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Abstract. PUFs enable physical tamper protection for high-assurance devices without
needing a continuous power supply that is active over the entire lifetime of the device.
Several methods for PUF-based tamper protection have been proposed together with
practical quantization and error correction schemes. In this work we take a step
back from the implementation to analyze theoretical properties and limits. We apply
zero leakage output quantization to existing quantization schemes and minimize the
reconstruction error probability under zero leakage. We apply wiretap coding within
a helper data algorithm to enable a reliable key reconstruction for the legitimate user
while guaranteeing a selectable reconstruction complexity for an attacker, analogously
to the security level for a cryptographic algorithm for the attacker models considered
in this work. We present lower bounds on the achievable key rates depending on
the attacker’s capabilities in the asymptotic and finite blocklength regime to give
fundamental security guarantees even if the attacker gets partial information about
the PUF response and the helper data. Furthermore, we present converse bounds on
the number of PUF cells. Our results show for example that for a practical scenario
one needs at least 459 PUF cells using 3 bit quantization to achieve a security level
of 128 bit.
Keywords: Physical Unclonable Functions · Tamper Protection · Error Correction
· Wiretap Channel · Secret Sharing · Physical Layer Security

1 Introduction
Physical Unclonable Functions (PUFs) evaluate physical properties of devices to obtain
unique identifiers of electronic devices and provide physical roots of trust for cryptographic
keys. Furthermore, PUFs can serve as a foundation for tamper protection technology
that facilitates to validate the physical integrity of an embedded system after its power-
up. All approaches have in common that minuscule manufacturing variations within
physical objects, or mostly electronic components, are evaluated to generate an internal
device-unique output. While there are several works on the assessment of the entropy or
randomness of PUFs [MGS13,WGP18,FWHP23] and the leakage through the published
helper data necessary within the reconstruction phase, e.g. [DGSV15,DGV+16], we are
currently lacking a theoretical model to quantify the security in the light of a physical
attacker who destroys parts of the PUF response to read out the remainder.

Going from silicon PUFs, e.g. SRAM, ring oscillator or arbiter PUF [HYKD14], to
system-level PUFs facilitates to incorporate tamper protection capabilities to protect an
entire embedded device with components that cannot resist advanced physical attacks on
their own, such as processors, FPGAs, or external memories and their communication,
or discrete components that are susceptible e.g. to side-channel attacks. This reduces
the attack surface from several individual vulnerabilities, e.g., against laser or EM fault
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injection, EM or optical side channel analysis, and analysis of digital communication
interfaces between components to the attack resistance of the surrounding barrier. We also
consider it infeasible to perform power side-channels since the attacker can only access
the power supply of the entire printed circuit board and has no direct access to the power
supply of the chip or individual discrete components.

For the remainder of this work, we will refer to the PUF-based tamper protection
foil proposed by Immler et al. [IOK+18, ION+19]. However, the generic results of this
work can be adapted and applied to other PUF types as well. Examples are the coating
PUF [TSS+06a] and the polymer waveguide PUF [VWN+16, GGV17]. The tamper
protection is based on a foil that is wrapped around an entire Printed Circuit Board (PCB),
or a cover that is placed on top and bottom. This foil consists of a mesh of electrodes,
leading to a large number of capacitances that can be measured by a mixed-signal circuit
from within the protected area. It evaluates the capacitive coupling between electrodes
to derive the cryptographic key and to validate the physical integrity of the system, and
performs run-time tamper detection during operation to protect the system.

One of the critical attack vectors, considered during the evaluation of hardware devices
with security boxes [SI23], is that an attacker penetrates the foil with a small needle or
drill and accesses internal signals. If the required drill diameter is sufficiently large, major
changes occur in the capacitance measurements of a significant portion of the foil, leading
to an incorrectly reconstructed PUF response during the reconstruction phase. Therefore,
the secret cannot be uncovered by an attacker, as discussed, e.g., in [GXKF22]. As the
foil’s PUF values may also change over time due to noise, aging, and varying environmental
conditions such as temperature or humidity, an error-correcting code is implemented in
the system to compensate for those effects to ensure that the correct cryptographic key is
derived with a probability > 1− 10−6 or even > 1− 10−9 so that the PUF does not have
significant impact on the reliability of the overall system.

Our goal is to analyze the resulting wiretap channel [Wyn75, CK78] between the
enrollment and reconstruction phase of the legitimate user as well as the reconstruction
phase of the attacker from an information theoretical point of view. We establish lower
bounds on the secrecy capacities of the resulting channels as well as finite blocklength
achievability and converse bounds on the maximal achievable secrecy rate, making our
results relevant in practice as they provide benchmarks for implementations by quantifying
the distance of a practical implementation to the theoretical limit.

1.1 Related Works
For a survey on information and coding theoretic techniques covering enrollment and
reconstruction without tamper protection see [GS20]. We also mention literature in
the context of biometric secrecy as this field is closely related to PUFs. [GİSK19] for
example code constructions for both biometric secrecy systems as well as PUFs are given.
Achievable rate regions of biometric secrecy systems under security and privacy constraints
are presented in [IW09]. Approaches to achieve biometric secrecy using Slepian-Wolf
distributed source coding techniques are presented in [VDRY09,DKM+07].

1.2 Main Results
The main results presented in this work are:

• Information theoretical channel model including zero leakage helper data generation
for physical tampering with PUFs

• Asymptotic results for lower bounds on the channel capacity of the resulting PUF-
channel under different attack scenarios
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• Finite blocklength achievability and converse results on the number of required
capacitances to achieve a predefined security level in two attack scenarios

• Proof that previously used helper data schemes do not achieve required security
levels without leaking information about the secret via the helper data

• Quantitative results that demonstrate that a 128 bit security level is achievable with
1400 PUF cells for 18% and 36% erasure probability for digital and analog attacker,
respectively

• Proof that an existing converse bound on finite blocklength wiretap codes cannot be
tight for all channels

1.3 Outline
Section 2 gives a brief overview over related work. Section 3 introduces the notation
used throughout this work and recaps known results in the field of information theory, in
particular for finite blocklength that are used to proof the main results presented in this
work. Furthermore, helper data algorithms with an emphasis on zero leakage helper data
are recapped and their connection between secret sharing using common randomness is
examined. Section 5 gives some background information on the foil PUF and introduces
the resulting channel model. In Section 6, we obtain results on the secret key capacity
of the HDA for digital and analog attacker. Section 7 investigates secret sharing using
common randomness using one-way communication for finite blocklength. It serves as
a foundation to analyze the HDA performance with respect to the required amount of
capacitive PUF cells for the foil PUF presented in Section 8. In Section 9 we use the
converse result on the necessary amount of PUF cells to show that a given implementation
has to either leak via the helper data or be insecure by other means. Section 10 sums up
the results and states open problems.

2 State of the Art
While some silicon PUFs such as the SRAM or arbiter PUF directly output digital
information, other silicon PUFs, like the Ring-Oscillator or TERO PUF, and in particular
non-silicon PUFs output analog, or finely quantized digital data. They all have in common,
that they undergo a processing chain involving helper data and error correction, until a
cryptographic key is output (see Section 3.4).

2.1 PUF-Based Tamper Protection
In the past, tamper protection was implemented through a continuously powered detection
mechanism, e.g. in tamper-responsive envelopes and covers that wrap or cover the structure
to be protected [IMJFC13,OI18]. Within the protective structure, a physical measure such
as electrical resistance is measured and triggers an alarm as soon as the measured value
exceeds a threshold to erase sensitive information, stored e.g. in battery-backed memory.
While the device is only active during a fraction of the time, the protective measures need
to be active for the entire life-time of the device, after it leaves a trusted manufacturing site.
PUF-based tamper protection promises to increase sensitivity and to ease the handling
during operation of the devices, as the device can be fully powered off. Thus PUFs, can
contribute to an easy-to-handle and future-proof tamper protection technology.

Over the last 20 years, different measures were taken to combine PUFs and tamper
protection. An early type is the coating PUF, where a protective coating is spread over
an IC and evaluated from its inside to detect physical tampering when the coating is
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Figure 1: Sketch of PUF-based envelope [IOK+18] with two conducting electrode layers
in red and blue, and two shielding layers in black

penetrated [SMKT06, TSS+06b]. In addition to electrical measurements, also optical
approaches [EFK+12,VNK+15], mechanical properties [GS22] or propagation behavior of
radio waves [STZP22] were proposed.

In this work, we use PUF-based tamper protection realized by foils and covers, as also
proposed in [IOK+18, Imm19, ION+19,GOFK21] as reference. This scenario is depicted in
Figure 1. The foil is wrapped around a PCB with mounted electronics components to be
protected and consists of two structured electrode layers (blue and red) and two electrical
shielding layers (black). The capacitive coupling between the electrode layers is measured
to obtain the PUF response [OIHS18]. In addition, faster mechanisms for run-time tamper
protection are included.

The capacitance values are subject to measurement noise, temperature and other
environmental effects, as discussed based on measured values, e.g. in [GXKF22]. A broad
range of deterministic effects can be compensated with linear or also higher order reference
points of fits [OIHS18,GXKF22,RFB+23,GİK15], whereas Gaussian measurement noise
remains in all cases. We will focus on this fundamental noise issue using a wiretap
scenario in this work and refer to the compound case for including multiple environmental
conditions [LKP09,BW13].

2.2 Quantization
Analog PUFs evaluated on embedded devices need to quantize the digitized PUF data into
a finite alphabet that is input into the error correcting code (see Section 3.5). Typically,
public helper data that references the distance and direction to the next interval border is
stored to move a measured data point away from decision borders right into the middle
of the quantization interval. So far, work on PUFs typically either uses equiprobable or
equidistant quantization [IHKS16]. As shown in Section 3.6 it is possible though to use
arbitrary input quantization while still generating helper data that is not leaking any
information about the secret (zero-leakage helper data).

Equiprobable Quantization The range of possible output values of the PUF is split into
d intervals with the same probability such that all indices as sampled with the same
probability. This is favorable from a security point of view, as iid PUF values are mapped
into uniform data in the finite alphabet. However, this comes with two downsides:

First, the common helper data generation bringing the expected value during recon-
struction into the center of the interval leaks information about the secret, as the helper
data pointers of different intervals have different distributions [IHKS16]. Later, we will
introduce a method to obtain zero leakage helper data such that this problem is mitigated.
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Second, the decision borders in the center are rather narrow, so that the values in
this intervals are subject to a higher error rate. The wide intervals in the tails of the
Gaussian distribution considered in our model also have a decreased sensitivity for physical
tampering.

Equiprobable quantization can be applied if the requirement for uniformity is more
substantial than the requirement for tamper detection sensitivity [GXKF22].

Equidistant Quantization In contrast, equidistant quantization samples the analog values
by mapping them to intervals of the same size. This has the advantage that additive noise
effects all values in the same way and error probabilities are constant with respect to
the PUF values. Also, only a negligible leakage can be observed [IHKS16] through the
aforementioned helper data pointers. With the later on introduced zero leakage helper
data algorithms, this is less of a factor. As a downside, this comes at the expense of a heavy
bias as the intervals differ in probability. This can be mitigated through variable-length
encoding at the expense of a limited selection of code classes for the later ECC [IHL+18].
As shown in [BDH+10], also higher-dimensional structures can be used for embedding
secret data, which adds more degrees of freedom.

2.3 Error Correction
Aside from the helper data used to perform better output quantization during reconstruction
(denoted by Wn later in Section 3.4) additional helper data W̃ is generated to link the
PUF response to a codeword of an error correcting code. This can be done either by linear
schemes that generate the link through linear dependencies such as syndromes or XORs or
pointers that refer to parts of the PUF response [HKS20].

In any case, an ECC is used to reduce the key error probability e.g. down to 10−6

or 10−9 to generate reliable keys. This can be achieved with standard codes such as
BCH, Reed-Solomon or Convolutional codes [MS77], or newer code classes such as limited
magnitude codes [IU19] or Polar codes [CIW+17,GXKF22].

In addition, wiretap codes can be used either for leakage prevention [HO17] or attack
prevention [GXKF22].

Over the last decades, several schemes have been proposed and implemented to address
the design of the error correcting codes (ECCs) and helper data, see e.g. [DGSV15,HKS20].
In the following, we focus on the generation of input and output quantizers as well as
fundamental theoretical limits on the amount of required PUF cells. Designers can then
benchmark their implementations against the fundamental limits. The construction of a
practical wiretap code and considerations for the leakage of the helper data connecting
the PUF responses and the coding scheme are therefore out of the scope of this work.

3 Preliminaries

3.1 Notation
We denote scalars by lowercase letters and vectors by lowercase bold letters. Matrices are
denoted by uppercase bold letters. We denote the i-th column of the matrix A by ai.

We denote random variables (RVs) by uppercase letters and their realizations by
lowercase letters, i.e. the realization of a RV X is denoted by x. Furthermore, we denote
the probability mass function of a discrete RV X by PX(x), the probability density function
of a continuous RV X by fX(x) and the cumulative distribution by FX(x) in both cases.
We denote the expectation operator by E[·]. If three random variables X,Y, Z form a
Markov chain, i.e. PXY Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y), we write X −◦− Y −◦− Z.
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We denote the Gaussian distribution with mean µ and variance σ2 by N (µ, σ2) and
we write that a RV X is distributed according to a Gaussian by X ∼ N (µ, σ2).

We denote the Gaussian Q-function by

Q(x) :=
∫ ∞
x

1√
2π

exp
(
−z

2

2

)
dz

and the complementary error function by

erfc(x) := 2√
π

∫ ∞
x

exp(−z2) dz .

We define for a functions f(n), g(n) the Landau symbols

f(n) ∈ o(g(n))⇔ lim
n→∞

∣∣∣ f(n)
g(n)

∣∣∣ = 0

and
f(n) ∈ O(g(n))⇔ lim sup

n→∞

∣∣∣ f(n)
g(n)

∣∣∣ <∞ .

We denote sets by caligraphic letters, e.g., a set S and its cardinality by |S|.
To keep the paper self-contained, we provide selected basics in information and coding

theory used in the following sections in Appendix A.

3.2 The Wiretap Channel
In [Wyn75] Wyner introduced a channel model, in the following referred to as the Degraded
Wiretap Channel (DWTC) (see also [BB11]). The channel has one input, in the following
denoted by the random variable A, and two outputs B and E accessed by Bob and Eve,
respectively. This is illustrated in the upper part of Fig. 2. The goal of Alice is to use
this channel to reliably transmit a message m to Bob, i.e. m = m̂ with high probability
while keeping any information about the message secret from an eavesdropper called Eve.
For the degraded case it is obvious that the channel from Alice to Bob has higher channel
capacity compared to the one from Alice to Eve. The joint distribution of the channel
input and its output is given as PABE(a, b, e) = PA(a)PB|A(b|a)PE|B(e|b). The same does
not necessarily hold for the more general wiretap channel (WTC) studied by Csiszar and
Körner in [CK78] and shown in the lower part in Fig. 2. Here, the eavesdropper’s channel
output E is not a degraded version of B rather it is directly generated from A through a
noisy channel, i.e. PABE(a, b, e) = PA(a)PB|A(b|a)PE|A(e|a) in this case.

The next definition is a slightly adapted version of the definition of secrecy codes
in [YSP19].

Definition 1. An (|M|, ε, δ) secrecy coding strategy (also referred to as a wiretap code)
for a (degraded) wiretap channel (A, PB,E|A,B × E) consists of

• a set of possible messages M := {1, . . . , |M|} from which a message M = m is
selected,

• a randomized encoder that generates a codeword A(m) for m ∈M according to a
pdf PA|M=m and

• a decoder Dec : B →M that assigns an estimate M̂ to each received signal B ∈ B.

Encoder and decoder satisfy the average error probability (averaging performed by uniformly
sampling the input message and over the randomness induced by the stochastic encoder)

Pr(Dec(B) 6= M) ≤ ε
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Figure 2: Degraded wiretap channel (top), wiretap channel (bottom)

where forB it holds thatB is distributed according to PB|M (b|m) =
∑
a∈A PB|A(b|a)PA|M (a|m).

We distinguish average secrecy and maximum secrecy in the following way. For average
secrecy with security parameter δ we require that

d(PME , P
unif
M PE) ≤ δ . (1)

where PunifM denotes the uniform distribution over the space of possible messages. In
contrast for maximum secrecy it has to hold that

max
m∈M

d(PE|M=m, QE) ≤ δ , (2)

whereQE is the marginal distribution of E if uniformly distributed messages are transmitted
over the channel. If we make the number of channel uses specific, we call an (|M|, ε, δ)avg
average secrecy code for the channel PBnEn|An an (n, |M|, ε, δ)avg secrecy code. Codes for
maximum secrecy are denoted by (n, |M|, ε, δ)max. In the following we frequently omit
specifying whether we are interested in the average or maximum secrecy setting. The
definitions work analogously for both in those cases and when it is not clear from context
we specify average or maximum secrecy in the index. We define the maximal achievable
secrecy rate by

R∗(n, ε, δ) := max
{

log(|M|)
n

: ∃(n, |M|, ε, δ) secrecy code
}

. (3)

It makes intuitively sense that the security conditions in equations (1) and (2) make it
hard for an attacker to obtain information about the message m. The following Theorem
quantifies this statement for average secrecy.

Theorem 1 ( [YSP16] Thm. 8). Let the output of an arbitrary list decoder L given Eve’s
observation E be denoted by L(E). Let δ be the secrecy parameter of the implemented
secrecy code for the respective wiretap channel. Then the probability that the transmitted
codeword is not in the output list of Eve’s list decoder having listsize L is lower bounded by

PME(M /∈ L(E)) ≥ 1− δ − L

|M|
. (4)
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Figure 3: Secret Sharing using Common Randomness

Definition 2. The secrecy capacity CS of a wiretap channel is defined by

CS := 1
n

lim sup
n→∞

R∗(n, ε, δ) (5)

for arbitrarily small values ε > 0 and δ > 0.

The secrecy capacity for both channels is well known and given in the following
Theorems.
Remark 1. Notice that we did not distinguish the secrecy capacity for average and maximal
secrecy because their value is the same. However for fixed n, ε, δ, the values R∗avg(n, ε, δ)
and R∗max(n, ε, δ) can be different.

Theorem 2 ( [Wyn75]). For the degraded wiretap channel with input A and outputs B
and E for legitimate and eavesdropper, respectively, the secrecy capacity is equal to

CS = max
PA

I(A;B)− I(A;E) . (6)

Theorem 3 ( [CK78]). For the wiretap channel with input A and outputs B and E for
legitimate and eavesdropper, respectively, the secrecy capacity is equal to

CS = max
PV,A

I(V ;B)− I(V ;E) , (7)

where V serves as an auxiliary random variable and it holds that V −◦− A −◦− (B,E).

Remark 2. Notice that in both cases the capacity does not depend on ε and δ. This changes
for the task of determining R∗(n, ε, δ) for finite n. We introduce bounds on R∗avg(n, ε, δ)
and R∗max(n, ε, δ) for finite n later in Section 4.1.

3.3 Secret Sharing using Common Randomness
Secret sharing using common randomness has been investigated by Maurer in [Mau93]
and by Ahlswede and Csiszàr in [AC93]. The problem is graphically illustrated in Fig. 3.
In this section we explain the known results which will later be used in Section 6. In
the following we describe the problem of deriving a secret key that is shared between
two terminals, in the following called Alice and Bob, when the terminals have access to
common randomness and are able to send messages to each other over a public channel.
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The source of common randomness is specified by a joint probability mass function PXY Z .
We denote the respective random variables specifying its outputs by X,Y, Z. This source
is iid sampled n times and we denote the random variables specifying the output of this
process by (Xn, Y n, Zn). The first terminal, in the following denoted by Alice, receives
the sequence Xn = (X1, . . . , Xn), while the second terminal (Bob) gets the sequence
Y n = (Y1, . . . , Yn). The third terminal (Eve), which is an adversary trying to obtain
knowledge about the secret key that Alice and Bob shall agree on, is provided with the
sequence Zn = (Z1, . . . , Zn). The probability mass function PXY Z is publicly known, in
particular by Alice, Bob and Eve. The goal of Alice and Bob is to reliably agree on a secret
key while leaving Eve oblivious about it. To achieve this goal, Alice and Bob send messages
to each other over the public channel that depend on their apriori knowledge of PXY Z and
their respective shares Xn or Y n. Subsequent messages may also depend on previously
received messages over the public channel coming from the other terminal. Eve is able
to eavesdrop those messages but is unable to alter them or to insert additional messages
into the public channel. We denote the i-th message sent from Alice to Bob by Φi and the
i-th message sent from Bob to Alice by Ψi. Furthermore, we define Φi := (Φ1, . . . ,Φi) and
Ψi := (Ψ1, . . . ,Ψi). After Alice and Bob are finished with exchanging messages over the
public channel, say after ` steps, Alice computes a key KA and Bob computes a key KB

that are both within the same keyspace denoted by K. For the case that both keys are
equal we simply denote the key by K.

As for transmitting data securely over a wiretap channel, it is essential for Alice and Bob
to have access to local randomness to randomize the encoding function for the messages
sent over the public channel. Hence, we assume that Alice and Bob have access to local
sources of randomness RA and RB , respectively. In order to generate the messages to be
transmitted over the public channel they make use of those such that it holds that

Φ1 = Φ1(RA, xn), Ψ1 = Ψ1(RB , yn) (8)
Φi = Φi(RA, xn,Ψi−1), Ψi = Ψi(RB , yn,Φi−1) , (9)

where RA and RB are independent from the jointly distributed random variables Xn and
Y n corresponding the source of common randomness.

We next formalize the secret key rate which is the figure of merit that we would like to
maximize for this problem.

Definition 3. A secret key rate R is called achievable if for every ε > 0 and sufficiently
large n there exists a secret key agreement scheme such that

1. Pr(KA 6= KB) < ε

2. I(Zn,Φ`,Ψ`;K) < ε

3. H(K) > R− ε

4. log2(|K|) < H(K) + ε.

We next give some interpretation to the properties that an achievable secret key rate
has according to Definition 3.

The first property basically states that for sufficiently large n the probability that the
key at the Alice terminal is unequal to the key at Bob’s terminal is arbitrarily small. The
second property states that no information can be deduced from the messages shared over
the public channel and the source component Zn about the key K. We recall at this point
that random variables are stochastically independent if and only if their mutual information
is zero and the second property says that we are able to approach this arbitrarily closely.
The third property states that the entropy of K is basically at least R because ε is
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arbitrarily small. The fourth property states that the key is almost uniform over the
keyspace K.

The natural question of finding the maximal achievable secret key rate, in the following
referred to as the secret key capacity as a function of PXY Z has been answered in [AC93]
and [Mau93].

Theorem 4. The secret key capacity C̃S denotes the maximal achievable secret key
rate for a source of common randomness PXY Z and is bounded by

I(X;Y )− I(X;Z) ≤ C̃S ≤ I(X;Y |Z) . (10)

Furthermore, the secret key capacity is achievable even if we only allow a single transmission
over the public channel from Alice to Bob or from Bob to Alice.

Corollary 1 ( [BB11], Corollary 4.1). If X −◦− Y −◦− Z it holds that

C̃S = I(X;Y )− I(X;Z) = I(X;Y |Z) (11)

and hence upper and lower bound in (10) are matching.

Remark 3. Notice that the secret key capacity CS is very similar to the secrecy capacity of
a degraded wiretap channel PXY Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y) (see equation (6))
except for the fact that a maximization over the distribution PX is omitted.

Before we give a proof sketch for the achievability part of Theorem 4 we examine
some special cases for PXY Z . Let us assume that either Zn = Xn or Zn = Y n holds.
In this case the secret key capacity is zero. This is intuitively appealing as Eve is able
to observe all communication over the public channel and one legitimate party has the
same information from the source of common randomness as Eve. On the other hand if
PXY Z(x, y, z) = PXY (x, y)PZ(z), observing Zn gives no information about the shares Xn

or Y n. Hence, Zn provides no useful information to Eve at all which is reflected by the
fact that I(X;Z) = 0 in that case.
Remark 4. In [AC93] it has first been discussed how to perform secret sharing with common
randomness if the eavesdropper only has access to the messages transmitted over the public
channel, i.e. the source was of the form PXY and only later to examine the more general
case (including Z). This is essentially equivalent to the case that Z is independent of X,Y .
In this work, we chose the approach of directly introducing the model in the more general
setting (including Z) as was also done in [Mau93].

Proof sketch. In the following we sketch how the secret key rate given in Theorem 4 can
be achieved using secrecy codes designed for secure data transmission over a (potentially
degraded) wiretap channel. Furthermore, this construction only requires the transmission
of a single block of length n from Alice to Bob over the public channel. We follow the
structure of the proof given in [BB11, Chapter 4.2.1].

Let the secret key be encoded into a block of n symbols over X , labelled by un. Alice
would like to securely communicate the i-th symbol ui ∈ X to Bob. The choice of this
symbol is stochastically independent of the common randomness outputs Xn, Y n, Zn. She
computes ui + xi and sends the result over the public channel, where the addition is taken
mod |X |. Bob receives his i-th dedicated symbol from the source of common randomness
yi and ui + xi from the public channel. Eve receives zi from the common randomness
source and is able to eavesdrop ui + xi. This scenario can be interpreted as a wiretap
channel. The channel’s input is U , while the legitimate user’s channel output is formed by
the tuple (U +X,Y ) and the eavesdropper’s output is formed by (U +X,Z).

Assume that the sequence all possible sequences un are codewords of a wiretap code. It
is possible to construct such a code by sampling the elements of all codewords from a single
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Figure 4: Simplified schematic of a key generation scheme based on a PUF.

distribution PU that can be chosen arbitrarily. According to the standard achievability
proofs for secrecy codes of wiretap channels (see for instance [BB11, Chapter 3.4.1]) From
Theorem 3 we know that a secrecy code for this channel with rate

R∗ := I(U ;Y, U +X)− I(U ;Z,U +X) = H(U |Z,U +X)−H(U |Y, U +X) (12)

is achievable by choosing the auxiliary random variable V = U . In case X −◦− Y −◦− Z it
follows that U −◦− (U +X,Y ) −◦− (U +X,Z) and by Theorem 2 that R∗ is achievable.

For the choice of U being uniformly distributed over X and using properties of the
one-time pad one is able to show that

R∗ = I(X;Y )− I(X;Z) . (13)

Hence, we have constructed a secret sharing scheme using common randomness from the
source PXY Z achieving the rate I(X;Y )− I(X;Z). �

The reason we provide this proof is that the methodology to perform secret sharing
using common randomness using secrecy codes for wiretap channels naturally carries over
to the finite blocklength regime. We come back to this point in Section 7.

3.4 Helper Data Algorithm
In the following we present a widely used method to integrate error correction capabilities
into the generation of a cryptographic key using PUFs. We refer to this methodology as
the helper data algorithm (HDA) [DRS04a]. A block diagram for the helper data algorithm
is shown in Fig. 4.

The PUF response Xn, in this example the content of multiple SRAM cells after power
up, is measured during the manufacturing process of the device, which is referred to as
enrollment. Furthermore, during the enrollment a random number R is sampled from a
True Random Number Generator (TRNG) which is used to select a codeword C at random
from an ECC and the helper data W̃n is computed according to W̃n := C + Xn. This
helper data is published, e.g., in an external storage on the embedded system. Notice that
the amount of SRAM cells corresponds to the length of the code in this case. We remark
that additions and subtractions in this section are usually performed within the finite field
over which the ECC is defined.

The goal of the helper data algorithm is to obtain the PUF response measured during
the enrollment at another time when the PUF is measured again. We call this process
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reconstruction. The PUF measurement during the reconstruction phase is denoted by the
random variable Y n. Using the helper data W̃n we compute C̃ := W̃n − Y n. Since Y n
does not have to be equal Xn even if the same device is used during the reconstruction
phase we have that C̃ = C + En, where En = Xn − Y n denotes the error vector. If En is
of sufficiently small weight, the codeword is correctly decoded. We denote the decoder’s
output by Ĉ. We then estimate the PUF response after applying error correction X̂n by
computing X̂n = W̃n − Ĉ.

The purpose of the helper data algorithm can be abstracted to the fact that it is not
possible to perform coding over the channel from Xn to Y n specified by the probability
mass function PY n|Xn(yn|xn) as those values are the outputs of the PUF measurement
without inherent structure. This channel is a function of the measurement noise and
potential temperature dependence or aging effects. The helper data algorithm enables the
integration of a structured ECC that can be chosen by the designer. This enables error
correction within the reconstruction phase. Notice that the elements of the codeword C
and the first estimate before decoding C̃ are connected by virtually the same channel is
C and Xn as well as C̃ and Y n differ only additively by the helper data W̃n. From the
construction it also becomes obvious that the security level of the helper data scheme is
upper bounded by the code dimension of the ECC in bits as this is simply the brute force
complexity. The length of the code on the other hand determines the required length of
the PUF-response and hence can be directly associated with the hardware complexity of
the PUF, i.e. via the required number of SRAM cells for an SRAM PUF.

To remove any bias from the PUF-response, frequently the generated secret key is
not equal to the PUF-response Xn but corresponds to the hash-value of Xn using a
cryptographically secure hash-function. In general an approximate reconstruction of Xn is
insufficient for key derivation because slight changes at the input of cryptographic functions,
e.g. via the key, typically already lead to substantial changes at the function’s output.

3.5 Helper Data Algorithm for Analog PUFs
In contrast to a PUF outputting digital values like in the SRAM PUF, the output of analog
PUFs cannot be directly fed into the helper data algorithm introduced in Section 3.4.
Therefore, during the enrollment phase the analog PUF output Xn needs to be quantized
by an input quantizer and Sn = Q(Xn). Furthermore, additional helper data is generated
from Xn for the quantization required in the reconstruction phase. We denote this function
by g and the resulting quantization helper data by Wn, in particular Wn = g(Xn). A
block diagram illustrating the additional quantization and helper data generation steps is
given in Fig. 5. Input quantization and helper data generation are performed elementwise.
With slight inaccuracy in notation, we sometimes also write Q(X) for the quantization of
a single PUF value. g(X) is treated the same way. We denote the codomain of Q by Sn
and the codomain of g by Wn. The quantization helper data Wn is published while Sn
forms the key or is the preimage of the key via a cryptographically secure hash function
and hence is kept secret. Like in the discrete case, the ECC is fixed and a random number
R sampled from a TRNG to determine a codeword C. Similar to digital PUFs, the helper
data algorithm computes and publishes W̃n = C + Sn.

During the reconstruction phase, the user measures the PUF again. We denote the
outcome of this measurement by Y n. From the quantization helper data Wn an output
quantizer is derived which is then used to output an estimate S̃n of Sn. The remaining
steps are analogous to the discrete case. The decoder basically decodes the erroneous
codeword C̃ = W̃n − S̃n. Then the decoder outputs Ĉ and Ŝn = W̃n − Ĉ is computed.
The key will be correctly recovered if Sn = Ŝn.

Since the quantization helper data Wn is derived directly from the PUF measurement
during the enrollment phase Xn and so is the secret Sn, it has to be assured that from
the public Wn it is impossible to derive information about Sn. The next section therefore
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Figure 5: Key enrollment and key reconstruction for analog PUFs

deals with establishing quantization helper data that does not leak information about the
secret Sn.

3.6 Zero Leakage Helper Data
Next, we give the definition of zero leakage for helper data algorithms. This is the notion
that we are aiming at for the generation of the quantization helper data in analog PUFs.

Definition 4 ( [dGSdVL16]). A helper data algorithm is defined to have zero leakage
if the PUF response (after quantization) Sn and the quantization helper data Wn are
stochastically independent, i.e.

PSn|Wn(sn|wn) = PSn(sn), ∀sn ∈ Sn, wn ∈ Wn .

As in [dGSdVL16] we use a slightly stricter definition of zero leakage compared to
the more standard definition in [VTO+10] to avoid pathological cases because we have
continuous values for the helper data Wn.

Sufficient and necessary conditions for helper data featuring zero information leakage
about the secret are given in [dGSdVL16]. In this work it was shown that it is possible to
construct a zero leakage helper data scheme using a function g on the PUF response to
generate the helper data scheme, having the following properties:

1. g is strictly monotonous function (and therefore an injective) function from each
quantization interval to the domain of the helper data W.

2. Any other function g∗ generating the helper data cannot lead to a better reconstruc-
tion performance or does not have the zero leakage property.

The main result that we are using is given below:

Theorem 5 (Thm. 4.8 [dGSdVL16]). Let g be monotonously increasing on each quan-
tization interval At, with g(A0) = . . . = g(AN−1) =W, where N denotes the number of
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quantization levels. Let xt and xu be from different intervals with g(xt) = g(xu). Then in
order to satisfy zero leakage the following condition is sufficient and necessary:

FX(xt)− FX(qt)
pt

= FX(xu)− FX(qu)
pu

, (14)

where qt denotes the left border of the interval At and pt denotes the probability that X is
sampled to be in At, i.e. pt = Pr(X ∈ At). Analogous statements hold for qu, Au and pu.

We refer to points xt, xu from different quantization intervals leading to the same helper
data as sibling points. Theorem 5 also leads to a natural way of computing helper data via

w = g(xt,w) := FX(xt,w)− FX(qt)
pt

, (15)

where xt,w denotes the point within the interval At leading to a helper data value of
w. This is not the only optimal way to define the helper data but there is no way that
leads to better performance during reconstruction while keeping the zero leakage property.
Therefore, we take this approach for computing helper data throughout this work.

Lemma 1 ( [SAS17] Lem. 1). The distribution of the helper data defined in equation (15)
is the uniform distribution over the interval [0, 1], i.e.

fW (w) =
{

1 for w ∈ [0, 1]
0 otherwise .

(16)

Note that this construction facilitates to use the previously discussed equiprobable and
equidistant input quantizations into zero leakage helper data algorithms.

In order to obtain the estimate S̃ from the measurement during reconstruction Y the
helper data is used to generate another quantizer. Its interval borders depend on W . For
an equiprobable quantization, meaning that the input quantizer is formed such that S is
uniformly distributed over its range, the construction of the output quantizer is also given
in [dGSdVL16].

The more general case for arbitrary input distributions has been investigated in [SAS17].
The authors present an output quantizer for zero leakage helper data that we are also
using in the following. The computation of the interval borders of this quantizer is given
in Theorem 6. We refer to Remark 6 for a more specific statement on what is meant by
pt−1 6� pt.

Theorem 6 ( [SAS17] Thm. 1). Let the values τ0, . . . , τN denote the interval borders of
the output quantizer used to obtain S̃ from Y and let pt−1 6� pt. Let τ0 = −∞ and τN =∞.
Let g−1

t (w) be the unique value x in quantization interval t such that g(x) = w. Then
choosing τt iteratively starting from following equation (17) gives the best reconstruction
estimate for zero leakage helper data.

τs =
ln
(
pt−1
pt

)
g−1
t (w)− g−1

t−1(w)
σ2
N +

g−1
t−1(w) + g−1

t (w)
2 (17)

Remark 5. Notice that the choice for the output intervals given in Theorem 6 is consistent
with Theorem 5.2 in [dGSdVL16] for uniform S.
Remark 6. If ps � ps−1 holds the symbol s ∈ S may be suboptimal irrespective of the
channel output. This happens because the a-priori probability ps of the symbol s is so
large that for the equality point τs splitting the decision regions between the symbols
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s− 1 and s it holds that τs < τs−1. If this happens the output quantizer has only |S| − 1
symbols and we compute

τ∗ =
ln
(
ps−2
ps

)
g−1
s (w)− g−1

s−1(w)
σ2
N +

g−1
s−1(w) + g−1

s (w)
2 . (18)

In case τ∗ < τs−2 we repeat the procedure. In this case the quantizer has only |S| − 2
symbols.

The computation of the output intervals can either be done during the reconstruction
phase or within the enrolment phase. In the latter case the helper data is not a single
number w ∈ [0, 1) but rather the set of all interval borders τs. This means that one
can trade computational complexity during the reconstruction phase against storage
consumption within the device, where the helper data needs to be stored.
Remark 7. Observe that the reconstruction quantizer depends on the distribution of S.
This distribution in turn depends on the input quantizer and since S̃ depends on the
reconstruction quantizer we have the peculiar case that the conditional pmf P

S̃|S,W in
general depends on the input distribution PS .

3.7 Relation between Secret Sharing with Common Randomness and
PUFs

Recalling the secret sharing problem using common randomness presented in Section 3.3 and
comparing it to the problem of reconstructing the value of a PUF during the reconstruction
phase that has previously been measured throughout the enrollment phase, we observe
that the problems are almost equivalent. This equivalence is outlined in the following.

The PUF responses during enrollment Xn and reconstruction Y n can be interpreted
as n samples from a source of common randomness specified by a joint distribution PXY .
Notice that in this model there is no adversarial output Z for the moment. The helper data
for reconstruction W̃n which is published by the helper data algorithm can be interpreted
as data being sent over the public channel by the terminal having the enrollment data Xn

(Alice in the secret sharing scenario). The reconstruction measurement data Y n (Bob’s
share of the source of common randomness) is then used together with the message W̃n

received from the public channel. For a random code with codewords that are iid sampled
from the uniform distribution over the range of the RV X, the achievability proof sketch
of Theorem 4 shows that the helper data scheme achieves the secret key capacity for the
secret sharing problem using the resulting correlated source emanating from the PUF
reconstruction problem. Notice that it is not possible to perform forward and backward
transmissions over the public channel in this equivalence between secret sharing using
common randomness and the PUF reconstruction problem. In the asymptotic setting it has
been shown that one-way communication suffices to achieve the secret key capacity. In the
finite blocklength regime this is unclear or even suggested not to hold (see Section 3.3). The
construction achieving the secret key rate in Theorem 8 requires two-way communication
over the public channel. Hence, it is unclear whether it is possible to generate a (possibly
different) helper data scheme such that the rate in Equation (28) can be achieved for the
coderate of the ECC. In fact, it is not obvious whether the helper data algorithm is optimal
in maximizing the achievable rate if we restrict ourselves to one-way communication over
the public channel. This question however is out of scope of this work.

4 Finite Blocklength Information Theory
In the previous sections we summarized results that make claims in the asymptotic setting
as n goes to infinity. However, in practice we have to limit ourselves to some finite value for
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the blocklength n. For data transmission over point to point channels, natural questions
to be asked are which rate R can be achieved for a given block length n and fixed block
error probability Pe or which Pe can be achieved for fixed R and n.

4.1 Degraded Wiretap and Wiretap Channels
The finite blocklength behaviour of degraded wiretap and wiretap channels has already
been investigated in [YSP16,YSP19]. In the finite blocklength regime the achievable rates
depend on the concrete values for block error probability of the legitimate user ε and
the security parameter δ. In contrast, similar to DMCs those parameters can be made
arbitrarily small in the asymptotic regime as long as the rate is below the secrecy capacity
(see Section 3.2).

The theorems dealing with the asymptotic behaviour (Theorem 2 and Theorem 3)
merely provide the information that there exists a secrecy code of message cardinality

|M| = 2nCS+o(n) . (19)

CS is only an approximation of R∗(n, ε, δ) and estimating R∗(n, ε, δ) by CS is only
reasonable for very large n. For small and moderate n it is essential to further analyze
the o(n) term in Equation (19). The following theorem established in [YSP19] gives more
precise upper and lower bounds on the exponent in Equation (19). The error term for
these bounds is in the order of O(log(n)/n).
Theorem 7 ( [YSP19] Thm. 13). For a discrete memoryless (degraded or general) wiretap
channel PBE|A with secrecy capacity CS and for ε+ δ < 1 it holds that

R∗max(n, ε, δ) ≥ CS −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log(n)
n

)
(20)

and

R∗avg(n, ε, δ) ≤ CS −
√
Vc
n
Q−1(ε+ δ) +O

(
log(n)
n

)
, (21)

where

V1 :=
∑
a∈A

PA(a)
(∑
b∈B

PB|A(b|a) log2
2

(
PB|A(b|a)
PB(b)

)
−D(PB|A=a||PB)2

)
, (22)

V2 :=
∑
a∈A

PA(a)
(∑
e∈E

PE|A(e|a) log2
2

(
PE|A(e|a)
PE(e)

)
−D(PE|A=a||PE)2

)
, (23)

and

Vc :=
∑
a∈A

PA(a)
( ∑
b∈B,e∈E

PBE|A(b, e|a) log2
(

PBE|A(b, e|a)
PE|A(e|a)PB|E(b|e)

)
(24)

−D(PBE|A=a||PB|EPE|A=a)2

)
.

Q−1 denotes the inverse of Q(x) =
∫∞
x

1√
2π exp

(
− z

2

2

)
dz.

To this point, it is unclear to us whether the construction using wiretap coding is
optimal in terms of maximizing the secret key rate in the finite blocklength regime. To the
best of our knowledge it is even unknown whether it is possible to achieve the secret key
rate in Theorem 8 using one-way communication over the public channel or not. For the
interested reader, we refer to the discussion on the necessity of two-way communication to
achieve the secret key rate determined by Theorem 8 in [HTW16, Section VII].
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4.2 Secret Sharing using Common Randomness
In this section we provide results for secret sharing with common randomness in the finite
blocklength regime. This problem has been studied in [HTW16]. The authors established
the secret key rate up to an error term in the order of O(log(n)/n).

For the finite length setting we use the secret key definition given in [HTW16] which
we present below. Notice that the security condition matches with the one of secrecy codes
for wiretap channels given in Definition 1.

Definition 5. A secret sharing protocol is defined to achieve ε reliability and with average
secrecy parameter δ if the probability that the two legitimate partners Alice and Bob fail
to agree on the same key with probability less than ε and it holds that

d(PK,Φ`,Ψ`,Zn , PunifK PΦ`,Ψ`,Zn) ≤ δ . (25)

where K denotes the secret key, Zn denotes the share of the source of common randomness
that the eavesdropper obtains and Φ`,Ψ` denote the communication over the public
channel. For maximum secrecy the security condition is changed to

max
k∈K

d(PZn|K=k, QZn,Φ`,Ψ`) ≤ δ , (26)

where QZn,Φ`,Ψ` denotes the marginal distribution of (Zn,Φ`,Ψ`) if uniformly distributed
keys are considered. We define the maximal achievable secret key rate with blocklength n
by

R̃∗(n, ε, δ) := max
{

log(|K|)
n

: ∃(n, |K|, ε, δ) secret sharing protocol
}

(27)

and specify by indices whether we mean the average or the maximum secrecy definition.

Theorem 8 ( [HTW16],Thm.15). For every ε, δ > 0 such that ε + δ < 1 and iid
(Xn, Y n, Zn) sampled according to joint pmf PXY Z such that X −◦− Y −◦− Z, the
maximal secret key rate for n, ε, δ is given by

R̃∗avg(n, ε, δ) = CS −
√
V ′c
n
Q−1(ε+ δ) +O

(
log(n)
n

)
, (28)

where

V ′c :=
∑
x∈X

PX(x)
( ∑
y∈Y,z∈Z

PY Z|X(y, z|x) log2
2

(
PY Z|X(y, z|x)

PZ|X(z|x)PY |Z(y|z)

)
(29)

−D(PY Z|X=x||PY |ZPZ|X=x)2

)
.

Examining equation (28), we observe that its structure is similar to the bounds on the
maximal secrecy rate in Theorem 7. The first term is the asymptotic result, i.e. the secret
key capacity defined by the source of common randomness. This value is independent
of n, ε, δ and only depends on PXY Z . Another term that depends on PXY Z via the
dispersion coefficient Vc but also on n, ε, δ is subtracted from this value. Notably, this term
decreases in n with speed 1/

√
n and hence Theorem 8 is consistent with the asymptotic

result presented in Theorem 4. Finally, there is an error term in the order of O(log(n)/n)
that decreases significantly faster than 1/

√
n such that ignoring it approximates reality

reasonably well for moderate values of n.
Remark 8. The secret sharing protocol achieving the maximal secrecy rate R̃∗avg(n, ε, δ)
presented in [HTW16] requires two-way communication over the public channel. This is
in contrast to the achievability proof in the asymptotic setting (Theorem 4) for which
one-way communication suffices.
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This limitation of requiring two-way communication in achievability proof has practical
consequences, in particular in the context of applying the result to Physical Unclonable
Functions as for this purpose a protocol only requiring one-way communication is necessary.

5 PUF-Based Tamper Protection Foil
Going from the pure PUF-based key generation scheme to tamper protection brings addi-
tional requirements for the PUF. The combination of enrollment phase and reconstruction
phase using HDAs as proposed in Section 3.5 for the combination of legitimate user and a
physical attacker is related to secure communication over a discrete memoryless degraded
wiretap channel or a discrete memoryless wiretap channel depending on the chosen attacker
models that are specified in the following.

5.1 Attacker Model
Aside from the standard attack vectors of key generation schemes with analog PUFs,
like helper data leakage, in addition the physical tampering aims at obtaining secret
information, which needs to be prevented by the designer.

Considering all attack vectors, the remaining security of the system needs to exceed
a specified minimum security level such as 120 bit, as currently recommended by the
BSI [BSI24]. In this work, we chose to investigate 128, 192 and 256 Bit security levels as
they are common in many cryptographic applications.

Leakage through Helper Data Since early approaches like the fuzzy commitment or
fuzzy extractor [DRS04b], helper data leakage is a topic to be considered when designing
secure key generation with noisy secrets, and in particular for PUFs [DGSV15] when
imperfections come into play [DGV+16]. For the remainder of the this work, we assume a
random number with full entropy for selecting the codeword and refer to the mentioned
related works to design helper data schemes that avoid leakage through W̃n by the helper
data algorithm. In addition to W̃n, the quantization helper dataWn needs to be considered
for analog PUFs. We therefore apply the zero leakage helper data generation proposed in
Section 3.6 for Wn throughout this work.

Physical Tampering As physical tamper protection aims to withstand attackers being
able to use sophisticated tools, a wide range of attacks needs to be considered [Wei00,
Imm19,GSHO21,SI23], where a special emphasis is put to physical drilling, that affects
only very small areas.

As reference, for the system proposed in [IOK+18], drilling with a conventional drill
bit with diameter > 300µm fully destroys one electrode in both layers, such that 23 out
of 128, or 18% of the capacitance values are destroyed. Attacks during operation can be
detected with the integrated run-time tamper detection measures to bring the system in
a secure state. In contrast, attacks on the powered-off device are more challenging from
a theoretical point of view. For identical layouts, we need to assume that the attacker
knows the position of the destroyed PUF cells within the PUF response, which we model
as erasures in the proposed coding schemes.

A neuralgic point for an attack lies between the measurement circuit and the key
generation, as the attacker can obtain the digitized low-noise values from tapping a single
wire, before the values are interpreted in the embedded key management system and the
attack detection triggers. The attacker can only perform a single measurement of the PUF
in this case because after this measurement the system will notice that the foil has been
attacked and goes into a secure state, eliminating the possibility for further measurements.
In the following, this attacker is referred to as the “digital attacker“ for brevity.
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In another scenario, the attacker performs more advanced analog measurements, i.e.
we assume he affords better measurement equipment. We call this kind of attacker the
“analog attacker“ for short. We make the very conservative assumption the attacker can
measure with infinite precision, i.e. his equipment has infinitely fine quantization steps and
furthermore he can perform an unlimited number of measurements. Due to the unlimited
amount of measurements with uncorrelated measurement noise, the attacker is able to
apply post-processing to effectively eliminate the measurement noise. However, in this
scenario the attacker needs to drill multiple holes to tap multiple analog wires, potentially
with a larger wire diameter instead of only one small hole to probe a digital signal. We
will show in Section 6 that this attack is indeed problematic, especially for larger field
sizes and hence propose to apply countermeasures on the hardware level eliminating the
possibility for an attacker to perform those advanced measurements. A profound reasoning
for the amount of PUF cells being destroyed by this attack is out of scope of this work. It
is reasonable though to assume that a significant extra proportion of the foil needs to be
destroyed compared to the digital attacker to mount such an attack. In our examples, we
used twice the amount of destroyed capacitances compared to the digital attacker.

Within the helper data algorithm the ECC enables recovering the key from an erroneous
PUF measurement as long as the number of errors is sufficiently small. Designers therefore
need to take care that an attacker cannot retrieve information about the secret key using
the redundancy inflicted by the ECC even though the attacker has to destroy a fraction of
the PUF cells to measure the PUF. Investigating fundamental limits of this problem is the
major contribution of this work.

In addition to the possibility of wiretapping internal signals, the cable connections
through the foil that could reveal timing or global power side channels need to be taken
into account. This topic will not be considered in the scope of this work and needs to be
addressed individually when designing the host system.

5.2 Enrollment and Reconstruction Phase for the Foil PUF, Legitimate
User

The PUF considered in this work is established by a foil consisting of electrodes forming
a mesh of capacitances. The purpose of this PUF is twofold. First it is used for storing
a cryptographic key in a secure manner and secondly it shall protect the components
within its inside. An attacker trying to perform a side channel attack is required to
measure parameters related to the implementation and the foil prevents him from accessing
critical hardware. As composition of physical variations, the capacitances can be modelled
as Gaussian random variables [IOK+18]. While the work in [GXKF22] focuses on the
reliability side with a strong focus on the specific implication and its measurements, this
work aims at quantifying the information theoretic security limits of this type of PUF.

The distribution of the differentially evaluated PUF response for a single cell follows
a Gaussian of zero mean and variance σ2

P , i.e. X ∼ N (0, σ2
P ). We assume that the PUF

values for the individual cells to be independently identically distributed (iid). We denote
the output one PUF cell during the enrollment phase by the random variable X. To obtain
the secret S for this cell, the measured data is quantized (see Section 3.5). The generation
of the helper data Wof a PUF is peculiar because not only shall it be of value within the
reconstruction process but have the zero leakage property (Definition 4). Zero-leakage
quantization helper data generation has already been discussed in Section 3.6 and we follow
this approach throughout this work. In Fig. 6 the pdf of a single PUF cell is depicted.
The red dot represents the realization of X. In this example we used 2 bit quantization to
obtain the value of the secret value of the PUF, denoted by S. The dashed lines represent
the borders of the quantizer and the numbers inside the intervals represent the respective
values of S, i.e. in our example S = 3. The location of X within the respective interval is
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Figure 6: Enrollment phase
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Figure 7: Reconstruction phase

then used to derive the helper data W which is later on used to find an estimate for S
during the reconstruction phase.

The PUF response during the reconstruction phase is modelled as the PUF response
during the enrolment phase X perturbed by additive Gaussian noise with variance σ2

N .
We denote this output by the random variable Y = X +N with N ∼ N (0, σ2

N ). During
the reconstruction phase, Y is combined with the helper data W to output an estimate for
S, in the following denoted as S̃. Throughout this work we use σP = 2241 and σN = 129
which is consistent with the results in [GXKF22]. The output quantizer Qout depends
on the quantization helper data W and has been specified in Section 3.6. We denote the
output of this quantizer by S̃.

The conditional distribution of the PUF response during the reconstruction phase for
the example in Fig. 6 is shown in Fig. 7. Notice that the quantization intervals during the
reconstruction phase have been shifted compared to the enrollment phase. This is due to
the utilization of the helper data W . By utilizing the helper data the distance between the
value during the enrollment phase (the red dot) and the relevant quantization boundary
for the error has increased, leading to a lower reconstruction failure probability.

Our next goal is to secure the HDA for the foil PUF against the attack scenarios
mentioned in Section 5.1. Section 3.7 discusses the connection between secret sharing with
common randomness and HDAs for PUFs. However, it has also been pointed out that
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Y n Wn

Qout(Y n,Wn)

S̃n

W̃n

Ŝn
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Figure 8: Key enrollment and key reconstruction for legitimate user, digital and analog
attacker

the secret sharing protocol used to establish Theorem 8 requires two-way communication,
thereby making it unapplicable in the PUF setting. Hence, in the following we investigate
secret sharing using common randomness restricted to one-way communication in the finite
blocklength regime.

6 Secret Key Capacities for the Foil PUF
In this section, we establish the connection between enrollment and reconstruction phase
for the legitimate user combined with the attacker models introduced in Subsection 5.1
and the secret key generation using correlated sources. The enrollment and reconstruction
phase during normal operating conditions as well as for the two mentioned attack scenarios
are depicted in Fig. 8.

We first tackle the problem of determining the maximal code rate of the ECC for a
HDA providing security against the attacks described in Section 5.1. Essentially, this code
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rate is related to the hardware complexity and the security level of the PUF as outlined in
Section 3.4.

Updating Fig. 5 to also include the attacker models discussed in Section 5.1 lead to
the block diagram shown in Fig. 8. Depending on whether we exclude the analog attacker
by preventing the necessary measurements on a hardware level as proposed in Section 5.1
only the variables connected to the decoder for the digital attacker are of concern or also
the parts associated with the analog attacker. To keep the analysis of the model simple,
we take the approach of examining the scenario where only the digital attacker needs to
be considered first. The changes necessary to also integrate the analog measurements of
the PUF then build from there.

We observe that for the reconstruction phase the legitimate user measures Y n and
utilizing the quantization helper data Wn obtains an estimate for Sn referred to as S̃n.
In contrast via the probing the digital measurement line the attacker obtains the same
measurement with additional erasures S̃nd . By a similar argument to the one in Section 3.7
we have that the resulting helper data scheme’s task is to implement a secret sharing
algorithm using a source of common randomness. The source of common randomness is
formed by the joint probability distribution P

S,S̃,S̃d
. In the secret sharing problem, the

first terminal Alice gets access to Sn and wants to agree on a key with Bob who gets S̃n,
while the eavesdropper Eve obtains S̃nd . As described in Section 3.3, Alice and Bob next
exchange messages over a public channel and aim to agree on a secret key in a secure
manner, i.e. in a way such that it is impossible for Eve to obtain information about the
key. Interpreting the HDA as a way to integrate a secret sharing protocol, the information
shared over the public channel are the quantization helper data Wn and the reconstruction
helper data W̃n. Alice’s and Bob’s goal is to agree on a key which is as large as possible,
thereby maximizing the entropy of the key for some arbitrary but fixed n. Results on the
secret key capacity (asymptotic setting as n→∞) have been recapitulated in Section 3.3
(Theorem 4) and applying these results to the HDA scheme in Fig. 8 leads to the result in
Theorem 9.

Definition 6. We consider an HDA with q input quantization levels and an attacker
trying to obtain the secret established during the enrollment process. The key capacity
Cqkey,attacker in this setup is the maximal asymptotic code rate for which a wiretap code
exists such that the block error probability for the legitimate user is arbitrarily small and
the system achieves an arbitrarily high secrecy level as the blocklength n goes to infinity.

Theorem 9. The key capacity Cqkey,dig for the foil PUF and the digital attacker is optimal
in the sense that it enables a code rate for the ECC that is equal to the secret key capacity
of the secret sharing problem with common randomness specified by the source P

S,S̃,S̃d
.

More specifically, the code rate Cqkey,dig is defined by

Cqkey,dig := max
input quantizer

I(S; S̃|W )pd . (30)

Proof. First of all it is obvious that it is impossible to achieve a rate higher than the secret
key capacity of the secret sharing problem using common randomness specified by the
joint distribution P

S,S̃,S̃d
.

For the achievability consider the codewords of the ECC to be sampled randomly
and iid from the uniform distribution over the range of S, denoted by S. The HDA in
Fig. 8 precisely implements the construction outlined in the achievability proof sketch
of Theorem 4. Hence, due to the fact that S̃e is defined to be the output of an erasure
channel having erasure probability pd.

By the proof sketch for the achievability of Theorem 4 and by identifying S ≡ X,
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Y ≡ S̃ and Z ≡ S̃d, we have according to Theorem 4

C̃S = I(X;Y )− I(X;Z) = I(S; S̃|W )− I(S; S̃e|W )
= I(S; S̃|W )− I(S; S̃|W )(1− pd) = I(S; S̃|W )pd . (31)

Furthermore, compared to the secret sharing using common randomness problem introduced
in Section 3.3 we have the additional freedom of choosing the input quantizer. This extra
degree of freedom can be exploited since Equation (31) is valid for any input quantizer
Equation (30) follows, completing the proof. �

In order to compute this capacity the first step is to analyze the relation between S and
S̃ conditioned on the knowledge of the helper data W . The distribution of S follows from
the distribution of the PUF during the enrollment phase, i.e. from the distribution of X,
and from the choice of the input quantizer. It is complicated to perform the maximization
in Theorem 9 because the channel matrix is changing according to the input quantizer as
its choice influences the output quantizer (see Remark 7). The following observation is
helpful though.

Lemma 2. For the channel resulting in the concatenation of enrolment and reconstruction
phase at the legitimate user it holds that

I(S; S̃|W ) = I(X; S̃|W ) (32)

Proof. By using the chain rule of mutual information it holds that

I(X,S; S̃|W ) = I(S; S̃|W ) + I(X; S̃|W,S) (33)
= I(X; S̃|W ) + I(S; S̃|W,X) . (34)

It holds that I(X; S̃|W,S) = 0 and I(S; S̃|W,X) = 0 because (W,S) uniquely determines
X and X determines S and the statement of the Lemma follows. �

Since Lemma 2 shows that we can focus on I(X; S̃|W ) and furthermore

I(X; S̃|W ) = H(S̃|W )−H(S̃|W,X) (35)
= H(S̃|W )−H(S̃|X) , (36)

where the last equality follows because W is a function of X. We observe that the quantity
that we are interested in is the difference between the uncertainty of S̃ given the publicly
available helper data W compared to the uncertainty of S̃ given the private PUF response
during the enrollment phase X.

Next we deal with the additional analog attacker. This attacker not only gets access to
the digitized measurement of the internal circuitry of the PUF after the erasure channel
EC(pd) but also to an analog measurement of the foil PUF passed through another erasure
channel. This channel inflicts an additional fraction of (pa − pd) errors into the positions
that have not yet been erased by the hole necessary for the digital measurement. Hence,
this erasure channel needs to access which cells have been erased by the digital attacker
and this is reflected in the additional input S̃nd . Its only purpose is to declare which cells
have already been erased in this context.

The attacker’s decoder however can utilize the information that S̃nd provides. This
information is only useful for reconstructing the values that have been erased by the
additional erasures because the number of measurements for the analog attacker is unlimited
and hence unerased symbols are perfect reconstructions of the enrollment value Sn.
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Theorem 10. For the key capacity Cqkey,ana of the foil PUF and the analog attacker it
holds that

max
input quantizer

I(S; S̃|W )(1−pa+pd)−H(S)(1−pa) ≤ Cqkey,ana ≤ max
input quantizer

I(S; S̃|W )pd .

(37)

Proof. We first prove the lower bound. Using Theorem 4 we have that

Cqkey ≥ I(S; S̃|W )− I(S; S̃d, S̃a|W ) . (38)

By the definition of mutual information it holds that

I(S; S̃d, S̃a|W ) = H(S)−H(S|S̃d, S̃a,W ) (39)

because H(S|W ) = H(S) due to the zero leakage condition and furthermore we observe
that

H(S|S̃d, S̃a,W ) = H(S|S̃d = 0, S̃a = E,W )P
S̃d

(0)(pa − pd)

+ . . .

+H(S|S̃d = |S|, S̃a = E,W )P
S̃d

(|S|)(pa − pd)

+H(S|S̃d = E, S̃a = E,W ) pd
= H(S|S̃,W )(pa − pd) +H(S)pd . (40)

Plugging these simplifications into the right hand side of (38), we have

H(S)pd −H(S|S̃,W )(1− pa + pd) (41)

which is equivalent to the lower bound in the theorem after some simple algebraic steps
and maximizing over the choice of the input quantizer.

The upper bound follows trivially because the analog attacker is stronger than the
digital attacker. However, we also show that the upper bound cannot be trivially improved
by the well known upper bound

I(S; S̃|S̃d, S̃a,W ) = H(S|S̃d, S̃a,W )−H(S|S̃, S̃d, S̃a,W ) . (42)

The first entropy in Equation (42) has already been simplified within this proof. Hence,
we only need to simplify H(S|S̃, S̃d, S̃a,W ). Observe that

H(S|S̃, S̃d, S̃a,W ) = H(S|S̃, S̃a = E,W )pa = H(S|S̃)pa (43)

and therefore
I(S; S̃|S̃d, S̃a,W ) = I(S; S̃|W )pd . (44)

�

Evaluation of Theorem 9 and Theorem 10 leads to the achievability results presented
in Tables 1 and 2. We assumed that the analog attacker has to destroy twice as much of
the foil as the digital attacker has to. In Table 1 we took the conservative approach of
assuming that the digital attacker destroys 10% of the PUF cells, i.e. pd = 0.1, pa = 0.2.
Table 2 shows the results for pd = 0.18, pa = 0.36, which is the value corresponding to
destroying one electrode in both layers of the foil as discussed in [IOK+18] considering a
hole diameter > 300µm.

In both tables we considered various numbers of quantization levels and input quantizer
strategies. From the proofs of Theorem 9 and Theorem 10 it is easy to see that choosing a
suboptimal input quantizer still gives an achievable lower bound on the secret key rate.
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Table 1: Achievable asymptotic rates for the PUF-channel for weak and strong attackers,
different input quantization alphabets and quantization strategies, erasure probability
pd = 0.1 for the digital attacker and pa = 0.2 for the analog attacker, σP = 2241, σN = 129

quantizer equidist. equidist. equiprob. equiprob. optimized optimized
levels digital analog digital analog digital analog
2 0.1 0.1 0.1 0.1 0.1 0.1
4 0.117 0.117 0.2 0.2 0.2 0.2
8 0.196 0.196 0.298 0.282 0.299 0.294
16 0.291 0.291 0.356 0 0.363 0.327
32 0.376 0.269 0.382 0 0.382 0.311
64 0.389 0 0.398 0 0.398 0
128 0.404 0 0.406 0 0.406 0
256 0.410 0 0.409 0 0.410 0

Table 2: Achievable asymptotic rates for the PUF-channel for weak and strong attackers,
different input quantization alphabets and quantization strategies, erasure probability pd =
0.18 for the digital attacker and pa = 0.36 for the analog attacker, σP = 2241, σN = 129

quantizer equidist. equidist. equiprob. equiprob. optimized optimized
levels digital analog digital analog digital analog
2 0.18 0.18 0.18 0.18 0.18 0.18
4 0.211 0.211 0.36 0.36 0.36 0.36
8 0.353 0.353 0.536 0.524 0.537 0.533
16 0.523 0.523 0.640 0.356 0.654 0.600
32 0.677 0.591 0.687 0 0.688 0.613
64 0.700 0.061 0.716 0 0.716 0.061
128 0.727 0 0.731 0 0.731 0
256 0.738 0 0.737 0 0.738 0



Georg Maringer and Matthias Hiller 629

In this work, we consider equidistant and equiprobable input quantization. Furthermore,
we use an optimization algorithm aiming to find the input quantizer maximizing the
achievable secret key rate according to Theorem 9 and Theorem 10.

The results show that in case we have to cope with the digital attacker that the
equiprobable input quantization performs better than equidistant quantization. For the
analog attacker the opposite is the case as we increase the number of quantization levels.
For a small number of quantization levels equiprobable quantization still performs better.

The reason for that behaviour is that the analog attacker obtains a perfect duplicate of
the PUF cell measured during enrollment in case the respective cell is not erased by the
holes he is required to drill to perform measurements. Especially if the measurement during
the reconstruction by the legitimate user is unreliable, the analog measurements provide
valuable additional information to the analog attacker that the legitimate user does not
have. The input quantization has a substantial effect on the reliability of the measurement
during reconstruction. Once an interval length at the output quantizer (influenced by the
input quantizer) is below a certain threshold a measurement result of this value becomes
unreliable. In this case the additional information provided by the analog measurement
substantially increases due to the insecurity of the reconstruction value for the legitimate
user.

This explains why equidistant input quantization performs better for a larger number of
quantization levels if the analog attacker is considered. For a small amount of quantization
levels the intervals are anyway large enough and the dominant factor is the entropy of the
input, which is obviously maximized for the uniform input distribution achieved by the
equiprobable input quantizer. For the digital attacker we do not have this trade-off and
hence equiprobable quantization always performs better than equidistant quantization.

7 Secret Sharing using One-Way Communication for Fi-
nite Lengths

For this section we stick to the notation used in Section 3.3 that is commonly used in
secret sharing with common randomness. In particular X,Y and Z are not related to the
foil PUF in particular but rather form a general source of randomness via the pmf PXY Z .
After this section X shall again be considered the analog measurement during enrollment
and Y shall again be considered the analog measurement during reconstruction.

Because of this inherent limitation of the construction used in [HTW16], we take the
approach of utilizing the construction in the achievability proof sketch of Theorem 4 also
in the finite blocklength case.
Theorem 11. For the secret key rate with maximum secrecy δ and average error probability
ε it holds that

R̃∗max(n, ε, δ) ≥ C̃S −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log(n)
n

)
, (45)

where

V1 =
∑
x∈X
y∈Y

PXY (x, y) log2
2

(
PXY (x, y)

1
|X |PY (y)

)
−D

(
PXY ||PunifX PY

)2
(46)

and

V2 =
∑
x∈X
z∈Z

PXZ(x, z) log2
2

(
PXZ(x, z)

1
|X |PZ(z)

)
−D

(
PXZ ||PunifX PZ

)2
(47)

with PunifX denoting the uniform distribution over the input alphabet X . This rate can be
achieved using one-way communication over the public channel.
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Proof. As in the achievability proof sketch for Theorem 4, we use a secrecy codebook
for the degraded wiretap channel sampled according to a distribution PU , where in this
particular case we define PU to be uniform over the alphabet X . We mask the codeword
symbolwise by computing ui + xi using the common randomness provided by the source
PXY Z and send the result over the public channel to Bob. Again the artificially created
wiretap channel with input U and outputs (U + X,Y ) and (U + X,Z) can be used to
show achievability results for secret sharing using common randomness, this time in the
finite blocklength regime. To compute the achievable secret key rates we apply Theorem 7.
Notice that the secrecy definitions for (degraded) wiretap channels and secret sharing
using common randomness match each other. Hence, the secrecy condition of the secrecy
code implies the secrecy definition for secret sharing using common randomness.

For the first channel dispersion term V1 the legitimate user channel from U to (U+X,Y )
is relevant. Hence, we have

V1 =
∑
u∈X

PU (u)
(∑
x̃∈X
y∈Y

PU⊕X,Y |U (x̃, y|u) log2
2

(
PU⊕X,Y |U (x̃, y|u)
PU⊕X,Y (x̃, y)

)

−D
(
PU⊕X,Y |U=u||PU⊕X,Y

)2)
. (48)

Next we analyze the terms PU⊕X,Y |U (x̃, y|u) and PU⊕X,Y (x̃, y). We have

PU⊕X,Y |U (x̃, y|u) = PU⊕X|U (x̃|u)PY |U⊕X,U (y|x̃, u) = PX(x̃− u)PY |X(y|x̃− u) (49)

because U is uniformly distributed over X and independent of X,Y .
Furthermore, it holds that

PU⊕X,Y (x̃, y) = PU⊕X(x̃)PY |U⊕X(y|x̃) = 1
|X |

PY (y) (50)

again because U is uniformly distributed over X and independent of X,Y . Notice that
U⊕X is independent of Y even though X and Y may not be independent. This is basically
because X is encrypted by a one-time pad using U as its key.

Equation (46) follows because the sum in the bracket goes over the entire alphabet sets
X and Y. Notice that the sums do not depend on the choice of U in the outer sum. The
same holds for the sums defining the divergence term.

An analogous argument holds for V2 in Equation (47). �

Theorem 12. Let us assume that we use the same communication protocol as in the proof
of Theorem 11. In this case for the secret key rate with average secrecy δ and average error
proabability ε it holds that

R̃∗avg ≤ C̃S −
√
Vc
n
Q−1(ε+ δ) +O

(
log(n)
n

)
, (51)

where

Vc =
∑
x∈X
y∈Y
z∈Z

PXY Z(x, y, z) log2
2

(
PXY Z(x, y, z)

PXZ(x, z)PY |Z(y|z)

)
−D(PXY Z ||PY |ZPXZ)2 . (52)

This upper bound holds in particular for the secret sharing problem using only one-way
communication over the public channel.
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Proof. As mentioned in the theorem, our goal is again to use a wiretap code for the channel
with uniformly sampled input U and with outputs (U +X,Y ) and (U +X,Z). Hence, an
upper bound on the secrecy rate for a wiretap code of this channel is also an upper bound
on the achievable secret key rate of the communication protocol for the secret sharing
problem.

Using the upper bound for wiretap codes in Theorem 7 it holds that

Vc =
∑
u∈X

PU (u)
(∑
x̃∈X
y∈Y
z∈Z

PU⊕X,Y,Z|U (x̃, y, z|u) log2
2

(
PU⊕X,Y,Z|U (x̃, y, z|u)

PU⊕X,Z|U (x̃, z|u)PU⊕X,Y |U⊕X,Z(x̃, y|x̃, z)

)

−D(PU⊕X,Y,Z|U=u||PU⊕X,Y |U⊕X,ZPU⊕X,Z|U=u)2

)
. (53)

To simplify Equation (53) we observe

PU⊕X,Y,Z|U (x̃, y, z|u) = PU⊕X|U (x̃|u)PY |U⊕X,U (y|x̃, u)PZ|Y,U⊕X,U (z|y, x̃, u)
= PX(x̃− u)PY |X(y|x̃− u)PZ|Y,X(z|y, x̃− u) , (54)

PU⊕X,Z|U (x̃, z|u) = PU⊕X|U (x̃|u)PZ|U⊕X,U (z|x̃, u) = PX(x̃− u)PZ|X(z|x̃− u) (55)

and

PU⊕X,Y |U⊕X,Z(x̃, y|x̃, z) = PY |Z(y|z) . (56)

The basic idea to show all of these simplifications is to use the facts that U is uniformly
distributed over X and independent of X,Y, Z and that U ⊕X is independent of Y and Z
because X is encrypted by a one-time pad using the uniformly distributed U as a key.

As in the proof of Theorem 11 the inner sum in Equation (53) goes over the entire
alphabet sets X ,Y and Z. Hence, the sums do not depend on the specific value of U since
it only leads to an index shift within the sum. The same argument holds for the divergence
term. �

Corollary 2. Let us consider a source of common randomness following a joint pmf
PXY Z for which it holds that X −◦− Y −◦− Z. Then it holds that the upper bound on
the maximal secrecy rate for wiretap codes in Theorem 7 is not tight for the degraded
wiretap channel formed by the uniformly sampled input U (over X ), legitimate user output
(U ⊕X,Y ) and eavesdropper output (U ⊕X,Z).

Proof. As already emphasized in Remark 8 the communication protocol over the public
channel achieving the secret key rate in Theorem 8 requires two-way communication over
the public channel while the construction of the upper bound in Theorem 12 only requires
one-way communication. Hence, in order to prove the corollary, it suffices to show that
the upper bound in Theorem 12 exceeds the maximal secret key rate in Theorem 8. We
will show in the following that this indeed holds.

The difference between the rates in Theorems 12 and 8 lies in the channel dispersion
terms Vc and V ′c , respectively.

Notice that the sums involving the log2
2 terms are equivalent. Hence, we focus on the
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divergence terms in both equations. We have

D(PXY Z ||PY |ZPXZ)2 =


∑
x∈X
y∈Y
z∈Z

PXY Z(x, y, z) log2

(
PXY Z(x, y, z)

PY |Z(y|z)PXZ(x, z)

)
2

=

∑
x∈X

PX(x)
∑
y∈Y
z∈Z

PY Z|X(y, z|x) log2

(
PY Z|X(y, z|x)

PY |Z(y|z)PZ|X(z|x)

)
2

(57)

and ∑
x∈X

PX(x)D(PY Z|X=x||PY |ZPZ|X=x)2

=
∑
x∈X

PX(x)

∑
y∈Y
z∈Z

PY Z|X(y, z|x) log2(
PY Z|X(y, z|x)

PY |Z(y|z)PZ|X(z|x) )


2

. (58)

Because f(x) = x2 is a strictly convex function we have that

D(PXY Z ||PY |ZPXZ)2 >
∑
x∈X

PX(x)D(PY Z|X=x||PY |ZPZ|X=x)2 (59)

and hence the statement follows. �

Remark 9. Corollary 2 shows for sources of common randomness PXY Z for which X −◦−
Y −◦− Z that the upper bound obtained in Theorem 12 is strictly larger than the rate
obtained in Theorem 8. The secret key rate of Theorem 8 also provides an upper bound
on the secret key rate for protocols with one-way communication. Notice though that
Theorem 8 requires the random variables X,Y, Z to be connected via a Markov chain while
for Theorem 12 can also be applied if this is not the case.

Equipped with the knowledge of this section we next tackle the problem of securing
the HDA against the attack scenarios mentioned in Section 5.1 for finite lengths.

8 Achievability and Converse Bounds for Finite Lengths
The results presented in the previous section are for the asymptotic setting in the sense
that they hold if the number of capacitive cells in the PUF goes to infinity and the fraction
of the erasures for the attacker are determined by the erasure channel parameters pd and
pa for the digital and analog attacker model. Of course, as a first order approximation one
could compute the key capacity Cqkey and estimate the dimension of the secrecy code for
the resulting (degraded) wiretap channel by Cqkeyn. As for the channel models discussed in
Section 4 to estimate the code dimension in that way is highly inaccurate if the blocklength
is of small to moderate size. In general the achievable code dimension is of significantly
smaller size. We note that the erasure channel assumption is only an approximation of the
reality since for our attacker model the number of erasures is assumed to be constant and
equal to pdn or pan for the digital and the analog attacker model, respectively. Nevertheless,
we consider the results obtaining from this to be rather accurate because these values are
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equal to the expectation for the erasure channels. Notice here that erasures in the digital
attacker model imply erasures in the analog attacker model. The erasures for the analog
attacker are then added on top.

Using Theorem 11 to estimate the achievable code rate leads to a much more precise
estimate for small to moderate blocklengths. Similarly, applying Theorem 12 is much more
precise to estimate a converse result on the secret key rate for the HDA. However, using
Theorem 8 enables us to find an even tighter converse in case we only need to protect the
design against the digital attacker.

The following observation is helpful and used implicitly throughout this section. Em-
pirically, we found that I(S; S̃|W ) ≈ I(S; S̃). Basically we observed no difference between
these quantities even though we were not able to formally prove this statement. Notice
that this does not mean that the helper data has not been utilized on the right hand
side of the equation. Rather it means that the channel matrix on the right hand side
is constructed by averaging over all possible values of W rather than constructing the
channel matrix for each realization w, computing I(S; S̃|W = w) and then averaging with
respect to fW (w). This effect is desirable as it shows that it is sufficient to construct
a single codebook independent of the helper data W , rather than constructing different
codebooks for different values of W . This behaviour makes perfect sense considering that
S̃ is an approximation of S and W is independent of S due to the zero leakage condition
(see Section 3.6).

The potential inaccuracy by assuming I(S; S̃) = I(S; S̃|W ) only induces a rate penalty
for the scheme. In terms of security this is not a problem as W is still perfectly utilized
and the codebook is chosen by the legitimate users. Furthermore, it makes the application
of Theorem 7 significantly easier.

In the following, we are investigating which finite rates can be achieved by HDAs with
different parameters for both attacker models. We are in particular interested in this rate
as the code dimension in the HDA has to be at least as large as the targeted security level.
A lower bound on the code rate (which also depends on the blocklength for finite n) leads
to an upper bound on the required amount of capacitive cells while a lower bound can be
used to prove impossibility results, i.e. it enables to show that a certain amount of cells is
absolutely required for target values in terms of reliability and security of the PUF.

As in Section 6 we first consider the HDA scheme only covering the digital attacker.

8.1 Digital Attacker

Theorem 13. The maximal achievable rate R̃key,digmax (n, ε, δ) for the HDA achieving a
maximum secrecy level δ against the digital attacker described in Section 5.1 with error
probability ε during regular device operation is lower bounded by

R̃key,digmax (n, ε, δ) ≥ Rqasymp,dig −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log(n)
n

)
, (60)

where

Rqasymp,dig := I(S; S̃)pd , (61)

V1 =
∑
s∈S
s̃∈S

P
S,S̃

(s, s̃) log2
2

(
P
S,S̃

(s, s̃)
1
|S|PS̃(s̃)

)
−D(P

S,S̃
||PunifS P

S̃
)2 (62)



634 Information Theoretic Analysis of PUF-Based Tamper Protection

and

V2 =
∑
s∈S
s̃∈S

P
S,S̃

(s, s̃)(1− pd) log2
2

(
P
S,S̃

(s, s̃)
1
|S|PS̃(s̃)

)
+
∑
s∈S

PS(s)pd log2
2

(
PS(s)

1
|S|

)

−
[
(1− pd)D

(
P
S,S̃
||PunifS P

S̃

)
+ pdD

(
PS ||PunifS

)]2
. (63)

Proof. The statement follows from Theorem 11 by setting S ≡ X, S̃ ≡ Y and S̃d ≡ Z. V1
is directly obtained by plugging in the respective random variables. For the computation
of V2 we note that the probability that P

S̃d|S
(E|s) = pd irrespective of s. In case no

erasure occurs it holds that P
S̃d|S

(s̃|s) = P
S̃|S(s̃|s)(1− pd). The rest follows easily from

the definition of V2 in Theorem 11. �

Theorem 14. The secret key rate for a source of common randomness with distribution
P
S,S̃,S̃d

is

R̃∗avg(n, ε, δ) = CS −
√
V ′c
n
Q−1(ε+ δ) +O

(
log(n)
n

)
, (64)

where

V ′c =
∑
s∈S

PS(s)
∑
s̃∈S

P
S̃|S(s̃|s)pd log2

2

(
P
S̃|S(s̃|s)
P
S̃

(s̃)

)
−
∑
s∈S

PS(s)p2
dD
(
P
S̃|S=s||PS̃

)2
. (65)

Furthermore, it holds that

R̃∗avg(n, ε, δ) ≥ R̃keyavg(n, ε, δ) , (66)

where R̃qavg,dig(n, ε, δ) denotes the maximal achievable rate for the HDA achieving an
average security level δ against the digital attacker

Proof. The statement follows from Theorem 8 by setting S ≡ X, S̃ ≡ Y and S̃d ≡ Z.
Notice that S, S̃, S̃d form the Markov chain S −◦− S̃ −◦− S̃d which is necessary for
Theorem 8 to be applicable.

By the definition of S̃d we have that S̃d is either equal to S̃ or the erasure event E. We
have that

P
S,S̃,S̃d

(s, s̃, s̃) = PS(s)P
S̃|S(s̃|s)(1− pd)

P
S,S̃,S̃d

(s, s̃, E) = PS(s)P
S̃|S(s̃|s)pd. (67)

Furthermore, it holds that P
S̃|S̃d

(s̃|s̃) = 1 and P
S̃|S̃d

(s̃|E) = P
S̃

(s̃).
Using these statements and applying them to Theorem 8 we observe that all terms for

which S̃d 6= E go to zero.
Equation (65) follows then by considering the remaining terms for which S̃d = E. �

By Remark 9 we know that the upper bound given in Theorem 14 is tighter than
applying Theorem 12.

Using Theorem 13 and Theorem 14 we obtain the achievability and converse results
presented in Tables 3, 4, 5 and 6. When we speak of a λ Bit security level we mean that
the security parameter δ satisfies δ ≤ 2−λ.
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Table 3: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for pd = 0.1, PUF reliability ε = 10−6 and security levels 128, 192
and 256 bit, digital attacker, equiprobable input quantization, σP = 2241, σN = 129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 3645 1902 5499 2655 7354 3391
4 2664 1117 4025 1516 5386 1902
8 3178 850 4635 1128 6072 1398
16 5502 779 7768 1019 9977 1250
32 5390 744 7609 970 9773 1187
64 5509 726 7768 943 9968 1152

Table 4: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for pd = 0.18, PUF reliability ε = 10−6 and security levels 128, 192
and 256 bit, digital attacker, equiprobable input quantization, σP = 2241, σN = 129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 1938 1038 2923 1454 3909 1860
4 1399 606 2113 825 2828 1038
8 1508 459 2216 612 2916 760
16 2194 420 3128 552 4042 680
32 2150 401 3064 525 3959 644
64 2179 390 3102 510 4004 625

Table 5: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for p = 0.1, PUF reliability ε = 10−9 and security levels 128, 192 and
256 bit, digital attacker, equiprobable input quantization, σP = 2241, σN = 129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 3645 2106 5499 2887 7354 3647
4 2665 1286 4026 1703 5388 2106
8 3345 1006 4834 1300 6299 1582
16 6050 940 8414 1194 10705 1437
32 5927 903 8243 1142 10488 1370
64 6068 884 8427 1114 10712 1335

Table 6: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for p = 0.18, PUF reliability ε = 10−9 and security levels 128, 192
and 256 bit, digital attacker, equiprobable input quantization, σP = 2241, σN = 129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 1938 1145 2923 1575 3909 1994
4 1400 693 2114 923 2828 1145
8 1571 539 2291 701 3002 856
16 2382 504 3350 643 4293 777
32 2334 483 3282 614 4205 740
64 2370 472 3327 599 4259 720

The results show that different amounts of input quantization intervals can significantly
change the achievable rates for the foil PUF. Notice that for the achievability bounds,
increasing the amount of quantization intervals does not necessarily decrease the required
number of PUF cells. 2 Bit quantization is optimal from that perspective, e.g. for the
setting examined in Table 3 the results show that 2664 PUF cells suffice for a security level
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of 128 Bit. The converse bounds decrease with an increasing the amount of quantization
intervals though. From the tables we observe that an increased demand in PUF reliability
only has a small influence on the required number of cells, whereas the erasure probability
has a much larger impact. We also observe that higher security levels require more PUF
cells as was to be expected.

8.2 Analog Attacker
In this section we basically perform a similar analysis for the analog attacker as we did for
the digital attacker.

Theorem 15. The maximal achievable rate R̃key,anamax (n, ε, δ) for the HDA achieving a
maximum secrecy level δ against the analog attacker described in Section 5.1 with error
probability ε during regular device operation is lower bounded by

R̃key,anamax (n, ε, δ) ≥ Rq,lowerasymp,ana −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log(n)
n

)
, (68)

where
Rq,lowerasymp,ana := I(S; S̃|W )(1− pa + pd)−H(S)(1− pa) , (69)

V1 =
∑
s∈S
s̃∈S

P
S,S̃

(s, s̃) log2
2

(
P
S,S̃

(s, s̃)
1
|S|PS̃(s̃)

)
−D(P

S,S̃
||PunifS P

S̃
)2 (70)

and

V2 =pd
∑
s∈S

PS(s) log2
2

(
PS(s)

1
|S|

)
+ (pa − pd)

∑
s∈S
s̃∈S

P
S,S̃

(s, s̃) log2
2

(
PS(s)P

S̃|S(s̃|s)
1
|S|PS̃(s̃)

)

+ (1− pa) log2
2(|S|)−

[
log2(|S|) + I(S; S̃)(pa − pd)− paH(S)

]2
(71)

Proof. To prove the statement we use Theorem 11 and set S ≡ X, S̃ ≡ Y and (S̃d, S̃a) ≡ Z.
The channel for the legitimate user does not change compared to the digital attacker.
Hence, the dispersion term V1 does not change compared to Theorem 13.

Therefore, we only need to provide a proof for V2. For S̃d 6= E and S̃a 6= E, we have
that

P
S,S̃d,S̃a

(s, s̃, s) = P
S,S̃

(s, s̃)(1− pa)

P
S̃d,S̃a

(s̃, s) = PS(s)P
S̃|S(s̃|s)(1− pa) . (72)

Furthermore, for S̃d = E and S̃a = E

P
S,S̃d,S̃a

(s, E,E) = PS(s)pd
P
S̃d,S̃a

(E,E) = pd (73)

and for S̃d 6= E and S̃a = E

P
S,S̃d,S̃a

(s, s̃, E) = PS(s)P
S̃|S(s̃|s)(pa − pd)

P
S̃d,S̃a

(s̃, E) = P
S̃

(s̃)(pa − pd) (74)
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Using these identities and Theorem 11 we obtain

V2 =pd
∑
s∈S

PS(s) log2
2

(
PS(s)

1
|S|

)
+ (pa − pd)

∑
s∈S
s̃∈S

P
S,S̃

(s, s̃) log2
2

(
PS(s)P

S̃|S(s̃|s)
1
|S|PS̃(s̃)

)

+ (1− pa) log2
2(|S|)−

[
log2(|S|) + I(S; S̃)(pa − pd)− paH(S)

]2
(75)

after some elementary algebraic steps. �

Theorem 16. The maximal achievable rate R̃key,anaavg (n, ε, δ) for the HDA achieving a
average secrecy level δ against the analog attacker described in Section 5.1 with error
probability ε during regular device operation is upper bounded by

R̃key,anaavg (n, ε, δ) ≤ Rq,upperasymp,ana −
√
Vc
n
Q−1(ε+ δ) +O

(
log(n)
n

)
(76)

with
Rq,upperasymp,ana := I(S; S̃|W )pd (77)

and

Vc = pd
∑
s∈S
s̃∈S

P
S,S̃

(s, s̃) log2
2

(
P
S̃|S(s̃|s)
P
S̃

(s̃)

)
− p2

dI(S; S̃)2 . (78)

Proof. To prove the statement we use Theorem 12 and set S ≡ X, S̃ ≡ Y and (S̃d, S̃a) ≡ Z.
For S̃d 6= E and S̃a 6= E we have that

P
S,S̃,S̃d,S̃a

(s, s̃, s̃, s) = P
S,S̃

(s, s̃)(1− pa)

P
S,S̃d,S̃a

(s, s̃, s) = PS(s)P
S̃|S(s̃|s)(1− pa)

P
S̃|S̃d,S̃a

(s̃|s̃, s) = 1 , (79)

for S̃d = E and S̃a = E we have that

P
S,S̃,S̃d,S̃a

(s, s̃, E,E) = P
S,S̃

(s, s̃)pd
P
S,S̃d,S̃a

(s, E,E) = PS(s)pd
P
S̃|S̃d,S̃a

(s̃|E,E) = P
S̃

(s̃) (80)

and for S̃d 6= E and S̃a = E it holds that

P
S,S̃,S̃d,S̃a

(s, s̃, s̃, E) = PS(s)P
S̃|S(s̃|s)(pa − pd)

P
S,S̃d,S̃a

(s, s̃, s) = PS(s)pd
P
S̃|S̃d,S̃a

(s̃|s̃, s) = P
S̃

(s̃) (81)

Using Theorem 12 and the identities outlined above directly gives the desired result after
some elementary steps. �

Remark 10. Notice that it is to be assumed that the converse bound is of poor quality as
the analog erasure probability pa has no influence on the bound. The approach taken for
the digital attacker to use Theorem 8 to find an upper bound on the maximal rate of the
HDA cannot be done for the analog attacker in a straightforward manner. The reason is
that Theorem 8 is only applicable if S, S̃ and (S̃d, S̃a) form a Markov chain, which is not
the case.
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Table 7: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for pd = 0.18 and pa = 0.36, PUF reliability ε = 10−6 and security
levels 128, 192 and 256 bit, analog attacker, equiprobable quantization, σP = 2241, σN =
129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 1938 902 2923 1295 3909 1683
4 1399 417 2113 607 2828 795
8 1511 239 2219 358 2918 478
16 5983 201 8470 301 10897 401
32 - 187 - 280 - 373
64 - 179 - 269 - 358

Table 8: Achievability (ach.) and converse (conv.) results on the number of necessary
capacitive PUF cells for p = 0.18 and pa = 0.36, PUF reliability ε = 10−6 and security
levels 128, 192 and 256 bit, analog attacker, equidistant quantization, σP = 2241, σN = 129

quantizer ach.128b conv.128b ach.192b conv.192b ach.256b conv.256b
2 1938 902 2923 1295 3909 1683
4 2305 740 3482 1070 4659 1396
8 1679 363 2537 545 3397 726
16 1355 245 2044 367 2734 490
32 2184 190 3141 284 4081 379
64 - 183 - 275 - 366

The results for applying Theorem 15 and Theorem 16 to the HDA in the analog
attacker scenario are presented in Table 7 and Table 8. Empty spots in the tables signal
that the amount of required PUF cells is above 20000 and the respective parameter sets
therefore have been considered impractical for implementations due to better alternatives.
Achievability as well as converse results on the required number of PUF cells are given.
Comparing the achievability results to the results for the digital attacker, we observe that
for a small amount of quantization levels are almost identical. Even though we cannot say
the same for the converse results this is an interesting observation. Our results suggest
that it is better to use coarse input quantizers rather than fine ones. Furthermore, for
a very low number of quantization intervals equiprobable quantization performs better
than equidistant one. We observe that 4 quantization levels with equiprobable input
quantization give the best achievability bounds for all security levels in this case. As
equiprobable quantization has the benefit of leaking no information about the secret via the
reconstruction helper data W̃n (do not confuse this with the quantization helper data Wn)
this is particularly interesting. Aside from requiring less PUF cells from an achievability
bound perspective quantizers with fewer levels are cheaper and easier to build. Also notice
that the output quantizer levels need to be adjusted according to the helper data. In this
respect this observation becomes even more important than in the enrollment phase.

9 Applying Converse Results in Security Analysis
In previous wiretap work [GXKF22], the complexity of the attacker has been estimated
by Hatt = −

∑ns

i ps,i log2(ps,i), where ns is the dimension of the code and ps,i denotes
the symbol error rate of an attack on the information symbols of the polar code. For the
parameters in the paper this leads to a claimed attack complexity of 100 bit. However,
going to the physical channel, only npd symbols are destroyed. For the discussed use case
with 128 PUF cells, 23 destroyed nodes and 8 quantization intervals, this leads to a missing
information of 69 bits depending on the quantization level. When also considering frozen
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bits in the polar code and additional quantization leakage, the resulting security level is
notably under the claimed 100 bit.

However, there is also another way to show that this scheme cannot achieve the required
security level of 100 bit in the digital attacker scenario. We can simply use our converse
bound (Theorem 14) and observe that for a security level of 100 bit and error probability
10−6 we would require at least 389 PUF cells. Thereby, this construction breaks the
converse bound and hence the construction cannot reach the desired security level without
substantially leaking information about the secret through the helper data.

10 Summary and Outlook

Over the last years, several practical papers for key generation for PUF-based tamper
protection were introduced. In this work, we analyzed the problem with information
theoretical tools for additional insights and contribute to understanding and quantifying
theoretical and practical limits.

We have given achievable rates under the constraint that the quantization helper
data leaks no information about the quantized PUF response Sn obtained during the
enrollment phase both in the asymptotic as well as the non-asymptotic setting for two
different attacker models. Asymptotically we observed that for the digital attacker
equiprobable input quantization performs better than equidistant input quantization
in terms of achievable code rates. In case the analog attacker of concern to designer
equiprobable quantization can be beneficial for larger quantization alphabets. The same
observation holds in the finite length regime. Our results have practical merit since they
show that coarse quantization is not only easier to implement but also often requires less
capacitive cells on the foil. Furthermore, we presented converse bounds that showed that
existing implementations cannot achieve a security level of 100 bits if leakage of information
via the public quantization helper data is prevented. The achievability results allow to
state an upper bound on the required number of capacitive PUF cells. Thereby, they
permit to set design goals for PUFs with respect to the required security and reliability
levels.

Our results show that we can achieve the number of required capacitive cells with
an optimized implementation, e.g. through a feasible feature shrink. Consequently, by
quantifying the fundamental limits of this PUF architecture, the results presented in this
work contribute to guiding practical work towards theoretically secure and certifiable
future implementations.
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A Basic Notions of Information and Coding Theory
Several notions introduced in this section are standard in information theory. Hence, they
can be found in textbooks like [CT99].

Definition 7 (Memoryless channel). We say that a channel is memoryless if it holds that

PY n|Xn(yn|xn) =
n∏
i=1

PYi|Xi
(yi|xi) . (82)

Definition 8. We say that a channel created an error at the decoder’s input if an input
symbol x has been mapped to an output y 6= x ∈ X . We define a symbol erasure to be the
event that an input symbol x has been erased and hence this symbol gives the receiver no
information about the channel input. Notice that the synchronization between channel
input and channel output is not lost in this case as it is when symbols are deleted. If an
erasure occurs at the i-th symbol we denote this by setting the random variable Yi = E,
where the event E denotes that an erasure occurred.

Definition 9. We denote the average block error probability by

P e := 1
|M|

∑
m∈M

Pe(m) , (83)



Georg Maringer and Matthias Hiller 645

where
Pe(m) = PY ∗|M(D(Y ∗) 6= m|m) (84)

denotes the probability that an error occurs if the message m is transmitted. We denote
the maximal error probability by

Pe,max = max
m∈M

Pe(m) . (85)

Definition 10. We define the rate R of a code of cardinality M and blocklength n to be

R := 1
n

log2(M) . (86)

Definition 11. We define the support of a probability mass function PX for a random
variable X taking values in a set X by

supp(PX) := {x ∈ X : PX(x) > 0} . (87)

Definition 12. We define the entropy of a discrete RV X to be

H(X) := −
∑

a∈supp(PX)

PX(a) log2(PX(a)) (88)

and the conditional entropy of X given that some random variable Z = z to be

H(X|Z = z) := −
∑

a∈supp(PX|Z=z)

PX|Z(a|z) log2(PX|Z(a|z)) . (89)

Furthermore, we denote the conditional entropy of X given Z to be

H(X|Z) := −
∑

(a,b)∈supp(PXZ)

PXZ(a, b) log2(PX|Z(a|b)) =
∑

b∈supp(Z)

PZ(b)H(X|Z = b) .

(90)

Definition 13. We define the differential entropy of a continuous RVX with probability
density function (pdf) fX by

h(X) := −
∫
a∈supp fX

fX(a) log2(fX(a)) da . (91)

The definition of the conditional differential entropy of X given some random variable Z
is analogous to eq. (90) in Definition 12.

Definition 14. We define the variational distance d(P,Q) between two probability
mass functions (pmfs) P and Q defined over the same domain X by

d(P,Q) = 1
2
∑
x∈X
|P (x)−Q(x)| . (92)

Definition 15. We specify the Kullback-Leibler divergence between two pmfs P and Q
over the same domain by

D(P ||Q) =
∑
x∈X

P (x) log2

(
P (x)
Q(x)

)
, (93)

where we define 0 log2(0) := 0.
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Definition 16. The mutual information between two random variables X and Y is
specified by

I(X;Y ) := D(PXY ||PXPY )

=
∑

(a,b)∈supp(PXY )

PXY (a, b) log2

(
PXY (a, b)
PX(a)PY (b)

)
= H(Y )−H(Y |X) . (94)

If the random variable Y is continuous it holds that

I(X;Y ) := h(Y )− h(Y |X) . (95)

Definition 17. The mutual information I(X;Y |Z = c) between two random variables X
and Y conditioned on a discrete random variable Z taking the value c is defined by

I(X;Y |Z = c) := H(X|Z = c)−H(X|Y,Z = c) (96)

if X is discrete and

I(X;Y |Z = c) := h(X|Z = c)− h(X|Y,Z = c) (97)

if X is continuous. Similar to Definition 12 we define

I(X;Y |Z) :=
∑

c∈supp(PZ)

PZ(c) I(X;Y |Z = c) . (98)

For continuous Z with pdf fZ we define

I(X;Y |Z) =
∫
c∈supp(fZ)

fZ(c) I(X;Y |Z = c) dc . (99)
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