
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 579–603. DOI:10.46586/tches.v2025.i2.579-603

A TRAP for SAT: On the Imperviousness of a
Transistor-Level Programmable Fabric to

Satisfiability-Based Attacks
Aric Fowler1, Shayan Mohammed1, Mustafa Shihab1, Thomas Broadfoot1,

Peter Beerel2, Carl Sechen1 and Yiorgos Makris1

1 University of Texas at Dallas, Richardson, TX, USA
2 University of Southern California, Los Angeles, CA, USA

Abstract. Locking-based intellectual property (IP) protection for integrated circuits
(ICs) being manufactured at untrusted facilities has been largely defeated by the
satisfiability (SAT) attack, which can retrieve the secret key needed for instantiating
proprietary functionality on locked circuits. As a result, redaction-based methods
have gained popularity as a more secure way of protecting hardware IP. Among
these methods, transistor-level programming (TRAP) prohibits the outright use
of SAT attacks due to the mismatch between the logic-level at which SAT attack
operates and the switch-level at which the TRAP fabric is programmed. Herein, we
discuss the challenges involved in launching SAT attacks on TRAP and we propose
solutions which enable expression of TRAP in propositional logic modeling in a way
that accurately reflects switch-level circuit capabilities. Results obtained using a
transistor-level SAT attack tool-set that we developed and are releasing corroborate
that SAT attacks can be launched against TRAP. However, the increased complexity
of switch-level circuit modeling prevents the attack from realistically compromising
all but the most trivial IP-protected designs.
Keywords: Logic Redaction · SAT Attack · TRAP

1 Introduction
Contemporary semiconductor manufacturing predominantly follows a fabless business
model, wherein the silicon fabrication of integrated circuits (ICs) is outsourced to external
foundries around the globe [VVGY21, IC 21]. While this approach is justified by financial
and geopolitical reasons, it introduces security challenges since the blueprint of a design
must be released to a potentially untrusted foundry for fabrication. This exposes the
intellectual property (IP) within the design to risks of reverse engineering, theft, and
unauthorized overproduction. In response to these threats, various methods such as logic
locking [BTZ10a, CB09, RKM08, XS19], gate camouflaging [CBCW14, BCCW12], and
split manufacturing [VDS+14, IEGT13, JM07] were developed to prevent IP from falling
into adversarial hands [CB14, YSN+17].

As is typical in any arms race, alongside these IP protection efforts, numerous attacks
seeking to compromise confidentiality of a design have also been developed [EMGT19,
WCHR16, LPS+19, SS19, RPSK12]. These attacks aim to retrieve a secret key value
which instantiates the correct functionality within a protected design. Among them, the
invention of the SAT attack [SRM15] was a pivotal point in this race. Together with its
many extensions [HZY+21, ZJK17, SPJ19, KCV19, JHCK20, LPS21, EMGT19, AYS+19],
the SAT attack has successfully broken most of these defenses and has raised the bar for
IP protection methods. Its success stems from (i) clever formulations of satisfiability

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.579-603
http://creativecommons.org/licenses/by/4.0/

580 A TRAP for SAT

Figure 1: Hardware IP protection through IC redaction

Figure 2: Programming TRAP with the key for NOR3 functionality (OUT = (A ∨B ∨ C))

(SAT) problems whose solutions enable rapid pruning of the viable key space, (ii) recent
advancements in SAT solvers (i.e., the SAT attack engine) [GV21, AAASM19], and (iii)
the concordance of the attack’s logic-level operation with the logic gate composition of
locking IP protection methods.

In response to the success of SAT attacks, logic redaction methods which replace
sensitive functionalities with a programmable circuit fabric that reinstates the missing
functionality after IC fabrication have emerged [BTZ10b, MAS+21, BMT+23, BTMT+21,
KBK24, WMMS21, GRK+23, APMP23], as shown in Figure 1. Among these methods,
the transistor-level programmable (TRAP) fabric [TRW+17] stands out because it
lowers the granularity of programmability and function implementation below the level
of logic gates. In this approach, the secret key is a bitstream that turns select elements
in a sea of transistors ON or OFF, stitching them together into logic functions. An
example of this paradigm implementing a NOR3 gate is shown in Figure 2, with further
details provided in Section 5. Consequently, unlike gate-level protection methods where an
erroneous key value results in an incorrect function, an incorrect TRAP key value may
result in a transistor topology that does not even implement a logic function.

TRAP owes its resilience against SAT attacks to this discrepancy between logical
program and electrical operation, which SAT solvers and, by extension, SAT attacks, do
not natively understand. Specifically, notions such as signal direction, electrical drive, and
high impedance, which are indispensable circuit-level attributes, are foreign to SAT attacks.
The same holds true for cyclical topologies and tri-state signals, which are common in
transistor-level designs but do not exist in gate-level circuits. As a result, the utility and
efficacy of SAT attack in breaking TRAP has yet to be explored.

A theoretical security assessment of the TRAP architecture outlined in [TRW+17] was
conducted in [STR+19]. However, no quantitative experimental results from actual SAT
attacks were provided and no conclusions based on actual metrics were drawn. Toward
filling this void, the novel contributions of this paper include:

• An analysis of the challenges involved in modeling a transistor-level redaction fabric
and a derivation of solutions to enable application of SAT attacks to such circuits.

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 581

• A quantitative assessment of the resilience of TRAP to SAT attacks, which corrobo-
rates the major breakthrough offered by logic redaction methods to the problem of
hardware IP protection.

The remainder of this paper is structured as follows: Section 2 states the threat model
considered in this work. Section 3 provides an overview of the conventional SAT attack.
Section 4 elucidates the additional provisions required for extending applicability of SAT
attacks to encompass switch-level transistor behavior. Section 5 describes the architecture
of TRAP, for which the full propositional logic model is derived in Section 6. Section 7
details our custom tool-set which enables SAT attacks to be launched on transistor-level
circuits (including TRAP) and Section 8 highlights the resistance of TRAP to attacks
launched by this tool-set, which is further discussed in Section 9.

2 Threat Model
In the attack scenario considered in this work, an adversary is attempting to steal IP from
an IC design, a portion of which has been redacted using a TRAP fabric, by way of a SAT
attack. To launch the attack, we assume that the adversary has access to two elements:
(i) a simulatable netlist of the protected IC design, and (ii) an unlocked operational part,
commonly referred to as an oracle, which allows black-box interrogation while preserving
the secrecy of the key. Furthermore, we assume that the adversary is able to access directly
the I/Os of the TRAP fabric through the use of a boundary scan chain, which is typically
available for the purpose of manufacturing testing, thereby eliminating the need to include
the much larger non-redacted circuit in the SAT attack. Armed with these capabilities, a
SAT attack can be launched to seek the secret key that instantiates the IP functionality
onto an unprogrammed circuit.

3 Gate-Level SAT Attack Fundamentals
To fully appreciate the challenges that arise while modeling and attacking TRAP with a
SAT attack, we start with a short review of its fundamental mechanics. The SAT attack
is an elegant algorithmic approach for retrieving a secret key that is necessary for realizing
some intended functionality embedded within a protected digital circuit.

The overarching strategy of the SAT attack is to rapidly prune incorrect values
from the possible key space in an iterative manner, until only correct key(s) remain.
To this end, it leverages the information gained by contrasting erroneous simulated
circuit outputs from incorrect keys against the correct oracle output for judiciously
selected inputs values. The original SAT attack [SRM15] and its numerous extensions
[KCV19, JHCK20, LPS21, HZY+21, ZJK17, SPJ19] have been shown to be highly effective
at deriving secret keys and breaking protected gate-level circuits that are too complex to
solve using brute-force methodologies.

3.1 SAT Attack Flow
The SAT attack procedure involves four distinct tasks:

1. Miter Formation: In this task, two copies of the protected circuit are instantiated
with common primary inputs but separate key inputs. A comparator then assesses
equivalence of the outputs of these two copies. This construct is referred to as a
miter and, expressed in propositional logic, serves as the basis for the SAT attack.

2. DIP Identification: In this task, a SAT solver (i.e., the algorithmic engine that
SAT attacks run on) searches for a primary input pattern for which the two copies

582 A TRAP for SAT

Figure 3: SAT attack flow diagram

of the protected circuit in the miter produce different outputs. This is achieved by
solving the formula of the miter such that it produces a logic ‘1’ at its output. The
resulting primary input pattern causing the output discrepancy is referred to as a
distinguishing input pattern (DIP). Existence of a DIP implies that at least
one of the two keys separately feeding the circuit copies is wrong.

3. Miter Expansion: In this task, the oracle is queried with the DIP value from
the previous task and the corresponding correct function output is recorded. The
DIP and output are then used to further constrain the search space. Specifically,
two new copies of the protected circuit are added to the miter, with their primary
inputs matched to the logic values of the DIP and their key inputs tied to the key
inputs of the original two copies of the protected circuit. The outputs of the two
new copies are forced to match the oracle output for the DIP, as a prerequisite for
this expanded miter to produce a ‘1’ at its output. Essentially, the expanded miter
implicitly eliminates from the viable key options all values for which the previously
identified DIP produces an output that differs from the oracle output for that DIP.

4. Key Retrieval: In this final task, the information gathered from interrogating the
oracle with DIPs and collecting the corresponding responses is used to retrieve the
correct key through a new SAT formulation. A new construct is devised, wherein a
copy of the protected circuit is instantiated for each DIP found. Each copy receives
a unique DIP as a constant input and is forced to produce the corresponding oracle
output. All copies share the same key inputs. The SAT solver is then charged with
solving for one key such that all constraints of the formula representing this construct
are satisfied. In turn, this guarantees that the resulting key will instantiate a circuit
that will agree with the output of the oracle for every DIP included in the construct.
This correlation extends to every possible input pattern, not just DIPs.

As shown in the flow diagram of Figure 3, the SAT attack begins with miter formation.
In the first round, solving this miter identifies a DIP. If a DIP is found, the oracle is
consulted and the miter is expanded with additional constraints that prohibit revisiting the
DIP. This process repeats in successive rounds until no more DIPs exist. At this point, all
available information has been collected and the key retrieval task is performed to obtain
the correct key. In cases where different keys instate identical circuit functionality, the key
returned by the key retrieval task is guaranteed to realize the same outputs as the oracle
for all input combinations, but is not guaranteed to be the exact key used in the oracle.

3.2 Miter Comparator
Among the components involved in the SAT attack, we call attention to the comparator
that checks for output equivalence during DIP identification. Shown in Figure 4 is a
two-level OR-of-XORs logic gate representation of the comparator typically used to detect
any difference in the binary output vectors A and B produced by the two copies of the

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 583

protected circuit. When this comparator is included in the miter expression and its output
is explicitly forced to ‘1’, a SAT solver attempts to manipulate the two circuit copies such
that their outputs differ in at least one bit. While this works well for gate-level digital
circuits, modifications are required to accommodate a more elaborate definition of output
equivalence needed for transistor-level circuits, as we discuss in Section 4.4.

Figure 4: Comparator for n-output circuit

3.3 SAT Solvers

Possibly the most important consideration to make when writing propositional logic models
that faithfully reflect circuit operation is to understand how a SAT solver works. SAT
solvers employ variations of the Davis–Putnam–Logemann–Loveland (DPLL) algorithm
[DP60, BM07] to search for possible solutions to a conjunctive normal form (CNF) logic
formula by assigning values to variables such that no clauses within the formula contradict
each other. This work utilizes a satisfiability modulo theories (SMT) solver, which includes
SAT solving in its capabilities, to convert handwritten models into CNF using internal
optimization tactics before solving [dMB08]. Poising a SAT or SMT solver to find a
solution to a miter1 causes the solver to return the first immediate solution it discovers; if
no solution exists, the solver definitively proves so before declaring the formula unsatisfiable.
Failing to properly constrain models gives agency to the solver to manipulate them in
ways that the modeled circuitry is incapable of, which may elicit unfaithful solutions.

4 Transistor-Level SAT Attack Adaptation

Applying the SAT attack described in Section 3 to TRAP accentuates multiple compli-
cations that arise when applying SAT attacks to any design with transistor-level switch
operation. Notions such as high-impedance, current direction, and electrical drive are
indispensable when describing transistor-level circuit functionality, yet they are not innately
understood by SAT solvers. Therefore, additional modeling effort is needed to express these
electrical notions as Boolean constructs and make them compatible with the operating level
of SAT solvers. Diligence in this modeling effort is particularly important, as incompletely
constrained formulations may allow the SAT solver to arrive at solutions which satisfy the
logic expression but do not reflect the actual capabilities of the circuit. In this section, we
elaborate on these challenges and introduce solutions to overcome them.

1Miter formation and solution is an inherent equivalence checking capability of logic synthesis and
verification packages, such as ABC [Ber12]. Therein, the traditional SAT formulation is complemented by
heuristics (e.g., fraiging in ABC). While such heuristics have proven helpful in the context of synthesis, they
are not effective in expediting SAT attacks, hence the hardware security community has not incorporated
them in state-of-the-art SAT attack software implementations. A short study comparing SAT attack
effectiveness when using ABC’s SAT solver [ES04] with and without fraiging, as well as when using a
contemporary SMT solver (i.e., Z3), can be found in https://github.com/aric-fowler/TRANSAT.git

https://github.com/aric-fowler/TRANSAT.git

584 A TRAP for SAT

(a) Inverter symbol and CMOS schematic
(b) NMOS switch

Figure 5: Transistor-Level Circuits

4.1 Transistor-Level Modeling of CMOS Gates
We first explain why modeling conventional CMOS logic gates at the transistor-level does
not suffer from the aforementioned challenges. From a logic perspective, transistors are
three-terminal switches that connect their source and drain terminals when the proper
voltage is placed at their gate terminal. In digital logic, signal voltages are discrete values,
so the operation of a transistor as a switch can be modeled using Boolean implication.

Consider the example CMOS topology of an inverter shown in Figure 5a. As in all
CMOS architectures [WH05], this design consists of transistor switches that compose a
pull-up and a pull-down path. The pull-up path (in orange) connects power supply V DD
to OUT when IN = 0 while the pull-down path (in blue) connects ground GND to OUT
when IN = 1. Connecting two nodes in this manner through a transistor switch is referred
to as logical causality and is expressed in propositional logic as a Boolean implication.
Here, Equation (1) describes the pull-up path and Equation (2) describes the pull-down
path.

IN ⇒ (V DD ⇔ OUT) (1)
IN ⇒ (GND ⇔ OUT) (2)

Transistor-level implementation of CMOS logic gates relies on a couple of assumptions
which simplify their propositional logic models. The first assumption is that gate inputs
are arranged such that the pull-up and pull-down paths are mutually exclusive. In the case
of the CMOS inverter of Figure 5a, the logic value of input IN can never be simultaneously
high and low, so the implications described in Equations (1) and (2) can be combined into
the single equivalence statement of Equation (3). The second assumption is that the signal
direction of the pull-up and pull-down paths is implicit because VDD and GND are power
rails enforcing a constant logical value. Since they always have greater electrical charge
than the CMOS gate output, OUT will always take on a logical value from VDD or GND;
never the other way around. This second assumption also allows us to substitute VDD and
GND with constant ‘1’ and ‘0’ values, respectively, thereby reducing Equation (3) to the
familiar gate-level Equation (4). This final simplification shows that, while it is possible to
model a conventional CMOS gate at the transistor level, it always reduces to the gate-level
formula, circumnavigating any complications that arise from transistor-level modeling.

OUT ⇔ (IN ∧GND) ∨ (IN ∧ V DD) (3)
OUT ⇔ IN (4)

4.2 Enabling Single-Transistor Modeling
The CMOS inverter covered in Section 4.1 is naturally compatible with a SAT attack
because the complete behavior of the digital circuit, Equation (4), is described by the

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 585

same logic-level implications that a SAT solver natively understands. In non-CMOS
transistor-level implementations of digital circuits, however, accurate modeling of even a
single transistor becomes more involved, as it needs to incorporate the notions of signal
direction and electrical drive. Consider the NMOS transistor switch shown in Figure 5b,
for which Equation (5) describes logical causality between the logic values at the gate G,
source S, and drain D.

G⇒ (S ⇔ D) (5)

When the transistor is ON (closed switch), S and D share a logical value. This is
the same relationship that was previously used in transistor-level modeling of the CMOS
logic inverter in Equations (1) and (2). However, unlike in CMOS logic gates, where
the direction of signal flow is implicitly known (i.e., the source drives the drain of each
transistor in the gate), the signal flow through a single NMOS transistor could be either
from the source to the drain or vice versa. Furthermore, when the transistor is OFF (open
switch), the source and drain are unable to influence each other, and one or both may
become unconstrained. A SAT solver is free to assign these unconstrained variables any
value it chooses, ignorant of electrical operation. This renders Equation (5) insufficient
to enforce complete causality between G, D, and S of the NMOS switch. Additionally,
if S and D are both floating nodes, they would be incapable of electrically driving one
another, even when the transistor is ON. Note that this issue does not exist in gate-level
logic, where all outputs are guaranteed to be electrically driven.

Electrical drive and signal direction, which are both necessary for deriving an accurate
propositional logic model for the NMOS transistor, can be captured by introducing
appropriate Boolean variables. Specifically, a drive variable can be assigned to each
electrical node to supplement their existing logic values (e.g., VD for D, VS for S). When
a drive value at a particular node is ‘1’, it implies that the node is electrically driven and,
consequently, its logic value is valid. Conversely, if the drive value of a node is ‘0’, then
the logic value of the node should be considered arbitrary and inconsequential. A direction
variable can be assigned to each transistor (e.g., dS→D for the NMOS switch). A value of
‘1’ for a direction variable indicates that the source is driving the drain, while a value of ‘0’
indicates that the drain is driving the source, as shown by the arrows in Figure 5b.

Using these variables, we can determine whether the value of a transistor terminal is
valid by examining whether it is electrically connected through a path to a power rail. For
the source terminal, this can be established (i) through a direct connection to a primary
input, VDD or GND, which we express through a variable SisInOrP W R set to ‘1’, or (ii)
through the transistor itself, if the value of the drain terminal is driven, the transistor is
ON, and the direction variable of the transistor indicates that the signal flow is from the
drain to the source. For the drain terminal, this can be established (i) through a direct
connection to a primary input, which we express through a variable DisIn set to ‘1’, or (ii)
through the transistor itself, if the value of the source terminal is valid, the transistor is
ON, and the direction variable of the transistor indicates that the signal flow is from the
source to the drain. In propositional logic, these conditions are captured by the inclusive
disjunctions of Equations (6) and (7). We note that these are equivalences rather than
implications, because assessing electrical drive is absolute; either a node sees a path to an
electrical source or it does not. Together with Equation (5), these clauses form a complete
model for a single NMOS transistor.

VS ⇔ (SisInOrP W R ∨ (VD ∧G ∧ dS→D)) (6)
VD ⇔ (DisIn ∨ (VS ∧G ∧ dS→D)) (7)

A propositional logic model for a PMOS transistor can be derived similarly using the
same logical, drive, and direction variables as for the NMOS transistor. Note that the
logical variable G must be negated to reflect the reversed ON state of PMOS operation.

586 A TRAP for SAT

Figure 6: Cyclical structure example in transistor-level circuit

4.3 Handling Cyclical Structures
Another challenge while modeling transistor-level circuits in propositional logic arises due
to cyclical connectivity. Consider the example two-transistor loop in Figure 6, along with
the third transistor which selectively connects an externally-driven input C to node A of
the loop. Using the methods devised for a single transistor in Section 4.2, a model for the
circuit can be derived, as shown in Equations (8) to (11).

(Gi ⇒ (S ⇔ D), (i, S, D) ∈ {(1, A, B), (2, A, B), (3, C, A)} (8)
VA ⇔ ((VB ∧G1 ∧ d1,A→B) ∨ (VB ∧G2 ∧ d2,A→B)
∨ (VC ∧G3 ∧ d3,C→A))

(9)

VB ⇔ ((VA ∧G1 ∧ d1,A→B) ∨ ((VA ∧G2 ∧ d2,A→B)) (10)
VC ⇔ (CisIn ∨ (VA ∧G3 ∧ d3,C→A)) (11)

At first glance, these equations appear to form a fully causal model for the transistor
loop in Figure 6. However, this model is not completely faithful to the operation of
electrical circuitry: under the circumstances described in Example 1, this model can
reduce to a circular reasoning fallacy, creating a cyclical logic loop that allows an
electrically undriven signal path to be reasoned as driven by a solver.

Example 1. Let us assume that, in the circuit of Figure 6, which is described by
Equations (8) to (11), node C is externally driven by an input signal (CisIn = 1,∴ VC = 1).
If transistor 3 is OFF (G3 = 0), then nodes A and B in the circuit are floating, so their
logical values should be disregarded as they cannot be electrically justified. Nonetheless,
the propositional logic model for the circuit can still be satisfied if transistors 1 and 2 are
ON (G1 = 1, G2 = 1). When both transistors are ON, direction variables d1,A→B , d2,A→B

must take on opposite values (e.g., d1,A→B = 1, d2,A→B = 0) in order to simultaneously
satisfy Equations (9) and (10). Upon the direction variables assuming values, Equations (9)
and (10) reduce to duplicate expressions VA ⇔ VB. This means that the only constraint
now is that the drive variables of nodes A and B (VA and VB) must be identical. Hence,
they can both be arbitrarily set to ‘1’, implying that their logical values (which are also
shared by Equation (8)) are electrically driven! In short, the logic model does not reflect
accurately the electrical operation of the circuit.

This inconsistency occurs because direction variables in the transistor loop are allowed
to point toward each other in cyclical succession to drive a signal while still satisfying
the constraints of the model. In hardware, this corresponds to a signal feeding into and
driving itself, which is not physically possible. To prevent a SAT solver from arriving at
this interpretation of the transistor loop model, a path count variable can be introduced
at each node. These new integer count variables2 cntA, cntB , and cntC are accompanied

2Integer variables can be translated to bit-vectors for SAT compatibility.

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 587

Figure 7: Comparator for tri-state encoded n-output circuit

by additional logic clauses that prevent direction variables from forming a loop in order
satisfy electrical drive evaluation clauses such as Equations (9) to (11) when all transistors
in the loop are turned ON. Thereby, they forbid these clauses from reducing to a circularity.
Equations (12) to (15) dictate that when a transistor is ON and the direction variable
indicates that a signal flows from source to drain, then the count variable value at the
source must be less than the count variable value at the drain. The opposite applies when
the direction variable delineates that the signal flows from the drain to the source.

Collectively, Equations (8) to (15) compose an enhanced model that resolves the
inconsistency between logic and circuit operation incurred by cyclic structures. Revisiting
Example 1, an attempt to set the direction variables in a clockwise path (i.e., d1,A→B =
1, d2,A→B = 0) causes Equations (12) and (15) to contradict each other. Similarly,
an attempt to set the direction variables in a counterclockwise path (i.e., d1,A→B =
0, d2,A→B = 1) that creates a loop would cause a conflict between Equations (13) and (14).
Therefore, the enhanced model prevents cyclic structures from inducing circular reasoning,
ensuring that the propositional logic is congruent with the actual operation of the circuit.

(G1 ∧ d1,A→B)⇒ (cntA < cntB) (12)
(G1 ∧ d1,A→B)⇒ (cntB < cntA) (13)
(G2 ∧ d2,A→B)⇒ (cntA < cntB) (14)
(G2 ∧ d2,A→B)⇒ (cntB < cntA) (15)

4.4 Supporting Tri-State Nodes in SAT Attack
In addition to the challenges associated with deriving a propositional level model that
accurately reflects the capabilities of a transistor-level design, which were addressed in
Sections 4.2 and 4.3, launching a SAT attack on such a design faces obstacles related to
the high-impedance state that may occur on internal nodes or even outputs.

First, since SAT solvers only understand binary abstractions but nodes may be in one
of three states (i.e., ‘0’, ‘1’ or ‘high-impedance’), a second Boolean variable is required to
express the state of a node. Conveniently, the electrical drive Boolean variable introduced
in Section 4.2 fulfills this role perfectly, since a node is in a high-impedance state whenever
it is not electrically driven. Together, the variable expressing the logical value of a node A
and the variable expressing electrical drive validity VA sufficiently encode tri-state logic.

Second, since the tri-state outputs of a transistor-level circuit have to be encoded
using both a logic variable and an electrical drive variable, the miter comparator must
also be adjusted to account for high-impedance when assessing circuit output differences.
The original comparator described in Section 3.2 assesses whether two signals (Ai, Bi)
are different through a simple XOR gate. However, in the case of tri-stated signals,

588 A TRAP for SAT

Figure 8: Architecture of a single TRAP unit, layouts, and die photos of TRAP fabrics

such a difference is only meaningful when the two signals are electrically driven (i.e.,
VAi

= VBi
= 1). With transistor-level granularity, additional opportunities to discover

DIPs exist when one of the two signals is electrically driven while the other is in a
high-impedance state (i.e., VAi 6= VBi), as these two signals can never be equivalent.
However, this is not the case when both signals are in high-impedance state, since a
generalized transistor-level digital circuit may express legitimate tri-state outputs. A
gate-level representation of an augmented comparator that can handle the high-impedance
state of encoded tri-state signals based on this discussion is shown in Figure 7.

5 TRAP Architecture
Applying the generalized modeling principles from Sections 4.1 to 4.3 to TRAP requires
sufficient knowledge of the target circuitry. TRAP [TRW+17] is a patented topology
[tra19, tra20, tra22], developed for protecting hardware IP through redaction [STR+19].
TRAP has been demonstrated in silicon in both planar (i.e., GlobalFoundries 65nm) and
FinFET (i.e., GlobalFoundries 12nm) fabrication technologies. A high-level architectural
description of TRAP is provided in this section, to assist with understanding the detailed
modeling of TRAP in Section 6.

Conceptually, TRAP is a continuous sea of both PMOS and NMOS transistors, on
which digital logic (including latches and flip-flops) can be formed by connecting these
transistors in appropriate topologies. These connections are delegated by programming bits
that can control the ON/OFF state of select transistors, and signals are routed from the
surrounding interface and interconnect network. In practice, a TRAP fabric is implemented
by tiling identical TRAP units in a rectangular array. Neighboring units can seamlessly
pass signals between them and accommodate implementation of functions that transcend
unit boundaries, thereby supporting the view of the TRAP fabric as a sea of transistors.

The prototypical TRAP unit, whose architecture is shown in Figure 8, is composed of
three distinct sections. Collectively, the unit houses configurable logic functions within its
transistor array (TA), supplies inputs and control signals to the TA through its inter-
face, and routes signals internally and to other TRAP units through the interconnect.

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 589

5.1 Transistor Array (TA)
The transistor array is an arrangement of twenty-four transistors that instate logic functions
through the formation of pull-up paths to V DD and pull-down paths to GND. Its
transistor-level programmability allows for numerous configurations to realize a particular
function, some of which may follow the paradigm of standard CMOS logic gates while
others may explore alternative design styles. As shown in Figure 8, the TA of a single
unit contains three columns (C1, C2, and C3). Each TA column consists of four vertically-
oriented transistors (P3, P1, N1, and N3) and three horizontally-oriented transistors (P2,
NH, and N2) for logic implementation. An eighth transistor (NV) connects TA outputs to
the interconnect. TAs of horizontally-adjacent TRAP units can be directly connected by
turning on the horizontal transistors along the TA periphery (C3P2, C3NH, C3N2).

5.2 Interface
Each column of the TA is driven by its own programmable interface, which is the only
part of the TRAP unit with predetermined signal flow. Figure 8 shows the interface for
the first column C1 of the TA. The interface consists of two halves which are separately
tasked with feeding inputs to the PMOS and NMOS transistors of the TA, respectively.
Transistors P1, P2, and P3 within the TA may receive a signal from the interconnect, the
complement of that signal, or a constant programmable value. Transistors N1, N2, and N3
within the TA each may receive one of the three signals intended for a PMOS transistor
within their column, the complement of any of those signals, or a constant value. The
interface also provides constant signals to the NH and NV transistors.

5.3 Interconnect
The TRAP interconnect is a programmable structure tasked with routing input, output,
and intermediate logic signals around the fabric. Signals coming into or leaving TRAP are
introduced at the interconnect via physical wire connections. The interconnect is composed
of three sets of wire tracks (denoted L2, L3, and L4) and the programmable transistor
switches that connect them. A switch connection does not exist for every combination
of wire tracks; existing connections are indicated as junctions in Figure 8. The twelve
L2 tracks are local connections meant to carry signals to the interface and from the TA.
The nine L3 tracks and nine L4 tracks are horizontal and vertical tracks, respectively,
which can route signals around the TRAP unit. Additionally, two sets of nine transistor
switches connect L3 and L4 tracks from a unit’s interconnect to the L3 and L4 tracks of
the neighboring units to the right and above. These devices are not shown in Figure 8 but
are present and must be accounted for when modeling multi-unit TRAP fabrics.

6 Modeling TRAP in Propositional Logic
Using the modeling principles discussed in Sections 4.1 to 4.3, we now derive a propositional
logic model for TRAP that is faithful to the circuitry described in Section 5. To intuitively
explain the TRAP propositional model, we begin with the transistor array and extend
upwards through the interface and interconnect for a complete TRAP unit model.

6.1 Transistor Array (TA) Model
Constructing a propositional logic model for the TA shown in Figure 8 builds upon the
transistor-level modeling principles from Sections 4.2 and 4.3. Since all TA columns are
identical, the model for a single column Cx, shown in Figure 9, can be tiled to describe the
entire TA. Each transistor gate terminal is assigned a logic variable, while each net between

590 A TRAP for SAT

Figure 9: Modeling a single TA column Cx (dashed lines delineate column boundaries)

transistors is assigned a logic variable, a drive variable, and a count variable. Logical
causation clauses, Equations (16) to (23), resemble Equation (5), with simplifications for
transistors with a source terminal connected to power (V DD = 1) or ground (GND = 0).
Constraints for electrical drive and direction, Equations (24) to (28), address the same
considerations as Equations (6) and (7), but with an additional simplification: vertically-
aligned transistors do not require direction modeling because it is assumed that the signal
will always flow from V DD or GND (the same reasoning is used in Section 4.1). Thus,
P2, N2 and NH transistors are the only TA devices that receive direction variables, shown
as blue arrows in Figure 9. Count variables for Equations (29) to (37) are assigned just as
in Section 4.3. The complete model for a single TA column Cx in Equations (16) to (37)
is applicable to all TA columns within a unit, x ∈ [1, 3].

CxP3⇒ CxP (16)
CxP2⇒ (CxP ⇔ Cx+1P) (17)
CxP1⇒ (CxP ⇔ CxO) (18)

CxNH ⇒ (CxO ⇔ Cx+1O) (19)
CxNV ⇒ (CxO ⇔ CxL2Z) (20)
CxN1⇒ (CxN ⇔ CxO) (21)
CxN2⇒ (CxN ⇔ Cx+1N) (22)
CxN3⇒ CxN (23)
CxP1⇒ (dCx−1P 2 ∧ dCxP 2) (24)
CxN1⇒ (dCx−1N2 ∧ dCxN2) (25)
VCxP ⇔ (CxP3 ∨ (Cx−1P2 ∧ VCx−1P ∧ dCx−1P 2)

∨ (Cx+1P2 ∧ VCx+1P ∧ dCxP 2))
(26)

VCxO ⇔ ((CxP1 ∧ VCxP) ∨ (CxN1 ∧ VCxN)
∨ (Cx−1NH ∧ VCx−1O ∧ dCx−1NH)
∨ (CxNH ∧ VCx+1O ∧ dCxNH))

(27)

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 591

(a) PMOS-driving subsection
(b) NMOS-driving subsection

Figure 10: Detailed TRAP interface for a PMOS/NMOS pair

VCxN ⇔ (CxN3 ∨ (Cx−1N2 ∧ VCx−1N ∧ dCx−1N2)
∨ (Cx+1N2 ∧ VCx+1N ∧ dCxN2))

(28)

(CxP2 ∧ dCxP 2)⇒ (cntCxP < cntCx+1P) (29)
(CxP2 ∧ dCxP 2)⇒ (cntCx+1P < cntCxP) (30)

CxP1⇒ (cntCxP < cntCxO) (31)
(CxNH ∧ dCxNH)⇒ (cntCxO < cntCx+1O) (32)
(CxNH ∧ dCxNH)⇒ (cntCx+1O < cntCxO) (33)

CxNV ⇒ (cntCxO < cntCxL2Z) (34)
CxN1⇒ (cntCxN < cntCxO) (35)

(CxN2 ∧ dCxN2)⇒ (cntCxN < cntCx+1N) (36)
(CxN2 ∧ dCxN2)⇒ (cntCx+1N < cntCxN) (37)

For TA columns along the edge of a TRAP fabric, additional clauses for boundary
conditions must be asserted to prevent unconstrained nets from compromising faithful
functionality of the model. In instances where the TA column model clauses reference
C0 (when x = 1) or C4 (when x = 3), C0 and C4 represent the rightmost column of
the adjacent left unit and the leftmost column of the adjacent right unit in the TRAP
fabric, respectively. If no unit is present to the left, then the missing transistors Cx−1P2,
Cx−1NH, and Cx−1N2 are turned OFF using Equation (38). If no unit is present to the
right, then the transistors C3P2, C3NH, and C3N2 are turned OFF by Equation (39).

Cx−1P2 ∧ Cx−1NH ∧ Cx−1N2 (38)
C3P2 ∧ C3NH∧C3N2 (39)

6.2 Interface Model
The predetermined signal flow of the TRAP interface, which is shown in Figure 10,
eliminates the need for direction variables and simplifies evaluation of electrical drive
of internal interface nodes. Modeling the interface uses principles for both logic gates
(Section 4.1) and transistors (Section 4.2). Since the interface for each complementary
transistor pair Py, Ny in a TA column Cx is identical, the equations describing the interface
can be generalized for any transistor y ∈ [1, 3] in any column x ∈ [1, 3] of the TA. The
complete propositional model is defined in Equations (40) to (52), where programmable
values M1, M2, M3, M4, M5, M6, and M7 determine the interface configuration.

M1CxPy ⇒ (CxL1y ⇔ CxL2y) (40)
M1CxPy ⇒ (CxL1y ⇔ CxL2y) (41)

592 A TRAP for SAT

Figure 11: Outgoing interconnect to neighboring TRAP units above, below, left, and right

M2CxPy ⇒ (CxPy ⇔ CxL1y) (42)
M2CxPy ⇒ (CxPy ⇔M3CxPy) (43)

VCxL2y ⇒M2CxPy (44)
M4CxNy ⇒ (CxNy ⇔ CxL11) (45)
M5CxNy ⇒ (CxNy ⇔ CxL12) (46)
M6CxNy ⇒ (CxNy ⇔ CxL13) (47)

(M4CxNy ∧M5CxNy ∧M6CxNy)
⇒ (CxNy ⇔M7CxNY)

(48)

M4CxNy ⇒M5CxNy ∨M6CxNy (49)
M5CxNy ⇒M4CxNy ∨M6CxNy (50)
M6CxNy ⇒M4CxNy ∨M5CxNy (51)

VCxL2y ⇒ (M4CxNy ∨M5CxNy ∨M6CxNy) (52)

Electrical drive variables are not required to ensure that the isolated interface model
properly emulates circuitry, but they must be considered when the interface model is
combined with the TA model. The TA model assumes that all incoming signals are driven,
so the interconnect model must guarantee that signals it feeds to the TA are driven.
Equations (43), (44), (48) and (52) are written such that if an interface input is not driven,
then the interface delivers a driven constant M3CxNy or M7CxNy instead.

6.3 Interconnect Model
The TRAP interconnect is a signal routing network composed of metal tracks selectively
connected by transistor switches. Hence, similar to modeling the TA, modeling the
interconnect in propositional logic requires the principles previously discussed in Sections 4.2
and 4.3. Unlike the TA model though, simplifications to the interconnect model based on
implicit signal direction cannot be established by structural inspection due to the absence
of power rails. All transistor gate terminals are driven by programmable values. For
the connections present in the interconnect shown in Figure 8, logic signal causality for
transistors connecting L4 and L3 wires, L3 and L2 wires, or L4 and L2 wires is generally
expressed by Equation (53), Equation (54), and Equations (55) and (56), respectively, for
j ∈ [1, 9], k ∈ [1, 9]. For L4 and L3 connections to neighboring TRAP units above (L4A),
below (L4B), left (L3W), and right (L3Y) of a given TRAP unit, as shown in Figure 11,
logic causality is described by Equations (57) to (60).

L3jL4k ⇒ (L3j ⇔ L4k) (53)
L3jCxL2y ⇒ (L3j ⇔ CxL2y) (54)

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 593

L4kCxL2y ⇒ (L4k ⇔ CxL2y) (55)
L4kCxL2y ⇒ (L4k ⇔ CxL2Z) (56)
L3jWL3k ⇒ (L3jW ⇔ L3j) (57)
L3jY L3k ⇒ (L3j ⇔ L3jY) (58)
L4kAL4k ⇒ (L4kA⇔ L4k) (59)
L4kBL4k ⇒ (L4k ⇔ L4kB) (60)

Determining electrical drive within the entire interconnect structure follows the same
rules as within the TA, with one altered consideration: rather than connecting directly
to power rails, interconnect L3 and L4 nets may receive externally-driven inputs, so all
clauses resemble Equation (7). L4 tracks connect to three L3 tracks, two L2 tracks, and the
L4 tracks above and below, resulting in the disjunction Equation (61). L3 tracks connect
to three L4 tracks, three L2 tracks, and the L3 tracks to the left and right, resulting in the
disjunction Equation (62). L2 (not including L2Z) wires are not candidates for receiving
external inputs, and connect to two L3 tracks and one L4 track, so their electrical validity
is determined by Equation (63). L2Z tracks also cannot receive external inputs, and lead
to L4 and L3 wires, so their electrical validity is determined by Equation (64).

VL4k ⇔ (isInL4k ∨ (L4kAL4k ∧ dL4kAL4k ∧ VL4kA)
∨ (L4kBL4k ∧ dL4kBL4k ∧ VL4kB)
∨ (L3j1L4k ∧ dL3j1L4k ∧ VL3j1)
∨ (L3j2L4k ∧ dL3j2L4k ∧ VL3j2)
∨ (L3j3L4k ∧ dL3j3L4k ∧ VL3j3)
∨ (L4kCxL2y ∧ dL4kCxL2y ∧ VCxL2y)
∨ (L4kCxL2Z ∧ dL4kCxL2Z ∧ VCxL2Z))

(61)

VL3j ⇔ (isInL3j ∨ (L3kY L3k ∧ dL3kY L3k ∧ VL3kY)
∨ (L3kWL3k ∧ dL3kW L3k ∧ VL3kW)
∨ (L3jL4k1 ∧ dL3j1L4k ∧ VL3j1)
∨ (L3jL4k2 ∧ dL3j2L4k ∧ VL3j2)
∨ (L3jL4k3 ∧ dL3j3L4k ∧ VL3j3)
∨ (L3jCx1L2y ∧ dL3jCx1L2y ∧ VCx1L2y)
∨ (L3jCx2L2y ∧ dL3jCx2L2y ∧ VCx2L2y)
∨ (L3jCx3L2Z ∧ dL3jCx3L2Z ∧ VCx3L2Z))

(62)

VCxL2y ⇔ (L3j1CxL2y ∧ dL3j1CxL2y ∧ VL3j1)
∨ (L3j2CxL2y ∧ dL3j2CxL2y ∧ VL3j2)
∨ (L4kCxL2y ∧ dL4kCxL2y ∧ VL4k)

(63)

VCxL2Z ⇔ (L3j1CxL2Z ∧ dL3j1CxL2Z ∧ VL3j1)
∨ (L3j2CxL2Z ∧ dL3j2CxL2Z ∧ VL3j2)
∨ (L3j3CxL2Z ∧ dL3j3CxL2Z ∧ VL3j3)
∨ (L4k1CxL2Z ∧ dL4k1CxL2Z ∧ VL4k1)
∨ (L4k2CxL2Z ∧ dL4k2CxL2Z ∧ VL4k2)
∨ (L4k3CxL2Z ∧ dL4k3CxL2Z ∧ VL4k3)

(64)

To prevent illegitimate loops from forming within the interconnect, such as in Example 1,
path count values are assessed at every connection between an L4 and an L3 wire, an L3

594 A TRAP for SAT

and an L2 wire, or an L4 and an L2 wire, as shown in Equations (65) to (74). Two clauses
per transistor are used in the same fashion as Equations (12) to (15).

(L3jL4k ∧ dL3jL4k)⇒ (cntL3j < cntL4k) (65)
(L3jL4k ∧ dL3jL4k)⇒ (cntL4k < cntL3j) (66)

(L3jCxL2y ∧ dL3jCxL2y)⇒ (cntL3j < cntCxL2y) (67)
(L3jCxL2y ∧ dL3jCxL2y)⇒ (cntCxL2y < cntL3j) (68)

(L3jCxL2Z ∧ dL3jCxL2Z)⇒ (cntL3j < cntCxL2Z) (69)
(L3jCxL2Z ∧ dL3jCxL2Z)⇒ (cntCxL2Z < cntL3j) (70)
(L4kCxL2y ∧ dL4kCxL2y)⇒ (cntL4k < cntCxL2y) (71)
(L4kCxL2y ∧ dL4kCxL2y)⇒ (cntCxL2y < cntL4k) (72)

(L4kCxL2Z ∧ dL4kCxL2Z)⇒ (cntL4k < cntCxL2Z) (73)
(L4kCxL2Z ∧ dL4kCxL2Z)⇒ (cntCxL2Z < cntL4k) (74)

Boundary conditions constitute the final part of modeling the interconnect. Floating
nodes occur along the TRAP model perimeter when the interconnect model clauses point
to hypothetical L3 and L4 nets that are not actually present. For TRAP units without
at least one neighboring unit in any direction, an additional clause may be written to
forcefully turn all unconnected boundary transistors OFF and prevent floating nodes
from impacting model behavior. The most extensive example of this clause is shown in
Equation (75), which is the case where a TRAP unit has no neighbors in any direction.

L31WL31 ∧ · · · ∧ L31Y L31 ∧ · · · ∧ L41AL41 ∧ · · · ∧ L41BL41 ∧ · · · ∧ L49BL49 (75)

6.4 Complete TRAP Unit Model
Combining the TA, interface, and interconnect models described in Sections 6.1 to 6.3
produces a propositional logic model for a singular TRAP unit. However, one last facet
remains before the model fully embodies TRAP functionality. The path count variables
present within the interconnect and the TA effectively inhibit self-validating loops within
their own respective sections, but when combined with the interface, a cyclical topology
can be formed through the entire TRAP unit. This loop is unintentionally allowed because
the path count variables of the interconnect are not conveyed through the interface to the
transistor array path count clauses. This break in the path count variable chain allows
a signal’s count to reset when traveling through the interface. This creates a satisfiable
condition where a signal with no legitimate electrical origin can drive itself from the
interconnect to the interface, through the TA, and back up to the interconnect. Preventing
this loop requires that the path count variables of the interconnect are communicated to
the TA path count clauses, as facilitated by Equations (76) to (91). These clauses complete
the TRAP unit model, which is fully characterized by Equations (16) to (91). Multiple
copies of this unit model, each with unique identifiers, can be combined to represent a grid
of interlinked units that compose a TRAP fabric.

M2CxP3⇒ (cntCxL23 < cntCxP) (76)
(M2CxP2 ∧ dCxP 2)⇒ (cntCxL22 < cntCx+1P) (77)
(M2CxP2 ∧ dCxP 2)⇒ (cntCxL22 < cntCxP) (78)

M2CxP1⇒ (cntCxL21 < cntCxO) (79)
M4CxN1⇒ (cntCxL21 < cntCxO) (80)
M5CxN1⇒ (cntCxL22 < cntCxO) (81)

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 595

Figure 12: Flow diagram for our SAT attack tool-set

M6CxN1⇒ (cntCxL23 < cntCxO) (82)
(M4CxN2 ∧ dCxN2)⇒ (cntCxL21 < cntCx+1N) (83)
(M5CxN2 ∧ dCxN2)⇒ (cntCxL22 < cntCx+1N) (84)
(M6CxN2 ∧ dCxN2)⇒ (cntCxL23 < cntCx+1N) (85)
(M4CxN2 ∧ dCxN2)⇒ (cntCxL21 < cntCxN) (86)
(M5CxN2 ∧ dCxN2)⇒ (cntCxL22 < cntCxN) (87)
(M6CxN2 ∧ dCxN2)⇒ (cntCxL23 < cntCxN) (88)

M4CxN3⇒ (cntCxL21 < cntCxN) (89)
M5CxN3⇒ (cntCxL22 < cntCxN) (90)
M6CxN3⇒ (cntCxL23 < cntCxN) (91)

7 SAT Attack Implementation
In order to launch a SAT attack against the TRAP model developed in Section 6, we
developed and are releasing a tool-set3 that constitutes the first known embodiment of a
SAT attack for transistor-level digital circuits. The flow of our tool-set, shown in Figure 12,
follows the generic SAT attack flow outlined in Figure 3. However, unlike the latter, it can
handle switch-level models that express tri-state signals, as discussed in Section 4.4.

Our attack tool is facilitated by (i) Python 3 [VRD09], in which miter formation,
miter expansion, key extraction circuit formation and overarching management of the
SAT attack are scripted, (ii) Microsoft’s Z3 satisfiability modulo theories (SMT) solver
[dMB08, BdMNW19], which is called for SAT solving and formula pre-processing tactics,
and (iii) the Icarus Verilog (iVerilog) simulator [Wil24], which queries oracle netlists to
obtain correct circuit responses.

We note that the extensive configurability of transistor-level protected circuits may
force the SAT attack to identify as many DIPs as there are unique input patterns. At this
point, if all input patterns have been found to be DIPs, the next DIP identification step is
guaranteed to return an unsatisfiable decision. To accelerate run-time, our tool skips the
DIP identification step in this scenario (i.e., it will not call the SAT solver) and assumes
an unsatisfied decision so that the attack can proceed directly to the key retrieval task.

8 Experimental Results
To evaluate the resilience of TRAP to SAT attacks, we staged a series of SAT attacks
against the TRAP fabric model outlined in Section 6 using the tool-set described in
Section 7. These attacks target increasingly more complex versions of TRAP, starting with

3See link: https://github.com/aric-fowler/TRANSAT.git

https://github.com/aric-fowler/TRANSAT.git

596 A TRAP for SAT

Table 1: Results for SAT attacks carried out on TRAP models
Circuit # Inputs # Outputs # Key Inputs

CNF Model Attack

Variables # Clauses Time to Break Break Round
(h:mm:ss) of Rounds Possible

TA
NAND2 2 1 20 125 324 0:00:01 5 / 5
NOR3 3 1 18 126 337 0:00:02 5 / 9
AOI22 4 1 16 127 341 0:00:01 4 / 17

TA+Ifc
NAND2 2 1 69 296 834 0:00:04 4 / 5
NOR3 3 1 69 297 836 0:00:09 8 / 9
AOI22 4 1 69 298 841 0:00:22 13 / 17

TRAP Unit
NAND2 2 1 177 549 2954 0:00:24 5 / 5
NOR3 3 1 177 550 2956 0:04:02 9 / 9
AOI22 4 1 177 551 2953 42:38:42 17 / 17

2 × 2 Fabric

NAND2 2 1 708 1935 11607 0:07:22 5 / 5
NOR3 3 1 708 1936 11601 10:28:31 9 / 9
AOI22 4 1 708 1937 11603 DNF† DNF† / 17
C17 5 2 708 1939 11607 DNF‡ DNF‡ / 33

† Terminated after 189 days, 5 hours, with 13 DIPs discovered
‡ Terminated after 99 days, 21 hours, with 11 DIPs discovered

a standalone TA and gradually adding the interface and the interconnect to complete a unit,
before proceeding to a 2× 2 (i.e., two-row, two-column) fabric. In each case, three basic
logic gates with increasing number of inputs (NAND2, NOR3, and AOI22) are used as the
target function. In the case of the 2× 2 fabric, we also attack C17, a small combinational
benchmark circuit [BF85] with 5 inputs and 2 outputs. Table 1 summarizes our results
and reports model size4, attack runtime, and the number of attack rounds completed
before extracting a valid key, along with the number of possible rounds (2m + 1, where
m is the number of oracle inputs). All attacks were single-threaded processes executed
on Linux-based Dell R630 servers, equipped with Xeon E5-2660 processors operating at
2.6 GHz. Each attack was repeated ten times and we report the shortest run-time result,
noting that no statistically significant variance was observed across these iterations.
Standalone TA: The smallest part of TRAP that can implement a logic function is the
TA, for which a model was derived in Section 6.1. To attack the TA, we pre-positioned
the inputs and outputs on the TA, such that at least one configuration implementing the
target functionality was possible. The absence of an interface necessitates this. All unused
transistor gate terminals were designated as key inputs. Because of this, the attack for
NAND2 functionality has more keys than the attacks for NOR3 and AOI22 functionality,
since NAND2 has fewer inputs. Our transistor-level SAT attack tool was able to easily
retrieve the key for each of these three functions in a similar number of rounds.
Combined TA and Interface: Next, we increased the target circuit complexity by
adding an interface, for which a model was derived in Section 6.2, to the TA. The absence
of an interconnect necessitates that inputs are pre-positioned on the interconnect to allow
for at least one correct implementation. In this case, however, key bits were not sacrificed
due to an increase in the number of inputs because the interface allocates separate nets
for inputs and keys. Compared to the attacks on the standalone TA, results of the attack
on the combined TA and interface show a small increase in attack time. This is justified
by the added functionality introduced by the interface, which increases the complexity
of the propositional logic model. Based on the results, the adverse impact of including
the interface is more pronounced as the number of inputs and complexity of the target
functionality increases. Indeed, both runtime and number of rounds required to break the
combined TA and interface rises as we step up from the NAND2 to the NOR3 and then
from the NOR3 to the AOI22.
Complete TRAP Unit: Adding an interconnect network, for which a model was derived
in Section 6.3, to the combined TA and interface model, and taking into consideration the

4While model size is weakly correlated to SAT hardness [Bj9], we note it to serve as a proxy to a
true complexity metric. Converting a model containing integer variables to CNF decomposes its integer
elements into binary equivalents, making models with different ranges of integers comparable.

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 597

caveats described in Section 6.4, completes an entire TRAP unit. At this point, attacks
for the three functions start to exhibit great disparity in runtime. A key for NAND2
functionality on a TRAP unit can be retrieved in twenty-four seconds, while for NOR3 it
takes four minutes and for AOI22 it takes over forty hours. We also observe that while
solving for each of these functionalities, every single input pattern must be discovered as a
DIP. This is explained by the fact that the TRAP unit can implement a very large set of
different functions and is consistent with the difficulty SAT attack faces when launched
against highly configurable fabrics at any level [BMT+23].
2 × 2 TRAP Fabric: Extending our model to even a small 2× 2 array of TRAP fabric,
which can implement more complex functionality, results in a significant increase in SAT
attack runtime for the three target functions. In fact, after running continuously for six
and three months, respectively, the attacks on the AOI22 function and the C17 benchmark
(which is composed of six NAND2 gates), did not return a solution and were forcefully
terminated. Similar to the TRAP unit, for the two functions that completed on the 2 × 2
fabric, all input pattern combinations were visited as DIPs and the addition of an extra
input (from NAND2 to NOR3) resulted in a significant increase in runtime.

Collectively, our results on TRAP corroborate the following:

1. Increased model complexity arising from transistor-level circuit implementation
produces lengthier formulas that require longer solver runtime per round, resulting
in increased overall attack runtime.

2. Given a fixed-complexity model, capable of instating a variety of functions with
variable input cardinality, SAT attacks seeking to break functions with a larger
number of inputs require more DIP identification rounds, resulting in increased
overall attack runtime.

3. Owing to the model expansion resulting from its transistor-level granularity, as well
as its extensive space of implementable functions, TRAP is resistant to SAT attacks
for all but the simplest functions.

9 Discussion
While the propositional logic model that we developed accounts correctly and intuitively
for the circuit intricacies of the TRAP fabric (i.e., signal directionality, tri-state logic
and cyclical structures), it is relatively large and complex. Nevertheless, we posit that
the difficulty to compromise a circuit redacted through TRAP does not stem from the
complexity of the modeling effort but rather from the inherent complexity of the fabric.
In other words, while it may be possible to develop alternative, functionally equivalent
models for TRAP, it is unlikely that such models will materially reduce the runtime of
attacks. To support the position that TRAP is resistant to SAT attacks independent of
fabric expression, we provide the following three observations:

1. As documented in the recent literature [MAS+21, BMT+23], SAT attacks have
been unable to retrieve the programming key for reinstating the missing logic of
redacted circuits, even when the redaction is performed with logic-level
programmable fabrics. This is in sharp contrast to the results of SAT attacks on
logic-locked versions of these circuits, which can be broken in a relatively practical
amount of time. The reason behind the SAT attack’s difficulty to solve redacted
circuits has to do with the very large number of unique functions that these circuits
can be programmed to implement, as opposed to the limited number of functions that
logic-locked circuits can implement for the possible key values. The large number
of unique functions that a programmable fabric can instantiate, along with the

598 A TRAP for SAT

concomitant complexity of the CNF model required to accurately express a fabric’s
capability to realize these functions, presents an obstacle that SAT attacks are unable
to surmount for practical circuits.

2. As a transistor-level programmable fabric, TRAP introduces additional challenges to
SAT attack, over and above what logic-level programmable fabrics present:

(a) In a logic-level programmable fabric, a signal can be in two different states
(low or high), which can be fully described through a single Boolean variable.
In contrast, the sea-of-transistors architecture of TRAP implies that a signal
can be in one of five different states (low driving in one direction, low driving
in the opposite direction, high driving in one direction, high driving in the
opposite direction, or electrically disconnected). Therefore, at least three
Boolean variables are required to express the state of a signal. Our formulation
has exactly three variables, the logic value, the direction, and the electrical
drive, hence none of these variables are redundant.

(b) In a logic-level programmable fabric, a hierarchical approach can be used to
decompose the complete Boolean functionality into logic functions which are
implemented by well-defined sub-modules of the fabric (e.g., LUTs in an FPGA).
Hierarchical modeling assists SAT attacks as the number of local choices is
contained at the boundary of each sub-module. In contrast, owing to its sea-of-
transistors architecture, TRAP cannot be modeled hierarchically because
there is no pre-defined logic-level module boundary. Any transistor in TRAP
can be combined with any other transistor anywhere else on TRAP to form
logic functions. Therefore, it is not possible to group transistors together and
reduce the number of variables required to express their functionality. The
only option is to model the logic-level capabilities of the entire TRAP fabric as
a giant LUT. This is not only specific to a given TRAP fabric size, but also
impractical to express explicitly and use in an attack.

3. Despite the elaborate capabilities that it must encompass and the inherent lack of
logic-level modularity, the proposed model scales linearly with fabric size,
attesting to its compactness. Also, when used in a SAT attack, it elicits a faithful
response (i.e., produced bitstreams are directly loadable onto the fabric). While
alternative models may contain different representations of TRAP, the extensive
capabilities of the fabric and the vast space of options for composing functions out
of transistors make it unlikely that an alternative model could be materially more
compact. Also, while alternative CNF formulations may lead to different SAT-solving
runtimes [Ala10], contemporary solvers, such as Z3, pre-process a given formulation
and generate their own internal representation on which they perform optimization
heuristics before solving, thereby ameliorating the impact of modeling inefficiency.

Based on these observations and considering the NP-complete nature of the problem
at hand, we conjecture that any improvement in the formulation of TRAP in CNF cannot
make a material difference with respect to TRAP’s resistance to SAT-attacks.

10 Conclusion
Despite their extensive success in compromising IP protection solutions for gate-level
circuits, conventional SAT attack methods are not equipped to handle transistor-level
programmable fabrics, such as TRAP. Concepts such as signal directionality, tri-state logic,
and cyclical structures, which are crucial for correctly expressing switch-level circuits, are
not natively reflected in the formulation used in logic-level SAT attacks. Nevertheless,

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 599

additional modeling provisions that account for signal direction and electrical drive (Sec-
tions 4.2 and 4.3), along with an expanded signal equivalence definition that accounts
for high-impedance outputs (Section 4.4), can be introduced to make transistor-level
granularity compatible with SAT attacks. These solutions have been incorporated into a
generalized SAT attack tool-set, which in turn has been used to evaluate TRAP fabrics
for susceptibility to SAT attacks. Results from SAT attacks conducted on this fabric
provide insight regarding the complexity of transistor-level SAT attacks and elicit the
conclusion that TRAP is resilient to SAT attacks in all but the most trivial cases. This
latter finding supports the conjecture that a TRAP fabric will not reveal any reasonably-
sized IP programmed onto it, making it a prime protection topology for any practical
IC redaction application. Future modeling efforts will seek to extend applicability of
recently-developed sequential SAT attack methods [KCV19, SLPJ19, HZY+21] to include
circuits with transistor-level implementations of sequential digital circuits.

References
[AAASM19] Sahel Alouneh, Sa’ed Abed, Mohammad H. Al Shayeji, and Raed Mesleh. A

Comprehensive Study and Analysis on SAT-Solvers: Advances, Usages and
Achievements. Artificial Intellifence Review, 38(2):199–207, 2019.

[Ala10] Alan M. Frisch and Paul A. Giannaros. SAT Encodings of the At-Most-
k Constraint Some Old , Some New , Some Fast , Some Slow. In 10th
International Workshop of Constraint Modelling and Reformulation, 2010.

[APMP23] Zain Ul Abideen, Tiago Diadami Perez, Mayler Martins, and Samuel
Pagliarini. A Security-Aware and LUT-Based CAD Flow for the Physi-
cal Synthesis of hASICs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 42(10):3157–3170, 2023.

[AYS+19] Lilas Alrahis, Muhammad Yasin, Hani Saleh, Baker Mohammad, Mahmoud
Al-Qutayri, and Ozgur Sinanoglu. ScanSAT: Unlocking Obfuscated Scan
Chains. IEEE/ACM Asia and South Pacific Design Automation Conference
(DAC), pages 352–357, 2019.

[BCCW12] J.P. Baukus, L.W. Chow, R.P. Cocchi, and B.J. Wang. Method and Appara-
tus for Camouflaging a Standard Cell based Integrated Circuit with Micro
Circuits and Post Processing. US Patent no. 20120139582, 2012.

[BdMNW19] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph Win-
tersteiger. Programming Z3. https://theory.stanford.edu/~nikolaj/
programmingz3.html, 2019.

[Ber12] Berkeley Logic Synthesis and Verification Group. ABC: A System for
Sequential Synthesis and Verification, 2012.

[BF85] Franc Brglez and Hideo Fujiwara. A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN. In IEEE
International Symposium on Circuits and Systems (ISCAS), Special Session
on Recent Algorithms for Gate-Level ATPG with Fault Simulation and Their
Performance Assessment, 1985.

[Bj9] Magnus Björk. Successful SAT Encoding Techniques. Journal on Satisfiability,
Boolean Modeling and Computation, 7:189–201, Jul 2009.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation, chapter 1,
pages 3–32. Springer Berlin, Heidelberg, Publication Location, 2007.

https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html

600 A TRAP for SAT

[BMT+23] Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Chris-
tian Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel
Gaillardon, and Ramesh Karri. Not All Fabrics Are Created Equal: Explor-
ing eFPGA Parameters for IP Redaction. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 31(10):1459–1471, 2023.

[BTMT+21] Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Chris-
tian Pilato, Ganesh Gore, Xifan Tang, Scott Temple, PierreEmmanuel
Gaillardon, and Ramesh Karri. Exploring eFPGA-based Redaction for
IP Protection. IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pages 1–9, 2021.

[BTZ10a] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing IC
Piracy Using Reconfigurable Logic Barriers. IEEE Design & Test of Com-
puters, 27(1):66–75, 2010.

[BTZ10b] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing IC
Piracy Using Reconfigurable Logic Barriers. IEEE Design & Test of Com-
puters, 27(1):66–75, 2010.

[CB09] Rajat Subhra Chakraborty and Swarup Bhunia. HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(10):1493–
1502, 2009.

[CB14] Brice Colombier and Lilian Bossuet. Survey of Hardware Protection of Design
Data for Integrated Circuits and Intellectual Properties. IET Computers &
Digital Techniques, 8(6):274–287, 2014.

[CBCW14] Ronald P. Cocchi, James P. Baukus, Lap Wai Chow, and Bryan J. Wang.
Circuit Camouflage Integration for Hardware IP Protection. In ACM/IEEE
Design Automation Conference (DAC), pages 1–5, 2014.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification
Theory. J. ACM, 7(3):201–215, Jul 1960.

[EMGT19] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. The SAT
Attack on IC Camouflaging: Impact and Potential Countermeasures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
pages 1577–1590, 2019.

[ES04] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of
Satisfiability Testing, pages 502–518, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[GRK+23] Rui Guo, M Sazadur Rahman, Hadi M Kamali, Fahim Rahman, Farimah
Farahmandi, and Mark Tehranipoor. EvoLUTe: Evaluation of Look-Up-
Table-Based Fine-Grained IP Redaction. In Design, Automation & Test in
Europe Conference (DATE), pages 1–6, 2023.

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 601

[GV21] Vijay Ganesh and Moshe Y. Vardi. On the Unreasonable Effectiveness of
SAT Solvers, page 547–566. Cambridge University Press, 2021.

[HZY+21] Yinghua Hu, Yuke Zhang, Kaixin Yang, Dake Chen, Peter A. Beerel, and
Pierluigi Nuzzo. Fun-SAT: Functional Corruptibility-Guided SAT-Based
Attack on Sequential Logic Encryption. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 281–291, 2021.

[IC 21] IC Insights. McClean Report. https://www.icinsights.com/services/
mcclean-report/, 2021. Last accessed on 10/04/2022.

[IEGT13] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara.
Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology
and Split Manufacturing for Obfuscation. USENIX Security Symposium,
pages 495–510, 2013.

[JHCK20] Melbin John, Aadil Hoda, Ramanuj Chouksey, and Chandan Karfa. SAT
Based Partial Attack on Compound Logic Locking. In Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pages 1–6, 2020.

[JM07] R.W. Jarvis and M.G. McIntyre. Split Manufacturing Method for Advanced
Semiconductor Circuits. US Patent no. 7,195,931, 2007.

[KBK24] Praveen Karmakar, Marpina Bharani, and Chandan Karfa. Evaluating
the Robustness of Large Scale eFPGA-based Hardware Redaction. In 37th
International Conference on VLSI Design and 23rd International Conference
on Embedded Systems (VLSID), pages 517–522, 2024.

[KCV19] Yasaswy Kasarabada, Suyuan Chen, and Ranga Vemuri. On SAT-Based
Attacks On Encrypted Sequential Logic Circuits. In International Symposium
on Quality Electronic Design (ISQED), pages 204–211, 2019.

[LPS+19] Haocheng Li, Satwik Patnaik, Abhrajit Sengupta, Haoyu Yang, Johann
Knechtel, Bei Yu, Evangeline FY Young, and Ozgur Sinanoglu. Attacking
Split Manufacturing from a Deep Learning Perspective. ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2019.

[LPS21] Nimisha Limaye, Satwik Patnaik, and Ozgur Sinanoglu. Fa-SAT: Fault-Aided
SAT-based Attack on Compound Logic Locking Techniques. In Design,
Automation & Test in Europe Conference (DATE), pages 1166–1171, 2021.

[MAS+21] Prashanth Mohan, Oguz Atli, Joseph Sweeney, Onur Kibar, Larry Pileggi,
and Ken Mai. Hardware Redaction via Designer-Directed Fine-Grained
eFPGA Insertion. IEEE Design, Automation & Test in Europe Conference
(DATE), pages 1186–1191, 2021.

[RKM08] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. EPIC: Ending
Piracy of Integrated Circuits. IEEE/ACM Design, Automation & Test in
Europe Conference (DATE), pages 1069–1074, 2008.

[RPSK12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security Analysis of
Logic Obfuscation. IEEE/ACM Design Automation Conference (DAC),
pages 83–89, 2012.

[SLPJ19] Kaveh Shamsi, Meng Li, David Z. Pan, and Yier Jin. KC2: Key-Condition
Crunching for Fast Sequential Circuit Deobfuscation. In Design, Automation
& Test in Europe Conference (DATE), pages 534–539, 2019.

https://www.icinsights.com/services/mcclean-report/
https://www.icinsights.com/services/mcclean-report/

602 A TRAP for SAT

[SPJ19] Kaveh Shamsi, David Z. Pan, and Yier Jin. IcySAT: Improved SAT-based
Attacks on Cyclic Locked Circuits. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–7, 2019.

[SRM15] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the
Security of Logic Encryption Algorithms. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 137–143, 2015.

[SS19] Deepak Sirone and Pramod Subramanyan. Functional Analysis Attacks on
Logic Locking. IEEE Design, Automation & Test in Europe Conference
(DATE), pages 936–939, 2019.

[STR+19] Mustafa M. Shihab, Jingxiang Tian, Gaurav Rajavendra Reddy, Bo Hu,
William Swartz, Benjamin Carrion Schaefer, Carl Sechen, and Yiorgos
Makris. Design Obfuscation Through Selective Post-Fabrication Transistor-
Level Programming. In Design, Automation & Test in Europe Conference
(DATE), pages 528–533, 2019.

[tra19] Field Programmable Transistor Arrays, 2019. US Patent 10,511,308.

[tra20] Continuation of Application Field Programmable Transistor Arrays, 2020.
US Patent 10,855,285.

[tra22] Continuation of Application Field Programmable Transistor Arrays, 2022.
US Patent 11,362,362.

[TRW+17] Jingxiang Tian, Gaurav Rajavendra Reddy, Jiajia Wang, William Swartz,
Yiorgos Makris, and Carl Sechen. A Field Programmable Transistor Array
Featuring Single-Cycle Partial/Full Dynamic Reconfiguration. In Design,
Automation & Test in Europe Conference (DATE), pages 1336–1341, 2017.

[VDS+14] Kaushik Vaidyanathan, Bishnu P Das, Ekin Sumbul, Renzhi Liu, and Larry
Pileggi. Building Trusted ICs Using Split Fabrication. In IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pages 1–6,
2014.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[VVGY21] Antonio Varas, Raj Varadarajan, Jimmy Goodrich, and Falan Yinug.
Strenghtening The Global Semiconductor supply Chain In An Uncertain Era.
Technical report, Boston Consulting Group and Semiconductor Industry
Association, 2021.

[WCHR16] Yujie Wang, Pu Chen, Jiang Hu, and Jeyavijayan Rajendran. The Cat and
Mouse in Split Manufacturing. ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2016.

[WH05] Neil H.E. Weste and David Harris. CMOS VLSI Design, chapter 6. Addison-
Wesley, 2005.

[Wil24] Stephen Williams. Icarus Verilog. https://steveicarus.github.io/
iverilog/index.html, 2024. Last accessed on Feb 5 2024.

[WMMS21] Zi Wang, Shayan Omais Mohammed, Yiorgos Makris, and Benjamin Carrion
Schafer. Functional Locking through Omission: From HLS to Obfuscated
Design. In IEEE International Conference on Computer Design (ICCD),
pages 591–598, 2021.

https://steveicarus.github.io/iverilog/index.html
https://steveicarus.github.io/iverilog/index.html

Fowler, Mohammed, Shihab, Broadfoot, Sechen, Beerel and Makris 603

[XS19] Yang Xie and Ankur Srivastava. Anti-SAT: Mitigating SAT Attack on
Logic Locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38(2):199–207, 2019.

[YSN+17] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mo-
hammed Ashraf, Jeyavijayan Rajendran, and Ozgur Sinanoglu. Provably-
Secure Logic Locking: From Theory To Practice. ACM SIGSAC Conference
on Computer & Communications Security, pages 1601–1618, 2017.

[ZJK17] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. CycSAT: SAT-Based attack
On Cyclic Logic Encryptions. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 49–56, 2017.

	Introduction
	Threat Model
	Gate-Level SAT Attack Fundamentals
	SAT Attack Flow
	Miter Comparator
	SAT Solvers

	Transistor-Level SAT Attack Adaptation
	Transistor-Level Modeling of CMOS Gates
	Enabling Single-Transistor Modeling
	Handling Cyclical Structures
	Supporting Tri-State Nodes in SAT Attack

	TRAP Architecture
	Transistor Array (TA)
	Interface
	Interconnect

	Modeling TRAP in Propositional Logic
	Transistor Array (TA) Model
	Interface Model
	Interconnect Model
	Complete TRAP Unit Model

	SAT Attack Implementation
	Experimental Results
	Discussion
	Conclusion

