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Abstract. Multi-scalar multiplication (MSM) is the primary building block in many
pairing-based zero-knowledge proof (ZKP) systems. MSM at large scales has become
the main bottleneck in ZKP implementations. Inspired by existing SIMD-accelerated
work, we are focused on accelerating MSM computing efficiency using SIMD instruc-
tions in a single CPU environment. First, we propose a SIMD-accelerated MSM
computing architecture with no write conflicts and constant memory overheads. This
architecture utilizes multithreading to achieve task-level and loop-level parallelism
and employs a three-tier buffer mechanism to maximize the utilization of the SIMD
engine. Instanced with AVX512-IFMA instructions, we implement six SIMD elliptic
curve arithmetic engines for different point addition in three coordinate systems and
two groups. Moreover, we integrate our AVX-MSM implementation into the libsnark
library, naming it AVX-ZK. In more detail, point deduplication and “Three-Stage”
memory optimization are proposed to address problems existing in practical appli-
cations. Based on the RELIC library, our performance results on the BLS12-381
curve show that our AVX-MSM achieves up to 27.86× speedup over the most popular
Pippenger algorithm. Compared with libsnark, our AVX-ZK implementation achieves
over 11.53× (up to 20.26×) speedup under standard benchmarks.
Keywords: Multi-scalar Multiplication · Zero-knowledge Proof · SIMD Parallel
Implementation

1 Introduction
Zero-knowledge proof (ZKP) is a cryptographic primitive that enables the prover to
demonstrate the truth of a specific statement to the verifier without revealing any other
confidential information [GMR89, GK96]. The emergence of ZKP is a significant break-
through in the field of cryptography. In recent years, increased investment in research has
not only driven substantial theoretical advancements [Gro10, PHGR13, Gro16, BBB+18]
but also revealed its vast potential in practical applications, such as Zcash [zca22] and
zk-cred [RWGM23]. In particular, zero-knowledge Succinct Non-Interactive Arguments
of Knowledge (zkSNARKs) have drawn much attention. Among these, pairing-based
zkSNARKs, such as Groth16 [Gro16], Plonk [GWC19], and Nova [KST22], are widely used
in current applications.

The generation of pairing-based ZKP systems face two main bottlenecks: multi-scalar
multiplication (MSM) and number theoretic transform (NTT). Among these, MSM stands
out as the most time-consuming operation, comprising approximately 70% to 80% of the
total runtime [LWY+23]. It calculates the inner products of scalar vectors and point vectors,
following the polynomial computation phase in proof generation. MSM is to compute
Q =

∑n
i=1kiPi, where ki is a scalar of λ bits and Pi is the point in an elliptic curve.

Although the Pippenger algorithm can accelerate MSM to some degree, the performance

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.681-704
mailto:jiangrui@whu.edu.cn,cpeng@whu.edu.cn,mluo@whu.edu.cn,hedebiao@whu.edu.cn
mailto:chromao@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/


682SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKs

of current MSM implementations remains inadequate, especially when handling extensive
data sets. As is well-known, the Pippenger algorithm [Pip76] performs outstandingly in
accelerating MSM, particularly at large data scales [BDLO12]. However, there remains
significant potential for further optimization in state-of-the-art implementations based on
Pippenger’s method.

Nowadays, it is imperative to enhance the implementation approaches across various
software and hardware platforms, due to the widespread adoption of ZKP. Previous
work has demonstrated implementations of ZKP on hardware platforms such as FPGAs
[RDQY24, Xav22, ZDW+22, ABC+22], GPUs [LWY+23, MXS+23, JZXJ24, CPD+24],
and ASICs [ZWZ+21]. However, the high costs and inconvenience associated with hardware
implementations limit their accessibility to a broad user base. For the vast majority of
average users, access to computational resources primarily revolves around machines based
on CPU platforms. Also, we believe that ZKP implementations should be diverse, whether
on high-performance GPUs, FPGAs, or accessible CPUs. ZKPs on mobile devices greatly
influence applications such as private transactions, self-sovereign identity, and scalable
computation, playing an important role in advancing the field. Mobile users may prefer
leveraging their local CPU resources. That is why the ZPrize [zpr] competition retains
a track to accelerate MSM on mobile. ZKP acceleration on CPUs can make ZKPs more
user-friendly. Consequently, achieving fast ZKP implementations on CPU platforms is of
considerable practical importance to advance cryptographic research and applications.

In conventional computing modes, each instruction typically handles only one data
element at a time. However, Single Instruction Multiple Data (SIMD) introduces vector
registers and corresponding instructions, allowing for the simultaneous processing of
multiple data elements of the same type within a single instruction cycle. Many chip
manufacturers or architecture, like Intel [Int], AMD [AMD], RISC-V [ris], and ARM [ARM],
now support SIMD and similar instruction sets. SIMD facilitates parallel computation
of data, and previous work[CFG+21, CGT+20] has demonstrated the use of AVX-512
to accelerate point operations on elliptic curves. Therefore, it can be considered to be
utilized to accelerate large-scale computations of MSM. Specifically, we aim to address the
following question:

Is it possible to use the built-in parallelism of modern CPUs to improve the efficiency of
MSM computations?

1.1 Difficulties
MSM is to compute Q =

∑n
i=1kiPi, where ki is a λ-bit scalar and Pi is an elliptic curve

point. In the Pippenger algorithm [Pip76], it is decomposed into dλs e subtasks Gj by
choosing s as the window size. The application of AVX-512 to accelerate MSM operations
presents numerous challenges. The difficulties for this work are as follows:
Difficulty-1: Data-level Parallel Architecture. In a multi-core CPU platform, both
multi-threading and SIMD can be employed for parallel data processing, and their perfor-
mance improvements can be independent of each other. Processing multiple subtasks Gj in
parallel could be an effective approach. However, SIMD strictly requires that all input data
follow the exact same instructions, which can pose challenges when trying to parallelize
across subtasks. For example, within the SIMD framework’s parallel processing of multiple
subtasks, sequential point additions cannot be directly executed due to the potential for
point copy. Also, dλs e is often not a multiple of the parallelism degree, leaving some
subtasks to be handled individually, which underutilizes the parallel capacity. Therefore,
we propose handling parallelism between subtasks using multithreading, while designing a
SIMD-based parallel architecture for operations within each subtask.
Difficulty-2: Operation Non-independence within a Single Subtask. We shift our
focus to parallelism within individual subtasks. Due to the construction of the Pippenger
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algorithm, it is necessary to perform a reasonable structural segmentation before utilizing
SIMD instruction sets acceleration. Although constructing 8-way parallel point additions
intuitively during the bucket accumulation phase in the subtask computation could expedite
the operations, potential conflicts may arise. Specifically, two or more points points might
be placed into the same bucket, leading to conflicts that need to be addressed. Therefore,
we develop a rational scheduling mechanism that connects the underlying 8-way operators,
thereby achieving SIMD acceleration of MSM.
Difficulty-3: Large Memory Overhead. While MSM carries a relatively large amount
of computing data, the runtime memory overhead is a crucial concern. Moreover, in CPU
environments, the available memory capacity is limited, and the space occupied by the
elliptic curve points to be computed may need to reach up to GBs. Hence, it’s imperative
to minimize the runtime memory overhead. First, additional memory overhead from
parallel architectures should be minimized as much as possible. In addition, we should
consider it whether there is a way to prevent the storage space of elliptic curve points from
growing linearly with the increase in operation scale.

1.2 Our Contributions
In this paper, we propose a high-speed CPU-based implementation for MSM and ZKP
using SIMD and multi-threads. The proposed methods are applicable to most pairing-
based zk-SNARKs and are scalable to other SIMD instruction sets. Our contributions are
summarized as follows:
Low-cache Parallel Scheduling Mechanism. We overcome potential problems in
parallelism by designing a novel parallel SIMD-accelerated MSM architecture. Our im-
plementation overall uses three-level parallelism to make full use of parallel resources on
CPUs. For the SIMD data-level, a three-tier buffer mechanism is designed to accommodate
different types of operations, ensuring the parallel workflow proceeds without issues. To
deal with the writing conflict, we implement a state transition mechanism. In terms of
low-cache, we make it sure that the buffer designed in the structure minimizes additional
memory overhead. And we store addresses instead of values to avoid redundant space
occupation. Furthermore, the drawbacks of other suboptimal methods are discussed,
highlighting the advantages of the proposed approach.
SIMD Elliptic Curve Acceleration Engines. Using SIMD, we present a three-level
heterogeneous computing approach to compute MSM, thus speeding up the implementation
of ZKP on CPU platforms. The “Tree-Like” structure optimized based on coordinate
systems can be seamlessly adapted to our architecture. Specifically, using AVX-512IFMA,
we instantiate six SIMD elliptic curve engines for the bottom 8-way point addition
operations for both G1 and G2 groups.
Point Deduplication and “Three-Stage” Memory Optimization. We address the
issue of errors in point addition operations due to the lack of strongly unified arithmetic
in practical ZKP implementations. For large-scale MSM scenarios, a “three-stage” storage
approach are proposed to alleviate memory pressure caused by excessive points. To
maximize the performance of the Pippenger algorithm, we not only calculate the optimal
window size for different scales but also empirically test the optimal window values. During
runtime, the window size is dynamically adjusted based on the number of points.
AVX-ZK Implementation. We present a high-speed implementation of AVX-MSM
not only over G1 but also over G2 on the BLS12-381 curve. Compared to the Pippenger
algorithm, it achieves acceleration speedup range from 20.25× to 27.86×. We integrate our
MSM implementation into the libsnark library, naming it AVX-ZK. Using libsnark as a
baseline, we evaluate the performance of AVX-ZK, observing over 11.53× (up to 20.26×)
speedup improvements. Additionally, several zero-knowledge proof use cases were tested,
achieving performance gains of up to 5.00×.
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2 Preliminaries

Notation. Let N denote the set of positive integers. Let [n,m] denote an integer set
{n, n + 1, · · · ,m} and [m] denote an integer set {1, 2, · · · ,m} for any positive integer
n < m ∈ N. Let Fqk to denote a finite field for any prime q and small positive integer k 1.

2.1 Elliptic Curve Groups and Arithmetic

Elliptic curves over finite fields offer efficient group structures well-suited for cryptography.
For brevity, an elliptic curve is a plane curve over a finite field (i.e., Fq or Fq2) which
consists of the points satisfying the curve equation and a distinguished point at infinity,
denoted O. Let G1 and G2 denote the elliptic curve group over Fq and Fq2 respectively.
Group Law. For any two points P and Q in the elliptic curve group G1 (or G2), the
commutative group operation involves adding two points to obtain another point. This
operation can be divided into two cases depending on the equality of the input points:
point addition (denoted PADD) for different points (P 6= Q) and point doubling (denoted
PDBL) for equal points (P = Q). Also, the operation defines P + O = O + P = P
to make O as the group identity. Moreover, the most frequent operator PMUL is scalar
multiplication (also called point multiplication), which refers to the accumulation of k
identical points, i.e., Q = kP where k is a positive integer.

Table 1: The modular operation cost for point addition and doubling in different curves and
coordinates. PADD∗ denote point addition where Z1 = Z2 = 1, PADD+ denote mixed
point addition where Z1 6= Z2 = 1, PADD# denote point addition where Z1 6= Z2 6= 1,
PDBL∗ denote point double where Z = 1 and PDBL# denote point double where Z 6= 1.

Curve Coordinate PADD∗ PADD+ PADD# PDBL∗ PDBL#

Short Weierstrass Projective 5M + 2S 9M + 2S 12M 3M + 5S 5M + 6S
Short Weierstrass Jacobian 4M + 2S 7M + 4S 11M + 5S 1M + 5S 2M + 5S
Twisted Edwards Extended 7M 8M 9M 3M + 4S 4M + 4S

Twisted Edwards Extended
(a = −1) 6M 7M 8M 3M + 4S 4M + 4S

Point Coordinates. Geometrically, the point in affine coordinates can be represented
by two finite field elements (x, y) ∈ F2

q which satisfy one curve equation, e.g., Weierstrass
form, Edwards form, Twisted Edwards form. The affine coordinate system has minimal
storage cost but requires modular inversion operations. To improve efficiency, various
coordinate systems have been developed., including Projective coordinates represented as
{X,Y, Z}(x = X/Z, y = Y/Z) and Jacobian coordinates represented as {X,Y, Z}(x =
X/Z2, y = Y/Z3). In this work, we use M, S, I to represent modular multiplication,
squaring and inversion, respectively. We briefly review the cost of different point operations
from the EFD database 2 and show some related results in Table 1. It is worth stating
that the computational costs of point operations may depend on the equality of two
Z-coordinates for the added points.

Also, elliptic curve pairing is an important primitive in cryptography, which is a bilinear
map between points on elliptic curves and a target group, preserving linearity across inputs.
It plays a crucial role in advanced cryptographic protocols like identity-based encryption
and zk-SNARKs.

1The basic prime field in this work are mainly Fq and Fq2 .
2Explicit-Formulas Database: http://hyperelliptic.org/EFD/

http://hyperelliptic.org/EFD/
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2.2 Multi-scalar Multiplication and Pippenger Algorithm
For computing Q =

∑n
i=1 kiPi, the most direct approach is to utilize the binary modular

exponentiation algorithm for aggregated scalar multiplication [Riv11] as shown in Figure
1. For one scalar multiplication kiPi, it costs (λ− 1)PDBL + HW(ki)PADD operations
where HW(ki) represents the Hamming weight of the scalar ki, approximately λ

2 . For
computing

∑n
i=1 kiPi, it costs (λ− 1)PDBL +

∑n
i=1 HW(ki)PADD operations.

Figure 1: Computing kP by the binary scalar multiplication algorithm

Pippenger Algorithm. A well-known and widely-used method to implement multi-scalar
multiplication is due to Pippenger. It works as follows:

• Task Decomposition: The first step is to break down the main task into several
subtasks that can be executed independently. In Eq. 1, it shows that each subtask is
to compute Gα =

∑n
i=1 kiαPi (1 ≤ α ≤ dλs e), where kiα denotes the α-th bit-block

of the scalar ki divided by the window size s. The original MSM task is converted
into

⌈
λ
s

⌉
subtasks.

Q =
n∑
i=1

kiPi =
n∑
i=1

dλs e∑
α=1

(
2(α−1)skiα

)
Pi =

dλs e∑
α=1

2(α−1)sGα (1)

• Bucket Accumulation: The second step is to compute the sum of points with the
same scalar. For each subtask, it sets 2s − 1 buckets, denote each bucket point as
B` where ` is the bucket index and ` ∈ [1, 2s − 1], and puts each point Pi into the
corresponding bucket Bkiα indexed by kiα. For example, it adds Pi to B5 if kiα = 5
and adds Pi to B9 if kiα = 9. This process needs (n− 2s + 1) PADD operations.

B` =
∑
kiα=`

Pi,∀` ∈ [2s − 1] (2)

• Bucket Aggregation: The third step is to compute the sum of all bucket points
weighted by their bucket indexes, i.e., Gα =

∑2s−1
i=1 `B`. It iteratively computes

the point M` = M`+1 + B` from M2s−1 := B2s−1 to M1, then compute the sum
Gα =

∑2s−1
`=1 M`. It can be easily checked that B` has been added ` times for any

` ∈ [2s − 1]. This process needs (2s+1 − 4) PADD operations.

Gα =
2s−1∑
i=1

`B` = B2s−1 +
2s−1∑
`=2s−2

B` +
2s−1∑
`=2s−3

B` + · · ·+
2s−1∑
`=1

B` =
2s−1∑
`=1

M` (3)

• Final Combination: The final step is to compute the subtask results as Q =∑dλs e
α=1 2(α−1)sGα via double-and-add method. This process needs (s

⌈
λ
s

⌉
−s) PDBL+

(
⌈
λ
s

⌉
− 1) PADD operations.

Total Costs. In summary, the total computational overhead of MSM by the Pippenger
algorithm is approximately

⌈
λ
s

⌉
(n+ 2s − 2) PADD+ (s

⌈
λ
s

⌉
− s)PDBL. Only during the

bucket accumulation phase is PADD+ used, whereas PADD# is employed in all other
stages. The main memory overhead is 2s − 1 buckets per subtask.
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2.3 Single Instruction Multiple Data
Single Instruction Multiple Data (SIMD) is a computer instruction set architecture and
processor microarchitecture technology that allows multiple data elements to be processed
under a single instruction, enabling parallel computing on the CPU. It has seen extensive
application in elliptic curve cryptography, serving as a common method for accelerating
computations on CPUs. Numerous works [CFG+21, CGT+20] have demonstrated the
use of SIMD to implement foundational elliptic curve operations, significantly enhancing
performance in cryptographic protocols.

The AVX-512 (Advanced Vector Extensions 512) instruction set is an extended instruc-
tion set for the x86 architecture released by Intel. It can be regarded as an extension of
the AVX2 instruction set. Compared with previous generations of instruction sets (MMX,
SSE, AVX, AVX2), the register width and number of registers available for AVX-512 have
doubled. The register width has increased from 256 bits to 512 bits, and the number of
registers has risen from 16 to 32.

In addition to the basic AVX-512F instructions (F for foundation), AVX-512 also
introduces a new extension called AVX-512IFMA (Integer Fused Multiply-Add), which
is capable of supporting fused multiply and add operations for integers within the Intel
AVX-512 instruction set.

3 Our SIMD-Accelerated MSM Architecture
As described in Section 2.2, bucket accumulation requires significant computational costs
(decided by the MSM size n) and can be naturally parallelized. Unlike GPUs and FPGAs,
the SIMD parallelism mechanism strictly requires all data to execute the same operation and
is limited by the width of the supported registers, which restricts its achievable parallelism.
Therefore, utilizing SIMD to accelerate MSM computation presents a challenging problem.
Upon initial observation, it seems that there are several ways to apply SIMD to MSM
computation. However, each of these methods has notable and considerable drawbacks.
In the upcoming sections, we will compare our multi-level parallelism approach with
these alternatives, detailing how we systematically tackled these challenges and crafted a
completely new framework.

Inspired by previous SIMD-accelerated implementations [BS12, CFGR22, CFG+21,
ZHZ+24, CCC+09], we can utilize the SIMD instruction set for constructing multiplexed
parallel finite field arithmetic and subsequently for building elliptic curve arithmetic, such
as (8 × 1)-way or (4 × 2)-way or (2 × 4)-way. Formally, SIMD can be thought of as
providing a pointwise addition for two vectors of elliptic curve points, e.g. {Ri}i∈[χ] =
{Pi}i∈[χ]⊕{Qi}i∈[χ] = {Pi+Qi}i∈[χ]. Let χ denote the parallelism number of SIMD point
arithmetic engines.

3.1 Challenges for SIMD Implementations

Attempt-1: Performing Multiple Subtasks Using SIMD Parallelism. Intuitively,
each subtask can be run independently, allowing multiple subtasks to be calculated in
parallel. In GPU,

⌈
λ
s

⌉
threads can be executed to compute each subtask simultaneously.

However, parallelism by SIMD instruction sets is different from GPU threads, since SIMD
requires all data processed in parallel to perform the same operation, and conditional
branching statements are generally avoided. When points are added to buckets, there are
two scenarios, one is to copy Pi to B` directly if B` = O and another is to add Pi to B` if
B` 6= O. Unfortunately, both scenarios can occur when adding a point Pi to χ buckets of
different subtasks.
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Though setting a different point index for each subtask will solve the problem, it is easy
to assume that the frequency of every subtask’s PADD is different when n is relatively
small. In addition, parallelizing across subtasks needs more memory and access time. More
importantly,

⌈
λ
s

⌉
is not necessarily a multiple of parallelism such as 8-way. Considering

the above reasons, we do not consider using parallelism between subtasks.
In a multi-core CPU environment, both multi-threading and SIMD can be employed

together to accelerate computations by assigning each core to handle a subtask and
parallelizing the computation within each subtask. Therefore, our approach introduces
multi-threading to achieve task-level parallelism for sub-MSM processing, while utilizing
SIMD for data-level parallelism within each thread.
Attempt-2: Accelerating Bucket Accumulation via SIMD Engines. Easily, we
can use the SIMD engine to directly add χ points into corresponding bucket points during
the bucket accumulation process. It is essential to ensure that the same address does not
exist at the output point of the SIMD engines to avoid writing conflicts on buckets. So,
this necessarily involves opening up a cache to wait for the state that satisfies the condition
to trigger the engine.
Open Buffers for Each Bucket. Preparing a set of buffers for each bucket enables
parallel computation of bucket points, as illustrated in the Figure 2. For example, processing
eight-way point additions for each bucket means that once the buffer is filled with eight
pairs of elliptic curve points, an eight-way point addition is performed. However, how
to store these points still remains a problem. Adding these points directly into buckets
or continuing pairwise addition using a tree-like structure are two approaches. But the
former cannot achieve 8-way parallelism due to writing conflicts, while the latter requires
large additional memory to store the results under the premise that it already constitutes
a large memory overhead.

Figure 2: A simple but not optimal method

Open a Global Buffer for all Buckets. To reduce memory overhead, we can consider
allocating a single buffer for all buckets instead of creating a separate buffer for each one.
This approach significantly decreases the overall memory usage. Grouping χ PADD oper-
ations into a single batch and triggering the SIMD engine to perform them simultaneously
can significantly enhance computational efficiency. However, in this process, there is a
high likelihood of encountering writing conflicts—where two or more points are intended
to be added to the same bucket in the same round of SIMD-PADD operations. This type
of conflict can be mitigated using a deferred handling approach—if a writing conflict arises,
the extra conflicting points can be placed at the end of the buffer and processed in the
next round. However, this method may cause SIMD acceleration to fail in extreme cases
where all scalars are identical. Similarly, efficiency will be significantly reduced when a
large portion of scalars overlap. In addition, even if the scalars do not exhibit extreme
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behavior, using this method requires the buffer to be dynamic rather than fixed-length. It
would need to be structured as a dynamic array, which adjusts continuously based on the
actual situation. At certain points, the array could grow significantly in length, leading to
potential inefficiencies.
Not Using Double-Point Buffer buf(1)

αβ . While these conflicts can likely be resolved
using the mechanism we proposed later, this approach still presents some notable short-
comings. To address writing conflicts, we propose a new solution where conflicting points
are first added in pairs, and the resulting points are deferred to the next round for further
processing. This method ensures that the buffer length will not exceed 2χ, and even in
cases where all scalars are identical, it guarantees that SIMD acceleration can continue to
function efficiently. But for a single-level buffer, adding two conflicting points and adding
points back to the bucket both require invoking the same SIMD point addition operation.
In this case, not all point additions can be handled by a PADD+ operation. To ensure
the correctness of the computations, we must use PADD# requiring more multiplications
globally, which increases the overhead of the PADD unit.

All in all, after addressing all the aforementioned limitations, we propose a novel
scheduling mechanism that accelerates MSM by utilizing multi-threading and SIMD across
three levels: Task-level, Loop-level, and Data-level. At the Data-level, we introduce a
two-level buffer system specifically designed for the SIMD engine and address the issue
of bucket point writing conflicts to handle bucket accumulation efficiently. Our approach
fully leverages the parallel resources available on the CPU, with a fixed memory footprint
that avoids irregular or fragmented storage patterns. Additionally, it ensures that the
system operates efficiently even in cases where all scalars are identical.

3.2 Overview
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Figure 3: SIMD scheduling mechanism

In Figure 3, the entire process of the SIMD-accelerated architecture is illustrated.
First, the computation of MSM is divided into dλs e Sub-MSM according to the Pippenger
algorithm’s windows, with each Sub-MSM assigned to a tidα. Second, each Sub-MSM
maintains a bucket buffer to store the value of the bucket points and the addresses of the
points waiting for matching to be added to the bucket. To fully use threads on the CPU,
we divide n kiPi into τ parts as Loop-MSM and open a new thread tidαβ for each of them.
Then, for each tidαβ , point buffer buf(1)

αβ is set to record addresses of pairs of points with
the same sub-scalar. Once buf(1)

αβ reaches its capacity of χ, the SIMD-based data-level



Rui Jiang, Cong Peng�, Min Luo, Rongmao Chen and Debiao He� 689

parallelism is triggered. Lastly, a tail task handles the remaining values in all buffers,
ensuring correctness during the bucket accumulation stage. This part is also parallelized
and processed using SimdPADDmix.

In data-level parallelism, the SimdPADDaff(defined in Section 4) processes χ way
PADD∗ to compute the sum of paired points in buf(1)

αβ and store the result into buffer T.
These results are elliptic curve points to be added back to the corresponding bucket in
parallel by the SimdPADDprj but writing conflicts will occur during this process due to
different points mapped to one bucket. To solve this problem, we set a control mechanism
for handling conflict points. Five states for T are designed and the state diagram is shown
in Figure 4. The State-2 is a conflict state, it will jump to other states until the conflict
is resolved.

We present our process of scheduling mechanism in Algorithm 1. All SIMD-ECEngine
mentioned above will be introduced in Section 4. It is worth noting that our increased
memory overhead compared to the original Pippenger algorithm is very small. The buf(1)

αβ

and T are constant length and no more than χ and 2χ respectively. In addition to the
necessary bucket points and result points stored in T, other elliptic curve points are just
stored as addresses.

3.3 Main Bucket Accumulation Mechanism
Here, we provide a detailed description of the designed bucket accumulation architecture
to demonstrate how to leverage the SIMD engine’s parallelism advantages.
Task-level Parallelism for Sub-MSM Processing. For each sub-MSM task Gα =∑n

i=1 kiαPi (α ∈ [1, dλs e]), it is straightforward to assign a thread tidα to process it. In
total, dλs e threads are needed to compute all sub-MSM {Gα}α∈[1,dλs e]

simultaneously. In
each thread tidα, it setups up with a bucket buffer buf(0)

α with empty tuples {`, B` :=
O, addrPA` := null}`∈[1,2s−1] indexed by the scalar `. In the follow-up, B` stores the temp
result of bucket point accumulation, and addrPA` stores the address of an initial point.
Loop-level Parallelism for Initial Point Caching. In each thread tidα, individually
adding a single point Pi into its bucket Bkiα is unsuitable for SIMD arithmetic engines.
Before performing a SIMD-based point addition, gathering and caching multiple points
is more efficient. Thus, we open τ sub-thread tidαβ (β ∈ [1, τ ]) to independently caching
points {P(β−1)dnτ e+1, · · · , Pβdnτ e} in the thread tidα. For each sub-thread tidαβ , it setups
up with a point buffer buf(1)

αβ with the counter cnt(1)
αβ := 0, and processes the scalar kiα and

the point Pi (i ∈ [(β − 1)dnτ e+ 1, βdnτ e]) as follows:

• Case 1: If addrPAkiα is null, store the address of Pi into addrPAkiα := addrOf(Pi).

• Case 2: If addrPAkiα is non-null, store a new tuple (` := kiα, addrPB := addrPAkiα ,
addrPC := addrOf(Pi)) into the buffer buf(1)

αβ and set cnt(1)
αβ := cnt(1)

αβ + 1 and
addrPAkiα := null. If cnt(1)

αβ is larger than the parallelism number of SIMD point
arithmetic, the data-level parallelism mechanism for bucket accumulation is triggered.

Since the bucket buffer buf(0)
α is shared by different sub-threads {tidαβ}(β∈[1,τ ]), the

thread locking mechanism needs to be established on each tuple to prevent conflicts.
Data-level Parallelism for Bucket Accumulation. Let χ denote the parallelism
number of SIMD point arithmetic engines. When this engine is triggered, it requires χ
tuples {`j , addrPBj , addrPCj}j∈[χ] as inputs. The SIMD engine is designed to add two
points with the same scalar and then accumulate the result into bucket points through a
dynamic controller mechanism. To avoid writing conflicts at bucket points B`, we design a
point buffer T := {`j , T (αβ)

j }j∈[2χ] to cache the output of processing buf(1)
αβ . This parallel

mechanism works in the following way:



690SimdMSM: SIMD-accelerated Multi-Scalar Multiplication Framework for zkSNARKs

Algorithm 1 SIMD-Accelerated MSM Computation Mechanism
Input: The MSM size n, the λ-bit scalars k̃ := {ki}i∈[n], the points P̃ := {Pi}i∈[n], the windows size s and

the parallelism number χ
Output: The MSM result Q =

∑n

i=1
kiPi

1: #pragma omp parallel
2: for α = 1 to dλs e do
3: Gα ← SubMSM(k̃, P̃, n, λ, α) . Open new thread tidα
4: end for
5: for Q := Gdλ

s
e, α =

⌈
λ
s

⌉
− 1 to 1 do

6: Q← SeqPDBL(Q, s) . Sequential s-times point double
7: Q← Q + Gα
8: end for
9: return Q

10: procedure SubMSM(k̃, P̃, n, λ, α)
11: buf(0)

α ← {`, B` := O, addrPA` := null}`∈[1,2s−1]
12: #pragma omp parallel
13: for β = 1 to τ do
14: βl := (β − 1)dnτ e+ 1, βr := βdnτ e
15: LoopMSM(k̃, P̃, buf(0)

α , α, βl, βr) . Open new thread tidαβ
16: end for
17: {B`}`∈[2s−1] ← TailTask(buf(0)

α )
18: Gα ← BucketAggregation({B`}`∈[2s−1])
19: return Gα
20: end procedure

21: procedure LoopMSM(k̃, P̃, buf(0)
α , α, βl, βr)

22: buf(1)
αβ
← ∅,Tαβ ← ∅, ζ := 1

23: for i = βl to βr do

24: kiα ← BitsExtract(ki, α, s) . ki =
∑dλ

s
e

i=1
2(α−1)skiα

25: if addrPAkiα == null then
26: addrPAkiα := addrOf(Pi)
27: else
28: buf(1)

αβ
[ζ]← (`ζ := kiα, addrPBζ := addrPAkiα , addrPCζ := addrOf(Pi))

29: addrPAkiα := null, ζ := ζ + 1
30: end if
31: if ζ > χ then
32: SimdPADD(buf(0)

α , buf(1)
αβ
,Tαβ)

33: ζ := 1
34: end if
35: end for
36: end procedure

37: procedure SimdPADD(buf(0)
α , buf(1)

αβ
,Tαβ)

38: {`j ,PBj ,PCj}j∈[χ] ← buf(1)
αβ

39: {Tj}j∈[χ] ← SimdPADDaff({PBj ,PCj}j∈[χ]) . Tj = PBj + PCj
40: Push {`j , Tj}j∈[χ] into Tαβ
41: if len(Tαβ) == χ then
42: if ∃a, b ∈ [χ] s.t. `a == `b then return . State-2
43: else
44: {B`j} ← SimdPADDprj({B`j , Tj}j∈[χ]) and pop the first χ tuples in Tαβ . State-1
45: end if
46: else . State-3 or State 4
47: S ← ∅, t = 1
48: for a = 1 to 2χ do
49: if ∃b > a & b /∈ S s.t. `a == `b then
50: buf(2)

αβ
[t] := (Ta, Tb, Tχ+t), S = S ∪ {a, b} . Refer to Tχ+t = Ta + Tb

51: else
52: buf(2)

αβ
[t] := (B`a , Ta, B`a ), S = S ∪ {a} . Refer to B`a = B`a + Ta

53: end if
54: t = t + 1
55: if t > χ then
56: SimdPADDprj(buf(2)

αβ
) and update buf(1)

αβ
and Tαβ . State-5

57: Pop the first χ tuples in Tαβ and goto Line 41
58: end if
59: end for
60: end if
61: end procedure
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(1) For χ tuples {`j , addrPBj , addrPCj}j∈[χ] in buf(1)
αβ , it use SimdPADDaff to compute

PDj := PBj + PCj} for all j ∈ [χ] in parallel 3 and store the results into {T (αβ)
γ }γ∈[2χ].

(2) When SimdPADDaff pushes new results into the buffer T, it triggers the following
state control mechanism:

• State-0: All cache points are empty. In this state, T receives χ points outputted
by SimdPADDaff, and changes the state to State-1 if scalars w.r.t. outputted
points are different or State-2 otherwise.

• State-1: The first χ cache points store points with different scalars while oth-
ers are empty. This state triggers SimdPADDprj to add χ cache points into
corresponding bucket points.

• State-2: The first χ cache points store points with duplicate scalars while others
are empty. This state continues to wait for the output of SimdPADDaff.

• State-3 & State-4: The first χ cache points are used and the next χ cache points
store χ points outputted by SimdPADDaff. Then, this state uses SimdPADDprj
to pairwise add points into the buckets or the buffer T and changes the state to
State-5.

• State-5 The first χ cache points are null. Then, this state shifts T by χ points
to the left. It be changed to State-1 or State-2.

3 3 5 9 3 1 6 7 1  1 2 1  0 8 1  2 4 1  5 1  9

𝐵5 𝐵9 𝐵3 𝐵1 𝐵6 𝐵7 𝐵11

3 3 5 9 8 1 6 7 5 2 1  1 1  2 3 4 1  5 1  6

𝐵9 𝐵8 𝐵1 𝐵6 𝐵7 𝐵2

3 2 5 9 8 1 6 7

𝐵3 𝐵2 𝐵5 𝐵9 𝐵8 𝐵1 𝐵6 𝐵7

3 3 5 9 8 1 6 7

Result of SIMD1 Output of SIMD2

S𝐭𝐚𝐭𝐞 0

3 5 1  1 1  2 3 4 1  5 1  6

S𝐭𝐚𝐭𝐞 1

S𝐭𝐚𝐭𝐞 2

S𝐭𝐚𝐭𝐞 3

S𝐭𝐚𝐭𝐞 4

S𝐭𝐚𝐭𝐞 5

ROLP and switch 

State transition Input of SIMD2

State 0

State 1

State 2

State 3 State 4

State 5

push data push data

finish computation

wait data wait data

SIMD2
SIMD2

ROLP and switch 

Figure 4: The state diagram of the point buffer T

Combine with Other Algorithmic MSM Optimizations. Luo’s method [LFG23]
reduces the time overhead of bucket aggregation but introduces the time and space overhead
of precomputation at the same time. Using the Twisted Edwards curve form is also a
way to speed up PADDs in MSM, as mentioned in Section 5.2. We mentioned that this
approach can address the issue of the same points in a non-strongly unified arithmetic
leading to calculation errors. However, in our implementation, we adopted the HashMap

3PBj and PCj are two elliptic curve points pointed by address addrPBj and addrPCj .
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deduplication method. Chen et al. [CPD+24] also proposed using scalar processing and
point precomputation to reduce the number of bucket aggregation calculations to a quarter
of the original. These algorithmic optimizations are compatible with our proposed parallel
framework and can be integrated to achieve superior performance.

3.4 Tail Task for Unaccumulated Cache Points
After processing all n points, some finalization work remains. Both buf(1)

αβ and buf(2)
ατ

are non-empty, but the number of elements does not meet the threshold χ required to
trigger the SIMD engine. We take all the remaining tuples in buf(1)

αβ as input and compute
them once using SimdPADDaff. Since the number of tuples is less than χ, the empty slots
are simply neglected, which does not affect obtaining the valid results we want. Upon
receiving the final result from SimdPADDaff, new tuples are added to T. We then iteratively
invoke SimdPADDprj until T becomes null. Similarly, if the buffer cannot fill χ entries, the
remaining slots will idle without affecting the computation.

For buf(0)
α , there exist some entries with no-NULL addrPA`, indicating that there are

still some unpaired points that need to be added to the corresponding buckets. Since these
points are the initial ones, the addition operation falls under the type PADD∗. These
points are added back to different buckets, allowing for parallel processing. Therefore,
we introduced an additional SIMD engine, SimdPADDmix, specifically designed to handle
χ-way PADD∗ efficiently. This engine focuses on processing remaining points, ensuring
that the computation remains fully optimized and capable of handling even the final stages
of the bucket accumulation process.

3.5 Writing Conflict
In the data-level parallelism stage, after triggering SimdPADDaff, the ideal scenario is for
all results in buffer T to be written back to their respective buckets in χ-way parallelism.
However, when multiple points need to be added to the same bucket simultaneously, writing
conflicts occur. Simply moving conflict points to the next round of operations can ensure
the current round has no conflict but does not guarantee that conflicts will not occur
again in the next round. Moreover, this approach requires a significant amount of space to
record the points awaiting computation, and it also takes a considerable amount of time
to filter conditions that prevent conflicts. Once in the case where a large number or even
all points encounter conflicts, this method cannot function properly. To handle this, we
introduce a state transition mechanism.

As shown in Figure 4, State-0 represents the initial state where T is empty. After
populating the results of one round of SimdPADDaff, State-1 is an ideal state where
SimdPADDprj can be directly triggered. However, State-2 represents a conflict state. It
waits for new points to be pushed into T, after which it transitions to the next state
and handles the conflict points. At this time, the effective length of T is 2χ. We iterate
through, setting up a temporary buffer buf(2)

αβ to both cache points that will be directly
added back to the bucket and check if there are any cases where `a == `b. If both Ta
and Tb are meant to be added to B`a=`b , this round will first compute Ta + Tb. When
the number of tuples in buf(2)

αβ reaches χ, SimdPADDprj is triggered once. The resulting
points are divided into two categories: one is directly written back to B`j , and the other is
returned to buffer T to be processed in the next stage. There is a small trick here: the
number of returned result points, when added to the number of remaining tuples in T, still
sums to χ. Therefore, the result points can directly fill the empty slots in the last χ tuple.

State-3 and State-4 are essentially the same, with the only difference being whether
any writing conflicts remain after one invocation of SimdPADDprj. If conflicts persist, after
shifts the system transitions back to State-1; otherwise, it moves to State-2.



Rui Jiang, Cong Peng�, Min Luo, Rongmao Chen and Debiao He� 693

4 SIMD Elliptic Curve Arithmetic Engines
In this section, we instantiated SIMD elliptic curve arithmetic engines based on Intel
AVX-512IFMA (Integer Fused Multiply-Add) instructions, which support multiple 52-bit
integer multiplication and addition operations through one instruction. Specifically, we
implement three engines SimdPADDaff, SimdPADDprj, SimdPADDmix for 8-way PADD∗,
PADD#, and PADD+ respectively. For compatibility with G1 and G2 group operations,
we actually need six AVX engines, that is

• SimdPADDaff: G1_8w_PADD∗ and G2_8w_PADD∗.

• SimdPADDprj: G1_8w_PADD# and G2_8w_PADD#.

• SimdPADDmix: G1_8w_PADD+ and G2_8w_PADD+.

4.1 SIMD Finite Field Arithmetic
For the underlying finite field operations, we follow Cheng et al.’s work [CFG+21] to build
the “(8 × 1)-Way Prime-Field Arithmetic” with some modified primes 4. Building upon
this foundation, we modified the elliptic curve to BLS curves and extended the operations
to the G1 and G2 group.
(8 × 1)-way Data Structure. Note that AVX-512IFMA supports multiply-add instruc-
tions of packed unsigned 52-bit integers within each 64-bit lane of two registers. The main
data structure in our (8 × 1)-way parallel computation is the vector set V , which consists
of 8 vectors vi (0 ≤ i < 8). Every vi is composed of eight radix-252 elements, and it can
be stored in a 512-bit register for computation during the execution. For eight 381-bit
integers a, b, c, d, e, f, g, h ∈ Fq, the vector set V is defined as:

V = 〈a, b, c, d, e, f, g, h〉 =


[a0, b0, c0, d0, e0, f0, g0, h0]
[a1, b1, c1, d1, e1, f1, g1, h1]
...

[a7, b7, c7, d7, e7, f7, g7, h7]

 = (v0, v1, . . . , v7) (4)

where each vector vi = [ai, bi, ci, di, ei, fi, gi, hi] and a =
∑8
i=1 252·iai for all 0 ≤ ai ≤ 252.

Thus, we can implement the (8 × 1)-way fundamental finite field operations such as
modular addition, subtraction, double, multiplication, square, and Montgomery domain
transformation using AVX-512IFMA.
(8 × 1)-way PADD arithmetic. Subsequently, we implement the (8 × 1)-way PADD
arithmetic over Fq based on the elliptic curve point addition formulas. Also, We implement
G2 arithmetic and utilize the Karatsuba algorithm [KO62] to accelerate the Fq2 field
operations.

4.2 Coordinate System and “Tree-Like” Structure
Accumulating corresponding elliptic curve points into buckets in the Pippenger algorithm
requires calculations of Bl = Pl0 + Pl1 + . . .+ Plj , involving a large number of PADDs.
PADD+ is the main part of accumulation when adding elliptic curve points Pi with Z = 1
into buckets with Z 6= 1 and 11n M is needed in projective coordinates according to the
Table 1.

4Cheng et al.’s work [CFG+21] is based on the CSIDH protocol on CSIDH-512 curve over a finite field
Fq with a 512-bit prime.
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Following the work of Chen et al. [CPD+24], we employed a “Tree-Like” PADD
structure. It means first summing pairs of points both with Z = 1 and then adding these
results pairwise whose Z-coordinate are not 1, and finally adding the value into the bucket
Bl. In this way, PADDs only need 7×

⌈
n
2
⌉

+ 12×
⌈
n
2
⌉

= 9.5nM. Theoretically, utilizing
a “Tree-Like” structure can approximately save 13.6% of computational overhead. Taking
eight-point additions as an example, under projective coordinates, adding eight points
into the bucket Bl one by one requires 11× 8 = 88M. However, applying the “Tree-Like”
structure to point addition as illustrated in Figure 5 only requires 7× 4 + 12× 4 = 76M.

Figure 5: “Tree-Like” structure

This structure echoes perfectly with the previously discussed two distinct engines,
SimdPADDaffand SimdPADDprj, which hierarchically compute PADD in the bucket accu-
mulation phase, thereby our SIMD-accelerated architecture also demonstrates performance
improvements in terms of coordinate systems.

4.3 Performance for AVX Engines
In the single CPU environment 5, our MSM implementation leverages the RELIC cryp-
tographic library [AGM+], a versatile cryptographic meta-toolkit written in C, which
provides comprehensive arithmetic operations over finite fields and point operations on
elliptic curves. Note that our architecture and methods are broadly applicable and can be
integrated with any cryptographic library and SIMD-based operations. For instance, we
selected the pairing-friendly BLS12-381 curve [Sea17], widely used in efficient zk-SNARKs
constructions.

Table 2: Benchmark of IFMA PADDs (in microseconds)

PADD RELIC1 (easy) RELIC2 (asm) IFMA Speedup1 Speedup2

G1

PADD∗ 7.4465 2.9055 1.0733 6.94× 2.71×

PADD+ 9.7062 3.6063 1.3135 7.39× 2.75×

PADD# 10.4719 4.0349 1.4709 7.12× 2.74×

G2

PADD∗ 18.8610 8.0341 2.9279 6.44× 2.74×

PADD+ 22.3596 9.7903 3.6978 6.05× 2.65×

PADD# 24.8143 10.6880 4.3326 5.73× 2.47×

Benchmark of AVX Engines. We choose two implementation modes in the RELIC
library for comparion, the easy mode built on standard C language and the asm mode built
on the -DARITH=x64-asm-6l assembly-optimized arithmetic. Table 2 displays benchmark

5An AMD Ryzen 9 7950X3D 16-Core Processor that supports AVX-512F and AVX-512IFMA instruc-
tions.
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results for eight PADDs, showing the time consumed in G1 and G2 respectively. Our
AVX engines are about 2.7× faster than the asm mode and almost 7.0× faster than the
easy mode. SIMD instructions can speed up parallel processing, but the RELIC’s specific
optimizations for certain elliptic curves reduce the speedup ratio in asm mode.
The Scalability for CPUs without IFMA Compatibility. If a user’s machine lacks
support for AVX-512IFMA and even AVX-512 instruction set, our implementation can
surely be adapted to AVX2. AVX2 is more widely supported compared to AVX-512, with
almost all CPUs released since Haswell (2013) providing AVX2 support. Transitioning
to AVX2 requires additional engineering efforts: in the finite field operation layer and
point addition operation layer, the 8×1 way parallel operation can be modified to a 4×1
way parallel operation, adjusting the level of parallelism from 8 to 4 accordingly. The
upper-layer scheduling mechanism and other optimization methods proposed in this article
still remain reusable.

In the longer term, our approach is not limited to the AVX instruction set; we believe
that it can be extended to any suitable SIMD instructions.

5 Linking to zkSNARK and Applications
In this section, we aim to apply the novel AVX-accelerated architecture for MSM designed
above to zkSNARKs and even achieve specific practical applications. To address the issues
encountered in practical applications, we propose the following optimizations: (1) MSM
support of group G2, (2) points deduplicated by HashMap or transformed to Twisted
Edwards form, (3) “Three-Stage” memory optimization, and (4) dynamic windows for
different scales of points.

5.1 AVX-ZK and Workloads
With the rise of zero-knowledge proof theory, numerous open-source library [SCI17, ZKC22,
ZoK23, BPH+23, ac22] implementations have emerged, bridging the gap between the latest
theoretical advances in zero-knowledge proof technology and their practical engineering
implementation.

Figure 6: Libsnark’s schematic diagram6

6This figure is adapted from the “Overview of the libsnark stack” in the doctoral dissertation of Madars
Virza, the primary contributor to the libsnark codebase at MIT.
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The libsnark library [SCI17] is a C++ code library used to develop applications that
use zk-SNARKs, developed and maintained by the SCIPR Lab project and contributors.
It has played an important role in facilitating and advancing the widespread adoption of
zk-SNARKs technology. In Figure 6, we provide a schematic diagram of its structure. The
dependence relies on the libff, atepairing, and libfqfft libraries for computation. At an
upper layer, many kinds of general-purpose proof systems are supported in the library and
we utilize r1cs_gg_ppzksnark for our implementation, commonly known as the famous
Groth16 protocol.

Libsnark’s finite field arithmetic, point arithmetic, and multi-exponentiation are all
provided by the libff library, which is also developed by SCIPR Lab and its contributors.
The core of the multi-exponentiation component is the computation of MSM, with its
interface located in the scalar_multiplication module. Given that many zk-SNARKs
are based on pairings, which require MSM calculations not only over the finite field
G1 but also over G2, libsnark introduces the concept of pair. It is designed within the
knowledge_commit component and is defined as (g, h) where g ∈ G1 and h ∈ G2.

To better evaluate performance in real-world applications, we assess the overall perfor-
mance of AVX-ZK using multiple real-world workloads. The jsnark library [Ahm21], a
Java library for constructing circuits for preprocessing zk-SNARKs, uses libsnark as its
backend. It provides some circuit examples for cryptographic primitives such as hashes,
block ciphers, key exchange, public key encryption, and signatures. There is an executable
interface to run the libsnark’s algorithms on the circuit, which allows us to run the proof
systems r1cs_gg_ppzksnark. This comprehensive setup allows for an extensive evaluation
of zero-knowledge proof instances using jsnark.

5.2 Duplicate Points into the Same Bucket
Current PADD∗ calculation formulas do not have a strongly unified [ST06] arithmetic,
which means that the formula of PADD cannot be used to calculate PDBL. So, the
error would occur if only two same points are PADDed in L1-AVX. In the implementation
of libsnark, it cannot be guaranteed that there are no identical elliptic curve points in
the running part of the MSM in the proof. If during the running process these two
points happen to be placed in the same bucket, we cannot obtain the correct running
result. Both of the following methods are viable for the problem. However, in our specific
implementation, we choose the first one for convenience.
Deduplicated by HashMap. To address this problem, we choose to use HashMap
[Goe06] to avoid duplicate points appearing. HashMap is a kind of data structure used to
store key-value pairs, in which each key is unique and corresponds to exactly one value,
facilitating rapid data retrieval by mapping keys to values. By using HashMap, we can
achieve consolidation by aggregating the scalar values of identical points. This way not
only allows deduplication with little time overhead but also helps reduce the final scale of
the MSM calculation to some extent.

But not all cases require deduplication. In some proofs, the MSM calculation doesn’t
encounter the situation where the same point is put into the same bucket. You can
determine whether to enable the HashMap deduplication mechanism based on the results
of running once.
Using Twisted Edwards Form. BLS curve families are widely used in zkSNARKs due
to their pairing-friendly properties. Previous works [Xav22, ABC+22, RDQY24, BH23]
have demonstrated the feasibility of converting BLS curves into other curve forms and
coordinate systems. Using these methods, the computational overhead of the elliptic curve
point operations can be reduced, thereby accelerating MSM. Costs of arithmetic in Twisted
Edwards curves with a = −1 in extended coordinates are as Table 1 shows. It is a good
choice to get more efficient PADD operations by transformations onto a Twisted Edwards
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curve with a = −1. The cost of point conversion can be incorporated into the Setup
phase of the proof, not affecting the time required for proof generation. In addition, the
most important reason for using the Twisted Edwards form is its strongly unified point
addition formula, which can fundamentally address the issue of point addition when two
identical points are placed in the same bucket.

5.3 “Three-Stage” Memory Optimization
The original Pippenger algorithm splits the large scalar into smaller scalars and processes
the data column by column. Each column represents a subtask, and during the overall
processing, Pi must be accessed repeatedly. As a result, the points P1, P2, ..., Pn can only
be out of use after the final column is processed.This also means that all points must be
stored in memory until the computation of the last column is completed, and only then
can this memory be released. When the number of points n is small, the issue of memory
usage may be negligible. However, when n is large, it becomes crucial to consider reducing
memory overhead. Taking the BLS12-381 curve as an example, with a base field of 381
bits[Sea17], storing these points would require at least 2 GB of data space, a quantity
obtained through computation. For some personal computers, a 2GB memory footprint is
unacceptable.

Therefore, inspired by the hash function’s implementation[The20, MIR13, Rel22], we
propose a “three-stage” MSM memory optimization method. We have improved it to the
idea of “processing line by line, releasing point by point”. For each Pi, after put into

⌈
λ
s

⌉
sets of buckets, this point will not be used again in the processing of k(i+1), we can release
it after Pi is processed, achieving “use, store, and release immediately”. As a result, the
memory space allocated to the points is greatly reduced.

To achieve the “processing line by line, releasing point by point” process described
above, we use a “three-stage” MSM implementation. That is, the original MSM function
is decomposed into three stages: start, update, and finish. We set P τ as a container for
storing points whose size τ is much smaller than n. i) In the start stage, the

⌈
λ
s

⌉
sets

of buckets are initialized. ii) In the update stage, it carries out points distribution into
buckets points. And values in P τ are replaced with new points sequential selected from
{P1, P2, . . . Pn} in every update. iii) In the finish stage, buckets aggregations are done on
all buckets and MSM result computation is processed to calculate the total result Q.

5.4 Setting up Dynamic Windows
In the section 2.2, we have discussed and calculated the total cost required for the Pippenger
algorithm. Naturally, we define a function F (s) =

⌈
λ
s

⌉
(n+ 2s − 4).

For different scales of computation n, the choice of window size s should also vary. By
calculating the minimum points of the function F (s) on different scales, we can obtain the
optimal s. However, the optimal values observed during the actual execution may differ
from the calculated values. We have recorded all obtained data in the Table 3.

Similarly, the optimal window size for pair-MSM (G1, G2) can be calculated and
obtained, and results are also shown in the Table 3.

Table 3: Optimal window size under different conditions (for MSM and pair-MSM)

Scale MSM pair-MSM Scale MSM pair-MSM
Com. Prac. Com. Prac. Com. Prac. Com. Prac.

215 12 9 12 9 220 17 12 17 12
216 13 10 13 10 221 17 13 17 16
217 13 10 13 10 222 17 15 17 16
218 15 10 15 10 223 17 15 17 16
219 15 11 15 11 224 20 15 20 16
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6 Evaluation
First, we test the performance of the AVX-MSM and compare it to the MSM calculated
using the Pippenger algorithm. Second, we compare the performance of the improved AVX-
ZK with that of libsnark across different data scales. Finally, we evaluate the performance
of AVX-ZK under various real-world workloads. To better demonstrate the impact of SIMD
acceleration in our implementation, we provide the performance results of AVX-MSM
and AVX-ZK under two scenarios: without multi-threading and with multi-threading
enabled(Multi core). All implementations follow the architecture proposed in Section 3.3.
However, due to the limited number of CPU threads in the experimental environment,
only one thread was used for the Loop-Level parallelism implementation. The source
code of this paper is available at https://github.com/JR-account/SimdMSM.

6.1 Overall AVX-MSM Performance

Benchmark of AVX-MSM.We evaluated our AVX-MSM implementation under RELIC’s
x64-asm optimized conditions. The Table 4 below presents the speedup ratios achieved
for the G1 group. The benchmark results for AVX-MSM in BLS12-381 demonstrate
significant performance improvements compared to the Pippenger algorithm, the baseline
implemented by RELIC. This baseline controls variables and can better demonstrate the
acceleration effect of our SIMD framework. In no multi-threading situations, speedups
range from 2.17× to 2.45×, and in multi-threading enable situations, they range from
22.21× to 27.86×. These results underscore the effectiveness of SIMD optimizations for
parallelism.

We implement AVX-MSM of pair(G1, G2) instead of point in G2 group. This is

Table 4: Benchmark of AVX-MSM in BLS12-381 G1 (in seconds)

Size
RELIC [LFG23]

Pip. AVX-MSM Pippenger
(Multi cores)

AVX-MSM
(Multi cores) Constr. AVX-MSM AVX-MSM

(Multi cores)

215 0.39 0.16
(2.44×)

0.040
(9.25×)

0.014
(27.86×) 0.22 0.16

(1.38×)
0.040

(15.71×)

216 0.74 0.31
(2.39×)

0.076
(9.74×)

0.027
(27.40×) 0.43 0.31

(1.39×)
0.076

(15.93×)

217 1.47 0.62
(2.37×)

0.14
(10.50×)

0.053
(27.74×) 0.82 0.62

(1.32×)
0.053

(15.47×)

218 2.69 1.24
(2.17×)

0.28
(9.61×)

0.10
(26.9×) 1.49 1.24

(1.20×)
0.10

(14.90×)

219 5.30 2.36
(2.26×)

0.55
(9.64×)

0.21
(25.24×) 2.83 2.36

(1.20×)
0.21

(13.48×)

220 10.13 4.50
(2.25×)

1.13
(8.96×)

0.43
(23.56×) 5.63 4.50

(1.25×)
0.43

(13.09×)

221 20.01 8.62
(2.32×)

2.28
(8.78×)

0.84
(23.82×) 10.7 8.62

(1.24×)
0.84

(12.74×)

222 39.85 16.55
(2.41×)

4.43
(9.00×)

1.63
(24.45×) - - -

223 80.95 30.03
(2.45×)

8.85
(9.15×)

3.31
(24.46×) - - -

224 146.36 65.41
(2.24×)

18.25
(8.02×)

6.59
(22.21×) - - -

1 “Pip.” is the baseline implemented by RELIC. AVX-MSM is our framework implementation.
2 “Multi cores” indicates multi-threading implementations, while others are not.
3 “Constr.” is the optimal implementation from [LFG23]. When the size reaches 221, the precomputation
table size of G1 becomes 6.5 GB, and further scaling is no longer feasible.

https://github.com/JR-account/SimdMSM
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Table 5: Benchmark of AVX-MSM in BLS12-381 pair (G1, G2) (in seconds)

Size
RELIC [LFG23]

Pip. AVX-MSM Pippenger
(Multi cores)

AVX-MSM
(Multi cores) Constr. AVX-MSM AVX-MSM

(Multi cores)

215 1.31 0.63
(2.08×)

0.12
(10.92×)

0.048
(27.29×) 0.74 0.63

(1.17×)
0.048

(15.42×)

216 2.51 1.21
(2.07×)

0.23
(10.91×)

0.095
(26.42×) 1.48 1.21

(1.22×)
0.095

(15.58×)

217 4.69 2.29
(2.05×)

0.46
(10.20×)

0.18
(26.05×) 2.81 2.29

(1.23×)
0.18

(15.61×)

218 8.60 4.18
(2.06×)

0.93
(9.25×)

0.37
(23.24×) 5.10 4.18

(1.22×)
0.37

(13.78×)

219 16.65 7.79
(2.14×)

1.82
(9.15×)

0.74
(22.50×) 9.66 7.79

(1.24×)
0.74

(13.05×)

220 32.89 15.15
(2.17×)

3.62
(9.09×)

1.36
(24.18×) 19.13 15.15

(1.26×)
1.36

(14.06×)

221 60.35 29.29
(2.06×)

7.41
(8.15×)

2.98
(20.25×) - - -

222 116.38 55.12
(2.11×)

12.23
(9.51×)

5.35
(21.75×) - - -

223 232.89 111.35
(2.09×)

23.24
(10.02×)

10.57
(22.03×) - - -

224 444.10 214.35
(2.07×)

42.96
(10.34×)

19.73
(22.50×) - - -

1 “Constr.” is the optimal implementation from [LFG23]. When the size reaches 220, the precomputation table
size of G2 becomes 6.76 GB, and further scaling is no longer feasible.

because, for real-world zk-SNARK implementations, efficient computation of pairings is
more suitable. The performance improvements achieved by AVX-MSM in BLS12-381
pair over the Pippenger algorithm are between 2.05× and 12.17× in no multi-threading
situations. While in multi-threading enable situations, they range from 20.25× to 27.29×.

Furthermore, to showcase the experimental results better, we compare our work with the
work [LFG23] which is based on state-of-the-art library [bls]. In the no multi-threading case,
our AVX-MSM achieves a speedup of between 1.20× and 1.38× for the G1 group. Since
the work does not currently support thread-level parallelism based on task decomposition,
our AVX-MSM demonstrates a speedup of between 12.74× and 15.71× when using multi-
threading. Additionally, based on the results for the G2 group from their work, we can
obtain the pair(G1, G2) values. The comparison results are shown in the Table 5. As
[LFG23] relies on precomputation with fixed points, its approach becomes impractical for
large-scale computations due to the size of the precomputation tables. For example, for a
size of 221, the precomputation table for G1 is 6.75 GB, while the table for G2 is double.

Overall, AVX-MSM significantly enhances the performance of multi-scalar multiplication
operations, offering substantial speedups across different input sizes. This makes AVX-
MSM a highly efficient and scalable solution for accelerating zk-SNARK computations on
modern CPUs, suitable for practical applications requiring high-performance operations.

6.2 AVX-ZK vs Libsnark
We integrated our AVX-MSM implementation into the libsnark library, naming it AVX-
ZK. Our AVX-ZK implementation primarily targets the r1cs_gg_ppzksnark protocol,
utilizing libsnark as a baseline for comparison. We conducted tests using profiling files
provided by libsnark for benchmarking purposes. The results are shown in the Table 6.
The AVX-ZK is about 16× faster than libsnark. When the computational scale reaches
more than 222, libsnark automatically terminates the current process due to excessive
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runtime. In libsnark, the profiles have specific characteristics because the constraints are
generated under non-random conditions. There are relatively few special cases where
polynomial coefficients are 0 or 1, which results in a higher proportion of MSM computations
throughout the process. Our performance advantage is more noticeable under these test
cases.

Table 6: Performance Comparison between libsnark and AVX-ZK (in seconds)

Size libsnark AVX-ZK AVX-ZK
(Multicores) Size libsnark AVX-ZK AVX-ZK

(Multicores)

215 6.28 1.29
(4.87×)

0.31
(20.26×) 220 151.25 36.18

(4.18×)
11.41

(13.25×)

216 12.00 2.48
(4.84×)

0.61
(19.67×) 221 284.85 71.79

(3.97×)
23.72

(12.01×)

217 22.09 4.81
(4.59×)

1.25
(17.67×) 222 560.91 140.45

(3.99×)
48.64

(11.53×)

218 41.18 9.23
(4.46×)

2.50
(16.47×) 223 - 274.69 97.88

219 83.91 17.66
(4.75×)

5.23
(16.04×) - - - -

6.3 AVX-ZK Workloads Performance
Due to test cases in the libsnark library being specialized, they may not fully represent
real-world applications. Therefore, we selected six different zero-knowledge proof (ZKP)
use cases for testing, and the results are presented in Table 7. Although the vector size
appears large, the actual scale of MSM computations and their proportion in the overall
proof calculation are relatively small. This results in a reduction in speedup compared
to the profiling comparisons with libsnark in the previous subsection. Nevertheless, our
speedup ratios remain between 2.98× and 5.00× in this situation.

Table 7: Performance Comparison of Different Workloads (in seconds)

Application Vector size libsnark AVX-ZK AVX-ZK(Multi cores)

AES 14240 0.60 0.24 (2.50×) 0.12 (5.00×)

SHA-256 25656 0.91 0.36 (2.53×) 0.20 (4.55×)

RSAEnc 93658 3.10 1.40 (2.21×) 0.89 (3.48×)

Merkle-Tree 98902 3.53 1.66 (2.13×) 1.02 (3.46×)

RSASigVer 117666 3.64 1.70 (2.14×) 1.06 (3.43×)

Auction 540878 14.06 7.31 (1.92×) 4.72 (2.98×)

7 Conclusion
In this paper, we proposed a new SIMD-accelerated MSM architecture that can be applied
to accelerate the computation of MSM in various scales, thereby enhancing the performance
of pairing-based ZKPs on CPUs. First, we designed a three-level parallelism making full
use of parallel resources on the CPUs and there are six different SIMD elliptic curve
arithmetic engines to adapt it at the bottom. Our method is in a low cache and would not
incur significant additional memory overhead. Second, we resolved the issue of concurrent
writings to the same bucket in data-level hierarchical parallel computing. We also discussed
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some other methods and the reasons why they are not feasible. Third, we implemented
AVX-MSM and thereby achieved AVX-ZK at the ZKP level based on the libsnark library,
applying our AVX-MSM to practical applications.

Compared to the ordinary Pippenger algorithm implementation, our AVX-MSM
achieves a speedup of approximately 25× in the asm mode of relic library. And our
AVX-ZK implementation achieves over 11.53× (up to 20.26×) speedup on standard bench-
marks of libsnark. This means that our approach can effectively enhance the performance
of zero-knowledge proofs on CPU platforms.
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