-box and matrix with a small area footprint to achieve
small energy consumption.

Security requirements. A critical challenge in designing AEGIS-like AEADs is ensuring
security against internal collision-based forgery attacks. Existing AEGIS-like AEADs,
such as Tiaoxin [Nik14], Rocca [SLN+21], and Rocca-S [ABC+23], provide this security
by leveraging the strong security property of the AES round function. Specifically, the
cascading two AES rounds ensures 5 active S-boxes with probability 2−30. This significantly
increases the difficulty of mounting a forgery attack.

While the overall security against forgery attacks depends on both the inner function
and the round-update function, it is crucial to maintain a strong security property within
the inner function itself. This minimizes the risk of collision-based forgery attacks due to
the inner function replacement. Therefore, our security requirement for the inner function
is that the two cascaded inner functions ensure a better differential probability than that
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of the two cascaded AES round functions, i.e., the maximum differential probabilities over
the two cascaded inner functions must be less than 2−30.

S-box. Table 3 shows delay, area, and energy consumption for the AES S-box and several
low-energy and -latency S-boxes. According to Table 3, it is evident that employing a
4-bit S-box is a favorable choice for our design due to its inherent advantages in terms
of the energy consumption and delay. For delay and energy consumption, Sb0 used in
Midori appears to be a suitable choice for our design. However, Sb0 lacks the full-diffusion
property, which ensures that each input bit can affect all output bits.

Since the inner function must consist of as few non-linear (and linear) layers as possible
to minimize delay and energy consumption, our S-box used in the inner function should
have optimal security properties. Then, among S-boxes with optimal security property,
Orthros’s S-box and ρ used in QARMAv2 are the best choices regarding delay and energy
consumption, respectively. Particularly, for Orthros’s S-box, energy consumption is close
to that of ρ while delay is much better than that of ρ. For the area, all 4-bit S-boxes
with optimal security are almost the same. Therefore, considering the balance between
delay and energy consumption, we choose Orthros’s S-box as the component for the inner
function.

Table 3: Security and implementation properties of low-latency S-boxes. E and L denote
energy-optimized and delay-optimized circuits for the NanGate 15 nm cell library at
a clock frequency of 100 MHz, respectively. We used the Synopsys Design Compiler
synthesis directive compile_ultra in combination with manually restricting the critical
path to obtain the latency-optimised circuits L. An approach that was already used
in [BIL+21, ABC+24] and compile command for the E circuits leading to energy-efficient
variants.
Scheme Width Area (µm2) Delay (ps) Energy (pJ) DP C2 Degree Full

L E L E L E Diffusion
AES 8 248.17 136.15 24.96 96.88 0.5908 0.1105 2−6 2−6 7 X

BipBip 6 17.89 12.04 13.70 24.99 0.0414 0.0358 2−4 2−4 2 -
SPEEDY 6 15.08 9.73 7.43 11.97 0.0389 0.0198 2−3 2−2.83 5 X

Gleeok (χ) 5 9.04 9.73 6.61 12.97 0.0244 0.0088 2−2 2−2 2 -
Orthros 4 5.99 3.34 5.17 9.74 0.0144 0.0080 2−2 2−2 3 X

Midori (Sb0) 4 6.93 3.04 4.81 8.96 0.0178 0.0059 2−2 2−2 3 -
Midori (Sb1) 4 5.99 3.29 7.37 10.48 0.0138 0.0080 2−2 2−2 3 X

QARMAv2 (ρ) 4 5.55 3.29 7.37 10.86 0.0137 0.0079 2−2 2−2 3 X
QARMAv2 (σ0) 4 9.58 3.19 4.68 16.51 0.0262 0.0075 2−2 2−2 3 -
PRINCE 4 5.94 3.78 6.05 15.62 0.0131 0.0093 2−2 2−2 3 X

Gleeok (χ) 3 4.27 2.31 6.61 13.21 0.0112 0.0053 2−2 2−2 2 -

Matrix. Banik et al. demonstrate that almost MDS matrices (binary matrices) offer
advantages over MDS matrices regarding delay and area [BBI+15]. This is why it is
popular choice for low-latency cryptographic primitives like QARMA [Ava17, ABD+23]
and Orthros [BIL+21]. In the inner function, however, it is essential to ensure as small a
maximum differential characteristic probability (DCPmax) as possible on a few non-linear
(and linear) layers to achieve a small delay. Besides, a 4-bit S-box ensures only a maximum
differential probability of 2−2, while an 8-bit S-box can ensure that of 2−6. Therefore,
considering the use of Orthros’s 4-bit S-box with a maximum differential probability of
2−2, we need a binary matrix with strong diffusion property while minimizing overhead.

Several studies, such as [SA14, AS14, ARSÖ17], explore binary matrices and demon-
strate that 8× 8, 16× 16, and 32× 32 binary matrices have the maximum branch number
5, 8, and 12, with maximum minimum Hamming weights of each row and column being
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5, 7, and 11, respectively. Due to the page limitation, we show these binary matrices in
Appendix B. As delay of almost MDS, 8× 8, 16× 16, and 32× 32 binary matrices can
be roughly estimated to 3, 4.5, 4.5, and 6, respectively, by depth proposed by Banik et
al. [BBI+15], these three binary matrices have a potential for adoption in our design.

Table 4 shows the security and detailed implementation properties of 4 × 4, 8 × 8,
16 × 16, 32 × 32 binary matrices. In this evaluation, we consider a 128-bit linear layer
consisting of eight 4× 4, four 8× 8, two 16× 16, and one 32× 32 binary matrices with
matrix elements being 4 bits and a linear layer of AES consisting of four MDS matrices.

Table 4: Security and implementation properties of the binary matrices and MDS matrix
from AES. All designs were for the NanGate 15 nm cell library at a clock frequency of 100
MHz. BR denotes the branch number.

Implementation properties
Matrix Area (µm2) Delay (ps) Energy (pJ)

L E L E L E
MDS matrix in AES 70.19 47.77 16.00 28.64 0.1574 0.1463

4× 4 binary matrix [BBI+15] 28.31 21.23 9.82 12.39 0.0558 0.0514
8× 8 binary matrix [AS14] 35.83 29.63 15.62 21.67 0.1141 0.0825

16× 16 binary matrix [ARSÖ17] 113.69 88.03 21.01 37.22 0.3030 0.3220
32× 32 binary matrix [ARSÖ17] 368.09 307.59 25.34 42.78 0.9023 1.2540

Security properties
Matrix Branch number (BR) Delay / BR? Energy / BR∗?

MDS matrix in AES 5 3.2 0.1170 (0.0292× 4)
4× 4 binary matrix [BBI+15] 4 2.45 0.1028 (0.0128× 8)

8× 8 binary matrix [AS14] 5 3.12 0.0660 (0.0165× 4)
16× 16 binary matrix [ARSÖ17] 8 2.62 0.0757 (0.0378× 2)
32× 32 binary matrix [ARSÖ17] 12 2.11 0.0751
∗ The number of matrices is assumed to the case of applying 128-bit linear layer.
? The better results are used.

According to Table 4, the 4 × 4 binary matrix is the best for delay. For the other
binary matrices, the delay to branch number ratio improves as the matrix size increases
regarding binary matrices. Conversely, the 8× 8 matrix stands out with its superior energy
consumption to branch number ratio, making it the most efficient choice. Notably, the
4× 4 matrix costs the worst among the four binary matrices, an undesirable property for
our design. For area, the 4× 4 matrix naturally achieves the smallest area footprint among
all matrices we evaluate. However, the total area of the 4× 4 matrix is not the best since
we apply 8 4× 4 matrices in the inner function. Considering the balance between delay
and energy consumption, 8× 8, 16× 16, and 32× 32 matrices are better choices for our
design. Therefore, we choose these 3 matrices as the candidates for the inner function.

Structure of the Inner Function. We evaluate three candidates for our SPN-based inner
function, consisting of the aforementioned 32× 32, 16× 16, and 8× 8 binary matrices as
a linear layer with Orthros’s 4-bit S-box as a non-linear layer. Table 5 shows the lower
bound for the number of active S-boxes, which is denoted # AS in this paper, after each
layer regarding these three candidates and AES, where DCPmax is calculated by the lower
bound for the number of active S-boxes. According to Table 5, none of the three candidates
reach DCPmax of less than 2−30 after two SPN-based rounds and one S-box layer.

To fulfill the security requirement, we consider an inner function with a single SPN-
based round followed by one S-box layer with 32 × 32 and 16 × 16 matrices. For the
8 × 8 matrix, we use two SPN-based rounds followed by one S-box layer. Then, two
cascaded such inner functions can ensure DCPmax of 2−48(= 2−24×2), 2−32(= 2−16×2),
and 2−32(= 2−16×2) with 32× 32, 16× 16, and 8× 8 matrices, respectively. Fig 4a, 4b, and
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4c illustrate a single SPN-based round with 8× 8, 16× 16, and 32× 32 binary matrices,
respectively. Note that we apply nibble permutations before the matrices to have the
maximum # AS in the nibble-wise evaluations, which can be realized without the overhead.

S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

8× 8 Matrix 8× 8 Matrix 8× 8 Matrix 8× 8 Matrix

(a) A single SPN-based round with 8 × 8 matrix.

S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

16× 16 Matrix 16× 16 Matrix

(b) A single SPN-based round with 16 × 16 matrix.

S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

32× 32 Matrix

(c) A single SPN-based round with 32 × 32 matrix.

Figure 4: A single SPN-based round with 32× 32, 16× 16, and 8× 8 matrices.

Then, we evaluate the hardware performance for these candidates and the AES round
function without a key addition. Table 6 shows the implementation results where F32,
F16, and F8 denote a single SPN-based round followed by one S-box layer with 32× 32
matrix, a single SPN-based round followed by one S-box layer with 16×16 matrix, and two
SPN-based rounds followed by one S-box layer with 8×8 matrix, respectively. According to
Table 6, F16 is the best in all evaluations in terms of area, delay, and energy consumption.

Considering the fact that all candidates meet the security requirement and the imple-
mentation results, we finally choose F16 as the inner function of our design5.

3.2.2 The Round-Update Function

Difference in Throughput between Software and Hardware. In a software environment,
the number of the applied AES round functions and the inserted message blocks are closely
related to the throughput of overall AEAD. Let the number of the applied AES round
functions and the inserted message blocks in a single round-update function be #AES
and #M , respectively. Jean and Nikolić introduce rate that is a metric to estimate the
throughput calculated by (#AES)/(#M) [JN16]. To further reduce the critical path of
the round-update function, Sakamoto et al. apply either the AES round function or an
XOR for each 128-bit word in a single round-update function and propose the ultra-high
throughput AEAD Rocca, which has rate 2.

5In the final specification of the inner function, we apply Pn after the second S-box layer. We would
emphasize that this change affects neither implementation nor security properties.
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Table 5: Lower bounds for the number of active S-boxes and differential characteristic
probability after each operation. # AS and DCPmax denote the lower bound for the number
of active S-boxes and the maximum differential characteristic probability, respectively.

Operation AES 32× 32 matrix 16× 16 matrix∗ 8× 8 matrix?

# AS DCPmax # AS DCPmax # AS DCPmax # AS DCPmax

Non-linear (S-box) 1 2−6 1 2−2 1 2−2 1 2−2

Linear (Matrix) 1 2−6 1 2−2 1 2−2 1 2−2

Non-linear (S-box) 5 2−30 12 2−24 8 2−16 5 2−10

Linear (Matrix) 5 2−30 12 2−24 8 2−16 5 2−10

Non-linear (S-box) 9 2−54 13 2−26 9 2−18 8 2−16

∗ The identical two 16× 16 binary matrices are applied in parallel to proceed 32 4-bit words.
? The identical four 8× 8 binary matrices are applied in parallel to proceed 32 4-bit words.

Table 6: The area, delay, and energy consumption of each candidate for the inner function.
FAES denotes the AES round function without a key addition.

Inner Construction DCPmax Area (µm2) Delay (ps) Energy (pJ)
Functions (2 consecutive rounds) L E L E L E

FAES Single SPN-based round 2−30 3126.06 2368.73 54.79 131.79 8.7880 2.8040

F8
Two SPN-based rounds 2−32 811.69 557.97 70.85 91.85 2.8320 2.5440+ one S-box layer

F16
Single SPN-based round 2−32 597.83 389.97 43.81 67.49 1.9190 1.7966+ one S-box layer

F32
Single SPN-based round 2−48 696.82 610.27 50.90 79.51 2.1936 2.9580+ one S-box layer

In contrast, on a hardware environment, the throughput is primarily determined by the
critical path of a single round-update function and the number of message blocks processed
per round (#M). The number of inner functions applied within a single round-update
function (#F ) has less impact. This is because hardware can often execute all inner
functions in parallel within a single round.

Towards Low Energy. To achieve small energy consumption, the round-update function
should minimize both delay and area. As mentioned above, the small delay is already
realized by designing the inner function. To reduce the implementation area, we need to
reduce #F . However, it should be noted that reducing the implementation area poses a
challenge in ensuring security against forgery attacks.

An alternative approach to reduce energy consumption is to increase the number
of message blocks processed per round (#M). This improves the energy efficiency per
encrypted bit of plaintext. Additionally, it contributes to increased throughput. Therefore,
to maintain a required level of security, we prioritize increasing #M over reducing #F .

Furthermore, we allow the round-update function to apply both the inner function and
an XOR for each 128-bit word because the overhead of applying one XOR is quite small
compared to applying the inner function, this plays a more significant role in enhancing
security against internal collision-based forgery attacks. Therefore, the general construction
of our round-update function becomes as illustrated in Fig. 5.

In our general construction, if a 128-bit word is XORed with a message block, this
word does not accept XORing with an additional 128-bit word coming from a permutation,
similar to Rocca. Therefore, let the number of the 128-bit words be #S, the total number
of candidates in the class of #S = s and #M = m is as follows:

s!×
(
s

m

)
× (m!)−1. (1)
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Figure 5: General construction of the round-update function where F denotes the appli-
cation of the inner function.

Requirements of Round-Update Function. In summary, the requirements for the round-
update function are as follows:

Performance requirement.

1. The round-update function should absorb as many message blocks as possible,
i.e., #M should be as large as possible.

2. The number of the states in the round-update function, denoted #S, should be
as small as possible.

Security requirement.

1. The round-update function ensures the same security level as that of AEGIS-128,
Tiaoxin, and Rocca, i.e., 128-bit security against forgery attacks is required.

Finding Optimal Round-Update Function. The designers of AEGIS-128 and Rocca
demonstrate security against internal collision-based forgery attacks by evaluating the
lower bound for the number of active S-boxes, denoted # AS, using a byte-wise truncated
difference approach. However, we must evaluate it using a nibble-wise truncated differ-
ence due to applying a 4-bit S-box in the inner function, making the evaluation more
time-consuming. Given the need to evaluate numerous candidates for the round-update
function, conducting a nibble-wise evaluation for all of them is impractical.

Moreover, the first performance requirement implies that we must explore a large class
of round-update functions. Therefore, we must adopt an alternative method to evaluate
security against internal collision-based forgery attacks with a much smaller computational
cost. Consequently, we conduct a word-wise evaluation instead of a nibble-wise one,
which requires significantly less computational effort than a byte-wise evaluation. Since
DCPmax of the inner function is 2−16, it is enough to ensure 8 active inner functions, i.e.,
2−128 ≤ 2−16×8 to guarantee 128-bit security against the internal collision-based forgery
attacks.

As the number of the candidates for the round-update function with #S = s and
#M = m is calculated by Eq. (1), it is infeasible to evaluate all the candidates in a
practical time for #S ≥ 10. Thus, we randomly evaluate the candidates with #S ≤ 11.
We employ a SAT-based automatic search method and carry out the evaluation on a
workstation equipped with Intel Xeon Platinum 8380 and 1 TB memory.

Search Result. Table 7 shows the summary of our search results. We found 8478
candidates with #S = 9 and #M = 3, which has the maximum #M and ensures 128-bit
security against internal collision-based forgery attacks. Note that these candidates ensure
#AF = 8, where #AF denotes the lower bound for the number of active inner functions.
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To further narrow down the candidates, we evaluate the diffusion property regarding
each 128-bit word and found that 162 out of 8478 candidates achieve full diffusion after 6
rounds. We then investigate the diffusion property of each 128-bit word after 5 rounds for
162 candidates. We identified that 5 out of 162 candidates achieve almost full diffusion
after 5 rounds, meaning that each 128-bit state after 5 rounds can be affected by at least 8
128-bit input words. After a comprehensive evaluation, we select 1 out of the 5 candidates
as the round-update function of AETHER shown in Fig. 1.

Table 7: The summary of our evaluation to find the candidates with #AF ≥ 8.
#S #M Total # of searched # of found #S #M Total # of searched # of found
4 1 96 All 16 8 3 376320 All 0
4 2 72 All 0 8 4 117600 All 0
4 3 16 All 0 8 5 18816 All 0
5 2 600 All 0 8 6 1568 All 0
5 3 200 All 0 8 7 64 All 0
5 4 25 All 0 9 3 5080320 All 8478
6 2 5400 All 54 9 4 1905120 All 0
6 3 2400 All 0 9 5 381024 All 0
6 4 450 All 0 9 6 42336 All 0
6 5 36 All 0 9 7 2592 All 0
7 3 29400 All 0 9 8 81 All 0
7 4 7350 All 0 10 4 31752000 All 0
7 5 882 All 0 10 5 38102400 All 0
7 6 49 All 0 11 4 548856000 226 0

3.3 Loading Scheme and Output Functions
AEGIS-like AEADs first load the nonce and key into the internal states in the initialization.
This loading scheme has a significant impact on the security of the initialization, as
reported in [LIMS21]. As with Rocca and Rocca-S, we would like to have the property
that the whole internal states cannot be expressed only in terms of S(N), K0, and K1
after some rounds. If these terms exist, the attacker can construct one useless round in the
initialization, resulting in stronger attacks. After a careful investigation into the formulas
of each 128-bit word after several rounds, we decided to load N , K0, K1, and N + K0
into S[6], S[4], S[7], and S[2], respectively. This can avoid a useless round, as reported
in [LIMS21].

Since the structure of the output function influences a linear bias that is a powerful
distinguishing attack for AEGIS-like AEADs [Min14]. To resist it, we proactively explore
the output function with the most robust resistance against this type of attack, fitting the
following form by constructing a SAT model.

Ci = F (S[j0]⊕ S[j1])⊕ S[j2]⊕Mi,

Ci+1 = F (S[j3]⊕ S[j4])⊕ S[j5]⊕Mi+1,

Ci+2 = F (S[j6]⊕ S[j7])⊕ S[j8]⊕Mi+2,

where jk0 6= jk1 for k0 6= k1 and 0 ≤ j0, j1, j2, j3.j4, j5, j6, j7, j8 ≤ 8. Therefore, the number
of candidate output functions equals 7560 (=

(9
3
)
· 3! · (2!)−1 ×

(6
3
)
· 3! · (2!)−1 ×

(3
3
)
· 3! ·

(2!)−1× (3!)−1). We evaluate the word-wise truncated linear characteristics for all patterns
regarding the lower bounds for the number of active inner functions and choose one that
ensures 13 active S-boxes, guaranteeing a linear bias of less than 2−208(2−16×13). As the
designers of Rocca and Rocca-S mentioned, there is a large gap between our truncated
model and the actual characteristics that can be exploited in the attack. Considering
that our model is truncated word-wise, we expect that a linear bias of the actual best
characteristics is much smaller than 2−208, ensuring 128-bit security against distinguishing
attacks.
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3.4 Two Key Feed-Forward Operations
Hosoyamada et al. demonstrated the potential risk of AEGIS-like AEADs, showing that
an imbalance between tag length and key-recovery security can lead to internal state
recovery [HII+22]. This vulnerability is inherent to designs with tag sizes smaller than the
claimed key-recovery security. Successful internal state recovery can potentially enable
key recovery attacks by inverting the initialization process [HII+22]. Additionally, if the
finalization process is publicly known, forgery attacks may become feasible by generating
tags using the recovered state information.

Since AETHER has a 128-bit tag and a 256-bit key-recovery security level, it falls into
this category. To address these issues, we propose two key feed-forward operations in order
to reduce key recovery problem after recovering the internal state to well-analyzed hard
problem of symmetric cryptography.

Key Forwarding to Initialization. We employ the key feed-forward operation at the end
of the initialization, similar to Rocca [SLN+22]. As mentioned in Sect. 3.2.2, the cost of
applying one XOR operation is negligible compared to that of the inner function. Hence,
we XOR K0 and K1 to all 128-bit words at the end of the initialization, making inverting
the initialization phase impossible without guessing K0 or K1. Essentially, inverting the
initialization becomes a preimage problem for the underlying permutation with the forward
operation. As the initialization phase is sufficiently strong permutation, mounting key
recovery attacks is computationally infeasible.

Key Forwarding to Finalization. To prevent forgery attacks following internal state
recovery, incorporating the key into the finalization process is essential. However, Takeuchi
et al. demonstrated a key recovery attack against a variant of Rocca that incorporates
key addition only before the finalization step [TTI24]. Essentially, recovering the internal
state reduces the finalization step to an Even-Mansour cipher, enabling key recovery by
observing the ciphertext-tag.

To address this, we design the finalization in AETHER that involves the key even in
the state update process, similar to a block cipher. This approach makes it difficult to
recover the key even when the internal state is fully recovered. Specifically, recovering the
key becomes equivalent to a key recovery problem for an underlying block cipher, treating
the finalization as a large block cipher.

4 Security Evaluation

4.1 Differential Attack
The differential attack is one of the applicable attacks to the initialization of AEGIS-like
AEADs. The attacker can exploit the differences with a high probability in the nonce in
the differential attack. To evaluate its probability, we explore the word-wise truncated
differential characteristics and compute the lower bound for the number of active inner
functions in each round. Because the maximum differential characteristic probability of the
inner function is 2−16, it is sufficient to ensure 16 active inner functions (2−16×16 ≤ 2−256)
for achieving 256-bit security against key-recovery attacks. Table 8 shows the lower bounds
for the number of active inner functions in each round. As can be viewed in Table 8,
the initialization of AETHER can ensure 16 active inner functions after 5 rounds, and
the number of active inner functions is over double of 16 after 10 rounds. Considering
the number of rounds in the initialization is 20, we expect that AETHER can resist the
differential attack.
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Table 8: The lower bounds for the number of active inner function in the initialization
phase.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# AF 2 4 8 12 16 19 22 24 28 34 36 39 43 45 48 50 53 57 60 65

4.2 Forgery Attack
A main threat to AEGIS-like AEADs is internal collision-based forgery attacks as shown
in [Nik14] because the message blocks are absorbed after every one-round update. All
AEGIS-like AEADs have round-update functions designed to resist this type of attack.
In AETHER, we design the round-update function to ensure 128-bit security against the
internal collision-based attacks by ensuring 8 active inner functions, i.e., 2−16×8 ≤ 2−128.
However, since our round-update function can ensure only 8 active inner functions in a
truncated SAT model, we cannot ensure that AETHER has enough security margin against
this type of attack so far. Although there is a large gap from the actual characteristics
that the attacker can exploit to that obtained from the word-wise truncated model, it
must be shown that AETHER certainly has the security margin against this type of attack.
To this end, we construct the bit-wise evaluation model and evaluate a tight differential
characteristic probability of internal collisions. In this evaluation, we take a two-step
approach due to the high computational cost for the bit-wise model as follows:

Step 1. Extract the number of rounds that ensure only 8 active inner functions in the
word-wise truncated model.

Step 2. Evaluate the bit-wise differential characteristics on the number of rounds extracted
in Step 1.

After the evaluation of Step 1. we found that only 6-round internal collisions have
8 active inner functions in the truncated model. Then, we evaluate optimal differential
characteristics on the 6-round internal collision by the bit-wise model. As a result, we
find that the differential characteristic probability of optimal differential characteristics
is 2−164. Since there is still enough gap to 2−128, we expect that AETHER can resist the
internal collision-based forgery attacks.

4.3 Linear Bias of the Keystream
Minaud showed a linear bias on the keystream can be exploited as the distinguishing
attacks for AEGIS-256 [Min14]. Then, Eichlseder et al. improved this attack with an
automatic search method [ENP19]. Since AETHER has the AEGIS-like construction, the
security against this attack should be evaluated.

As discussed in Sect. 3.3, the output function is designed to have a strong resistance
against this type of attack; that is, the strongest output function among possible candidates
is chosen. Specifically, we expect the time complexity to exploit a linear bias to be at least
2−208(2−16×13). Therefore, we expect that the linear attack can not violate our security
claim.

4.4 Integral Attack
Liu et al. show that the integral attacks work to AEGIS family and Tiaoxin based on
the integral distinguisher on 4-round AES. Although AETHER does not employ the AES
round function, it is necessary to evaluate the security against the integral attack due to
the similarity of the constructions. To estimate the security against integral attacks, we
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investigate the longest integral distinguisher on the initialization, which is known to be
efficiently evaluated by the division property [Tod15].

To estimate the longest integral distinguisher on the initialization, we take a two-step
approach as follows:

Step 1. Evaluate the division property for the inner function.

Step 2. Estimate how many rounds the attacker can construct the integral distinguishers
on for the round-update function with the results of Step 1.

After the evaluation of Step 1, we found that the output after 7 applications of the
inner function does not have the integral distinguishers, i.e., F (F (F (F (F (F (F (X))))))) is
not balanced. Then, in Step 2, we confirmed that each output word after 9 rounds consist
of the term in terms of 7 applications of the inner function for the nonce, implying that
there are no integral distinguishers on the initialization after 9 rounds.

It should be emphasized that this is a conservative evaluation because we do not
consider the impact of other terms that makes constructing the integral distinguishers
more difficult. Considering the number of rounds in the initialization is 20, we expect that
AETHER can resist the integral attacks.

4.5 Resistance to Key-Recovery
AETHER is analyzed against the key-recovery attack techniques from [TTI24]. Although,
in the nonce-misuse setting, it is possible to recover the internal state (see Appendix C)
and set the state to an arbitrary value via interpolation (see Appendix D), the key-recovery
attack in [TTI24] is still not applicable. In the case of Rocca, once the internal state is
recovered, the security of the finalisation is reduced to an Even-Mansour cipher which
enables to recover the key in an efficient way. However, in the case of AETHER, due to
the introduction of the keys in the state-update function in the finalisation step, offline
computation of the tag based on a guessed sub-key (a part of the key) is not possible.
Hence, it is viable to believe, AETHER is secure against key-recovery. Note that, some
distinguishing attacks also exist but they do not lead to key-recovery. For an instance,
with reference to Fig. 8 during the encryption process in the nonce-misuse setting, if a
difference is injected into M0, the same difference propagates to C8 (such attacks also
exists for AEGIS [WP13a, Section 6.2]).

4.6 Security of the Finalization Step
One of the main novelty of AETHER is its unique finalization step. As discussed, due to
introduction of the secret key in the finalization step, it becomes difficult to recover the key
even when the internal state is completely recovered. Additionally, the offline computation
of the tag based on some arbitrary internal state is also not possible which in turn resists
the forgery attacks (as in [TTI24]).

5 Hardware Evaluation
The circuit for AETHER is reminiscent of earlier designs for schemes like Rocca-S [ABC+23]
and AEGIS [WP13b]. In fact, one can easily convert a given round-based circuit for these
schemes and convert it into a viable design for AETHER, simply by replacing the combina-
torial round function circuit and adapting some of the wiring. More specifically, the core
structure of these algorithms is a layer of duplicated interconnected combinatorial modules
that are fed by and wired back to a bank of state registers. In the case of Rocca-S and
AEGIS these modules implement the AES round function, while for AETHER this function
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is a combination of two tranches of the 4-bit Orthros S-box [BIL+21] interwoven with a
novel diffusion layer composed of a 16× 16 byte-wise matrix a nibble-wise permutation.
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Figure 6: AETHER state update circuit. The ciphertext generation module has been
omitted for the sake of conciseness.

5.1 Circuits
At the gate level, an implementation for AETHER can be realized with common circuitry.
A row of 128-bit D-flip-flops stores the intermediate cipher state, its input data being
switched by an array of 128-bit multiplexers. The register outputs are directly fed to the
round function module whose 4-bit S-box is mapped to its corresponding circuit by passing
its lookup-table description to the synthesis tool. It has been shown by the designers of
Orthros [BIL+21] that the lookup-table-based synthesis approach works particularily well
for small 4-bit S-boxes in producing competitive latency figures. As AETHER is using the
Orthros S-box for its non-linear layer, we adopted the same technique. Beyond the S-box,
the byte-based matrix multiplication can be achieved in a straightforward manner with a
low-depth network of XOR gates, and the nibble-based permutation does not increase the
circuit area footprint as it solely consists of wiring. Finally, some additional multiplexers
steer the addition of data and keys into the before it is fed back to the registers. A
schematic depiction of the AETHER state update circuit is shown in Figure 6.

5.2 Results
The measurements of AETHER are compared against existing related algorithms Rocca-
S [ABC+23], AEGIS-256 [WP13a], AES-256-GCM [MV04] as well as the recently standard-
ized lightweight AEAD scheme Ascon [DEMS19] in order to establish its competitiveness
not only in terms of energy consumption but also in circuit area, throughput and power.
Note that our implementation of the permutation for Ascon is similar to the 6-round
unrolled circuit used in [GWDE15]. We also compare our design with the NIST lightweight
cryptography candidates GIFT-COFB [BCI+19], SUNDAE-GIFT [BBP+19], ROMULUS-N1
[IKMP19], PHOTON-BEETLE [BCD+19] and TINYJAMBU [WH19]. To make the com-
parisons meaningful, for each of the above designs we unroll the round function of the
underlying block-cipher/permutation by a suitable amount so that the energy consumption
is optimal.

An important side note in this endeavour is the fact that the hardware design space of
Rocca-S and AEGIS are significantly broader due to the their utilization of the AES round
function as the core primitive for which a multitude of different circuits exist each aiming
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at a different trade-off in the set of hardware metrics. For example, the 8-bit Rijndael
S-box can be passed to the synthesis tool as a lookup-table (LUT) as is the case for
AETHER or implemented as optimised handwritten circuits as was done by Maximov and
Ekdahl [ME19] to achieve the to date both smallest (SMALL) and fastest implementation.
If minimization of power is the goal, one can make use of the Decode-Switch-Encode
(DSE) technique that adds specific encoders/decoders to the S-box lookup-table input and
outputs as to reduce the overall switching activity of the circuitry. Inspired by common
AES software implementations, it further possible to implement the entire round function
as a combination of several large T-tables that are then passed to the synthesizer.67

The obtained measurements for the NanGate 15 nm library [MMR+15] are tabulated
in Table 9 demonstrating that the design choices of AETHER, i.e., the combination of the
conciseness of F and the large cipher state enabling a data absorption rate of 384 bits
per clock cycle, result in a competitive construction that cuts the energy consumption by
roughly significantly improves the energy consumption compared to related ciphers while
being competitive with respect to other hardware metrics. The table shows that for smaller
data-lengths some schemes like TINYJAMBU and AEGIS outperform AETHER: however
that comes with the cost of lowering of throughput. For longer data-lengths AETHER
outperforms all the schemes listed in the table.

Table 9: Measurement comparison between AETHER and related schemes in the Nangate
15 nm OCL. The source code for Rocca-S, AEGIS-256 and AES-256-GCM have been taken
from [ABC+23]. The circuit of Ascon-128a stems from the reference implementation with
the difference that the permutations ρa and ρb have been unrolled. The input size for
the short energy measurements consisted of 1024 bits of AD and 2048 bits of plaintext
while the long input size was 1024 bits of AD and 1.28 Mbits of plaintext. All design were
compiled with the regular compile routine as part of the Synopsys Design Compiler, and
all power measured at 10 MHz. The figure r = X indicates that the round function was
unrolled X times to construct the corresponding circuit.

Area Latency Throughput TP/Area Power Energy

µm2 GE ns Tbit/s Tbit/(sm2) mW #Cycles Short(nJ) #Cycles Long(nJ)

AETHER 10504 53428 0.185 2.066 196.7 0.605 49 2.965 3377 204.3
Ascon-128a 7789 39619 0.583 0.219 28.1 7.874 28 22.047 10012 7883.4
Rocca-S
LUT 22832 116130 0.179 1.431 62.7 1.401 44 6.165 5036 705.6
DSE 22931 116138 0.177 1.451 63.3 0.765 44 3.368 5036 385.5
SMALL 11184 56889 0.232 1.102 98.5 1.255 44 5.522 5036 632.1
TT 28579 145364 0.154 1.653 57.8 0.881 44 3.876 5036 443.7
AEGIS-256
LUT 17403 88521 0.167 0.766 44.0 1.106 48 5.309 10032 1109.0
DSE 17520 89116 0.165 0.766 43.7 0.613 48 2.945 10032 615.6
SMALL 8703 44266 0.210 0.610 70.1 1.014 48 4.868 10032 1017.0
TT 21743 110591 0.132 0.970 44.6 0.691 48 3.317 10032 693.3
AES-256-GCM
LUT 10023 50980 0.349 0.023 2.3 0.521 266 13.85 160010 8328.0
DSE 10101 51381 0.349 0.023 2.3 0.417 266 11.09 160010 6674.0
SMALL 8265 42038 0.349 0.023 2.8 0.502 266 13.36 160010 8035.0
TT 12599 64082 0.349 0.023 1.8 0.577 266 15.35 160010 9224.0
GIFT-COFB(r = 2) 1454 7397 0.397 0.015 10.3 0.081 500 4.06 200180 1625.6
SUNDAE-GIFT(r = 2) 1137 5783 0.247 0.012 10.6 0.077 1220 9.42 400180 3090.2
PHOTON-BEETLE(r = 1) 2038 10365 0.179 0.057 28.0 0.163 300 4.89 120108 1956.2
ROMULUS-N1(r = 3) 2366 12032 0.292 0.022 9.3 0.143 399 5.73 190095 2727.7
TINYJAMBU (r = 128) 526 2676 0.142 0.027 51.3 0.022 700 1.56 320188 712.4

6It has been shown in [ABC+23] that the T-table (TT) implementation approach leads counter-
intuitively to the most latency-efficient circuits for the AES-based AEAD schemes in the likes of Rocca-S,
AEGIS, SNOW-V and AES-256-GCM, albeit at the cost of significant circuit area overhead.

7All investigated designs were synthesized with the Synopsys Design Compiler (2017.09) using the
academic NanGate 15 nm cell library. Power and Energy measurements were then obtained in post-synthesis
with the help of the Synopsys Power Compiler.
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Figure 7: [Left] Energy Consumption of AETHER with respect to Frequency (Short).
[Right] Breakup of dynamic and leakage components of the power for the two standard cell
libraries w.r.t. clock frequency. Note both axes are plotted in log-scale in both the plots.

5.3 Results using the CNFET-OCL 5nm standard cell library
The CNFET-OCL family of standard cells uses carbon nanotube technology to implement
cells using transistors of 5 and 7 nm feature sizes [SMY+23b]. The library is completely
open source and can be downloaded from [SMY+23a]. It is very well suited for low energy
and high speed designs as the authors report around 96%, 62% and 82% reduction in
dynamic and static power consumption and critical-path delay, respectively, when compared
with ASAP7 [CVS+16], another 7 nm standard cell library reported in literature.

Figure 7 (left) shows the variation of energy consumption w.r.t. clock frequency for
AETHER for the two standard cell libraries (for the “short” amount of plaintext/AD
bits). We can see that whereas for the Nangate library, the energy consumption is of
the same order, for the CNFET library the energy consumption decreases by almost an
order of magnitude for 100 MHz over 10 MHz, and similarly for 1 GHz over 100 MHz. To
understand this, recall that in both [KDH+12, BBR15], the authors had concluded that
in low leakage environments, the energy consumption for any operation is independent of
the clock frequency provided it is high enough. There are two types of power consumed in
CMOS circuits: the first is due to the continuous currents drawn by the transistors i.e.
mainly due to the short-circuit current and the sub-threshold leakage current when the
transistor is OFF. This component is clubbed under the term static or leakage power, and
is independent of the frequency at which the circuit is clocked. The second (called dynamic
power) is due to the logic transitions every transistor is required to make: to make this
happen the power source as to drive electric charge in and out of load capacitances of
each transistor. This component varies directly as the clock frequency, since the rate of
all such charging and discharging is dictated by the clock period. Figure 7 (right) shows
the breakup of these components for AETHER when implemented with both the libraries
for frequencies starting from 10 Mhz to 1 GHz. While the static component remains
unchanged w.r.t. frequency, the dynamic component increases proportionally, i.e. by a
factor of close to 10 for a 10-fold increase in clock frequency. However the total amount of
physical time taken to do an operation also decreases proportionally w.r.t. clock frequency.
For example, at 10 MHz, it takes 49 cycles which equals 4900 ns. Similarly 490ns at 100
MHz and 49 ns at 1 GHz. Hence the dynamic component of energy remains more or less
constant for both the libraries at all frequencies.

• In this example, for the Nangate 15 nm library, Edynamic is around 43.8mW× 49ns ≈
2.146 nJ. And for the CNFET-OCL 5nm library Edynamic ≈ 0.467mW × 49ns ≈
0.023 nJ.

• However the static component of energy decreases since the static power remains
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constant and physical time decreases. In this example for the Nangate 15nm library
we have

Estatic ≈ 168µW × 4900ns = 0.823 nJ at 10 MHz
≈ 168µW × 490ns = 0.082 nJ at 100 MHz
≈ 168µW × 49ns = 0.008 nJ at 1 GHz

• The contribution of the static part thus decreases w.r.t. an increase of clock frequency.
This lead to the conclusion made by [KDH+12, BBR15].

• The case with the CNFET 5nm library is similar, but it is to be noted that sue to
transistor structure it consumes extremely low switching power at lower frequencies,
as a result the static energy is the dominant component at clock frequencies lower
than 1 GHz. For this library we have

Estatic ≈ 76µW × 4900ns = 0.372 nJ at 10 MHz
≈ 76µW × 490ns = 0.037 nJ at 100 MHz
≈ 76µW × 49ns = 0.0037 nJ at 1 GHz

• For higher frequencies it is reasonable to conclude that for this library too, the static
component decreases to make the energy consumption more or less constant w.r.t.
frequency.

Since the switching power more closely captures the algorithmic traits of the AEAD
under consideration, we report the power and energy in Table 10 at 1 GHz, which captures
the dynamic component better. In any way one of the reasons of employing cell libraries
of lower feature size, is to be able to clock the circuits faster and so 1 GHz seems to be
a fair level to benchmark the energy consumption. The results using the 5 nm library is
presented in Table 10. We see that for the long long data benchmark, AETHER outperforms
nearly all other schemes using this library except for Rocca-S, whose energy consumption
is similar to AETHER. However AETHER comes with around 1.5 times the throughput as
it can process 3 blocks per clock cycle, when compared to 2 blocks per cycle for Rocca-S.

Lastly, for the software performance of AETHER, we left it in Appendix G, as it is not
our main scope.

6 Conclusion
This paper proposed an ultra-high throughput and low energy authenticated encryption
scheme named AETHER. To realize both ultra-high throughput and low energy consumption
in a hardware environment simultaneously, we revisited AEGIS-like construction and
designed the inner function, which is the AES round function in the other AEGIS-like
AEADs, from scratch. With this inner function and the round-update function suitable
for it, AETHER achieves a throughput of more than 2/5 Tbps with energy consumption of
204.31/1.83 nJ to encrypt 1.28 Mbits of data using the Nangate 15nm/CNFET-OCL 5nm
standard cell library respectively.
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Table 10: Measurement comparison between AETHER and related schemes in the CNFET-
OCL 5nm. The source code for Rocca-S, AEGIS-256 and AES-256-GCM have been taken
from [ABC+23]. The circuit of Ascon-128a stems from the reference implementation with
the difference that the permutations ρa and ρb have been unrolled. The input size for
the short energy measurements consisted of 1024 bits of AD and 2048 bits of plaintext
while the long input size was 1024 bits of AD and 1.28 Mbits of plaintext. All design were
compiled with the regular compile routine as part of the Synopsys Design Compiler, and
all power measured at 1 GHz. The figure r = X indicates that the round function was
unrolled X times to construct the corresponding circuit.

Area Latency Throughput TP/Area Power Energy

µm2 GE ps Tbit/s Tbit/sm2 mW #Cycles Short(pJ) #Cycles Long(nJ)

AETHER 4514 53310 69.06 5.234 1159.5 0.543 49 26.62 3377 1.83
Ascon-128a 3353 39602 217.04 0.555 165.5 7.067 28 197.88 10012 70.76
Rocca-S
LUT 9731 114928 65.18 3.719 382.2 0.828 44 36.43 5036 4.170
DSE 9896 116875 69.70 3.478 351.5 0.409 44 18.00 5036 2.060
SMALL 5236 61835 74.75 3.243 619.4 0.320 44 14.06 5036 1.609
TT 12328 145595 56.40 4.298 348.6 0.500 44 22.02 5036 2.520
AEGIS-256
LUT 7334 86612 60.74 2.003 273.1 0.646 48 30.99 10032 6.477
DSE 7477 88304 66.20 1.838 245.8 0.325 48 15.59 10032 3.258
SMALL 3982 47024 71.94 1.691 424.7 0.258 48 12.37 10032 2.586
TT 9301 109844 53.72 2.265 243.5 0.394 48 18.93 10032 3.957
AES-256-GCM
LUT 4293 50701 103.42 0.074 17.2 0.226 266 60.16 160010 36.187
DSE 4318 50998 103.51 0.074 17.1 0.160 266 42.60 160010 25.625
SMALL 3590 42398 101.94 0.075 20.9 0.146 266 38.86 160010 23.376
TT 5377 63507 105.21 0.073 13.6 0.255 266 67.70 160010 40.726

GIFT-COFB(r = 2) 625 7379 131.300 0.05 80.0 0.061 500 30.31 200180 12.14
SUNDAE-GIFT(r = 2 486 5744 90.260 0.03 61.7 0.061 1220 74.35 400180 24.39
PHOTON-BEETLE(r = 1) 879 10385 64.440 0.16 182.0 0.134 300 40.07 120108 16.04
ROMULUS-N1(r = 3) 1018 12028 110.41 0.058 57.0 0.110 399 43.80 190095 20.87
TINYJAMBU(r = 128) 225 2655 49.71 0.077 342.2 0.013 700 9.02 320188 4.12
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A Test Vectors

Table 11 shows test vectors of AETHER.

Table 11: Test vectors of AETHER.
Key K0 K1 N

Nonce 0x1640224596795a4c54550546722fc76b 0x16d3059dfc04066657a839d2d5be827b 0x51af4471e8bcf6a2704d71163021f4fd

M
M0 M1 M2

0x84070aa5e8afb486da0561b6a1b88164 0x78b67f4be34cc1f34a02ecce30813270 0x9556a6ca986a3d6d7f9c5bb40c99aa61

AD
AD0 AD1 AD2

0xe098499961971de22fec2235b24c1309 0xbab0da98c3a386daa98d918b8cd88d5d 0x2fbe54a2c06d135bf0fdc7cc81f47625

C
C0 C1 C2

0xa47cdb80f4946a4afdc25993de8708c6 0x002b1646a6c79cc8d73cd433167b216f 0xaff7f36089f14c36f49504331b998aa9

T 0xebb69bfbc2d9b02b3af0cbdaae73fd5d

Key K0 K1 N

Nonce 0x1640224596795a4c54550546722fc76b 0x16d3059dfc04066657a839d2d5be827b 0x51af4471e8bcf6a2704d71163021f4fd

M
M0 M1 M2

0x84070aa5e8afb486da0561b6a1b88164 0x78b67f4be34cc1f34a02ecce30813270 0x9556a6ca986a3d6d7f9c5bb40c99aa61

AD
AD0 AD1 AD2

- - -

C
C0 C1 C2

0xfefca57ffb6cb1f1715e3810698cfd49 0x91b9b892892136e7c34f0bb7d13183cb 0x526940c921e30c98b0bf74d5f0c55683

T 0xfccf3692b1af11e7f2868032f5b78fa2

Key K0 K1 N

Nonce 0x1640224596795a4c54550546722fc76b 0x16d3059dfc04066657a839d2d5be827b 0x51af4471e8bcf6a2704d71163021f4fd

M
M0 M1 M2

- - -

AD
AD0 AD1 AD2

0xe098499961971de22fec2235b24c1309 0xbab0da98c3a386daa98d918b8cd88d5d 0x2fbe54a2c06d135bf0fdc7cc81f47625

C
C0 C1 C2

- - -
T 0xf46a8b9bba90b93f4232653333b0a6d0

B Binary Matrices with Optimal Branch Number

We show 4×4 (almost MDS), 8×8, 16×16, 32×32 binary matrices compared in Sect. 3.2.1,
whose branch numbers are optimal

4 × 4 (almost MDS) binary matrix [BBI+15]. Eq. (2) shows 4×4 (almost MDS) binary
matrix used in Midori, whose branch number is 4.

M4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (2)

8 × 8 binary matrix [AS14]. Eq. (3) shows 8× 8 binary matrix proposed by Aslan et al.,
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whose branch number is 5.

M8 =



0 1 0 0 1 1 0 1
0 1 1 0 1 0 1 1
0 0 1 1 0 1 0 1
1 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0
1 0 1 1 0 1 1 0
0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 1


. (3)

16 × 16 binary matrix [ARSÖ17]. Eq. (4) shows 16 × 16 binary matrix proposed by
Akleylek et al., whose branch number is 8.

M16 =



1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1



. (4)

32 × 32 binary matrix [ARSÖ17]. Eq. (5) shows 32 × 32 binary matrix proposed by
Akleylek et al., whose branch number is 12.

M32 =


Ma Mb Mc Md

Mb Ma Md Mc

Mc Md Ma Mb

Md Mc Mb Ma

 , (5)
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where Ma, Mb, Mc, and Md are as follows:

Ma =



0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


, Mb =



0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0


,

Mc =



1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1


, Md =



0 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0
0 1 0 1 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1
1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 0


.

C State Recovery Attack
Here, we analyze AETHER on the basis of the state-recovery attack on Rocca provided
in [HII+22]. First, we estimate the number of pair of states that can be recovered from a
given input and output difference of the F function and the corresponding complexity.

Estimation on the number of possible pair of states for a fixed input and output
difference of F function. Refer to the illustration of F function shown in Fig. 2. Consider
the initial (input to F ) and final state as T1 and T4, respectively. The state after the
application of first S-box and the linear layerMb be T2 and T3, respectively. Assume that a
differential at T1 and a corresponding differential at T4 is known. We want to estimate the
possible number of pair of 128-bit states that satisfies the differentials while propagating
through the F function.

Consider the difference distribution table of the S-box (in Table 1) given in Table 12.
There are six input differences for which there are six different output differences of
the S-box. Additionally, there are six and three input differences of the S-box which
corresponds to seven and eight different output differences, respectively. For a fixed input
difference, on an average there are ( 6

15 × 6 + 6
15 × 7 + 3

15 × 8) ≈ 22.77 possible output
differences. Thus, for a fixed input differential at T1, there are (22.77)32 = 288.64 possible
differences at T2. Due to the application of a linear layer, this number remains the same
at T3. For a fixed output difference, a random input of the S-box is valid with probability
22.77

15 ≈ 2−1.14. Hence, out of 288.64 possible differences at T3, (2−1.14)32 × 288.64 = 252.16

are valid corresponding to the output difference.
For a valid input-output difference of the S-box, on an average there are 84∗2+18∗4

84+18 ≈
21.23 solutions. Thus, there will be in total 252.16 × (21.23)32 = 271.84 pair of 128-bit states
at T2 which conforms to the difference at T1. Due to the application of linear-layer, same
number of pair of states remain at T3. Note that, all the differences corresponding to
these pair of states are valid with respect to the difference at T4. However, if we consider
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Table 12: Difference Distribution Table (DDT) of S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 2 4 0 2 2 0 0 0 0 4 0 0 0 0

2 0 0 2 2 4 4 0 0 2 2 0 0 0 0 0 0

3 0 2 2 0 0 2 0 2 0 0 2 2 0 0 4 0

4 0 0 2 0 2 0 4 0 2 2 0 2 2 0 0 0

5 0 0 2 2 0 4 0 0 0 4 0 0 0 0 2 2

6 0 2 2 0 2 0 0 2 0 0 0 0 2 2 2 2

7 0 2 0 0 0 0 2 4 0 0 2 0 4 2 0 0

8 0 2 0 0 2 0 0 0 4 2 4 0 2 0 0 0

9 0 0 0 2 0 0 0 2 0 2 2 2 2 0 0 4

A 0 2 0 0 2 0 0 0 0 2 2 2 0 2 4 0

B 0 0 2 0 0 0 2 0 2 0 2 2 0 2 0 4

C 0 2 2 2 0 2 0 0 0 0 2 0 2 2 2 0

D 0 2 0 2 0 0 2 2 2 2 0 0 0 2 0 2

E 0 0 0 0 0 2 4 2 4 0 0 0 0 2 0 2

F 0 0 0 2 4 0 0 2 0 0 0 2 2 2 2 0

the individual S-boxes, the input-output difference is known along with the input nibble
pairs which allows to perform additional filtering. Given a pair of nibbles with fixed input
difference to the S-box, the probability that those nibbles satisfies the fixed output difference
of the S-box is 21.23

16 = 2−2.77. Hence, after this filtering 271.84 × (2−2.77)32 = 2−16.8 pairs,
i.e., a unique pair survives. Due to the application of the linear layer on 64 bits, the
state-recovery operation of the F function can be partitioned into two parallel steps where
each step is applied on half the size of the state (64 bits). Time complexity of the step
depends on the handling of the 288.64 possible output differences which can be done in
parallel for each of the 16 S-boxes. Thus, the total time complexity is 2× (22.77)16 = 245.32.

Recovering the State. For mounting the state-recovery attack, we followed the strategy
in [HII+22]. We consider the nonce-misuse setting for this analysis. The attack idea is
represented in Fig. 8.

In the following, when we say a X is recovered/determined/fixed, we mean the exact
128-bit state is recovered. By determining ∆X, we refer to determining the difference at
state X. The attack idea is outlined below:

1. Fix ∆C0 6= 0,∆C1 6= 0,∆C2 6= 0 which gives ∆M0 6= 0,∆M1 6= 0,∆M2 6= 0. Fix
∆Ci = 0 for 3 ≤ i ≤ 11. The differences ∆S1[0],∆S1[3],∆S1[5] are known.

2. ∆U1 = ∆S1[0], ∆V1 = ∆M3, ∆Y1 = ∆S1[3] ⊕ ∆S1[5] and ∆Z1 = ∆M5. By
analyzing the input-output difference ∆U1 and ∆V1 of the F function, pair of
states satisfying (S1[0] ⊕ S1[1]) can be determined. From the relation, S1[4] =
F (S1[0] ⊕ S1[1]) ⊕ (M3 ⊕ C3), two possible states corresponding to S1[4] can be
recovered. Similarly, analyzing ∆Y1 and ∆Z1, a pair of states corresponding to
S1[3]⊕ S1[5] can be recovered which subsequently gives two possible states for S1[8]
(by using the relation S1[8] = F (S1[3]⊕ S1[5])⊕ (M5 ⊕ C5)).
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Unknown Difference Known Difference and
Unrecovered

Zero Difference and
Recovered

Known Difference and
Recovered

Zero Difference and
Unrecovered

Figure 8: State-recovery Attack on AETHER.

3. From the following relations-

S2[0] = F (S1[8])⊕M3

S2[5] = F (S1[4])⊕M5,

values corresponding to S2[0] and S2[5] can be determined, respectively.
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4. Now, ∆Y2 = ∆S2[5] and ∆Z2 = ∆M8 ⊕∆S2[8]. Again, analyzing the input-output
difference of the F function, values corresponding to (S2[5]⊕ S2[3]) and S2[8] can be
recovered. As S2[5] is already known, S2[3] can be determined.

5. From the following relations-

S3[1] = F (S2[0])⊕ S2[3]
S3[6] = F (S2[5])⊕ S2[8]
S3[0] = F (S2[8])⊕M6,

values corresponding to S3[1], S3[6] and S3[0] can be determined, respectively.

6. As both S3[0] and S3[1] are known, we can determine F (S3[0] ⊕ S3[1]) (i.e., V3 is
known). Thus, using M9, C9 and V3, the states in S3[4] can be recovered.

7. Subsequently, values corresponding to S2[4] and S3[5] can be recovered (step-by-step)
by analyzing the following relations

S3[4] = F (S2[3])⊕ S2[4]
S3[5] = F (S2[4])⊕M8.

8. As ∆S3[3] and S3[5] are known, ∆Y3 can be determined. As ∆Z3 is also known, we
can determine the values corresponding to S3[8] and (S3[3]⊕ S3[5]) by analyzing the
function F . As S3[5] is known, we can determine S3[3].

9. From the relation S2[7] = F−1(S3[8] ⊕ S2[0]), we can determine S2[7]. Similarly,
using the relation S3[3] = F (S2[2])⊕M7, S2[2] can be determined.

10. As S2[7], M7 and C7 are known, we can retrieve the states corresponding to X2.
This allows to determine the states for W2. From S2[2], S2[6] can be determined.

11. Similarly using S2[4], M6 and C6, first V2 and then U2 can be determined. Again,
using S2[0], S2[1] can be determined.

The attack idea involves determining the states corresponding to the input-output
difference of the function F in Step 2, Step 4 and Step 8. Thus, using two decryption queries
several candidate states corresponding to S[3] can be determined at a time complexity of
4× 245.32 = 247.32. However, to determine the exact state for a particular nonce (out of
the possible states), more nonce-repeated queries are required.

D State Interpolation
We apply here the state interpolation technique [TTI24] which is shown in Fig. 9. By
using this strategy, we can fix the internal state to an arbitrary state from a given state by
fixing the appropriate values for Mi (0 ≤ i ≤ 8). In the following, we show the substates
S3,i in terms of S0,i and Mi’s. By subsequently fixing M3, M4, M1, M2, M0, M5, M7, M8
and M6, the substates S3[8], S3[1], S3[4], S3[7], S3[2], S3[6], S3[3], S3[5] and S3[0] can be
fixed to an arbitrary value, respectively.
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S3[0] = M6 ⊕ F (F (F (S0[6])⊕ S0[2])⊕M0 ⊕ F (S0[8]))
S3[1] = F (M3 ⊕ F (F (S0[7])⊕ S0[0]))⊕M4 ⊕ F (F (S0[1])⊕ S0[6])
S3[2] = F (F (M0 ⊕ F (S0[8]))⊕M1 ⊕ F (S0[2]))⊕ F (M2 ⊕ F (S0[4]))⊕ F (S0[7])⊕ S0[0]
S3[3] = M7 ⊕ F (F (F (S0[0])⊕ S0[3])⊕ F (S0[5])⊕ S0[8])
S3[4] = F (M4 ⊕ F (F (S0[1])⊕ S0[6]))⊕ F (M1 ⊕ F (S0[2]))⊕ F (S0[3])⊕ S0[4]
S3[5] = M8 ⊕ F (F (M1 ⊕ F (S0[2]))⊕ F (S0[3])⊕ S0[4])
S3[6] = F (M5 ⊕ F (F (S0[3])⊕ S0[4]))⊕ F (F (S0[6])⊕ S0[2])⊕M0 ⊕ F (S0[8])
S3[7] = F (F (M2 ⊕ F (S0[4]))⊕ F (S0[7])⊕ S0[0])⊕ F (F (S0[0])⊕ S0[3])⊕ F (S0[5])⊕ S0[8]
S3[8] = F (F (F (S0[5])⊕ S0[8])⊕ F (S0[1])⊕ S0[6])⊕M3 ⊕ F (F (S0[7])⊕ S0[0])

12 3 45 67 89

Figure 9: State Interpolation on AETHER

E Security in the RUP Settings
Typically, for an authenticated encryption (AE) cipher, when the tag is computed over
the plaintext instead of the ciphertext, secure memory must retain the decrypted plaintext
until verification is complete. This presents challenges for resource-constrained IoT devices,
as attackers may exploit insecure memory to access unverified plaintexts, compromising
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security. Some real-time protocols also release plaintext in segments to reduce latency and
storage demands. Thus, analyzing the security of AE under such scenarios is essential for
these applications. The security analysis in such contexts is formalized in [ABL+14] and is
referred to as the releasing unverified plaintext (RUP) setting. In this setting, an adversary
can decrypt several ciphertexts under the same nonce. For a state-recovery attack in RUP
settings, analysis similar to the one discussed in Appendix C can be followed. However, as
discussed in Section 4.5, such state recovery does not lead to key-recovery attacks due to
the introduction of the keys in the finalization step. Therefore, we believe that AETHER
resists key-recovery attacks in the RUP setting.

F Key-Committing Variant
Key commitment ensures that a ciphertext C can be decrypted successfully only with
the exact key used to encrypt the corresponding plaintext. In cryptographic systems,
if a ciphertext could be decrypted to valid plaintexts using two different keys, it would
violate the key commitment principle. This principle is crucial for AEAD schemes. The
requirement for an AEAD scheme to be key-committing, while also providing confidentiality
and integrity, is studied in [GLR17, DGRW18] within the context of Facebook message
franking [Fac16, Mil17].

The proposed scheme AETHER is not key-committing. In fact, by applying the technique
described in [DFI+24], a deterministic attack can be mounted on AETHER (the attack
directly follows from the state interpolation technique described in Appendix D). However,
several strategies have been proposed in the literature to provide key-committing security
while using a non-committing AEAD [CR22, BH22, ADG+22]. In the current context, we
suggest the methodology in [ADG+22] which proposes a solution involving two PRF calls
and ciphertext expansion by one block. Let Fenc and Fcom be two independent PRFs, and
let ENC(K,N,A,M) be a non-committing AEAD where K, N , A and M are the key,
nonce, associated data and plaintext, respectively. Then ENC can be transformed into a
key-committing AEAD in the following way:

Kenc ← Fenc(K,N)
Kcom ← Fcom(K,N)
C ← Enc(Kenc, N,A,M)
ret(C,Kcom)

For PRF calls, Gleeok [ABC+24] can be employed. Note that, as AETHER is specifically
designed for encryption of very large data, in that context, two PRF calls will have negligible
impact.

G Software Evaluation
In this section, we evaluate the performance of AETHER in software. For the comparison
to the existing AEADs, we also evaluate AEGIS-256, Rocca-S, and AES-256-GCM on the
X86_64 processor (Intel Core i9-12900K) and ARM processor (Apple M2). The evaluation
environment is the same as in [SLN+21, ABC+23], i.e., all evaluations are carried out on
OpenSSL 3.1.0-dev and measured their performances with speed command. To implement
the existing AEAD schemes for the X86_64 processor, we use the publicly available codes
of Rocca-S8 and AEGIS-2569 and the pre-provided code by OpenSSL of AES-256-GCM, all

8https://github.com/yt-nakano/Rocca-S-openssl
9https://github.com/floodyberry/supercop

https://github.com/yt-nakano/Rocca-S-openssl
https://github.com/floodyberry/supercop
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of which are implemented by SIMD instructions. For the implementation of AETHER,
we use SIMD instructions only in the round-update function because the inner function
consists of the nibble-wise operations that are hard to implement by SIMD instructions.
For ARM implementations, we implement AETHER, Rocca, AEGIS-256, and AES-256-GCM
by NEON instructions, but the inner function of AETHER does not use them due to the
same reason as the X86_64 implementation.

Table 13 shows the results of our evaluations on Intel Core i9-12900K and Apple M2.
As can be seen in Table 13, the performance of AETHER is not good in software because
AETHER is not designed to make use of the advantage of SIMD and NEON instructions,
while other evaluated AEAD schemes are designed to leverage these fully. Moreover, they
can use the special instruction sets of AES, such as AES-NI, to conduct the AES round
function quite fast in software. In contrast, for AETHER, we can use SIMD and NEON
instructions only for the part of the round-update function, not including the inner function.
The significant gaps in the results between AETHER and the other AEAD schemes come
from the fact that the parallel application of the inner functions takes much more cost
than conducting the AES round functions. We expect this is inevitable because the round-
update function of AETHER has nibble-wise operations to realize the high throughput and
low-energy consumption in hardware, making software-friendly implementations, especially
using SIMD and NEON operations, much harder.

Table 13: Measurement comparison between AETHER and related AEAD schemes in
software. The input size for the short measurements consisted of 1024 bits of AD and 2048
bits of plaintext while the long input size was 1024 bits of AD and 1.28 Mbits of plaintext.
All results are given in Gbps.

Algorithms
Intel Core i9-12900K Apple M2
Short Long Short Long

AETHER 0.0083 0.1104 0.0132 0.1736
AES-256-GCM 5.5564 39.5520 9.7123 48.1241

AEGIS-256 8.0177 31.6024 7.0807 43.5146
Rocca-S 8.2823 132.0542 7.9294 88.0408

H Side-Channel Hardening
We briefly sketch a first-order Threshold Implementation [NRR06] of AETHER that is
based on the four-share decomposition of its S-box guaranteeing the security of the circuit
in the glitch-extendend probing model.

Any Threshold Implementation can be reduced down to the splitting of t-degree Boolean
functions into at least t+ 1 component functions such that each one of them is independent
of at least one input share, which is a straightforward task for both linear and non-linear
functions. However, the real obstacle in Threshold Implementation is making sure these
component function do not skew the distribution of the output shares, i.e., uniformly
distributed input shares result in output shares that equally follow a uniform distribution.
Often, to fulfill this requirement, Threshold Implementations resort to increasing the
number of shares resulting in decompositions of t-degree functions with > t + 1 shares.
In the case of the AETHER 4-bit S-box, which it shares with Gleeok [ABC+24] whose
output bits are all cubic functions a straightforward 4-shared Threshold Implementation
is possible (the reader is referred to [ABC+24] for a more thorough description of the
derivation of this sharing).
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Having decomposed the S-box into four TI-conforming component functions and the
trivial sharing of the remaining linear functions in AETHER, we can derive a straightforward
first-order protected circuit where the state is quadrupled into four shares (one for each
component function).
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