TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 681-704. DOI:10.46586 /tches.v2025.i2.681-704

SimdMSM: SIMD-accelerated Multi-Scalar
Multiplication Framework for zkSNARKSs

Rui Jiang', Cong Peng'™, Min Luo', Rongmao Chen? and Debiao He!™

1'School of Cyber Science and Engineering, Wuhan University, Wuhan, China,
{jiangrui, cpeng,mluo, hedebiao}@whu.edu.cn
2 National University of Defense Technology, Changsha, China, chromao@nudt .edu. cn

Abstract. Multi-scalar multiplication (MSM) is the primary building block in many
pairing-based zero-knowledge proof (ZKP) systems. MSM at large scales has become
the main bottleneck in ZKP implementations. Inspired by existing SIMD-accelerated
work, we are focused on accelerating MSM computing efficiency using SIMD instruc-
tions in a single CPU environment. First, we propose a SIMD-accelerated MSM
computing architecture with no write conflicts and constant memory overheads. This
architecture utilizes multithreading to achieve task-level and loop-level parallelism
and employs a three-tier buffer mechanism to maximize the utilization of the SIMD
engine. Instanced with AVX512-IFMA instructions, we implement six SIMD elliptic
curve arithmetic engines for different point addition in three coordinate systems and
two groups. Moreover, we integrate our AVX-MSM implementation into the libsnark
library, naming it AVX-ZK. In more detail, point deduplication and “Three-Stage”
memory optimization are proposed to address problems existing in practical appli-
cations. Based on the RELIC library, our performance results on the BLLS12-381
curve show that our AVX-MSM achieves up to 27.86x speedup over the most popular
Pippenger algorithm. Compared with libsnark, our AVX-ZK implementation achieves
over 11.53% (up to 20.26x) speedup under standard benchmarks.

Keywords: Multi-scalar Multiplication - Zero-knowledge Proof - SIMD Parallel
Implementation

1 Introduction

Zero-knowledge proof (ZKP) is a cryptographic primitive that enables the prover to
demonstrate the truth of a specific statement to the verifier without revealing any other
confidential information [GMR89, GK96]. The emergence of ZKP is a significant break-
through in the field of cryptography. In recent years, increased investment in research has
not only driven substantial theoretical advancements [Gro10, PHGR13, Grol6, BBB*18§]
but also revealed its vast potential in practical applications, such as Zcash [zca22] and
zk-cred [RWGM23]. In particular, zero-knowledge Succinct Non-Interactive Arguments
of Knowledge (zkSNARKs) have drawn much attention. Among these, pairing-based
zkSNARKS, such as Groth16 [Grol6], Plonk [GWC19], and Nova [KST22], are widely used
in current applications.

The generation of pairing-based ZKP systems face two main bottlenecks: multi-scalar
multiplication (MSM) and number theoretic transform (NTT). Among these, MSM stands
out as the most time-consuming operation, comprising approximately 70% to 80% of the
total runtime [LWY *23]. It calculates the inner products of scalar vectors and point vectors,
following the polynomial computation phase in proof generation. MSM is to compute
Q = Z?:lkiPi, where k; is a scalar of A bits and P; is the point in an elliptic curve.
Although the Pippenger algorithm can accelerate MSM to some degree, the performance

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.681-704
mailto:jiangrui@whu.edu.cn,cpeng@whu.edu.cn,mluo@whu.edu.cn,hedebiao@whu.edu.cn
mailto:chromao@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/

682SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

of current MSM implementations remains inadequate, especially when handling extensive
data sets. As is well-known, the Pippenger algorithm [Pip76] performs outstandingly in
accelerating MSM, particularly at large data scales [BDLO12|. However, there remains
significant potential for further optimization in state-of-the-art implementations based on
Pippenger’s method.

Nowadays, it is imperative to enhance the implementation approaches across various
software and hardware platforms, due to the widespread adoption of ZKP. Previous
work has demonstrated implementations of ZKP on hardware platforms such as FPGAs
[RDQY24, Xav22, ZDW122 ABCT22|, GPUs [LWYT23, MXS*t23, JZXJ24, CPD"24],
and ASICs [ZWZ"21]. However, the high costs and inconvenience associated with hardware
implementations limit their accessibility to a broad user base. For the vast majority of
average users, access to computational resources primarily revolves around machines based
on CPU platforms. Also, we believe that ZKP implementations should be diverse, whether
on high-performance GPUs, FPGAs, or accessible CPUs. ZKPs on mobile devices greatly
influence applications such as private transactions, self-sovereign identity, and scalable
computation, playing an important role in advancing the field. Mobile users may prefer
leveraging their local CPU resources. That is why the ZPrize [zpr] competition retains
a track to accelerate MSM on mobile. ZKP acceleration on CPUs can make ZKPs more
user-friendly. Consequently, achieving fast ZKP implementations on CPU platforms is of
considerable practical importance to advance cryptographic research and applications.

In conventional computing modes, each instruction typically handles only one data
element at a time. However, Single Instruction Multiple Data (SIMD) introduces vector
registers and corresponding instructions, allowing for the simultaneous processing of
multiple data elements of the same type within a single instruction cycle. Many chip
manufacturers or architecture, like Intel [Int], AMD [AMD], RISC-V [ris], and ARM [ARM],
now support SIMD and similar instruction sets. SIMD facilitates parallel computation
of data, and previous work|[CFG*21, CGT"20] has demonstrated the use of AVX-512
to accelerate point operations on elliptic curves. Therefore, it can be considered to be
utilized to accelerate large-scale computations of MSM. Specifically, we aim to address the
following question:

Is it possible to use the built-in parallelism of modern CPUs to improve the efficiency of
MSM computations?

1.1 Difficulties

MSM is to compute @Q = Z?:lkziPi, where k; is a A-bit scalar and P; is an elliptic curve
point. In the Pippenger algorithm [Pip76], it is decomposed into (%] subtasks G; by
choosing s as the window size. The application of AVX-512 to accelerate MSM operations
presents numerous challenges. The difficulties for this work are as follows:

Difficulty-1: Data-level Parallel Architecture. In a multi-core CPU platform, both
multi-threading and SIMD can be employed for parallel data processing, and their perfor-
mance improvements can be independent of each other. Processing multiple subtasks G; in
parallel could be an effective approach. However, SIMD strictly requires that all input data
follow the exact same instructions, which can pose challenges when trying to parallelize
across subtasks. For example, within the SIMD framework’s parallel processing of multiple
subtasks, sequential point additions cannot be directly executed due to the potential for
point copy. Also, (%] is often not a multiple of the parallelism degree, leaving some
subtasks to be handled individually, which underutilizes the parallel capacity. Therefore,
we propose handling parallelism between subtasks using multithreading, while designing a
SIMD-based parallel architecture for operations within each subtask.

Difficulty-2: Operation Non-independence within a Single Subtask. We shift our
focus to parallelism within individual subtasks. Due to the construction of the Pippenger

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 683

algorithm, it is necessary to perform a reasonable structural segmentation before utilizing
SIMD instruction sets acceleration. Although constructing 8-way parallel point additions
intuitively during the bucket accumulation phase in the subtask computation could expedite
the operations, potential conflicts may arise. Specifically, two or more points points might
be placed into the same bucket, leading to conflicts that need to be addressed. Therefore,
we develop a rational scheduling mechanism that connects the underlying 8-way operators,
thereby achieving SIMD acceleration of MSM.

Difficulty-3: Large Memory Overhead. While MSM carries a relatively large amount
of computing data, the runtime memory overhead is a crucial concern. Moreover, in CPU
environments, the available memory capacity is limited, and the space occupied by the
elliptic curve points to be computed may need to reach up to GBs. Hence, it’s imperative
to minimize the runtime memory overhead. First, additional memory overhead from
parallel architectures should be minimized as much as possible. In addition, we should
consider it whether there is a way to prevent the storage space of elliptic curve points from
growing linearly with the increase in operation scale.

1.2 Qur Contributions

In this paper, we propose a high-speed CPU-based implementation for MSM and ZKP
using SIMD and multi-threads. The proposed methods are applicable to most pairing-
based zk-SNARKs and are scalable to other SIMD instruction sets. Our contributions are
summarized as follows:

Low-cache Parallel Scheduling Mechanism. We overcome potential problems in
parallelism by designing a novel parallel SIMD-accelerated MSM architecture. Our im-
plementation overall uses three-level parallelism to make full use of parallel resources on
CPUs. For the SIMD data-level, a three-tier buffer mechanism is designed to accommodate
different types of operations, ensuring the parallel workflow proceeds without issues. To
deal with the writing conflict, we implement a state transition mechanism. In terms of
low-cache, we make it sure that the buffer designed in the structure minimizes additional
memory overhead. And we store addresses instead of values to avoid redundant space
occupation. Furthermore, the drawbacks of other suboptimal methods are discussed,
highlighting the advantages of the proposed approach.

SIMD Elliptic Curve Acceleration Engines. Using SIMD, we present a three-level
heterogeneous computing approach to compute MSM, thus speeding up the implementation
of ZKP on CPU platforms. The “Tree-Like” structure optimized based on coordinate
systems can be seamlessly adapted to our architecture. Specifically, using AVX-512IFMA,
we instantiate six SIMD elliptic curve engines for the bottom 8-way point addition
operations for both G; and Go groups.

Point Deduplication and “Three-Stage” Memory Optimization. We address the
issue of errors in point addition operations due to the lack of strongly unified arithmetic
in practical ZKP implementations. For large-scale MSM scenarios, a “three-stage” storage
approach are proposed to alleviate memory pressure caused by excessive points. To
maximize the performance of the Pippenger algorithm, we not only calculate the optimal
window size for different scales but also empirically test the optimal window values. During
runtime, the window size is dynamically adjusted based on the number of points.

AVX-ZK Implementation. We present a high-speed implementation of AVX-MSM
not only over Gy but also over G, on the BLLS12-381 curve. Compared to the Pippenger
algorithm, it achieves acceleration speedup range from 20.25x to 27.86x. We integrate our
MSM implementation into the 1ibsnark library, naming it AVX-ZK. Using libsnark as a
baseline, we evaluate the performance of AVX-ZK, observing over 11.53x (up to 20.26x)
speedup improvements. Additionally, several zero-knowledge proof use cases were tested,
achieving performance gains of up to 5.00x.

684SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

2 Preliminaries

Notation. Let N denote the set of positive integers. Let [n,m] denote an integer set
{n,n+1,--- ;m} and [m] denote an integer set {1,2,---,m} for any positive integer
n <m € N. Let IF» to denote a finite field for any prime ¢ and small positive integer k L

2.1 Elliptic Curve Groups and Arithmetic

Elliptic curves over finite fields offer efficient group structures well-suited for cryptography.
For brevity, an elliptic curve is a plane curve over a finite field (i.e., Fy or Fg2) which
consists of the points satisfying the curve equation and a distinguished point at infinity,
denoted O. Let G; and G2 denote the elliptic curve group over F, and F > respectively.

Group Law. For any two points P and @ in the elliptic curve group G; (or Gg), the
commutative group operation involves adding two points to obtain another point. This
operation can be divided into two cases depending on the equality of the input points:
point addition (denoted PADD) for different points (P # Q) and point doubling (denoted
PDBL) for equal points (P = Q). Also, the operation defines P+ O = O+ P = P
to make O as the group identity. Moreover, the most frequent operator PMUL is scalar
multiplication (also called point multiplication), which refers to the accumulation of k
identical points, i.e., Q@ = kP where k is a positive integer.

Table 1: The modular operation cost for point addition and doubling in different curves and
coordinates. PADD* denote point addition where Z; = Z, = 1, PADD™ denote mixed
point addition where Z; # Z, = 1, PADD# denote point addition where Z; # Z, # 1,
PDBL* denote point double where Z = 1 and PDBL# denote point double where Z # 1.

Curve ‘ Coordinate ‘ PADD* PADD* PADD# PDBL* PDBL#
Short Weierstrass Projective 5M+2S 9M+2S 12M 3M+5S 5M+6S
Short Weierstrass Jacobian AM +2S T™M+4S 11M+5S 1M +5S 2M+5S
Twisted Edwards Extended ™ 8M IM 3M +4S 4M +4S

Extended

Twisted Edwards 6M ™ 8M 3M +4S 4M + 4S

(a=-1)

Point Coordinates. Geometrically, the point in affine coordinates can be represented
by two finite field elements (z,y) € F> which satisfy one curve equation, e.g., Weierstrass
form, Edwards form, Twisted Edwards form. The affine coordinate system has minimal
storage cost but requires modular inversion operations. To improve efficiency, various
coordinate systems have been developed., including Projective coordinates represented as
{X,Y,Z}(x = X/Z, y =Y/Z) and Jacobian coordinates represented as {X,Y, Z}(z =
X/Z?, y = Y/Z3). In this work, we use M, S, I to represent modular multiplication,
squaring and inversion, respectively. We briefly review the cost of different point operations
from the EFD database 2 and show some related results in Table 1. It is worth stating
that the computational costs of point operations may depend on the equality of two
Z-coordinates for the added points.

Also, elliptic curve pairing is an important primitive in cryptography, which is a bilinear
map between points on elliptic curves and a target group, preserving linearity across inputs.
It plays a crucial role in advanced cryptographic protocols like identity-based encryption
and zk-SNARKSs.

1The basic prime field in this work are mainly Fq and F 2.
2Explicit-Formulas Database: http://hyperelliptic.org/EFD/

http://hyperelliptic.org/EFD/

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 685

2.2 Multi-scalar Multiplication and Pippenger Algorithm

For computing @) = E?:l k; P;, the most direct approach is to utilize the binary modular
exponentiation algorithm for aggregated scalar multiplication [Riv11] as shown in Figure
1. For one scalar multiplication k;P;, it costs (A — 1)PDBL + HW(k;)PADD operations
where HW(k;) represents the Hamming weight of the scalar k;, approximately % For
computing Y, k; P;, it costs (A — 1)PDBL + Y | HW(k;)PADD operations.

(1 0 1 0), = 21

PDBL PDBL PDBL PDBL
16P «<— 8P <— 4P <«— 2P <«—

P
ll’r\DD lf’\[)[) lP\DI)

21P 5P P <«<— 0

Figure 1: Computing kP by the binary scalar multiplication algorithm

Pippenger Algorithm. A well-known and widely-used method to implement multi-scalar
multiplication is due to Pippenger. It works as follows:

e Task Decomposition: The first step is to break down the main task into several
subtasks that can be executed independently. In Eq. 1, it shows that each subtask is
to compute Go =Y i ki P (1 <a < f%]), where k;, denotes the a-th bit-block
of the scalar k; divided by the window size s. The original MSM task is converted
into [%1 subtasks.

n

Q=> kP, Ejj

M3
(Q(Q_l)skia> P = Z 2la—bsq, (1)
a=1

e Bucket Accumulation: The second step is to compute the sum of points with the
same scalar. For each subtask, it sets 2° — 1 buckets, denote each bucket point as
By where / is the bucket index and ¢ € [1,2° — 1], and puts each point P; into the
corresponding bucket By, indexed by k;.. For example, it adds P; to Bs if ki, =5
and adds P; to By if k;o, = 9. This process needs (n — 2° + 1) PADD operations.

=Y PvVle[2 -1 (2)

kia=¢

I Mm\»
it

e Bucket Aggregation: The third step is to compute the sum of all bucket points
weighted by their bucket indexes, i.e., G, = ZZ 1 "UB,. Tt iteratively computes
the point My = Myyq + By from MQS 1 := Bss_1 to My, then compute the sum

Gq ? ;1 M,. Tt can be easily checked that B, has been added ¢ times for any
le [25 — 1]. This process needs (25! —4) PADD operations.
2°-1 2°-1 2°-1 2°—1 2°-1
GaZZfBZZstq-F Z By + Z Bz+---+ZBz=ZMe (3)
i=1 (=272 £=25-3 (=1 (=1

e Final Combination: The final step is to compute the subtask results as Q =

Z(<1 9(a—1))$@, via double-and-add method. This process needs (s [—} —5) PDBL+
([2] = 1) PADD operations.

Total Costs. In summary, the total computational overhead of MSM by the Pippenger
algorithm is approximately E] (n+ 2% —2) PADD+ (s [%—‘ — s)PDBL. Ouly during the
bucket accumulation phase is PADDY used, whereas PADD? is employed in all other
stages. The main memory overhead is 2° — 1 buckets per subtask.

686 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

2.3 Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) is a computer instruction set architecture and
processor microarchitecture technology that allows multiple data elements to be processed
under a single instruction, enabling parallel computing on the CPU. It has seen extensive
application in elliptic curve cryptography, serving as a common method for accelerating
computations on CPUs. Numerous works [CFG*21, CGT"20] have demonstrated the
use of SIMD to implement foundational elliptic curve operations, significantly enhancing
performance in cryptographic protocols.

The AVX-512 (Advanced Vector Extensions 512) instruction set is an extended instruc-
tion set for the x86 architecture released by Intel. It can be regarded as an extension of
the AVX2 instruction set. Compared with previous generations of instruction sets (MMX,
SSE, AVX, AVX2), the register width and number of registers available for AVX-512 have
doubled. The register width has increased from 256 bits to 512 bits, and the number of
registers has risen from 16 to 32.

In addition to the basic AVX-512F instructions (F for foundation), AVX-512 also
introduces a new extension called AVX-512IFMA (Integer Fused Multiply-Add), which
is capable of supporting fused multiply and add operations for integers within the Intel
AVX-512 instruction set.

3 Our SIMD-Accelerated MSM Architecture

As described in Section 2.2, bucket accumulation requires significant computational costs
(decided by the MSM size n) and can be naturally parallelized. Unlike GPUs and FPGAs,
the SIMD parallelism mechanism strictly requires all data to execute the same operation and
is limited by the width of the supported registers, which restricts its achievable parallelism.
Therefore, utilizing SIMD to accelerate MSM computation presents a challenging problem.
Upon initial observation, it seems that there are several ways to apply SIMD to MSM
computation. However, each of these methods has notable and considerable drawbacks.
In the upcoming sections, we will compare our multi-level parallelism approach with
these alternatives, detailing how we systematically tackled these challenges and crafted a
completely new framework.

Inspired by previous SIMD-accelerated implementations [BS12, CFGR22, CFG*21,
ZHZ724, CCCT09], we can utilize the SIMD instruction set for constructing multiplexed
parallel finite field arithmetic and subsequently for building elliptic curve arithmetic, such
as (8 x 1)-way or (4 x 2)-way or (2 x 4)-way. Formally, SIMD can be thought of as
providing a pointwise addition for two vectors of elliptic curve points, e.g. {R;i}icly) =
{Pi}iepg ©1{Qi}icl = {Pi+Qitiepg- Let x denote the parallelism number of SIMD point
arithmetic engines.

3.1 Challenges for SIMD Implementations

Attempt-1: Performing Multiple Subtasks Using SIMD Parallelism. Intuitively,
each subtask can be run independently, allowing multiple subtasks to be calculated in
parallel. In GPU, [%W threads can be executed to compute each subtask simultaneously.
However, parallelism by SIMD instruction sets is different from GPU threads, since SIMD
requires all data processed in parallel to perform the same operation, and conditional
branching statements are generally avoided. When points are added to buckets, there are
two scenarios, one is to copy P; to By directly if By = O and another is to add P; to By if
By # O. Unfortunately, both scenarios can occur when adding a point P; to x buckets of
different subtasks.

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 687

Though setting a different point index for each subtask will solve the problem, it is easy
to assume that the frequency of every subtask’s PADD is different when n is relatively
small. In addition, parallelizing across subtasks needs more memory and access time. More
importantly, {ﬂ is not necessarily a multiple of parallelism such as 8-way. Considering
the above reasons, we do not consider using parallelism between subtasks.

In a multi-core CPU environment, both multi-threading and SIMD can be employed
together to accelerate computations by assigning each core to handle a subtask and
parallelizing the computation within each subtask. Therefore, our approach introduces
multi-threading to achieve task-level parallelism for sub-MSM processing, while utilizing

SIMD for data-level parallelism within each thread.

Attempt-2: Accelerating Bucket Accumulation via SIMD Engines. Easily, we
can use the SIMD engine to directly add x points into corresponding bucket points during
the bucket accumulation process. It is essential to ensure that the same address does not
exist at the output point of the SIMD engines to avoid writing conflicts on buckets. So,
this necessarily involves opening up a cache to wait for the state that satisfies the condition
to trigger the engine.

Open Buffers for Each Bucket. Preparing a set of buffers for each bucket enables
parallel computation of bucket points, as illustrated in the Figure 2. For example, processing
eight-way point additions for each bucket means that once the buffer is filled with eight
pairs of elliptic curve points, an eight-way point addition is performed. However, how
to store these points still remains a problem. Adding these points directly into buckets
or continuing pairwise addition using a tree-like structure are two approaches. But the
former cannot achieve 8-way parallelism due to writing conflicts, while the latter requires
large additional memory to store the results under the premise that it already constitutes
a large memory overhead.

— ——— Point_Buffer
pt| P2 | PP | PP PSP | PR Iffull
P B TPV P R R v B s 8way AVX
BB BB R
P, B,
P B3
Py Bg
P P2 | PR Pt PP PSP PR Tffull
M r » 8way AVX
Pac-s Boeey ARG GEE Y

Figure 2: A simple but not optimal method

Open a Global Buffer for all Buckets. To reduce memory overhead, we can consider
allocating a single buffer for all buckets instead of creating a separate buffer for each one.
This approach significantly decreases the overall memory usage. Grouping xy PADD oper-
ations into a single batch and triggering the SIMD engine to perform them simultaneously
can significantly enhance computational efficiency. However, in this process, there is a
high likelihood of encountering writing conflicts—where two or more points are intended
to be added to the same bucket in the same round of SIMD-PADD operations. This type
of conflict can be mitigated using a deferred handling approach—if a writing conflict arises,
the extra conflicting points can be placed at the end of the buffer and processed in the
next round. However, this method may cause SIMD acceleration to fail in extreme cases
where all scalars are identical. Similarly, efficiency will be significantly reduced when a
large portion of scalars overlap. In addition, even if the scalars do not exhibit extreme

688 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

behavior, using this method requires the buffer to be dynamic rather than fixed-length. It
would need to be structured as a dynamic array, which adjusts continuously based on the
actual situation. At certain points, the array could grow significantly in length, leading to
potential inefficiencies.

Not Using Double-Point Buffer bufsg . While these conflicts can likely be resolved
using the mechanism we proposed later, this approach still presents some notable short-
comings. To address writing conflicts, we propose a new solution where conflicting points
are first added in pairs, and the resulting points are deferred to the next round for further
processing. This method ensures that the buffer length will not exceed 2y, and even in
cases where all scalars are identical, it guarantees that SIMD acceleration can continue to
function efficiently. But for a single-level buffer, adding two conflicting points and adding
points back to the bucket both require invoking the same SIMD point addition operation.
In this case, not all point additions can be handled by a PADD™ operation. To ensure
the correctness of the computations, we must use PADD# requiring more multiplications
globally, which increases the overhead of the PADD unit.

All in all, after addressing all the aforementioned limitations, we propose a novel
scheduling mechanism that accelerates MSM by utilizing multi-threading and SIMD across
three levels: Task-level, Loop-level, and Data-level. At the Data-level, we introduce a
two-level buffer system specifically designed for the SIMD engine and address the issue
of bucket point writing conflicts to handle bucket accumulation efficiently. Our approach
fully leverages the parallel resources available on the CPU, with a fixed memory footprint
that avoids irregular or fragmented storage patterns. Additionally, it ensures that the
system operates efficiently even in cases where all scalars are identical.

3.2 Overview

M Data-Level
—————————— . bufy i
i]
i

1001 ... 0011 ... 1011 o i buf®
. a 11 | add(Py) | add(Py)
| tidgy (e

0100 ... 1010 ... 0100 ° i — S :
""""""" “‘id("’g) 4 | add(P) | add(ry)
1010 1110 ... 1010 e :
null

[Se—
add(Ps)
0011 1001 ... 0011

f1daavdpuwis

1
buf

15 |add(Py-7) |add(Py-s)

3 weeee. EEEEN - H i
tidge | ™= add(Pra) P ;

101 e 0001 ... 0100 3
i 3 ladd(Py_,) add(P,)
tdpy tid, tid, . oL,

(idaavdpuwis

Figure 3: SIMD scheduling mechanism

In Figure 3, the entire process of the SIMD-accelerated architecture is illustrated.
First, the computation of MSM is divided into f%} Sub-MSM according to the Pippenger
algorithm’s windows, with each Sub-MSM assigned to a tid,. Second, each Sub-MSM
maintains a bucket buffer to store the value of the bucket points and the addresses of the
points waiting for matching to be added to the bucket. To fully use threads on the CPU,
we divide n k; P; into T parts as Loop-MSM and open a new thread tid,g for each of them.

Then, for each tid,g, point buffer bufsg is set to record addresses of pairs of points with

the same sub-scalar. Once buf((llg reaches its capacity of x, the SIMD-based data-level

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 689

parallelism is triggered. Lastly, a tail task handles the remaining values in all buffers,
ensuring correctness during the bucket accumulation stage. This part is also parallelized
and processed using SimdPADDmix.

In data-level parallelism, the SimdPADDaff(defined in Section 4) processes x way
PADD* to compute the sum of paired points in buffxlﬁ), and store the result into buffer T.
These results are elliptic curve points to be added back to the corresponding bucket in
parallel by the SimdPADDprj but writing conflicts will occur during this process due to
different points mapped to one bucket. To solve this problem, we set a control mechanism
for handling conflict points. Five states for T are designed and the state diagram is shown
in Figure 4. The State-2 is a conflict state, it will jump to other states until the conflict
is resolved.

We present our process of scheduling mechanism in Algorithm 1. All SIMD-ECEngine
mentioned above will be introduced in Section 4. It is worth noting that our increased
memory overhead compared to the original Pippenger algorithm is very small. The buffllg
and T are constant length and no more than y and 2y respectively. In addition to the
necessary bucket points and result points stored in T, other elliptic curve points are just
stored as addresses.

3.3 Main Bucket Accumulation Mechanism

Here, we provide a detailed description of the designed bucket accumulation architecture
to demonstrate how to leverage the SIMD engine’s parallelism advantages.

Task-level Parallelism for Sub-MSM Processing. For each sub-MSM task G, =
Sr ki P (o € [1,[2])), it is straightforward to assign a thread tid, to process it. In
total, [2] threads are needed to compute all sub-MSM {Gataepn,r2y) simultaneously. In

each thread tid,, it setups up with a bucket buffer buf&o) with empty tuples {¢, By :=
O, addrPA; := null} e[y 2:—1] indexed by the scalar £. In the follow-up, By stores the temp
result of bucket point accumulation, and addrPA, stores the address of an initial point.

Loop-level Parallelism for Initial Point Caching. In each thread tid,, individually
adding a single point P; into its bucket By, is unsuitable for SIMD arithmetic engines.
Before performing a SIMD-based point addition, gathering and caching multiple points
is more efficient. Thus, we open 7 sub-thread tidog (8 € [1,7]) to independently caching
points {P(ﬁ—1)[$]+1a e 7Pﬁf%1} in the thread tid,. For each sub-thread tid,g, it setups

up with a point buffer bufS) with the counter cntS) := 0, and processes the scalar k;, and

the point P; (i € [(8—1)[2] 4+ 1,3[2]]) as follows:
o Case 1: If addrPAy, is null, store the address of P; into addrPAg,_ := addrOf(P;).

o Case 2: If addrPAy, is non-null, store a new tuple (¢ := k;,, addrPB := addrPA

addrPC := addrOf(FP;)) into the buffer buf&lg and set cntsﬁ) = cntsﬁ) + 1 and

addrPAyg,,, = null. If cntsg is larger than the parallelism number of SIMD point
arithmetic, the data-level parallelism mechanism for bucket accumulation is triggered.

i)

Since the bucket buffer buf'") is shared by different sub-threads {tidas}(sef1,)), the
thread locking mechanism needs to be established on each tuple to prevent conflicts.

Data-level Parallelism for Bucket Accumulation. Let y denote the parallelism
number of SIMD point arithmetic engines. When this engine is triggered, it requires x
tuples {¢;,addrPB;,addrPC;}c[y) as inputs. The SIMD engine is designed to add two
points with the same scalar and then accumulate the result into bucket points through a
dynamic controller mechanism. To avoid writing conflicts at bucket points By, we design a

point buffer T := {¢;, Tj(aﬁ)}je[gx] to cache the output of processing buf&lg. This parallel

mechanism works in the following way:

690SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

Algorithm 1 SIMD-Accelerated MSM Computation Mechanism

Input: The MSM size n, the A-bit scalars k := {ki}ic[n), the points P .= {Pi}ic(n), the windows size s and

the parallelism number x

Output: The MSM result Q = Z:;l k; P;

#pragma omp parallel
for a = 1to [2] do
Go + SubMSM(k, P, n, X, @) > Open new thread tid,,
end for
forQ::G’rAw,oc: {%-‘ —1to1ldo
Q SeqFfDBL(Q, s) > Sequential s-times point double
Q+ Q+Ga
end for
return Q

procedure SubMSM(k, P, n, A, o)
buf(®) < {¢, B, := O, addrPA; := null}repi 25 1
#pragma omp parallel
for 3 =1to 7 do
Bu:=(B-L[2]1+1, Br:=pl2]
LoopMSM(k, P, buf(?, o, 81, B,) > Open new thread tidags
end for
{Be}repzs 17 + TailTask(buf(?))
G o < BucketAggregation({ B¢} rc[25 —1])
return G,

: end procedure

: procedure LoopMSM(E7 P, bufg)), a, Bi, Br)

buf(!) « 0, Tag « 0,¢ =1

for i = ; to B, do
A
ki < BitsExtract(k;, a, s) >k = Z,-rfl] ola—Dsp.
if addrPAg, == null then
addrPAy,, = addrOf(P;)

else
buf(3[C) ¢ (€ = ki, addrPB = addrPA,,, addrPCc := addrOf ()
addrPAy, = null, (:=(+1

end if

if (> x then
SimdPADD (buf(®), buf !}, Tap)
¢:=1

end if

end for

: end procedure

: procedure SimL:IPADD(bufEIO)7 bufi‘l;, Tag)

{Z]’, PB]', ch}jE[x] <~ bufi‘lg

{Tj}je[X] «— SimdPADDafF({PB]-, ch}je[x]) > T]‘ = PB]’ + PC]‘
Push {Zj’Tj}jE[X] into Tag

if len(Tog) == x then

if 3Ja,b € [x] s.t. £, == ¢, then return > State-2
else
{Be;} + SimdPADDprj({Bg]. ,Tj}jex) and pop the first x tuples in Top > State-1
end if
else > State-3 or State 4
S+ 0,t=1

for a =1 to 2x do
if 3b>a & b¢ S st £y ==, then

buf D) [t] := (Ta, Ty, Tyte), S = S U {a, b} b Refer to Tyir = Ta + Ty
else
buf)[1] := (B, Ta, Be,), S = S U {a} > Refer to Br, = Beo +Ta
end if
t=t+4+1
if t > x then
SimdPADDprj(buf((f;) and update buffjg and Top > State-5
Pop the first x tuples in Top and goto Line 41
end if
end for

end if

: end procedure

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 691

(1) For x tuples {£;,addrPB;,addrPC;} ¢y in bufSﬁ), it use SimdPADDaff to compute

PD; := PB; + PC;} for all j € [x] in parallel ® and store the results into {T»Saﬁ)},ye[gx].

(2) When SimdPADDaff pushes new results into the buffer T, it triggers the following
state control mechanism:

e State-0: All cache points are empty. In this state, T receives y points outputted
by SimdPADDaff, and changes the state to State-1 if scalars w.r.t. outputted
points are different or State-2 otherwise.

e State-1: The first y cache points store points with different scalars while oth-
ers are empty. This state triggers SimdPADDprj to add x cache points into
corresponding bucket points.

e State-2: The first x cache points store points with duplicate scalars while others
are empty. This state continues to wait for the output of SimdPADDaff.

o State-3 & State-4: The first y cache points are used and the next x cache points
store x points outputted by SimdPADDaff. Then, this state uses SimdPADDpr;j
to pairwise add points into the buckets or the buffer T and changes the state to
State-5.

e State-5 The first x cache points are null. Then, this state shifts T by x points
to the left. It be changed to State-1 or State-2.

 stateo | |
(suee 1+ EIEAICIEIESEIED |

sae IR0 !

 state 3 |B 3\5|9\3\1|6|7\11|2|10 8 12 4 15 19|

diis

i
i

i

| —> State transition —* Input of SIMD2 |
i

i

Result of SIMD1 — Output of SIMD2

states | 35w ase

Figure 4: The state diagram of the point buffer T

Combine with Other Algorithmic MSM Optimizations. Luo’s method [LFG23]
reduces the time overhead of bucket aggregation but introduces the time and space overhead
of precomputation at the same time. Using the Twisted Edwards curve form is also a
way to speed up PADDs in MSM, as mentioned in Section 5.2. We mentioned that this
approach can address the issue of the same points in a non-strongly unified arithmetic
leading to calculation errors. However, in our implementation, we adopted the HashMap

3F’Bj and PC; are two elliptic curve points pointed by address addrPB; and addrPC;.

692SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

deduplication method. Chen et al. [CPD¥24] also proposed using scalar processing and
point precomputation to reduce the number of bucket aggregation calculations to a quarter
of the original. These algorithmic optimizations are compatible with our proposed parallel
framework and can be integrated to achieve superior performance.

3.4 Tail Task for Unaccumulated Cache Points

After processing all n points, some finalization work remains. Both bufgﬁ) and buf((fT)
are non-empty, but the number of elements does not meet the threshold x required to
trigger the SIMD engine. We take all the remaining tuples in buf((llg as input and compute
them once using SimdPADDaff. Since the number of tuples is less than y, the empty slots
are simply neglected, which does not affect obtaining the valid results we want. Upon
receiving the final result from SimdPADDaff, new tuples are added to T. We then iteratively
invoke SimdPADDprj until T becomes null. Similarly, if the buffer cannot fill x entries, the
remaining slots will idle without affecting the computation.

For buf((lo), there exist some entries with no-NULL addrPA,, indicating that there are
still some unpaired points that need to be added to the corresponding buckets. Since these
points are the initial ones, the addition operation falls under the type PADD™*. These
points are added back to different buckets, allowing for parallel processing. Therefore,
we introduced an additional SIMD engine, SimdPADDmix, specifically designed to handle
x-way PADD* efficiently. This engine focuses on processing remaining points, ensuring
that the computation remains fully optimized and capable of handling even the final stages
of the bucket accumulation process.

3.5 Writing Conflict

In the data-level parallelism stage, after triggering SimdPADDaff, the ideal scenario is for
all results in buffer T to be written back to their respective buckets in y-way parallelism.
However, when multiple points need to be added to the same bucket simultaneously, writing
conflicts occur. Simply moving conflict points to the next round of operations can ensure
the current round has no conflict but does not guarantee that conflicts will not occur
again in the next round. Moreover, this approach requires a significant amount of space to
record the points awaiting computation, and it also takes a considerable amount of time
to filter conditions that prevent conflicts. Once in the case where a large number or even
all points encounter conflicts, this method cannot function properly. To handle this, we
introduce a state transition mechanism.

As shown in Figure 4, State-0 represents the initial state where T is empty. After
populating the results of one round of SimdPADDaff, State-1 is an ideal state where
SimdPADDprj can be directly triggered. However, State-2 represents a conflict state. It
waits for new points to be pushed into T, after which it transitions to the next state
and handles the conflict points. At this time, the effective length of T is 2x. We iterate
through, setting up a temporary buffer buffg to both cache points that will be directly
added back to the bucket and check if there are any cases where ¢, == /¢,. If both T,
and T are meant to be added to By,—g,, this round will first compute Tg, + 7. When
the number of tuples in buf((fg reaches x, SimdPADDprj is triggered once. The resulting
points are divided into two categories: one is directly written back to By,, and the other is
returned to buffer T to be processed in the next stage. There is a small trick here: the
number of returned result points, when added to the number of remaining tuples in T, still
sums to x. Therefore, the result points can directly fill the empty slots in the last x tuple.

State-3 and State-4 are essentially the same, with the only difference being whether
any writing conflicts remain after one invocation of SimdPADDprj. If conflicts persist, after
shifts the system transitions back to State-1; otherwise, it moves to State-2.

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 693

4 SIMD Elliptic Curve Arithmetic Engines

In this section, we instantiated SIMD elliptic curve arithmetic engines based on Intel
AVX-512IFMA (Integer Fused Multiply-Add) instructions, which support multiple 52-bit
integer multiplication and addition operations through one instruction. Specifically, we
implement three engines SimdPADDaff, SimdPADDprj, SimdPADDmix for 8-way PADD*,
PADD#, and PADD™ respectively. For compatibility with G; and G group operations,
we actually need six AVX engines, that is

¢ SimdPADDaff: G 8w PADD* and Gy 8w _PADD*.
o SimdPADDprj: G, 8w PADD# and G, 8w_PADD%.

e SimdPADDmix: Gi 8w PADD?T and G5 Sw PADDY.

4.1 SIMD Finite Field Arithmetic

For the underlying finite field operations, we follow Cheng et al’s work [CFGT21] to build
the “(8 x 1)-Way Prime-Field Arithmetic” with some modified primes 4. Building upon
this foundation, we modified the elliptic curve to BLS curves and extended the operations
to the G; and Go group.

(8 x 1)-way Data Structure. Note that AVX-512IFMA supports multiply-add instruc-
tions of packed unsigned 52-bit integers within each 64-bit lane of two registers. The main
data structure in our (8 x 1)-way parallel computation is the vector set V', which consists
of 8 vectors v; (0 < i < 8). Every v; is composed of eight radix-2°2 elements, and it can
be stored in a 512-bit register for computation during the execution. For eight 381-bit
integers a, b, c,d, e, f,g,h € Fg, the vector set V is defined as:

[(l(), bO,COadOa €0, f07907 ho]

la1,b1,c1,d1, e, f1,91, 7]
V:<a,b,c,d,e,f,g7h> = . :(’1}0,’[)1,...7’07) (4)

laz, b7, c7,d7, ez, f7, g7, hr]

where each vector v; = [a;, b;, i, d;, €4, fi, gi, hi] and a = Z§:1 252, for all 0 < a; < 252,
Thus, we can implement the (8 x 1)-way fundamental finite field operations such as
modular addition, subtraction, double, multiplication, square, and Montgomery domain
transformation using AVX-512IFMA.

(8 x 1)-way PADD arithmetic. Subsequently, we implement the (8 x 1)-way PADD
arithmetic over F, based on the elliptic curve point addition formulas. Also, We implement
G, arithmetic and utilize the Karatsuba algorithm [KOG62] to accelerate the F,2 field
operations.

4.2 Coordinate System and “Tree-Like” Structure

Accumulating corresponding elliptic curve points into buckets in the Pippenger algorithm
requires calculations of B; = Pjg + P;; + ... 4+ Fj;, involving a large number of PADDs.
PADDT is the main part of accumulation when adding elliptic curve points P; with Z = 1
into buckets with Z # 1 and 11n M is needed in projective coordinates according to the
Table 1.

4Cheng et al’s work [CFG121] is based on the CSIDH protocol on CSIDH-512 curve over a finite field
Fq with a 512-bit prime.

694 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

Following the work of Chen et al. [CPDT24], we employed a “Tree-Like” PADD
structure. It means first summing pairs of points both with Z = 1 and then adding these
results pairwise whose Z-coordinate are not 1, and finally adding the value into the bucket
B;. In this way, PADDs only need 7 x [%W + 12 x [gw = 9.5nM. Theoretically, utilizing
a “Tree-Like” structure can approximately save 13.6% of computational overhead. Taking
eight-point additions as an example, under projective coordinates, adding eight points
into the bucket B; one by one requires 11 x 8 = 88M. However, applying the “Tree-Like”

structure to point addition as illustrated in Figure 5 only requires 7 x 4 + 12 x 4 = 76M.

Bucket;

Figure 5: “Tree-Like” structure

This structure echoes perfectly with the previously discussed two distinct engines,
SimdPADDaffand SimdPADDprj, which hierarchically compute PADD in the bucket accu-
mulation phase, thereby our SIMD-accelerated architecture also demonstrates performance
improvements in terms of coordinate systems.

4.3 Performance for AVX Engines

In the single CPU environment °, our MSM implementation leverages the RELIC cryp-
tographic library [AGMT], a versatile cryptographic meta-toolkit written in C, which
provides comprehensive arithmetic operations over finite fields and point operations on
elliptic curves. Note that our architecture and methods are broadly applicable and can be
integrated with any cryptographic library and SIMD-based operations. For instance, we
selected the pairing-friendly BLS12-381 curve [Seal7], widely used in efficient zk-SNARKs
constructions.

Table 2: Benchmark of IFMA PADDs (in microseconds)

PADD RELIC1 (easy) RELIC2 (asm) IFMA | Speedupl Speedup2
PADD* 7.4465 2.9055 1.0733 6.94x 2.71x
G1 | PADDt 9.7062 3.6063 1.3135 7.39x 2.75%
PADD# 10.4719 4.0349 1.4709 7.12x 2.74%
PADD* 18.8610 8.0341 2.9279 6.44 % 2.74%
G2 | PADD™ 22.3596 9.7903 3.6978 6.05% 2.65x
PADD# 24.8143 10.6880 4.3326 5.73x 2.47x

Benchmark of AVX Engines. We choose two implementation modes in the RELIC
library for comparion, the easy mode built on standard C language and the asm mode built
on the -DARITH=x64-asm-61 assembly-optimized arithmetic. Table 2 displays benchmark

5An AMD Ryzen 9 7950X3D 16-Core Processor that supports AVX-512F and AVX-512IFMA instruc-
tions.

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 695

results for eight PADDs, showing the time consumed in G; and G; respectively. Our
AVX engines are about 2.7x faster than the asm mode and almost 7.0x faster than the
easy mode. SIMD instructions can speed up parallel processing, but the RELIC’s specific
optimizations for certain elliptic curves reduce the speedup ratio in asm mode.

The Scalability for CPUs without IFMA Compatibility. If a user’s machine lacks
support for AVX-512IFMA and even AVX-512 instruction set, our implementation can
surely be adapted to AVX2. AVX2 is more widely supported compared to AVX-512, with
almost all CPUs released since Haswell (2013) providing AVX2 support. Transitioning
to AVX2 requires additional engineering efforts: in the finite field operation layer and
point addition operation layer, the 8 x1 way parallel operation can be modified to a 4x1
way parallel operation, adjusting the level of parallelism from 8 to 4 accordingly. The
upper-layer scheduling mechanism and other optimization methods proposed in this article
still remain reusable.

In the longer term, our approach is not limited to the AVX instruction set; we believe
that it can be extended to any suitable SIMD instructions.

5 Linking to zkSNARK and Applications

In this section, we aim to apply the novel AVX-accelerated architecture for MSM designed
above to zZkSNARKSs and even achieve specific practical applications. To address the issues
encountered in practical applications, we propose the following optimizations: (1) MSM
support of group Go, (2) points deduplicated by HashMap or transformed to Twisted
Edwards form, (3) “Three-Stage” memory optimization, and (4) dynamic windows for
different scales of points.

5.1 AVX-ZK and Workloads

With the rise of zero-knowledge proof theory, numerous open-source library [SCI17, ZKC22,
Z0oK23, BPH™23, ac22] implementations have emerged, bridging the gap between the latest
theoretical advances in zero-knowledge proof technology and their practical engineering
implementation.

P SNARKs
Applications | Zerocash e et
TinyRAM
Gadget .
Upper Layer libraries A st] libsnark
Profiling and Test for proofs
systems
Preprocessing Preprocessing q
Bottom Layer SNARKSs for relations SNARKS for reductions itz il
. ; ; - Fast polynomial
Dependence Finite field bkt Dl TP (TP evaluation and
arithmetic arithmetic exponentiation arithmetic . "
interpolation
libff ate-pairing libfqfft
Underlying Linux on 32-bit or 64-bit CPUs (incl. SMP support)
platform

Figure 6: Libsnark’s schematic diagram®

6This figure is adapted from the “Overview of the libsnark stack” in the doctoral dissertation of Madars
Virza, the primary contributor to the libsnark codebase at MIT.

696 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

The libsnark library [SCI17] is a C++ code library used to develop applications that
use zk-SNARKSs, developed and maintained by the SCIPR Lab project and contributors.
It has played an important role in facilitating and advancing the widespread adoption of
zk-SNARKSs technology. In Figure 6, we provide a schematic diagram of its structure. The
dependence relies on the libff, atepairing, and libfqfft libraries for computation. At an
upper layer, many kinds of general-purpose proof systems are supported in the library and
we utilize rics_gg_ppzksnark for our implementation, commonly known as the famous
Grothl6 protocol.

Libsnark’s finite field arithmetic, point arithmetic, and multi-exponentiation are all
provided by the 1ibff library, which is also developed by SCIPR Lab and its contributors.
The core of the multi-exponentiation component is the computation of MSM, with its
interface located in the scalar_multiplication module. Given that many zk-SNARKSs
are based on pairings, which require MSM calculations not only over the finite field
G1 but also over Go, libsnark introduces the concept of pair. It is designed within the
knowledge_commit component and is defined as (g, h) where g € Gy and h € Go.

To better evaluate performance in real-world applications, we assess the overall perfor-
mance of AVX-ZK using multiple real-world workloads. The jsnark library [Ahm21], a
Java library for constructing circuits for preprocessing zk-SNARKSs, uses libsnark as its
backend. It provides some circuit examples for cryptographic primitives such as hashes,
block ciphers, key exchange, public key encryption, and signatures. There is an executable
interface to run the libsnark’s algorithms on the circuit, which allows us to run the proof
systems rics_gg_ppzksnark. This comprehensive setup allows for an extensive evaluation
of zero-knowledge proof instances using jsnark.

5.2 Duplicate Points into the Same Bucket

Current PADD* calculation formulas do not have a strongly unified [ST06] arithmetic,
which means that the formula of PADD cannot be used to calculate PDBL. So, the
error would occur if only two same points are PADDed in L1-AVX. In the implementation
of libsnark, it cannot be guaranteed that there are no identical elliptic curve points in
the running part of the MSM in the proof. If during the running process these two
points happen to be placed in the same bucket, we cannot obtain the correct running
result. Both of the following methods are viable for the problem. However, in our specific
implementation, we choose the first one for convenience.

Deduplicated by HashMap. To address this problem, we choose to use HashMap
[Goe06] to avoid duplicate points appearing. HashMap is a kind of data structure used to
store key-value pairs, in which each key is unique and corresponds to exactly one value,
facilitating rapid data retrieval by mapping keys to values. By using HashMap, we can
achieve consolidation by aggregating the scalar values of identical points. This way not
only allows deduplication with little time overhead but also helps reduce the final scale of
the MSM calculation to some extent.

But not all cases require deduplication. In some proofs, the MSM calculation doesn’t
encounter the situation where the same point is put into the same bucket. You can
determine whether to enable the HashMap deduplication mechanism based on the results
of running once.

Using Twisted Edwards Form. BLS curve families are widely used in zkSNARKSs due
to their pairing-friendly properties. Previous works [Xav22, ABCT22 RDQY24, BH23]
have demonstrated the feasibility of converting BLS curves into other curve forms and
coordinate systems. Using these methods, the computational overhead of the elliptic curve
point operations can be reduced, thereby accelerating MSM. Costs of arithmetic in Twisted
Edwards curves with a = —1 in extended coordinates are as Table 1 shows. It is a good
choice to get more efficient PADD operations by transformations onto a Twisted Edwards

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 697

curve with @ = —1. The cost of point conversion can be incorporated into the Setup
phase of the proof, not affecting the time required for proof generation. In addition, the
most important reason for using the Twisted Edwards form is its strongly unified point
addition formula, which can fundamentally address the issue of point addition when two
identical points are placed in the same bucket.

5.3 “Three-Stage” Memory Optimization

The original Pippenger algorithm splits the large scalar into smaller scalars and processes
the data column by column. Each column represents a subtask, and during the overall
processing, P; must be accessed repeatedly. As a result, the points Py, Ps, ..., P, can only
be out of use after the final column is processed.This also means that all points must be
stored in memory until the computation of the last column is completed, and only then
can this memory be released. When the number of points n is small, the issue of memory
usage may be negligible. However, when n is large, it becomes crucial to consider reducing
memory overhead. Taking the BLLS12-381 curve as an example, with a base field of 381
bits[Seal7], storing these points would require at least 2 GB of data space, a quantity
obtained through computation. For some personal computers, a 2GB memory footprint is
unacceptable.

Therefore, inspired by the hash function’s implementation[The20, MIR13, Rel22], we
propose a “three-stage” MSM memory optimization method. We have improved it to the
idea of “processing line by line, releasing point by point”. For each P;, after put into [%]
sets of buckets, this point will not be used again in the processing of k(;11), we can release
it after P; is processed, achieving “use, store, and release immediately”. As a result, the
memory space allocated to the points is greatly reduced.

To achieve the “processing line by line, releasing point by point” process described
above, we use a “three-stage” MSM implementation. That is, the original MSM function
is decomposed into three stages: start, update, and finish. We set P” as a container for
storing points whose size 7 is much smaller than n. i) In the start stage, the {%] sets
of buckets are initialized. ii) In the update stage, it carries out points distribution into
buckets points. And values in P” are replaced with new points sequential selected from
{P1, Ps,...P,} in every update. iii) In the finish stage, buckets aggregations are done on
all buckets and MSM result computation is processed to calculate the total result Q.

5.4 Setting up Dynamic Windows

In the section 2.2, we have discussed and calculated the total cost required for the Pippenger
algorithm. Naturally, we define a function F(s) = [2] (n+ 2% — 4).

For different scales of computation n, the choice of window size s should also vary. By
calculating the minimum points of the function F'(s) on different scales, we can obtain the
optimal s. However, the optimal values observed during the actual execution may differ
from the calculated values. We have recorded all obtained data in the Table 3.

Similarly, the optimal window size for pair-MSM (G, G2) can be calculated and
obtained, and results are also shown in the Table 3.

Table 3: Optimal window size under different conditions (for MSM and pair-MSM)

Scale MSM pair-MSM Scale MSM pair-MSM
Com. Prac. Com. Prac. Com. Prac. Com. Prac.
215 12 9 12 9 220 17 12 17 12
216 13 10 13 10 221 17 13 17 16
217 13 10 13 10 222 17 15 17 16
218 15 10 15 10 223 17 15 17 16
219 15 11 15 11 224 20 15 20 16

698 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

6 Evaluation

First, we test the performance of the AVX-MSM and compare it to the MSM calculated
using the Pippenger algorithm. Second, we compare the performance of the improved AVX-
ZK with that of libsnark across different data scales. Finally, we evaluate the performance
of AVX-ZK under various real-world workloads. To better demonstrate the impact of SIMD
acceleration in our implementation, we provide the performance results of AVX-MSM
and AVX-ZK under two scenarios: without multi-threading and with multi-threading
enabled(Multi core). All implementations follow the architecture proposed in Section 3.3.
However, due to the limited number of CPU threads in the experimental environment,
only one thread was used for the Loop-Level parallelism implementation. The source
code of this paper is available at https://github.com/JR-account/SimdMSM.

6.1 Overall AVX-MSM Performance

Benchmark of AVX-MSM. We evaluated our AVX-MSM implementation under RELIC’s
x64-asm optimized conditions. The Table 4 below presents the speedup ratios achieved
for the G; group. The benchmark results for AVX-MSM in BLS12-381 demonstrate
significant performance improvements compared to the Pippenger algorithm, the baseline
implemented by RELIC. This baseline controls variables and can better demonstrate the
acceleration effect of our SIMD framework. In no multi-threading situations, speedups
range from 2.17x to 2.45x, and in multi-threading enable situations, they range from
22.21x to 27.86x. These results underscore the effectiveness of SIMD optimizations for
parallelism.

We implement AVX-MSM of pair(G;, G2) instead of point in G2 group. This is

Table 4: Benchmark of AVX-MSM in BLS12-381 G4 (in seconds)

Sie RELIC [LFG23] |
Pip. AVXMSM (IR il coreg | OOt AVXMSM (iR
2B ol e piseg | 2 s (57
o m ey emm om0 | M9 do aheso
2T Gy osox) @b | O o (s4r)
2120 g e @eso | M0 @ (s
219 | 530 (z?é?éi) (9%3% (23'22ix> 2.83 (fé?(’)i) (1??.'581@
P05 meeg @seg | P (g 8090
221 | 2001 (;égi) (8?'7251) (23?,'88;) 10.7 (féizx) (13%@
2% | 3085 (zlifi) (91.16%?;) (2i.f53><) -]]
223 | 80.95 (éﬂfi) (9?1855@ (QE.EG}X) i))
2% | 146.36 (Sgﬁ) (g?)zzi) (235&))])

L “Pip. is the baseline implemented by RELIC. AVX-MSM is our framework implementation.

2 “Multi cores” indicates multi-threading implementations, while others are not.

3 “Constr.” is the optimal implementation from [LFG23]. When the size reaches 22!, the precomputation
table size of G1 becomes 6.5 GB, and further scaling is no longer feasible.

https://github.com/JR-account/SimdMSM

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 699

Table 5: Benchmark of AVX-MSM in BLS12-381 pair (G1, G3) (in seconds)

Sine RELIC [LFG23]

Pip. AVX-MSM (ﬁﬁﬁegffgs) (ﬁﬁli{iﬁ) Constr. AVX-MSM (ﬁﬁﬂ%
219 131 (2%68?;) (18.'9122) (zg'.géi) 0.74 (1(.)ib;3x) (1%%51)
20] 24 (2%6271) (1(?.'92? x) (2%'.91921) 148 (12221) (I%%%i)
2 ooy aomx) @0 | 28 o (161x)
2% | 860 (2%6?1) (9(.)é953x) (2§.'§L> 510 (félzgx) (1??-387X)
29 | 16.65 (;izgx) (9%551) (23.'5781@ 9.66 (féigx) (1??‘.(?54><)
220 | 3289 (;i;i) (9%%1) (241?5” 19.13 (fzﬁli) (141.'5)&)
I R (2025%)]]]
2% 116.38 (2551113) (32512; (215.'355” - -)
plme g
2| 44410 (22%3'7?;5) (1%?336@ (212?53)?;) - -)

! “Constr.” is the optimal implementation from [LFG23]. When the size reaches 22°, the precomputation table
size of G2 becomes 6.76 GB, and further scaling is no longer feasible.

because, for real-world zk-SNARK implementations, efficient computation of pairings is
more suitable. The performance improvements achieved by AVX-MSM in BLS12-381
pair over the Pippenger algorithm are between 2.05x and 12.17x in no multi-threading
situations. While in multi-threading enable situations, they range from 20.25x to 27.29x.

Furthermore, to showcase the experimental results better, we compare our work with the
work [LFG23] which is based on state-of-the-art library [bls]. In the no multi-threading case,
our AVX-MSM achieves a speedup of between 1.20x and 1.38x for the G; group. Since
the work does not currently support thread-level parallelism based on task decomposition,
our AVX-MSM demonstrates a speedup of between 12.74x and 15.71x when using multi-
threading. Additionally, based on the results for the G, group from their work, we can
obtain the pair(Gy, G2) values. The comparison results are shown in the Table 5. As
[LFG23] relies on precomputation with fixed points, its approach becomes impractical for
large-scale computations due to the size of the precomputation tables. For example, for a
size of 22!, the precomputation table for G, is 6.75 GB, while the table for Gy is double.

Overall, AVX-MSM significantly enhances the performance of multi-scalar multiplication
operations, offering substantial speedups across different input sizes. This makes AVX-
MSM a highly efficient and scalable solution for accelerating zk-SNARK computations on
modern CPUs, suitable for practical applications requiring high-performance operations.

6.2 AVX-ZK vs Libsnark

We integrated our AVX-MSM implementation into the libsnark library, naming it AVX-
ZK. Our AVX-ZK implementation primarily targets the rics_gg_ppzksnark protocol,
utilizing libsnark as a baseline for comparison. We conducted tests using profiling files
provided by libsnark for benchmarking purposes. The results are shown in the Table 6.
The AVX-ZK is about 16x faster than libsnark. When the computational scale reaches
more than 222, libsnark automatically terminates the current process due to excessive

700 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

runtime. In libsnark, the profiles have specific characteristics because the constraints are
generated under non-random conditions. There are relatively few special cases where
polynomial coefficients are 0 or 1, which results in a higher proportion of MSM computations
throughout the process. Our performance advantage is more noticeable under these test
cases.

Table 6: Performance Comparison between libsnark and AVX-ZK (in seconds)

Size libsnark AVX-ZK (ﬁ?ﬁiﬁ;) Size libsnark AVX-ZK (ﬁﬁig;)
2063 iy oo | 20 BB Glng e
20 Gy aseng | P OB @ohh (o0
2T w0 areng | P09 e i
218 4118 (4?426?;) (1(?.'45%) 923 - 274.69 97.88
2 s (i.?gi) (1(?.'025x) - - - -

6.3 AVX-ZK Workloads Performance

Due to test cases in the 1ibsnark library being specialized, they may not fully represent
real-world applications. Therefore, we selected six different zero-knowledge proof (ZKP)
use cases for testing, and the results are presented in Table 7. Although the vector size
appears large, the actual scale of MSM computations and their proportion in the overall
proof calculation are relatively small. This results in a reduction in speedup compared
to the profiling comparisons with libsnark in the previous subsection. Nevertheless, our
speedup ratios remain between 2.98x and 5.00x in this situation.

Table 7: Performance Comparison of Different Workloads (in seconds)

Application Vector size libsnark AVX-ZK AVX-ZK(Multi cores)

AES 14240 0.60 0.24 (2.50%) 0.12 (5.00x)
SHA-256 25656 0.91 0.36 (2.53%) 0.20 (4.55x)
RSAEnc 93658 3.10 1.40 (2.21x) 0.89 (3.48x)
Merkle-Tree 98902 3.53 1.66 (2.13x) 1.02 (3.46%)
RSASigVer 117666 3.64 1.70 (2.14x) 1.06 (3.43x%)
Auction 540878 14.06 7.31 (1.92%) 4.72 (2.98x)

7 Conclusion

In this paper, we proposed a new SIMD-accelerated MSM architecture that can be applied
to accelerate the computation of MSM in various scales, thereby enhancing the performance
of pairing-based ZKPs on CPUs. First, we designed a three-level parallelism making full
use of parallel resources on the CPUs and there are six different SIMD elliptic curve
arithmetic engines to adapt it at the bottom. Our method is in a low cache and would not
incur significant additional memory overhead. Second, we resolved the issue of concurrent
writings to the same bucket in data-level hierarchical parallel computing. We also discussed

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 701

some other methods and the reasons why they are not feasible. Third, we implemented
AVX-MSM and thereby achieved AVX-ZK at the ZKP level based on the 1libsnark library,
applying our AVX-MSM to practical applications.

Compared to the ordinary Pippenger algorithm implementation, our AVX-MSM
achieves a speedup of approximately 25x in the asm mode of relic library. And our
AVX-ZK implementation achieves over 11.53x (up to 20.26x) speedup on standard bench-
marks of libsnark. This means that our approach can effectively enhance the performance
of zero-knowledge proofs on CPU platforms.

Acknowlegements.

The work was supported by the National Key Research and Development Program of China
(No. 2022YFB3102400), the Major Program (JD) of Hubei Province (No. 2023BAA027),
the National Natural Science Foundation of China (Nos. 62272350, 62325209, U23A20302)
and the Fundamental Research Funds for the Central Universities (Nos. 2042024KF0002,
2042024kf1013).

References

[ABC'22] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas
Stalder, and Javier Varela. Fpga acceleration of multi-scalar multiplication:
Cyclonemsm. Cryptology ePrint Archive, Paper 2022/1396, 2022. https:
//eprint.iacr.org/2022/1396.

[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022.

[AGMT*] D.F. Aranha, C. P. L. Gouvéa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic.

[Ahm21] Ahmed Kosba. jsnark. https://github.com/akosba/jsnark, 2021. Accessed
: 2024-05-15.

[AMD)] Amd technical information portal. https://
docs.amd.com/r/en-US/am004-versal-dsp-engine/
Single-Instruction-Multiple-Data-SIMD-Mode.

[ARM] Arm simd instructions. https://developer.arm.com/documentation/
dht0002/a/Introducing-NEON/What-1is-SIMD-/ARM-SIMD-instructions.

[BBBT18] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy (SP), pages
315-334, 2018.

[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
Faster Batch Forgery Identification, page 454-473. Jan 2012.

[BH23] Gautam Botrel and Youssef El Housni. Faster montgomery multiplication
and multi-scalar-multiplication for SNARKs. TACR TCHES, 2023(3):504-521,
2023.

[bls] blst: a BLS12-381 signature library focused on performance and security

written in ¢ and assembly. https://github.com/supranational/blst.

https://eprint.iacr.org/2022/1396
https://eprint.iacr.org/2022/1396
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/akosba/jsnark
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/Single-Instruction-Multiple-Data-SIMD-Mode
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/Single-Instruction-Multiple-Data-SIMD-Mode
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/Single-Instruction-Multiple-Data-SIMD-Mode
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://github.com/supranational/blst

702 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

[BPH*23]

[BS12]

[CCCH09]

[CFGT21]

[CFGR22]

[CGT+20]

[CPD*24]

[GK96]

[GMRS9]

[Goe06]

[Gro10]

[Gro16]

[GWC19]

[Int]

Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya
Tabaie. Consensys/gnark: v0.9.0, February 2023.

Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff
and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages
320-339. Springer, Berlin, Heidelberg, September 2012.

Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE
implementation of multivariate PKCs on modern x86 CPUs. In Christophe
Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 33-48.
Springer, Berlin, Heidelberg, September 2009.

Hao Cheng, Georgios Fotiadis, Johann Grofischddl, Peter Y. A. Ryan, and
Peter B. Rgnne. Batching CSIDH group actions using AVX-512. TACR
TCHES, 2021(4):618-649, 2021.

Hao Cheng, Georgios Fotiadis, Johann Grofischadl, and Peter Y. A. Ryan.
Highly vectorized SIKE for AVX-512. JACR TCHES, 2022(2):41-68, 2022.

Hao Cheng, Johann Groflschadl, Jiaqi Tian, Peter B. Rgnne, and Peter
Y. A. Ryan. High-throughput elliptic curve cryptography using AVX2 vector
instructions. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn,
editors, SAC 2020, volume 12804 of LNCS, pages 698-719. Springer, Cham,
October 2020.

Yutian Chen, Cong Peng, Yu Dai, Min Luo, and Debiao He. Load-balanced
parallel implementation on GPUs for multi-scalar multiplication algorithm.
IACR TCHES, 2024(2):522-544, 2024.

Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169-192, 1996.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. STAM Journal on Computing, 18(1):186-208,
1989.

Brian Goetz. Java concurrency in practice. Pearson Education, 2006.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Advances in Cryptology - ASTACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, volume
6477 of Lecture Notes in Computer Science, pages 321-340. Springer, 2010.

Jens Groth. On the size of pairing-based non-interactive arguments. In
Proceedings, Part II, of the 35th Annual International Conference on Advances
in Cryptology — FUROCRYPT 2016 - Volume 9666, page 305-326, Berlin,
Heidelberg, 2016. Springer-Verlag.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.

Intel® intrinsics guide. https://www.intel.com/content/www/us/en/docs/
intrinsics-guide/index.html.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Rui Jiang, Cong Peng®™, Min Luo, Rongmao Chen and Debiao He™ 703

[JZXJ24]

[KO62]

[KST22]

[LFG23]

[LWY*23]

[MIR13]

[MXS+23]

[PHGR13]

[Pip76]

[RDQY?24]

[Rel22]

[ris]

[Riv11]

[RWGM23)]

Zhuoran Ji, Zhiyuan Zhang, Jiming Xu, and Lei Ju. Accelerating multi-scalar
multiplication for efficient zero knowledge proofs with multi-gpu systems. AS-
PLOS 24, page 57-70, New York, NY, USA, 2024. Association for Computing
Machinery.

Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, volume
145, pages 293-294. Russian Academy of Sciences, 1962.

Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. page 359-388, Berlin, Heidelberg,
2022. Springer-Verlag.

Guiwen Luo, Shihui Fu, and Guang Gong. Speeding up multi-scalar mul-
tiplication over fixed points towards efficient zkSNARKs. IACR TCHES,
2023(2):358-380, 2023.

Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang, Lei Wang,
Zeke Wang, and Wenzhi Chen. cuZK: Accelerating zero-knowledge proof
with A faster parallel multi-scalar multiplication algorithm on GPUs. TACR
TCHES, 2023(3):194-220, 2023.

MIRACL. SHA256 implementation. https://github.com/miracl/MIRACL/
blob/master/source/mrshs256.c, 2013. Accessed : 2024-05-15.

Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao
Kuang, Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang Hu. Gzkp: A
gpu accelerated zero-knowledge proof system. ASPLOS 2023, page 340-353,
New York, NY, USA, 2023. Association for Computing Machinery.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2018 IEEE Symposium on Security
and Privacy, pages 238-252, 2013.

Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976), Oct
1976.

Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao. Hardcaml
msm: A high-performance split cpu-fpga multi-scalar multiplication engine.
FPGA 24, page 33-39, New York, NY, USA, 2024. Association for Computing
Machinery.

Relic Contributors. SHA256 implementation. https://github.com/
relic-toolkit/relic/blob/main/src/md/relic_md_sha256.c, 2022. Ac-
cessed : 2024-05-15.

riscv-p-spec. https://github.com/riscv/riscv-v-spec.

Matthieu Rivain. Fast and regular algorithms for scalar multiplication over
elliptic curves. TACR Cryptol. ePrint Arch., 2011:338, 2011.

M. Rosenberg, J. White, C. Garman, and I. Miers. zk-creds: Flexible anony-
mous credentials from zksnarks and existing identity infrastructure. In 2023
IEEE Symposium on Security and Privacy (SP), pages 790-808, Los Alamitos,
CA, USA, may 2023. IEEE Computer Society.

https://github.com/miracl/MIRACL/blob/master/source/mrshs256.c
https://github.com/miracl/MIRACL/blob/master/source/mrshs256.c
https://github.com/relic-toolkit/relic/blob/main/src/md/relic_md_sha256.c
https://github.com/relic-toolkit/relic/blob/main/src/md/relic_md_sha256.c
https://github.com/riscv/riscv-v-spec

704 SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKSs

[SCI17)

[SealT]

[ST06]

[The20]

[Xav22]

[zca22]
[ZDWT22]

[ZHZ*24]

[ZKC22]

[ZoK23]

[zpr]
[ZWZ+21]

SCIPR Lab project and contributors. The Libsnark Library. https://github.
com/scipr-lab/libsnark, 2017. Accessed : 2024-05-15.

Sean Bowe. Bls12-381: New zk-snark elliptic curve construction. https:
//electriccoin.co/blog/new-snark-curve/, Mar. 2017.

Douglas Stebila and Nicolas Thériault. Unified point addition formulse and
side-channel attacks. In Cryptographic Hardware and Embedded Systems-
CHES 2006: 8th International Workshop, Yokohama, Japan, October 10-13,
2006. Proceedings 8, pages 354-368. Springer, 2006.

The OpenSSL Project. MD5 implementation. https://github.com/openssl/
openssl/blob/master/crypto/md5/md5_one.c, 2020. Accessed : 2024-05-
15.

Charles. F. Xavier. Pipemsm: Hardware acceleration for multi-scalar mul-
tiplication. Cryptology ePrint Archive, Paper 2022/999, 2022. https:
//eprint.iacr.org/2022/999.

Zcash corp. https://z.cash/, 2022.

Haixu Zhao, Dong Ding, Feng Wang, Pengcheng Hua, Ning Wang, Qin Wu,
and Zhilei Chai. Hardware acceleration of number theoretic transform for
zk-snark. Engineering Reports, page €12639, 2022.

Jipeng Zhang, Junhao Huang, Lirui Zhao, Donglong Chen, and Cetin Kaya
Kog¢. ENG25519: Faster TLS 1.3 handshake using optimized X25519 and
Ed25519. In Davide Balzarotti and Wenyuan Xu, editors, USENIX Security
2024. USENIX Association, August 2024.

ZKCrypto Corp. Bellman. https://github.com/zkcrypto/bellman, 2022.
Accessed : 2024-05-15.

ZoKrates Contributors. Zokrates. https://github.com/Zokrates/ZoKrates,
2023. Accessed : 2024-05-15.

Zprize. https://www.zprize.io/.

Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416-428, 2021.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://github.com/openssl/openssl/blob/master/crypto/md5/md5_one.c
https://github.com/openssl/openssl/blob/master/crypto/md5/md5_one.c
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://z.cash/
https://github.com/zkcrypto/bellman
https://github.com/Zokrates/ZoKrates
https://www.zprize.io/

	Introduction
	Difficulties
	Our Contributions

	Preliminaries
	Elliptic Curve Groups and Arithmetic
	Multi-scalar Multiplication and Pippenger Algorithm
	Single Instruction Multiple Data

	Our SIMD-Accelerated MSM Architecture
	Challenges for SIMD Implementations
	Overview
	Main Bucket Accumulation Mechanism
	Tail Task for Unaccumulated Cache Points
	Writing Conflict

	SIMD Elliptic Curve Arithmetic Engines
	SIMD Finite Field Arithmetic
	Coordinate System and ``Tree-Like'' Structure
	Performance for AVX Engines

	Linking to zkSNARK and Applications
	AVX-ZK and Workloads
	Duplicate Points into the Same Bucket
	``Three-Stage'' Memory Optimization
	Setting up Dynamic Windows

	Evaluation
	Overall AVX-MSM Performance
	AVX-ZK vs Libsnark
	AVX-ZK Workloads Performance

	Conclusion

