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Abstract. Making the most of TFHE programmable bootstrapping to evaluate
functions or operators otherwise challenging to perform with only the native addition
and multiplication of the scheme is a very active line of research. In this paper, we
systematize this approach and apply it to build an 8-bit FHE processor abstraction,
i.e., a software entity that works over FHE-encrypted 8-bit data and presents itself
to the programmer by means of a conventional-looking assembly instruction set.
In doing so, we provide several homomorphic LookUp Table (LUT) dereferencing
operators based on variants of the tree-based method and show that they are the most
efficient option for manipulating encryptions of 8-bit data (optimally represented
as two basis 16 digits). We then systematically apply this approach over a set of
around 50 instructions, including, notably, conditional assignments, divisions, or
fixed-point arithmetic operations. We further test the approach on several simple
algorithms, including the execution of a neuron with a sigmoid activation function
with 16-bit precision. We conclude the paper by comparing our work to the FHE
compilers available in the state of the art. Finally, this work reveals that a very
limited set of functional bootstrapping patterns is versatile and efficient enough to
achieve general-purpose FHE computations beyond the boolean circuit approach. As
such, these patterns may be an appropriate target for further works on advanced
software optimizations or hardware implementations.
Keywords: Fully Homomorphic Encryption · TFHE · Programmable Bootstrapping
· General Computations

1 Introduction
The key idea behind homomorphic encryption is to be able to perform any calculation
directly over ciphertexts. In the early years of FHE, the hope was to achieve this goal
by executing boolean circuits over ciphertexts encoding binary messages with both XOR
and AND (homomorphic) gates. Although this computing model is universal, it also leads
to many efficiency bottlenecks: for example, to merely perform a simple multiplication
over Zt (t >> 2), one has to perform many boolean operations, and even more so for more
complex operations such as divisions. Because of this, works on FHE have progressively
departed from this paradigm to focus on running arithmetic circuits over polynomial
rings with a plaintext modulus much larger than 2. In doing so, FHE efficiency has
greatly improved, allowing it to address concrete applications, for example, in the field of
Machine Learning, with reasonable latencies and overheads. However, this latter approach
comes with difficult challenges for applications in need of zero testing or other non-linear
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functions1. At the other end of the spectrum stands TFHE. On the downside, TFHE is
intrinsically an LWE scheme, meaning that it offers no batching (except for additions)
and only allows for small plaintext moduli (e.g., less than 32). On the bright side, TFHE
has the most efficient bootstrapping procedure, which is furthermore “programmable”.
Indeed, TFHE bootstrapping refreshes ciphertext noise essentially by interpreting the input
ciphertext as an encrypted index for dereferencing a cleartext table encoding the identity
function with some redundancy. When the identity function is replaced by another function
f ∶ Zt Ð→ Zt, the bootstrapping operation evaluates f “for free”. As such, compared to the
raw boolean-circuit approach, TFHE offers a toolbox to mitigate its efficiency bottlenecks
by supporting a non-binary (albeit still small) plaintext domain Z2k , thus allowing to
factor the evaluation of k-bit to k-bit boolean circuits in single bootstrapping operations.

Natural questions to explore are then the following. Can we build on the TFHE
functional bootstrapping toolbox to achieve universal encrypted domain computations
beyond the boolean circuit approach? And at which computational cost? Can this be
achieved from a restricted set of patterns based only on functional bootstrapping, hence
with a homogeneous algorithmic structure? In this paper, we give a first answer to
these questions by designing and implementing a general-purpose 8-bit FHE processor
abstraction working over encryptions of bytes represented by pairs of TFHE ciphertexts
encoding their most and least significant nibbles2. As one may intuit, however, the
resulting instruction set is quite different from that of a usual processor. Many instructions
cannot be straightforwardly performed in the encrypted domain, and new instructions
must be provided to work around these limitations. For example, the lack of conditional
branching instructions (an FHE “processor” can evaluate any condition but cannot access
the resulting encrypted boolean to branch) has to be worked around by providing a set of
conditional assignment instructions.

Our approach heavily relies on TFHE programmable bootstrapping, one of the first
uses of which was calculating the sign function [BMMP18], notably for evaluating a
new class of strongly discretized neural networks over FHE encrypted inputs. However,
this programmable bootstrapping can only natively be used on a single input ciphertext.
Thus, to overcome such limitations, we need bootstrapping composition techniques to
homomorphically evaluate functions on larger data types represented by several encryptions
of their basis B digits. A number of such methods have been proposed and investigated in
the literature in recent years, such as the tree-based and chain-based methods [GBA21], the
WoP-PBS [BBB+23] and the p-encoding method [BPR24]. We first review these methods
and select the most appropriate one along with the most suitable basis B to design a
small set of generic operators for dereferencing one or more LookUp Table (LUT) with
256 entries in ZB using an encrypted index. We then systematically use these operators to
build our set of 8-bit instructions.

1.1 Summary of Contributions
This paper’s contributions are as follow:

• We show that the most optimized approach for manipulating TFHE encryptions of
8-bit messages is achieved by using the tree-based functional bootstrapping method
regardless of the decomposition basis B > 2. We further show that 8-bit messages
are optimally represented and manipulated as two basis 16 digit encryptions. This
conclusion is valid for all operations except bitwise ones for which basis 4 is optimal.

1Despite several attempts using bivariate polynomial optimizations [IZ21] or polynomial approxima-
tions [LLKN21, CKK19] for implementing comparisons and zero-testing with schemes such as BFV/BGV
or CKKS.

2“Nibble” is the cute name for 4-bits entities
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• We define a set of functional bootstrapping tools and optimal parameters to manipulate
encryptions of 8-bit data by means of LUT dereferencing with TFHE ciphertexts. We
designed this toolboox such that blind rotations and keyswitches (the most costly
operations within TFHE bootstrapping) can be factored as much as possible to improve
efficiency. By analogy to a real microprocessor, this can be seen as the micro-code level
of a processor abstraction.

• We then define a complete set of over 50 instructions suitable for working with TFHE
encryptions of 8-bit data, including FHE-specific instructions as well as advanced
operators such as conditional assignment, division, or even fixed-point arithmetic
operations among many others. For each of these instructions, we provide strategies to
efficiently instantiate them using our LUT-dereferencing building blocks. To the best of
our knowledge, we present the first ever concrete implementation of the Euclidean and
decimal division operators over FHE not relying on the boolean circuit approach.

• We test our approach over several higher-level simple algorithms (sorting, average
computation, finding the minimum or maximum of an array, ...) and provide extensive
timing experiments. To the best of our knowledge, we provide the first FHE instantiation
of a fixed-precision sigmoid function over 16 bits leading to the FHE instantiation of
standard neurons which can be seamlessly chained to enable the evaluation of larger
(possibilty recurrent) neural networks over encrypted data.

• We compare our approach to the state-of-the-art FHE compilers and related approaches,
including Cingulata [CDS15a], E3 [EOH+18], Concrete [Zam22] and Juliet [GMT24].
We demonstrate performance improvements between 60% and 99% on most algorithms
(except those inducing very small Boolean circuits).

• As we essentially define the first FHE-oriented ISA, this work is a significant first step
towards defining virtual FHE machine architectures to bridge the gap with standard
existing compilers and benefiting from their powerful code optimizations engines to
both express more complex programs and improve their execution performances over
FHE.

• Lastly, as a matter of perspectives, we carefully analyze the computational hotspots in
the approach, providing cleanly defined candidate kernels of increasing complexity for
low-level optimizations or even hardware acceleration.

1.2 Paper Organization

This paper is organized as follows: Section 2 reviews the related works and Section 3 recalls
the basics of the TFHE cryptosystem and gives the necessary details on the tree-based
method for bootstrapping with multi-input ciphertexts as well as its optimization with
multi-value bootstrapping. Then, Section 4 details the rationale for selecting the functional
bootstrapping technique and its associated parameters. Sections 6 and 7 (unitary timings)
subsequently focus on our instruction set, which is then used in Section 8 to implement
several algorithms. We then compare our ISA-based approach to the FHE compilers in
the state of the art in Section 9. Finally, Section 10 concludes this paper with some
perspectives. We also provide a number of appendices: Appendix A provides an exhaustive
table giving the description and the unitary timings of all of our operators, Appendix B
gives further details on the optimized implementation for all the instructions we propose
and Appendix C includes more background details on TFHE.
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2 Related Work

2.1 FHE Virtual Processors

To the best of our knowledge, previous attempts at building FHE-based virtual processors
are pretty scarce and, for the most part, date back to the first few years after Gentry’s
breakthrough. By virtual processor or processor abstraction, we mean a software entity
that works over FHE-encrypted data and presents itself to the programmer by means of a
conventional-looking assembly instruction set. Perhaps the first attempt is that of Brenner
et al. [BPS]3, which was based on the Smart-Vercauteren scheme [SV10]. This work
proposes an abstract processor that executes an encrypted program (over encrypted data).
The processor has a minimal instruction set containing only bitwise logical operations as
well as load/store (with encrypted addresses, hence with an access complexity linear in
memory size) and three branching instructions. Each (encrypted) instruction is fetched
from the encrypted memory and then homomorphically interpreted (at an extra cost
equivalent to explicitly running all instructions in the set). Being more than twelve years
old, from an experimental point of view, this latter work is obsolete. Still, our approach
departs significantly from it because we run public programs over encrypted data, i.e.,
the stream of instructions is not encrypted. The main consequence is that we restore
constant-time memory access (because all the addresses are public) but cannot perform
any branching (conditioned on encrypted values). Branching then has to be emulated
using explicit conditional assignments at an extra cost equivalent to that of explicitly
running all branches. In that sense, our programming model somewhat resembles the
“constant time programming” model often used in embedded computing [ABB+16]. Also,
we can then afford to have a much more complete instruction set, which is tailored to the
capabilities of our modern functional bootstrapping toolbox. Another attempt is that of
[FSF+13], which considers a richer set of operators (rather than explicit instructions) and
is boolean-circuit oriented. From an experimental viewpoint, this latter work is also too
old not to be obsolete. Other works include experiments at building a one-instruction
set processor abstraction working over FHE-encrypted data [TM14, TM13, CS19], an
approach which also achieves Turing completeness but leads to even worse blow-ups in the
number of instructions than the boolean circuit one. A more recent attempt at supporting
a subset of the ARM (v8) instruction set over TFHE is given in [GN20]. This approach
has two main drawbacks. First, it uses TFHE only in gate-bootstrapping mode and, as
such, does not work over a larger plaintext space as we do with functional bootstrapping
techniques. Second, it handles conditional branching in a client-aided fashion with the
consequence of granting the FHE processor access to a decryption oracle. This is likely to
induce vulnerabilities in realistic deployment scenarios since TFHE is trivially insecure
against a CCA(1) adversary. By opposition, we “handle” branching in a non-interactive
way via conditional assignment instructions (but at the extra cost of running all branches).
Lastly, a few works [IMP18, CGRS14] propose to extend the instruction set of existing
processors with a small set of additional instructions for driving FPGA-implementations
of FHE operations (with [IMP18] also handling branching in a client-aided fashion). On
top of the above, there presently are many works on hardware implementation of FHE
building blocks without any focus on instruction sets.

3github.com/hcrypt-project.
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3 Preliminaries
3.1 Notations
Let E = (KeyGen,Enc,Dec,Eval) denote an FHE scheme with key space K, plaintext domain
M and ciphertext domain C. For a message m ∈ M, we denote JmK ⊂ C, the set of all its
valid encryptions, which we sometimes refer to as the ciphertext class of m. Let F be the
function domain of Eval i.e., Eval ∶ F × C∗ Ð→ C is such that for all (ek,dk) ∈ K, all f ∈ F
and all m1,⋯,mK ∈ MK ,

Eval(f,Enc(m1),⋯,Enc(mK))) ∈ Jf(m1,⋯,mK)K.

Unless otherwise stated, the (uppercase or lowercase) letter c always denotes a ciphertext.
Other (uppercase or lowercase) letters denote plaintexts.

Let T = R/Z be the real torus, that is to say, the additive group of real numbers modulo
1 (R mod 1). We further denote by TN [X]n the set of vectors of size n whose coefficients
are polynomials of T [X] mod (XN + 1). N is usually a power of 2.

3.2 The TFHE Scheme
The TFHE scheme is a fully homomorphic encryption scheme [CGGI19] notably imple-
mented in the TFHE library4. TFHE defines three structures to encrypt plaintexts, which
we introduce below:

• TLWE sample: A pair (a, b) ∈ Tn+1, where a is uniformly sampled from Tn and b = ⟨a, s⟩+e.
The secret key s is uniformly sampled from Bn, and the error e ∈ T is sampled from a
Gaussian distribution with mean 0 and standard deviation σ.

• TRLWE sample: A pair (a, b) ∈ TN [X]k+1, where a is uniformly sampled from TN [X]k
and b = ⟨a, s⟩+e. The secret key s is uniformly sampled from BN [X]k, the error e ∈ TN[X]
is a polynomial with random coefficients sampled from a Gaussian distribution with
mean 0 and standard deviation σ. One usually chooses k = 1; therefore, a and b are
polynomials.

• TRGSW sample: a vector of (k + 1)l TRLWE fresh samples.

Let M denote the discrete message space (M ∈ TN [X] or M ∈ T)5. To encrypt a
message m ∈ M, we add what is called a noiseless trivial ciphertext (0,m) to a fresh
encryption of 0. We denote by c = (a, b)+(0,m) = (a, b+m) ∈ T(R)LWEs(m) the T(R)LWE
encryption of m with key s. A message m ∈ Z[X] can also be encrypted in TRGSW
samples by adding m ⋅H to a TRGSW sample of 0, where H is a gadget decomposition
matrix. As we will not explicitly need such an operation in this paper, more details about
TRGSW can be found in [CGGI19]. To decrypt a ciphertext c, we first calculate its phase
φ(c) = b− ⟨a, s⟩ =m+ e. Then, we need to remove the error, which is achieved by rounding
the phase to the nearest valid value inM. This procedure fails if the error exceeds half
the distance between two consecutive elements ofM.

3.3 TFHE Bootstrapping and Programmable Bootstrapping
TFHE bootstrapping – Bootstrapping is the operation that reduces the noise of a cipher-
text, thus allowing further homomorphic calculations. It relies on three basic operations,
which we briefly review in this section (refer to Section C.1 for more details). The first

4tfhe.github.io/tfhe/
5In practice, we discretize the torus with respect to our plaintext modulus. For example, if we want to

encrypt m ∈ Z4 = {0,1,2,3}, we encode it in T as a value inM= {0,0.25,0.5,0.75}. As a slight abuse of
notation, we useM to denote both the message space and its encodings on T.



540 Designing a General-Purpose 8-bit (T)FHE Processor Abstraction

operation, BlindRotate, rotates a plaintext polynomial testv6 by a TLWE encrypted index
c ∈ JmK. It returns a TRLWE encrypted polynomial of testv ⋅Xφ(c) mod (XN + 1), where
φ(c) is the phase of c rescaled in Z2N . Then, one must apply the TLWESampleExtract,
which extracts a coefficient from an encrypted TRLWE polynomial and converts it into
a corresponding TLWE ciphertext. Finally, the PublicFunctionalKeyswitch enables the
switching of keys and parameters. It is used to switch the extracted TLWE ciphertext to an
encryption of the same message but with the initial key. In practice, the computation time
of a TFHE bootstrapping depends mainly on the efficiency of the BlindRotate [CBSZ23].
So, from now on, we will denote by Nbr the number of BlindRotate required to evaluate
a function on encrypted data. Using Nbr as a criterion simplifies comparing instructions
implemented with the same set of TFHE parameters.
Programmable bootstrapping – Bootstrapping involves doing an indirection in a table
using an encrypted index while reducing noise. Indeed, if we set the coefficients of testv to
the results of the evaluation of a function f on elements ofM, performing the bootstrap-
ping on this new testv outputs c′ ∈ Jf(m)K. That is to say, the bootstrapping gives an
encryption of f(m) without any additional cost and allows the evaluation of a LUT of f .
We refer to this bootstrapping as programmable or functional. We note that the original
bootstrapping (in [CGGI19]) is a particular case of programmable bootstrapping with f
set to the identity function. TFHE programmable bootstrapping is natively well-suited
but limited to implementing LUTs of negacyclic functions7 for two reasons. First, TFHE
plaintext space is T, where [0, 1

2) corresponds to positive values and [ 1
2 ,1) to negative

ones. So, if c is a TLWE encryption of a positive value, its phase φ(c) lies in [0, 1
2), and

it satisfies φ(c) ∈ [0,N) after rescaling to Z2N . Conversely, if c is a TLWE encryption
of a negative value, its phase satisfies φ(c) ∈ [N,2N) after rescaling to Z2N . Second,
BlindRotate outputs an encryption of testv mulitplied by Xφ(c) mod (XN + 1)8. So, if
testv coefficients are set to the evaluation of a negacyclic function on the positive values of
M (values inM∩ [0, 1

2)), a bootstrapping with an input TLWE ciphertext c encrypting
m returns either f(m) if m ∈ M∩ [0, 1

2), or −f(m − 1
2) if m ∈ M∩ [ 1

2 ,1).

3.3.1 Tree-based Method

Almost all of the functional bootstrapping methods from the state of the art ([CJP21,
KS22, YXS+21, CLOT21, CBSZ23]) take as input a single ciphertext of a message in a
relatively small set. In 2021, Guimarães et al. [GBA21] specified the tree-based and the
chaining methods for performing functional bootstrapping over several ciphertexts. A
natural idea is then to use these methods over input messages decomposed into a smaller
basis B. Thus, the encryption of the initial plaintext value is a vector of encryptions of
its decomposition digits in basis B. Figure 1 illustrates the tree-based method for the
functional bootstrapping of the identity function. First, we create the test polynomials
that will be rotated during the BlindRotate step. In the example, the decomposition basis
is B = 4, so we need to decompose the LUT of the identity function into four polynomials,
each with four distinct coefficients. Each coefficient is actually repeated consecutively N

B
times to fill the polynomials. Then, we perform four BlindRotate, one on each cleartext
polynomial with the first input c0, followed by four TLWESampleExtract. We get four
ciphertexts that we combine together with PublicFunctionalKeyswitch to create a TRLWE
encryption of a new test polynomial. Then, we apply a BlindRotate to this encrypted test
polynomial with the second encrypted input c1, and apply a TLWESampleExtract followed
by PublicFunctionalKeyswitch to get the final result. In practice, we implement two different
PublicFunctionalKeyswitch. The first allows the packing of many TLWE ciphertexts into
one TRLWE ciphertext. Meanwhile, the second switches the keys of a TLWE sample.

6We sometimes refer to this polynomial as the test polynomial or vector.
7Negacyclic functions are antiperiodic functions over T with period 1

2 , satisfying f(x) = −f(x +
1
2 ).8We remind that ∀α ∈ [0,N),Xα+N = −Xα mod (XN + 1).



D. Trama et al. 541

Figure 1: Illustration of the tree-based method on the identity function with decomposition
in basis B = 4. The message is m = 9 = 1 ⋅ 40 + 2 ⋅ 41 and its corresponding encryption is
C = ([1], [2]). Red arrows indicate bootstrapping.

The first key switch has a non-negligible impact on the computation time of a tree-based
functional bootstrapping, as seen in Table 1. So, from now on, we will refer by Nks to
the number of calls to PublicFunctionalKeyswitch for TLWE ciphertexts packing into one
TRLWE required to evaluate a function on encrypted data. For the considered example,
the tree-based method requires five BlindRotate (Nbr= 5) and one PublicFunctionalKeyswitch
(Nks= 1). For more details about the tree-based functional bootstrapping, the reader is
referred to [GBA21].

3.3.2 Multi-Value Bootstrapping

Multi-Value Bootstrapping (MVB) [CIM18] refers to a method for evaluating k different
LUTs on a single input at the cost of a single bootstrapping. MVB factors the test
polynomial Pfi associated with the function fi into a product of two polynomials Pfi = v0 ⋅vi,
where v0 is a common factor to all Pfi . This factorization allows computing multiple
LUTs using a unique blind rotation. Indeed, it is enough to initialize the test polynomial
testv with the value of v0 during bootstrapping. Then, we run BlindRotate to get a
TRLWE encryption of the polynomial acc. We multiply acc by each vi corresponding
to the LUT of fi to get acci. Finally, we run a TLWESampleExtract for each acci,
followed by PublicFunctionalKeyswitch to output k TLWE samples. From now on, we
refer to Npm as the number of multiplications between the plaintext polynomial (vi) and
the TRLWE ciphertext (acc). So, an MVB requires one BlindRotate (Nbr= 1) and k
plaintext/ciphertext multiplications (Npm= k). More details about the MVB factorization
are given in Section 3.3.2. As already noted in [GBA21], the MVB can be applied to
the first level of a tree evaluation, as several BlindRotate are performed on different
polynomials with the same encrypted input. For instance, regarding Figure 1, instead
of requiring five BlindRotate and one PublicFunctionalKeyswitch (Nbr= 5 and Nks= 1), the
tree-based evaluation of the identity function with MVB will only cost two BlindRotate,
one PublicFunctionalKeyswitch and four plaintext/ciphertext multiplications (Nbr= 2, Nks= 1
and Npm= 4). For example, for TFHE parameters associated to Z16 as plaintext space
(Table 2), a BlindRotate takes 29 ms, a PublicFunctionalKeyswitch runs in 70 ms and a
plaintext/ciphertext multiplication requires 0.1 ms.
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4 Choosing the Right Toolbox
4.1 On the Choice of the Functional Bootstrapping Method
Univariate functional bootstrapping – Many works tackled the restriction of TFHE
bootstrapping to the evaluation of LUTs of negacylic functions (Sect. 3.3). The half-torus
method works around the negacyclic restriction by encoding all the plaintext spaceM
on [0, 1

2) (i.e., on the positive half of the torus). As no plaintext values are encoded on
the negative half of the torus, any LUT can be encoded within the coefficients of the test
polynomial. Then, it is evaluated with only one bootstrapping (Nbr= 1). Other methods,
such as TOTA [YXS+21], FDFB [KS22], or ComBo [CBSZ23], specify several solutions to
work around the restriction of working only with half of the torus as a plaintext space.
They provide different ways for implementing any LUT with the full torus as plaintext
space at the cost of making at least two consecutive BlindRotate (Nbr≥ 2). However, Clet et
al. [CBSZ23] compared all of these methods for the same TFHE parameters and levels of
security and showed that the half-torus method achieves the best speed-to-error-rate ratio.
Multivariate functional bootstrapping – In 2021, Guimarães et al. [GBA21] proposed
the tree-based and chaining methods to evaluate LUTs over several encrypted inputs with
bootstrappings. These methods can be optimized by using the MVB as discussed in Section
3.3.2. Given a message space of size B, the chaining method requires using a plaintext space
of size B2 with a full torus functional bootstrapping technique or 2B2 with the half-torus
functional bootstrapping. Meanwhile, the tree-based method (Sect. 3.3.1) requires a
plaintext space of size 2 ×B and is only meant to be used with the half-torus method. As
such, for the chaining method, the size of the parameters dramatically increases with B.
This parameter growth jeopardizes the other speed improvements that could come with the
chaining method compared to the tree-based method [TCBS23b]. A recent work by Bon et
al. [BPR24] proposes a method to evaluate boolean functions with several encrypted inputs
with one bootstrapping. However, their method is limited to binary plaintexts encoded on
a small ring Zp before encryption. In addition, it requires finding a non-trivial encoding
set for the function to be evaluated. Their approach further requires a plaintext domain
size dependent on the function’s truth table size, which makes it challenging to find an
encoding, for example, for adding or multiplying two encryptions of k-bit messages, where
a carry must be propagated. Just as recently, [BBB+23] proposed a new programmable
bootstrapping operator (WoP-PBS), which inputs several ciphertexts and permits the
evaluation of any multivariate LUT. This new method enables efficient bootstrapping of
ciphertexts with up to 21-bit precision. However, a follow-up study presented in [BBB+]
shows that for 8-bit messages, the tree-based method is at least as efficient as the new
WoP-PBS independently of the chosen decomposition basis B. In this work, we thus use
the tree-based method over the half-torus to compute multivariate 8-bit instructions.

4.2 Optimal Basis Selection for LUT Evaluation
4.2.1 Decomposition Basis Choice

The message space corresponding to 8-bit messages is the setM= {0, 1,⋯, 255}. Since we
use the half-torus bootstrapping method, we have to work on a 512-element discretized
torus. This requires very large TFHE parameters leading to a very slow bootstrapping
(≈1.5 secs for a single bootstrapping [TCBS23b]). Consequently, we need to break down our
8-bit data into a smaller basis. For 8-bit plaintexts, several decompositions are available:
we can decompose a message into four 2-bit digits, into three 3-bit digits (with the most
significant one only taking values in {0,⋯, 3}), or into two 4-bit digits. For instance, basis
16 allows the decomposition of 8-bit messages into two nibbles. Note that the smaller the
decomposition basis, the smaller the parameters, and thus the faster the bootstrapping
evaluation. However, the smaller the decomposition basis, the greater the number of digits,
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and so the greater is the number of bootstrapping to be performed. A tradeoff must,
therefore, be achieved between the number of bootstrapping needed and the parameters’
size corresponding to the decomposition basis. We refer to the evaluation of the tree-based
method (using MVB) on an 8-bit message decomposed into d digits in basis B as LUTeval,
as opposed to SimpleBoot, which is the usual bootstrapping operation taking only one
encrypted input. The bootstrapping cost of LUTeval is NBboot = 1 +∑d−2

i=0 B
i, where the

1 comes from the trick of computing the output of the first level of the tree with MVB
instead of running Bd−1 bootstrappings (Sect. 3.3.2). To obtain the d digits forming
the result of evaluating a LUT from M to M, LUTeval must be performed d times on
the same inputs. That is why we further introduce MVLUTeval, which uses the MVB
optimization to reduce the number of BlindRotate Nbr. As seen in Table 1, when run
under TFHElib [CGGI16] with the parameters from Table 2, the SimpleBoot is the most
efficient for basis 4. However, in the sequel, the most used operators are LUTeval and
different flavors of MVLUTeval. The best timings for these operations are obtained with
decomposition basis 16. As a matter of illustration, evaluating two LUTeval in basis 16
costs 0.26 seconds. So MVLUTeval⋆, which does the same thing with one less BlindRotate,
takes 0.23 seconds. However, MVLUTeval is less interesting in other bases, where the initial
number of BlindRotate is larger: MVLUTeval⋆ saves one BlindRotate, i.e., 1

4 in basis 16, but
only 1

20 in basis 8 and 1
44 in basis 4.

Remark 1. Note that for binary operators, basis 16 is not optimal. Indeed, these operations
can be implemented with depth-2 tree-based bootstrapping regardless of the decomposition
basis. For bases 2, 4, and 8, this respectively leads to 8, 8, and 6 blind rotations vs 4
for basis 16. On the other hand, for any operation requiring calls to LUTeval, basis 16
remains the most efficient. For example, for the addition, which is the most straightforward
bivariate operation apart from bitwise ones, the number of bootstrappings required to
propagate the carry with decomposition basis 4 is such that the evaluation of the addition
takes just as long as for basis 16. For all other non-bitwise functions, basis 16 is the most
efficient. So, despite the better efficiency of basis 4 for bitwise operators, basis 16 is the
optimal choice. †

4.2.2 LUT Dereferencing Operators

Now that we have settled on the optimal decomposition basis for our 8-bit plaintext inputs,
we can instantiate our LUT dereferencing tools SimpleBoot, LUTeval, and MVLUTeval. The
first is the basic TFHE bootstrapping with a 4-bit ciphertext as an encrypted index. Let
tab_16 be a cleartext LUT with 16 entries in Z16, given a ciphertext c ∈ JmK, SimpleBoot(c;
tab_16) returns c′ ∈ Jtab_16[m]K. The second allows us to evaluate a 16 × 16 LUT on
two ciphertexts c0 ∈ Jm0K and c1 ∈ Jm1K, with m0,m1 ∈ M = {0,1,⋯,15}. We note it
LUTeval(c0, c1; tab), with tab the 16 × 16 table that will be used to instantiate the 16
test-vectors polynomials required for the tree-based bootstrapping. LUTeval(c0, c1; tab)
returns a 4-bit ciphertext c′ ∈ Jtab [16m0 +m1]K. Lastly, let us assume that we want to
evaluate k LUTeval on the following pairs of ciphertexts ((cα, c1),⋯,(cα, ck)) using the
tables (tab_1,⋯,tab_k). Each pair (cα, cj) is an encryption of Tj = 16mα +mj , where
mα,mj ∈ Z16. As cα is a common input for the k LUTeval, we can rely on only one MVB
to compute the first level of the k trees simultaneously instead of running k separate
MVB for each LUTeval(cα, cj ; tab_j), where j ∈ {1,⋯, k}. The second level of each tree is
then computed separately on (c1,⋯, ck). As such, we end up running k + 1 BlindRotate
(Nbr= k + 1) instead of 2k ones for computing k LUTeval, with k PublicFunctionalKeyswitch
(Nks= k) and 16k plaintext/ciphertext multiplications (Npm= 16k).

From now on, we define MVLUTeval(cα; c1,⋯, ck; tab_1,⋯,tab_k) as the operation that
computes with a unique MVB the first level of the trees associated to LUTeval(cα, cj ; tab_j),
and outputs k encrypted 4-bit digits c′j ∈ Jtab_j [16mα +mj]K ∀j ∈ {1,⋯, k}. MVLUTeval
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Table 1: Execution times of SimpleBoot, LUTeval and MVLUTeval depending on the
plaintext decomposition basis. MVLUTeval⋆ stands for an evaluation of two different
LUTs, and MVLUTeval◇ for four different LUTs. As the number of output digits is equal
to the number of LUT evaluations, MVLUTeval⋆ outputs two new basis B ciphertexts
and MVLUTeval◇ outputs four such ciphertexts. For instance, for basis 16, MVLUTeval⋆
(respectively MVLUTeval◇) thus output 8 bits (respectively 16 bits), or equivalently a
“digit” in basis 256 (respectively 256 × 256).

Decomposition basis LUT size
Number
of output
digits

Corresponding
output basis Nbr Nks

Timings
(secs)

SimpleBoot 16 1 16 1 0 0.029
16 LUTeval 256 1 16 2 1 0.13

MVLUTeval⋆ 256 2 256 3 2 0.23
MVLUTeval◇ 256 4 256 × 256 5 4 0.43
SimpleBoot 8 1 8 1 0 0.015

8 LUTeval 256 1 8 10 9 0.47
MVLUTeval⋆ 256 2 64 19 18 0.93
MVLUTeval◇ 256 4 256 × 8 37 36 1.83
SimpleBoot 4 1 4 1 0 0.007

4 LUTeval 256 1 4 22 21 0.5
MVLUTeval⋆ 256 2 16 43 42 0.993
MVLUTeval◇ 256 4 256 85 84 1.98

can be further optimized when provided with the same table tab_j twice (or more) by
computing less PublicFunctionalKeyswitch.

Table 2: Parameters set for the considered decomposition basis (λ ≈ 128). Bg and l denote
the basis and levels associated with the gadget decomposition, BKS and t denote the
decomposition basis and the precision of the decomposition of the PublicFunctionalKeyswitch,
r denotes the plaintext modulus, and ε is the error probability of one MVB tree-based
evaluation. The unitary TFHE ciphertext size is given by n log2(q), leading for example
to an overall ciphertext size of 65600 bits to represent 2 basis-16 digits.
B n q N l Bg BKS t r ε TRLWE std TLWE std
4 700 232 1024 5 16 1024 2 8 2−30 5.6 × 10−8 1.9 × 10−5

8 700 232 2048 2 2048 1024 2 16 2−23 9.6 × 10−11 1.9 × 10−5

16 1024 232 2048 3 256 1024 2 32 2−23 9.6 × 10−11 6.5 × 10−8

In summary, our toolbox mainly consists of LUTeval ∶ C2 × L Ð→ C (L being the set of
all 256 4-bit entries tables) which, given (c0, c1) ∈ Jm0K × Jm1K, is such that

LUTeval(c0, c1; tab) ∈ Jtab[16m0 +m1]K.

and MVLUTeval ∶ C(k+1) ×Lk Ð→ Ck, its optimization for running several LUTeval with one
common input cα ∈ JmαK and k other inputs cj ∈ JmjK,∀j ∈ {1,⋯, k}, which satisfies

MVLUTeval(cα; c1,⋯, ck; tab1,⋯, tabk) ∈ Jtab1[16mα +m1]K × ⋅ ⋅ ⋅ × Jtabk[16mα +mk]K.

5 An FHE-Optimized Instruction Set
5.1 Instruction Set Overview
In this paper, we propose an exhaustive set of some fifty 8-bit instructions that manipulate
(T)FHE-encrypted data. Some provided instructions are relatively standard, but others
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are more specific and included because a smaller number of homomorphic operations
are required to implement them. As an example of this, for additions, we provide three
instructions: ADD, ADDi, and ADDZ. The ADD instruction takes two input ciphertexts
(with an 8-bit cleartext payload) and, without surprise, produces a third one whose
decryption is expected to be the sum of the two input ciphertexts’ plaintexts. The ADDi
instruction takes one input ciphertext and an immediate (public) value V . This instruction
can then be seen as a family of univariate instructions ADDiV (for V = 0,⋯,255) and, as
we shall later see, can be much faster implemented than the previous general purpose ADD.
Lastly, the ADDZ instruction also takes two input ciphertexts and performs an addition
under the assumption that at least one of the two input ciphertexts is an encryption of 0.
This case occurs recurrently in several algorithmic patterns, particularly when values must
be selected based on the results of conditions over encrypted data. Some examples are
the computation of conditional assignment instruction CSEL (Section 4.4), bubble sorting
(Section 8, p. 554), array dereferencing and assignment (Section 8, p. 555). For more
details about ADDZ, see Section B.2.2. As a result, this instruction also executes much
faster than the general purpose ADD instruction. This first example illustrates our design
mindset, according to which we have proposed standard general-purpose instructions for
all usual operations found in typical ISA, as well as additional variants providing better
FHE evaluation when some (frequently occurring) assumptions are met.

In summary, we provide the following categories of instructions:

• Bitwise/arithmetic instructions (addition, multiplication, division, modulo, shift, rota-
tion, etc.), each coming in different flavors as discussed just above. These instructions’
names are relatively conventional.

• Test instructions for testing equality and performing comparisons over encrypted data.
These instructions also come with different flavors and are expected to return encryptions
of either 0 or 1 .

• Conditional assignment instructions (CDUP, NCDUP and CSEL, the latter being the
only trivariate instruction in the set). These instructions provide the building blocks to
emulate if-then-else or do-while statements with encrypted data-dependent conditions.

• Advanced instructions: support for multiplication with 16-bit results (i.e., computation
of the most significant byte of the product of two bytes), support for fixed-point
arithmetic (including decimal division), min/max operators, absolute value, to name a
few.

• User defined univariate instructions: we further provide an XOP instruction which the
programmer may arbitrarily configure.

For readability’s sake, the following sections are intended only to discuss the key difficulties
we had to overcome and the optimization techniques we had to consider to implement the
complete set of instructions. Full details are provided in Appendix B.

5.2 Notations for Homomorphic Operator Specifications
In this work, following Section 4 and most particularly Sect. 4.2, we manipulate 8-bit
plaintexts broken down into two 4-bit digits. Thus, to encrypt an 8-bit plaintext M
decomposed into two 4-bit digits m0 and m1 such that M = 16m0 +m1, we encrypt m0
and m1 separately under the same scheme E to obtain C = (c0, c1) ∈ Jm0K × Jm1K as an
encryption of M . We consistently denote 8-bit plaintexts M ∈ M2 and their corresponding
ciphertexts C ∈ C2 with uppercase letters. Conversely, 4-bit plaintexts and their encryptions
are denoted with lowercase letters. For instance, for h, l ∈ M2, C = (c0, c1) ∈ JhK × JlK ⊂ C2

denotes an encryption of the 8-bit cleartext value (h, l) ∈ M2 which encodes the 8-bit
message M = 16h + l. We call h the most significant nibble of M . Similarly, l is the least
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significant nibble of M . We denote these parts msn and lsn. With a slight abuse of
notation, as already done above, we will use T = (u, v) and T = 16u + v interchangeably.
Sometimes, a ciphertext C may have no msn and is denoted by (�, c1). This, for example,
occurs for outputs of test instructions, which are encrypted booleans (in that case, it can
further be assumed that c1 ∈ J0K ∪ J1K). Some instructions also result in a cleartext 0 value
in the msn or lsn of a given ciphertext, e.g., an unsigned right (respectively left) shift
of C = (c0, c1) gives ciphertext (0, c0) (respectively (c1,0)). We can use this to perform
cleartext/ciphertext operations on the fly.

As a "Hello world!" example of how we later use these notations to specify our operators
and instructions, let us consider the AND instruction which, given C = (c0, c1) ∈ JhK × JlK
and C = (c′0, c′1) ∈ Jh′K × Jl′K, is defined as

Eval(AND;C,C ′) = C̄ = (c̄0, c̄1) ∈ Jh&h′K × Jl&l′K

To actually implement the above, we then proceed by evaluating

c̄0 = LUTeval(c0, c′0; tab_and) and c̄1 = LUTeval(c1, c′1; tab_and)

where tab_and is a table with 256 4-bit entries such that tab_and[16i+ j] = i&j and where
LUTeval ∶ L × C2 Ð→ C (L being the set of all 256 4-bit entries tables) is the tree-based
functional bootstrapping operator instantiated in Section 4.2.

5.3 Implementing Univariate Instructions
Univariate instructions only take one input ciphertext (with an 8-bit cleartext payload).
These can correspond to univariate operators, such as the absolute value (ABS) or the
negation (NEG) of a signed 8-bit value, the bitwise inversion operator (INV), etc. They
can also correspond to cleartext-ciphertext operations such as the addition of a (public)
immediate value (ADDi), left shift, or rotation by a (public) number of positions (SHLi
or ROLi), etc. With respect to our 8-bit plaintext domain, all these operations can be
implemented by simply dereferencing a table with 256 8-bits entries with an 8 bits
plaintext input, i.e., any such instruction inst on input i ∈ Z256 can be implemented as
tab_inst[i] with tab_inst[i] = f(i) (for i = 0,⋯, 255) and f the function that inst performs.
For instructions implementing cleartext-ciphertext operations, there is one such table
tab_instV for each of the 256 possible plaintext inputs, V , with the proper table selected
at runtime (and, even possibly generated on the fly). Then, to perform the instruction inst
over C = (c0, c1) ∈ JhK × JlK we simply have to evaluate

(c̄0, c̄1) =MVLUTeval(c0; c1, c1; tab_inst_msn, tab_inst_lsn) (1)

with tab_inst_msn[i] = ⌊tab_inst[i]/16⌋ and tab_inst_lsn[i] = tab_inst[i] (mod 16), for i =
0 to 255. To illustrate that this pattern allows implementing arbitrary complex univariate
instructions, we can consider the case of the divide-by-V (V ∈ Z256) operation9 which
induces the instructions: DIVi (quotient of the euclidean division by V with tab_diviV [i] =
⌊i/V ⌋), MODi (remainder of the euclidean division by V with tab_modiV [i] = i mod V ).

Univariate test instructions are handled slightly differently in the sense that, with respect
to the plain domain, they output only encryptions of boolean 1-bit values (still contained
in a single 4-bit digit). As such, only an evaluation of LUTeval is needed to perform them.
For example, the LT(C,V ) instruction, which outputs ciphertext C̄ = (�, c1) ∈ {�} × JbK
from ciphertext C = (c0, c1) ∈ JhK × JlK with b = 1 if 16h + l < V and b = 0 otherwise, is
performed by evaluating only

c̄1 = LUTeval(c0, c1; tab_ltV ). (2)
9Division, even by a cleartext value, is a good example of an operation which is notoriously difficult to

perform efficiently over FHE (even when one of the two operands is cleartext). Here, with our techniques,
division by a cleartext value does not cost much more than a mere addition...
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Remark 2. Note that some univariate instructions can be implemented more efficiently
than by (1). For example, for an addition by V (ADDi) we can proceed as follow:

c̄1 = SimpleBoot(c1, tab_add4V&15)
c̄0 = LUTeval(c̄0, c1, tab_fin4)

with tab_add4v[i] = (i+v) mod 16, tab_fin4V [16i+j] = tab_add4[16×tab_add4⌊V /16⌋[i]+
tab_car4V&15[j]], tab_car4v[i] = ⌊(i + v)/16⌋ and tab_add4[16i + j] = (i + j) mod 16.
Following the notations in Sect. 5.2, this can further be optimized as

(c̄0, c̄1) =MVLUTeval(c1;�, c0; tab_add4V&15, tab_fin4)

which has the effect of factoring an additional blind rotation (resulting in 2 blind rotations
vs 3 if (1) is used). In a similar spirit, bitwise instructions, e.g. ANDi, can simply be
implemented with two calls to SimpleBoot leading, again, to 2 blind rotations vs 3 when
(1) is used. We have considered such optimizations on a case-by-case basis, resorting to (1)
only when we found no better options. †

Lastly, we provide an additional univariate XOP instruction taking a user-defined 256×8
bits table rather than an immediate value V as input. For example, this instruction can
perform special operations such as the AES S-box or the six GF (256) multiplication-by-
cleartext in that algorithm [TCBS23b]. A variant of this latter instruction, XOPN(ibble)
also takes a user-defined 256× 4 bits table as input to evaluate custom conditions following
(2). Table 3 provides a synthetic (yet exhaustive) list of the univariate instructions we
have implemented.

Table 3: List of our instructions. For each instruction denoted by INSTR(i), INSTR is
the bivariate instruction taking two encrypted inputs, and INSTRi is the variant taking as
inputs an encryption of a byte and a cleartext one. Instructions denoted by (U)INSTR(i)
have an unsigned and a signed version.

Arithmetic
inst.

ADD(i) (addition of two bytes); SUB(i); MUL(i); MULM(i) (most sig. byte
of the product of two bytes); DIV4(i) (division of an encrypted byte by
an encrypted nibble); DIV(i) (division of an encrypted byte by another
encrypted one); MOD4(i) (modulo of an encrypted byte by an encrypted
nibble); MOD(i) (modulo of an encrypted byte by another encrypted byte)

Bitwise
inst.

AND(i); OR(i); (U)SHL(i) (shift an encrypted byte (signed or unsigned)
left by an encrypted 8-bit index), ROL(i) (rotate an encrypted byte left by
an encrypted 8-bit index); (U)SHR(i); ROR(i)

Test inst.
EQ(i) (test if two ciphertexts encrypt the same byte); GT(i) (test if the
first ciphertext encrypts an 8-bit value greater than the one encrypted by
the second ciphertext); LT(i); GTE(i); LTE(i)

Other
inst.

MIN(i) (minimum of two encrypted bytes); MAX(i); CDUP(i); NCDUP(i);
CSEL (conditional selection); ABS (absolute value of an encrypted signed
byte); NEG (returns the opposite of an encrypted signed byte); XOP;
XOPN; DC (binary decomposition of a ciphertext); RC (recomposition of a
ciphertext)

5.4 Implementing Bivariate Instructions
5.4.1 Bivariate Instructions Basics

We now turn to bivariate instructions, which take two input ciphertexts (each with an
8-bit cleartext payload). These correspond to additions (ADD), left shift or rotation by an
encrypted number of positions (SHL or ROL), etc. In Section 5.2, we have already seen



548 Designing a General-Purpose 8-bit (T)FHE Processor Abstraction

how to perform bitwise instructions. As another example, let us consider instruction ADD
which turns C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K into C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K
such that 16h̄ + l̄ = (16h + l + 16h′ + l′) mod 256 leading to two calls to LUTeval and one
call to MVLUTeval with two tables to produce C̄:

cs = LUTeval(c0, c′0, tab_add)
(c̄1, cc) =MVLUTeval(c1; c′1, c′1; tab_add, add_carry) (3)
c̄0 = LUTeval(cs, cc, tab_add).

with tab_add[16i + j] = (i + j) mod 16 and add_carry[16i + j] = ⌊ i+j16 ⌋.
As for the univariate case (Section 5.3), bivariate test instructions output only a single

(encrypted) nibble with a single-bit payload, i.e., ciphertexts of the form (�, c1) with
c1 ∈ J0K ∪ J1K. In FHE computations, we often have to sum two encrypted values where
an unknown one of them encrypts 0. This does not make any difference on a cleartext
processor, and special instructions are usually not included in that case. However, when
working over encrypted data, the lack of carry propagation means we can save the call
to MVLUTeval in Eq. (3) above. For this reason, we also provide the ADDZ instruction,
which thus “sums” two ciphertexts under the assumption that at least one of them belongs
to J0K by means of two independent calls to LUTeval.

As we shall see, the CDUP (“Conditional DUPplication”) instruction plays an important
role in being able to perform a conditional assignment and, as such, is fundamental in
the context of FHE calculations. Given an encrypted boolean (�, c1) ∈ JlK and an input
C ′ = (c′0, c′1) ∈ Jh′K × Jl′K, CDUP produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K with h̄ = h′ and
l̄ = l′ when l = 1 (i.e. when the input boolean is true) and h̄ = l̄ = 0 when l = 0 (we leave
the instruction behavior unspecified when l > 1). Essentially, CDUP can be implemented
by a single call to MVLUTeval:

CDUP((�, c1),C ′) =MVLUTeval(c1; c′0, c′1; tab_sel1, tab_sel1),

with tab_sel1[16i + j] = j if i = 1 and 0 otherwise. Conversely, instruction NCDUP behaves
similarly except that it outputs (encryption of) 0 when the input boolean is true. As such, it
is implemented exactly as CDUP but using table tab_sel0[16i+j] = j if i = 0 and 0 otherwise.
Lastly, we provide a single trivariate instruction CSEL (“Conditionnal SELection”) which,
given an encrypted boolean (�, c1) ∈ JbK (b ∈ {0, 1}) and two inputs C ′ = (c′0, c′1) ∈ Jh′K× Jl′K
and C ′′ = (c′′0 , c′′1) ∈ Jh′′K × Jl′′K, produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that
h̄ = bh′ + (1 − b)h′′ and l̄ = bl′ + (1 − b)l′′. Interestingly, even if it is a trivariate instruction,
CSEL can be implemented rather efficiently by factoring 4 blindRotate in a single call to
MVLUTeval:

CSEL

(c̃0, c̃1, c̃2, c̃3) =MVLUTeval(c1; c′0, c′1, c′′0 , c′′1 ; tab_sel1, tab_sel1, tab_sel0, tab_sel0)
(c̄0, c̄1) = ADDZ((c̃0, c̃1), (c̃2, c̃3))

This gives us the conditional assignment instruction needed to emulate if-then-else
constructs on our FHE processor abstraction. Note that we also provide instructions
CDUPi, NCDUPi, and CSELi, which all take an encrypted boolean as input and either one
or two cleartext values. We detail these instructions in Appendix B.

5.4.2 A Homomorphic Division Operator

We now illustrate how our approach can be used to lead to a division operator between
two ciphertexts C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K. For simplicity’s sake,
we consider the unsigned division. This operator returns C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that
16h̄ + l̄ = ⌊(16h + l)/(16h′ + l′)⌋.
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Let 16h̄ + l̄ = Q = ∑7
i=0 qi2i = ∑7

i=0 pi with qi ∈ {0,1}. We then have

qi = { 1 if 2i(16h′ + l′) ≤ (16h + l) −∑7
j=i+1 qj × (16h′ + l′)2j ,

0 otherwise.

Then, Q can be naively obtained using a carryless summation of the pi = qi2i’s. But
we note that if h′ ≠ 0, the msn of 16h+l

16h′+l′ is always 0. If h′ = 0, then the msn of the
quotient is given by h

l′
. So instead of computing the qi’s for i ∈ {7,6,5,4}, it is sufficient

to compute c̄0 = LUTeval(SimpleBoot(c′0,tab_is_zero),LUTeval(c0, c′1;tab_div);tab_mul).
Then, to compute the lsn of the quotient, we must follow the algorithm presented
below, starting from Ct rather than C. Indeed, after computing c̄0, the value that will
be compared to obtain the lsn of the quotient must be updated in the following way.
First, we need to compute cs = LUTeval(c̄0, c′1;tab_mul), and then update c0 with the value
ct = LUTeval(c0, cs,tab_sub).

DIV

// the ciphertext Ct = (ct, c1) has been previously computed following the method
presented above
Ct = (ct, c1)
cq ∈ J0K
for i = 3 to 0
Cm = (cm0 , cm1) = SHLi(C ′, i) // Shift Left by a cleartext index
cg = GTE(Ct,Cm) // Greater Than or Equal
cb = LUTeval(c′0, cg, tab_and_mulm_zero)
Cs =MVLUTeval(cb; cm0 , cm1 ; tab_mul_lsn, tab_mul_lsn)
Ct = SUB(Ct,Cs)
cq = LUTeval(cq, cb, tab_add_qi)

tab_and_mulm_zero is a 256-element table with tab_and_mulm_zero[16k + j] =
(((k << i) >> 4) == 0)&(j == 1), that we use to test if the overflow produced by the
multiplication 2i(16h′+l′) is zero and if 2i(16h′+l′) ≤ (16h+l)−∑7

j=i+1 qj2j . Indeed,
the condition for qi = 1 is satisfied if and only if the multiplication does not produce
any overflow. tab_add_qi is a 256-element table such that for k, j ∈ {0,⋯,15},
tab_add_qi[16k + j] = k + (j ≠ 0) ⋅ 2i that we use to add the new qi to cq. Finally,
note that for i = 0, SHLi does nothing.

Remark 3. Let us further consider the case where it is known that h′ = 0 and let q0 = ⌊16h/l′⌋,
q1 = ⌊l/l′⌋, r0 = 16h mod l′ and r1 = l mod l′, then the division algorithm may be
significantly simplified due to the following relation, which holds ∀(h, l, l′) ∈ {0,⋯,15}3,

⌊16h + l
l′

⌋ = ⌊16h
l′

⌋
´¹¹¹¹¹¹¸¹¹¹¹¹¶
q0

+ ⌊ l
l′
⌋

±
q1

+⌊16hr
l′

⌋
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

ε0

+ ⌊ lr
l′
⌋

±
ε1

, (4)

with hr = ⌊ r0+r1
16 ⌋ and lr = (r0 + r1) mod 16. This simplified division requires 20 blind

rotations and 12 key switches versus 97 and 56 for a full-blown division. See Table 4. †

6 Other Types of Ciphertexts
6.1 Working with Signed Inputs
In this section, we consider 8-bit messages decomposed into two 4-bit digits, but in
signed representation using two’s complement. This way, we can encrypt messages in
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M− = J−128,127K. This, of course, requires the user to know whether they are using
signed or unsigned representation to be able to interpret the decrypted messages correctly.
Note that the used TFHE parameters do not change, as it is only a matter of semantics.
This way, new tables are required to perform additions, multiplications, shifts,... and
new operations such as the negation NEG or the absolute value ABS. For many operators,
these operations are very similar to their unsigned variants. For instance, the signed right
logical shift (SHRi) is implemented by duplicating the sign bit instead of injecting zeroes
on the left. Thus, the only differences are in the tables tab_inst_msn and tab_inst_lsn
(recall Equation (1)) contents. Apart from this, we proceed similarly to the unsigned
shift. For further details on how we implement SHRi and SHR, see Section B.2.8. More
generally, appendix B presents all our instructions implementation details, including those
instructions working over signed data.

6.2 Support for Fixed-point Arithmetic
We can also apply this paper’s approach to ciphertexts encrypting values represented in
fixed-point arithmetic. To do so, we have to work with 16-bit data: 8 bits for the integer
part and 8 bits for the fractional part of a fixed point number. In addition, we need an
encoding layer adapted to the semantic of this representation on top of the encryption
layer. We consider that the integer part can be signed or unsigned and that the fractional
part is always positive. For example, 4.6 is represented as (4, ⌊256 × 0.6⌋ = 153) and −4.6
as (−5, ⌊256× 0.4⌋ = 102). We note the ciphertexts and associated plaintexts corresponding
to encryptions of such 16-bit messages with bold capital letters: C = (c0, c1, c2, c3) ∈
JhK × JlK × JoK × JkK is an encryption of the 16-bit message T encoding 16h + l + 16o+k

256 . For
example, an encryption of 1

256 = 0.00390625 will be C ∈ J0K× J0K× J0K× J1K. This approach
enables the implementation of new functions, such as decimal division or a fixed-precision
sigmoid (Section 8). As an example, let us consider the decimal division by a cleartext
8-bit value d (assuming unsigned input semantic for simplicity’s sake), an operation that
is often used when computing basic statistics when the sample size is known, which given
C = (c0, c1) ∈ JhK × JlK outputs C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K and (c̃0, c̃1) ∈ Jh̃K × Jl̃K such that

16h̄+l̄ = tab_int[16h+l] = ⌊16h + l
d

⌋ and 16h̃+l̃ = tab_dec[16h+l] = ⌊256(16h + l) mod d
d

⌋ .

With only 5 BlindRotate, we then compute (c̄0, c̄1, c̃0, c̃1) as the result of

MVLUTeval(c0; c1, c1, c1, c1; tab_int_msn, tab_int_lsn, tab_dec_msn, tab_int_lsn)

6.3 Input/Output
In this section, we consider the issue of getting data in and out of our processor abstraction
in the setting where it is deployed on a remote server and available to a client, which
sends input ciphertexts to the server (which we refer to as uplink input transmissions from
the client to the server) and expects output ciphertexts in return (which we refer to as
downlink output transmissions from the server back to the client), as the results of some
valuable computations. We then wish to avoid the naive approach, which consists of the
client sending its encrypted input data by transferring a full TLWE ciphertext for each
payload nibble (similarly on the downlink).

Still, in this naive setting (and considering the parameters in Table 2), our approach is
more efficient than the “standard TFHE gate approach” as we require transmitting two
TFHE ciphertexts with a 4-bit payload (for a total size of 65600 bits) by opposition to
eight ciphertexts with a single bit payload (accounting for a total of 161536 bits using the
default TFHELib parameters).
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6.3.1 Uplink Input Data Transmission

On the uplink, a standard approach is to resort to transciphering to remove the transmis-
sion overhead [CCF+16, BBS22, BCBS23, PJH23], at the cost of homomorphically running
a symmetric algorithm decryption function (which can then be easily “coded” using our
instruction set). If we accept a slightly higher transmission overhead, a computationally
lighter approach consists of simply synchronizing the client and server using a PRF to
avoid sending the a term of the TLWE pairs (i.e., both the server and the client are
able to compute on their own the a vector associated to a given b = ⟨a, s⟩ + q

16m + e) and
thus to transmit only the unique coefficient b. The uplink expansion factor, therefore,
becomes independent of the n parameter. Since the ciphertext and plaintext moduli,
respectively, are q = 232 and B = 16 in our TFHE parameter setting for basis-16 (Table
2), this leads to an expansion factor of only 32

4 = 8, which is reasonable by “FHE standards”.

6.3.2 Downlink Output Data Transmission

Remark that none of the above approaches are applicable to reduce the overhead of
encrypted results transmission from the server to the client. Indeed, transciphering
allows the conversion of data encrypted under some (usually symmetric) scheme towards
an homomorphic scheme, but not the other way around. Besides, for results of FHE
computations, neither the server nor the client can control the resulting a term, which,
therefore, has to be transmitted somehow. Still, to decrease as much as possible the burden
of transmitting several encrypted outputs, under the form of TLWE ciphertexts, the server
can assemble them as much as possible in TRLWE ones. Thus, we want to assemble
K = 2L TLWE results into one or more TRLWE ciphertexts. More precisely, the server
assembles up to n TLWE samples into a single TRLWE sample using the usual keyswitch
packing whereby n TLWE messages m0,⋯,mn−1 maps to m(X) = ∑n−1

0 miX
i. Consider

that K TLWE ciphertexts have to be transmitted, then, when K mod n = 0, we have an
expansion factor of

2 log2 q

log2 t
(5)

i.e., with n = 1024 and q = 232, this leads to an expansion factor of 16 (B = 16). So, the
downlink expansion factor is “only” twice that of the uplink (asymptotically). When, K
mod n = r > 0, expansion is given by

2⌊k/n⌋ log2 q + (n + r) log2 q

K log2 t
.

Expansion factor (5) is also valid in the asymptotic regime when K is large. Other
techniques may be used to further reduce the expansion factor on the downlink, e.g.,
[BDGM19, BCCS24].

6.4 Bit decomposition and recomposition
6.4.1 Decomposition (DC)

Let us consider that we have a ciphertext C = (c0, c1) with an 8-bit payload decomposed
in two nibbles. In some algorithms, it is more interesting for specific operations to work
with bits. For instance, the symmetric sponge-based cipher ASCON [DEMS21] requires
switching from a binary rows representation to a columns representation. Thus, we
must decompose a ciphertext c into eight encryptions of bits. To do so, it is sufficient
to decompose c0 and c1 each into four ciphertexts. That means one needs four tables:
one per decomposition bit. These tables are easy to precompute as it only requires
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calculating for i ∈ {0, 1,⋯, 15}, the LUTs corresponding to i & 0b0001, (i & 0b0010)>> 1, (i
& 0b0100)>> 2, and (i & 0b1000)>> 3. Then, the user can perform an MVB bootstrapping
using the four test-vector polynomials given by the four 1 × 16 tables and extract the
four values. This operation is less expensive than a LUTeval call. Note that even if we
now have encryptions of either 0 or 1, these ciphertexts are still manipulated with the
parameters corresponding to a basis 16 encryption. This is a crucial principle for a cheap
recomposition.

6.4.2 Recomposition (RC)

Once done working on a smaller basis, one should recompose their ciphertext into the
initial basis to continue their computations. In our specific case of ciphertexts of basis
16 decomposed 8-bit data, that means that we want to obtain c′ = (c′0, c′1) from c =
(c0, c1, c2, c3, c4, c5, c6, c7) encrypting the same message m. As previously stated, the
individual ciphertexts c0,⋯, c7, even encrypting binary values, are still in the 32-value
discretized torus. This simplifies the recomposition into 4-bit ciphertexts. Indeed, we have

c′0 = c0 + 2 ⋅ c1 + 22 ⋅ c2 + 23 ⋅ c3 and c′1 = c4 + 2 ⋅ c5 + 22 ⋅ c6 + 23 ⋅ c7.

As the multiplication by a power of 2 less than 16 will not result in an overflow, we can
use a call to SimpleBoot on each ci being multiplied. In these conditions, we can use the
native TFHE TLWE addition to recompose each nibble. Still, this recomposition alone
takes longer than a SHLi instruction, so a decompose/shift-for-free/recompose approach is
not competitive. Hence, decomposing and recomposing ciphertexts is only efficient when
many binary operations have to be performed.

7 Instructions Timings
We have fully implemented our proposed instruction set under TFHElib [CGGI16]. We
summarize in Table 4 the timings obtained on our test machine (a 12th Gen Intel(R)
Core(TM) i7-12700H CPU laptop with 64 Gib total system memory with an Ubuntu
22.04.2 LTS server), using only a single core.

Table 4: Mnemonics, blind rotations and keyswitches counts as well as execution times
for our (T)FHE processor abstraction instruction set.

Instr. Nbr Nks ms Instr. Nbr Nks ms
ANDi/ORi/XORi 2 0 69 AND/OR/XOR 4 2 278

DC 2 0 81 RC 8 0 267
(U)SHLi/(U)SHRi 2 0 72 (U)SHL/(U)SHR 6 4 478

ROLi/RORi 4 0 125 ROL/ROR 9 6 714
EQi 2 0 88 EQ 6 3 393

LT(E)i/GT(E)i 2 1 126 LT(E)/GT(E) 9 5 623
(N)CDUP 3 1 159 CSEL 9 6 694
NEG/ABS 2 1 215 MIN/MAX 16 10 1176
ADDi/SUBi 2 1 137 ADD/SUB 7 4 493

ADDZ 4 2 271 MUL(M)i/DIV(4)i/MOD4i 2 1 133
MODi 3 2 267 MUL 10 6 725
MULM 32 20 2442 DIV4 21 14 1624
DIV 97 56 7711 MOD4 10 6 724
MOD 91 50 7584 (N)CDUPi 1 0 33
XOP 3 2 229 MINi/MAXi 2 1 135
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As a complement to Table 4, let us now illustrate the benefits of the successive
optimizations that we have proposed and applied in the paper by focusing on the ADDi and
ADD instructions (as representative examples of non-straightforward but not too overly
complex univariate and bivariate instructions).

First, for the ADD instruction, one could start naively by trying to use the Tree-based
Method relying on the basis-256 functional bootstrapping alone. This approach would
require 257 blind rotates and one packing via a public functional keyswitch leading to an
overall execution time of around 385 secs. Doing the same while further relying on the
MVB then gets this timing down to 3 secs. Then, using our paper approach relying on a
two basis-16 digits decomposition of each 8-bit data,

• Using the Tree-based Method without MVB leads to a run time of 2.32 secs for that
instruction.

• With MVB (i.e. LUTeval), this number gets down to 0.52 secs.
• With the additional factorization allowed by MVLUTeval, we then obtain our final

timing of 0.49 secs for the ADD instruction.

Then, regarding the ADDi instruction, one can also naively start by performing a single
basis-256 bootstrapping leading to an execution time of 1.5 secs. Then, following the paper
approach, we obtain the following successively refined timings:

• Using the Tree-based Method without MVB leads to 1.16 secs.
• Doing the same with MVB (LUTeval) gets that number down to 0.26 secs.
• The MVLUTeval optimization leads to 0.23 secs.
• Then, with our final optimization which factors one more simple bootstrapping (Remark

2, p. 547) we obtain our final timing of 0.13 secs.

Table 5 summarizes the above successive timing refinements.

Table 5: Illustration of the benefits of the successive optimizations proposed and applied
in this paper on the ADDi (lower half) and ADD (upper half) instructions.

Opt. level Nbr Nks Timing (s)
Basis-256/TBM w/o MVB 257 1 385
Basis-256/TBM w. MVB 2 1 3
Basis-16/TBM w/o MVB 68 4 2.32
Basis-16/TBM w. MVB 8 4 0.52
Basis-16/MVLUTeval 7 4 0.49
Basis-256/SimpleBoot 1 1 1.5
Basis-16/TBM w/o MVB 34 2 1.16
Basis-16/TBM w. MVB 4 2 0.26
Basis-16/MVLUTeval 3 2 0.23
Basis-16/Rem. 2 (p. 2) 2 1 0.13

8 From Instructions to Algorithms
To test our instruction set, we now use it to implement a number of (simple) algorithms.
Note that in certain cases, it might be more efficient to directly implement these algorithms
at the functional bootstrapping level. However, by analogy to a real microprocessor, that
would mean coding at the micro-code rather than at the ISA level. So, in this section, we
only use instructions from our set.
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8.1 Testing a Few Elementary Algorithms
8.1.1 Bubble Sort

Bubble sorting consists of repeatedly comparing consecutive elements in an array and
permuting them when incorrectly ordered. One way to perform the conditional swap of
two array elements without resorting to an if-then-else construct can be, for example, done
using MAX and MIN computations. However, it is more efficient to use GT, CDUP, NCDUP
and ADDZ as done in Algo 1). To give an order of magnitude for the execution time,
sorting an array of five ciphertexts encrypting 8-bit values using this “sorting in place”
algorithm takes around 15 seconds. More execution timings can be found in Table 6.

Algorithm 1 BubbleSort
Input: A an array of n encryptions of 8-bit values
Output: A sorted from the smallest value to the largest.

for i = n − 1 to 0 do
for j = 0 to i − 1 do

cb ← GT(A[j],A[j + 1])
C̃ ← A[j + 1]
Cs ← CDUP(cb,A[j])
A[j + 1] ← NCDUP(cb,A[j + 1])
A[j + 1] ← ADDZ(Cs,A[j + 1])
Cs ← CDUP(cb, C̃)
A[j] ← NCDUP(cb,A[j])
A[j] ← ADDZ(Cs,A[j])

return A

8.1.2 Maximum/Minimum of an Array

As another simple example, it is easy to use our MIN and MAX homomorphic operators to
find the largest or smallest element in a table, as done by Algo 2. With this algorithm,
finding the maximum or minimum of an array composed of five 8-bit encrypted values
takes less than 5 seconds (see Table 6).

Algorithm 2 Maximum
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the largest value in A

C̄ ← A[0]
for i = 1 to n − 1 do

C̄ ←MAX(C̄,A[i])
return C̄

8.1.3 Average

Thanks to our homomorphic decimal division operator, we are able to precisely compute
the average of an array in fixed-point arithmetic, including the final division. Algo 3 gives
an implementation with our instruction set. As shown in Table 6, this computation takes
less than 4 seconds when tried on a five-element array.

8.1.4 Array Dereferencing and Assignement

Note that dereferencing an array of 256 (or less) cleartext values (with an encrypted index)
is just an evaluation of our MVLUTeval operator. Further optimizations can be made
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Algorithm 3 Average
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the 16-bit value corresponding to the average of

the table A
Ca ← A[0]
for i = 1 to n − 1 do

Ca ← ADD(Ca,A[i])
Ci ← DIVi(Ca, n)
Cd ← DIV_DECi(Ca, n)
return C̄ = (Ci,Cd)

on a case-by-case basis, for example, if the array to be dereferenced contains fewer than
256 values. It is also feasible to dereference an array of 256 (or less) encrypted values
with an encrypted index. Indeed, we can use a modified MVLUTeval running directly
on encrypted test polynomials, as in the second level of the evaluation of the tree-based
method (Section 3.3.1), where we rotate a new encrypted test polynomial by an encrypted
index. Dereferencing arrays with more than 256 elements is also possible but requires a
slightly more complex machinery that we do not detail (indeed, as 256 is the size of our
plaintext domain we have tools to bootstrap over a 256-element table straightforwardly,
but when there are more than 256 elements in the table, a single tree-based bootstrapping
is not enough). Lastly, we can also obtain an operator for assigning an array of 256 (or
less) encrypted values, still with an encrypted index. That is to say, given an encrypted
table tab of size n, an encrypted index Ci = (ci0 , ci1) ∈ Ji0K × Ji1K and an encrypted value
CV = (cv0 , cv1) ∈ Jv0K × Jv1K, the operation affects the value V = 16v0 + v1 to tab[16i0 + i1].
See Algo 4. As seen in Table 6, the sequential evaluation of this operator on an array of five
8-bit encrypted inputs takes 4.45 seconds. Note that this approach to array dereferencing
is not competitive with PIR approaches running over RLWE schemes. However, these
latter approaches are, by intent, only able to execute PIR requests very efficiently and do
not claim to achieve more than that.

Algorithm 4 Assignment
Input: A an array of n encryptions of 8-bit values, an encrypted index Ci and an

encrypted value CV
Output: A modified at index 16i0 + i1

for j = 0 to n − 1 do
(0, cb) ← EQI(Ci, j)
C0 ← CDUP(cb;CV )
C1 ← CDUP(cb;A[j])
A[j] ← ADDZ(C0,C1)

return A

8.1.5 Squares Sum

As another simple algorithm, let us consider a Sum of Squares computation. It is a rather
simple algorithm. However, taking a glimpse at Section 9, it already induces a number
of gates large enough such that the Boolean circuit approaches are no more competitive
with ours. By contrast, with our instruction set, it is (also) straightforward to implement
(see Algo 5) and more efficient. Indeed, as seen in Table 6, the sequential evaluation of
this operator on an array of five 8-bit encrypted inputs takes 5.66 seconds when the best
Boolean circuit-based approach takes 7.6 secs (Table 8).
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Algorithm 5 SquaresSum
Input: A an array of n encryptions of 8-bit values
Output: C the encryption of the sum of the squares of the n values of A

Cs ←MUL(A[0],A[0])
for j = 1 to n − 1 do

Ct ←MUL(A[j],A[j])
Cs ← ADD(Cs,Ct)

return Cs

8.1.6 AES

Because the algorithm may be efficiently expressed by means of LUT, AES is easily
implemented with our approach leading a sequential execution time of 259 seconds, as was
in fact implicitly done in [TCBS23b], which is competitive with the order of magnitude in
the state of the art.

8.1.7 Loops

For completion, we highlight a technique to perform (encrypted) data dependant loop
termination when a bound B is known on the total number of iterations. Let S denote the
state of a program, then a statement of form “while c(S) do S ∶= f(S)” can be rewritten as
“for 0 ≤ i < B do if c(S) then S ∶= S else S ∶= f(S)”. In essence, that latter form computes
a fixed point after condition c(S) reaches a true value, and the inner if-then-else statement
can then be done via a CSEL instruction.

8.2 Evaluation of an Elementary Neuron
We now turn to the homomorphic evaluation of an elementary neuron, as usually found in
convolutional neural networks. Our simple neuron has two encrypted fixed-precision inputs
representing encryptions of numbers, F1 and F2, in [−1,1] (each over 16 bits as in Sect.
6.2) and one encrypted fixed-precision output of the same form. We emphasize that the
output of our neuron can be fed to another one, enabling the evaluation of larger networks
over encrypted data. From an operational viewpoint, the two encrypted inputs are first
multiplied by fixed precision weights in [−1,1] (W1 and W2, respectively), which may
either be cleartexts or ciphertexts. The sum of these products is then fed into an activation
function, in this case, the sigmoid, noted σ (which takes an encrypted fixed-precision value
as input and evaluates the sigmoid at that point). In summary, specified over cleartext
value, we have to evaluate

neuron(F1,F2) = σ(F1 ⋅W1 +F2 ⋅W2).

Let CF1 = (c0, c1, c2, c3) ∈ JhK× JlK× JoK× JkK, (meaning, as in Sect. 6.2, that CF1 encrypts
the value F1 = 16h + l + 16o+k

256 ) and CF2 = (c′0, c′1, c′2, c′3) ∈ Jh′K × Jl′K × Jo′K × Jk′K. This way,
we have to compute two cleartext-ciphertext decimal multiplications, one homomorphic
decimal addition, and the homomorphic evaluation of the sigmoid.

The most complicated part of that computation is the homomorphic evaluation of the
sigmoid, taking as input a ciphertext corresponding to a 16-bit fixed-point arithmetic value.
To do so, we evaluate a discretized sigmoid σ̃((i, j)) on several non overlapping intervals
(−∞,−6), [−6,−5), ..., [5,6), [6,∞) as

σ̃((i, j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0,0) if i < −6,
(0, tab_sigi[j]) if i ∈ {−6,−5, ...,4,5},
(1,0) if i ≥ 6,
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with tab_sigi[j] = σ(i+j/256) and then test the input to select the appropriate value among
these. However, because we do not have any way to branch on conditions over encrypted
data, each of the above (mutually exclusive yet collectively exhaustive) possibilities must
be computed, multiplied by an encrypted boolean, and then xored to obtain the final
result. It follows that, for a ciphertext C = (c0, c1, c2, c3) ∈ JhK× JlK× JoK× JkK, we compute
the evaluation of the sigmoid SIG by computing:

C̄ = (C̄, C̃) = (GTEi((c0, c1),6), ⊕
i∈{−6,⋯,5}

CDUP(EQi((c0, c1), i),SIGLUT(i)((c2, c3))))

with C̄ and C̃, the respective encryptions of the integer and decimal parts of the result. In
the above equation, the ⊕ operator corresponds to multiple calls to our XOR10 instruction
and SIGLUT(i) is the homomorphic evaluation of the LUT corresponding to the decimal
values of σ (i + 16o+k

256 ). Note that from an instruction set perspective, SIGLUT(i) can be
performed by means of the XOP (user-defined) univariate instruction discussed in Sect. 5.3
using the above twelve tab_sigi tables. This implementation of the sigmoid takes about
10 seconds to compute. With less precise encrypted inputs and outputs, homomorphic
sigmoid evaluation can be less costly [TCBS23a], but here, we prioritize accuracy and the
ability to feed a neuron output into another neuron without additional conversion over
faster execution. Based on this, we have been able to evaluate one neuron in about 16
seconds, so the evaluation of the sigmoid alone represents two-thirds of that cost. For
comparison, we have also implemented a homomorphic Heaviside function that operates
on encrypted inputs representing 16-bit fixed-point arithmetic values. Using this much
simpler function, we can get the execution timing from 16 seconds down to under 7 seconds.
See Table 6.

Table 6: Execution times (in seconds) of different homomorphic algorithms on arrays of
size n, and expecting timings depending on n.
Algorithm n = 2 n = 5 n = 10 Expected timings
BubbleSort 1.51 15.22 68.47 n(n−1)

2 × (4 × 0.160 + 2 × 0.270 + 0.390)
Minimum/Maximum 1.20 4.71 11.14 (n − 1) × 1.176
Average 0.78 2.36 4.97 (n − 1) × 0.493 + 2 × 0.133
ArrayAssignment 1.37 4.45 6.88 n × (0.088 + 2 × 0.159 + 0.271)
SquaresSum 2.12 5.66 12.30 n × 0.725 + (n − 1) × 0.493

Times
Neuron with Sigmoid 15.42 - - -
Neuron with Heaviside 6.67 - - -

9 Comparison with Other Approaches
In this section, we compare the performance of our approach to the following projects:
Juliet [GMT24], E3 [EOH+18], Cingulata [CDS15a], and Concrete [Zam22]. We aim to
compare the execution timings with ours on the set of algorithms from Section 8. An
average timing is computed on a hundred samples for each framework and algorithm. All
the results are summarized in Table 8.

Juliet [GMT24] Juliet11 is a general-purpose homomorphic computation framework. It
provides C++ functions corresponding to instructions implemented as Boolean circuits
over ciphertexts using TFHElib. Juliet also supports GPU acceleration, but as we perform

10Note that this sum can also be computed with our ADDZ instruction.
11https://github.com/TrustworthyComputing/Juliet



558 Designing a General-Purpose 8-bit (T)FHE Processor Abstraction

single-thread CPU computations, we have not activated this feature for fair comparison.
Juliet also gives a relatively small set of around 20 instructions (working over encrypted
data); it is then relevant to compare our approaches on the instructions we have in common:

• ADD, SUB, MUL, MOD
• AND, OR
• EQ, GT, LT, GTE, LTE (these instructions are all packed in COMP in Juliet)
• SHL and SHR

Additionally, many of our instructions are not supported in Juliet, particularly DIV, MOD
as well as SHL and SHR (variants for shifting an encrypted value by an encrypted offset).
Table 7 shows that with the same parameters for TFHE, our approach is, on average, 74%
faster on unitary instruction execution.

Table 7: Average (over 100 runs) execution timings (in seconds) of different homomorphic
instructions on encrypted inputs using Juliet and the present work’s approach.

Operation This work Juliet
AND 0.278 0.268
OR 0.278 0.254
ADD 0.493 1.012
SUB 0.493 1.231
MUL 0.725 5.334

EQ/COMP 0.393 2.195

Cingulata [CDS15a, ACS20] Cingulata12, formerly known as Armadillo [CDS15b], is a
toolchain and run-time environment (RTE) for implementing applications running over
HE. Cingulata provides high-level abstractions and tools to facilitate the implementation
and execution of applications running over encrypted data. Cingulata also includes many
working examples of programs. In Cingulata, programs are expressed in high-level C++
and automatically turned in optimized Boolean circuit form. Its runtime environment then
performs the homomorphic execution over the selected FHE scheme, which, for this work,
has been the gate-based variant of TFHE (Cingulata relies on the same TFHElib that we
are also using for TFHE implementation). Additionally, even if it is not supported natively,
we have implemented the homomorphic integer division given in 5.4.2 using Cingulata for
further comparisons (see Table 9).

As shown in Table 8, Cingulata sometimes outperforms our approach: for algorithms
Maximum and BubbleSort, it is faster by an average factor of 60%, as for the SquaresSum
and Sigmoid algorithms, our approach is more efficient by an average factor of 70%. It
turns out that Cingulata performs very well on homomorphic calculations, which leads to
small Boolean circuits (which it executes with a faster bootstrapping). In contrast, our
approach is faster when the size of the underlying Boolean circuit increases, i.e., when the
ratio between the Boolean circuit size and the number of basis 16 operations is above the
time ratio between basis 16 and basis 2 bootstrappings.

E3 [EOH+18] E3 (Encrypt-Everything-Everywhere)13 is a compilation framework similar
in spirit to Cingulata. Also, E3 supports bridging: homomorphic evaluation is performed
by mixing both arithmetic and binary circuits, which speed up the computation in certain
cases. E3, however, does not allow easy setting of the parameters for TFHE and presently
uses the default TFHElib parameters, achieving only 118 bits of security (this gives E3 a

12https://github.com/CEA-LIST/Cingulata
13https://github.com/momalab/e3
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slight advantage over our approach, which uses the larger fine-tuned parameters discussed
in Section 4). To the best of our knowledge, E3 is the only other framework that supports
homomorphic division (hence, we can compare the two approaches when computing the
homomorphic average of an array). Note that in Table 2, for the Average algorithm, we
perform a homomorphic decimal division with our framework, and only an integer division
with E3. Like Cingulata, E3 outperforms our approach for the same algorithms. During
our tests, Cingulata consistently outperformed E3 (except on the Average algorithm, on
which our approach outperforms both E3 and Cingulata). As Sigmoid was complex to
implement, we only implemented it for the most competitive approach to ours: Cingulata.
(see Table 8).

Concrete [Zam22] Concrete 14 by Zama is also an FHE compiler. It is built on an
LLVM-based compiler that can transform functions running over plaintexts into a mix of
boolean circuits for so-called leveled operations (addition, multiplication, linear application)
and LUTs (that they call TLU) for nonlinear operations that will eventually run over their
custom implementation of TFHE. Its Python interface makes it easy to use: we write
functions over plaintexts, compile them, and run them over ciphertexts in a single Python
script. As E3, Concrete does not let the user control or even access the parameters of the
TFHE scheme, meaning that we lack a complete visibility to compare their parameters
with ours (Section 4). However, as both parameter sets achieve 128-bit security, we assume
that the comparison remains fair.

As stated in Concrete’s documentation, the tool is most efficient for computations that
can be performed using leveled (in their terminology) operations rather than LUTs. This
is confirmed in Table 8 where Concrete is competitive on the SquaresSum algorithm.

Table 8: Average (over 100 runs) execution timings (in seconds) of different homomorphic
algorithms on arrays of 5 encrypted inputs using various approaches. Entries marked with
a ‘-’ are so due to lack of support of a unitary operation (e.g., division for Average).

Algorithm This work Juliet E3 Cingulata Concrete
Maximum 4.74 7.91 3.13 1.87 21.52
BubbleSort 15.22 31.62 12.70 6.18 78.07
SquaresSum 5.66 25.10 8.82 8.40 7.69
Average 2.36 - 3.57 10.31 -
Sigmoid 8.98 - - 969 -

Concluding Remarks The rationale for proposing an 8-bit instruction set (working over
encryptions of two nibbles) stems from the facts that TFHE can only handle small plaintext
domains without inducing huge parameters and that the computational cost of TFHE
bootstrapping depends heavily on the plaintext size (as shown in Table 1). So, proceeding
gate-by-gate over encryptions of bits (the FHE compilers approach) means performing large
numbers of FHE operations with a fast bootstrapping (≈7 ms), while proceeding as we do
requires performing comparatively fewer operations with a more costly bootstrapping (≈29
ms). The question is, therefore, whether this extra bootstrapping cost can be amortized in
the instruction set approach, leading to better performances. Our experimental results
in Tables 8 and 9 show that our approach amortizes this high bootstrapping cost and
outperforms the other state-of-the-art compilers. This is, for example, the case for the
SquaresSum algoritm (between ×1.3 and ×4.4 better), which uses MUL, an operation
that requires a larger number of Boolean gates. This is further exemplified by the more
complex DIVi and DIV instructions (respectively ×50 and ×1.5 faster) and the Sigmoid
(×100 faster). Still, Tables 8 and 9 indeed show that the Boolean circuit-oriented approach

14https://github.com/zama-ai/concrete
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is more efficient only for algorithms that do not suffer from a significant expansion when
represented as a Boolean circuit. The above results mean that there is a significant space
in which our approach outperforms the Boolean circuit approach implemented by the FHE
compilers.

Table 9: Average (over 100 runs) execution timings and number of bootstrappings of
different homomorphic algorithms on arrays of 5 encrypted inputs (when applicable) using
Cingulata and our approach. Note that the top part of the above table provides a compar-
ison of our approach with one relying on “standard TFHE gates” (as Cingulata exactly
implements this approach with optimized Boolean circuits) over a set of representative
instructions (implemented as small unitary programs in Cingulata).

This work Cingulata
Algorithm Nbr Nks Time(s) Nbr’ Time(s)

DIVi 2 1 0.13 700 7.38
DIV 97 56 7.71 1100 11.17
ADD 7 4 0.49 35 0.36
MUL 10 6 0.72 183 2.14
CSEL 9 6 0.69 0 0.001

Maximum 64 40 4.74 184 1.87
BubbleSort 260 110 15.22 620 6.18
SquaresSum 78 46 5.66 821 8.40
Average 32 18 2.36 1000 10.31
Sigmoid 156 60 8.98 106652 969

10 Conclusion and Perspectives

In this paper, we have essentially shown that a very limited set of functional bootstrapping
patterns is both versatile and optimal to build a complete conventional-looking assembly
language for manipulating (T)FHE encryptions of 8-bit data. In terms of perspectives,
this reveals several functional bootstrapping operators of increasing complexity which may
be appropriate targets for further works on advanced software optimizations or hardware
implementations in an intent, e.g., to provide a wide range of higher level instructions to
the user while maintaining a small number of hardware operators (also leveraging on the
fact that TFHE needs smaller parameters compared to the RLWE schemes). Indeed, our
approach would directly benefit from further efficiency improvements in the baseline TFHE
bootstrapping but also in the higher-level LUTeval or MVLUTeval operators. Beyond this,
the approach can also benefit from an ability to run several such primitives in parallel,
ideally by exploiting the low-level SIMD instructions offered by modern processors or
dedicated HW.

Another important perspective is to further investigate several values for the bootstrap-
ping error probability to consider the recent attacks in [CSBB24, CCP+24]. Indeed, our
parameters achieve “only” a 2−40 bootstrapping error probability. Although parameters
have been proposed in [CSBB24] for a 2−128 bootstrapping error probability, showing a
20% overhead in the baseline bootstrapping, they are valid only for B = 2. Finding a
parameter set for basis B = 16 achieving such a low probability remains challenging (due to
the necessary increase in polynomial degree and ciphertext modulus), and in that regime,
basis 4 might be the optimal choice. So achieving immunity against these recent attacks
may, therefore, have an impact that remains to be studied in depth.
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A Complete Instruction Listing and Timings

Instr. Description Nbr Nks
Exec.
(ms)

ABS Returns an encryption of the absolute value
of an encrypted input.

2 1 215

ADD/SUB Performs the homomorphic addition (or sub-
traction) of two encryptions of 8-bit values
and returns an 8-bit encrypted result.

7 4 493

ADDi/SUBi Performs the homomorphic addition (or sub-
traction) of one 8-bit plaintext to a cipher-
text encrypting an 8-bit value and returns
the 8-bit encrypted result.

2 1 137

https://github.com/zama-ai/concrete
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Instr. Description Nbr Nks
Exec.
(ms)

ADDZ Perform the carryless addition of two 8-
bit encrypted inputs. Returns an 8-bit en-
crypted value.

4 2 271

AND Computes the logical AND of two 8-bit pay-
load ciphertexts.

4 2 278

ANDi Computes the logical AND of an 8-bit pay-
load ciphertext and an 8-bit plaintext.

2 0 69

(N)CDUP Given an encrypted Boolean cb and an 8-bit
payload ciphertext C, returns an encryption
of cb ×C.

3 1 159

CSEL Given an encrypted Boolean cb and two 8-
bit payload ciphertexts C and C ′, returns an
encryption of cb ×C + (1 − cb) ×C ′.

9 6 694

DC Decomposition of an 8-bit payload cipher-
text into eight ciphertexts encrypting binary
values.

2 0 81

(U)DIV4 Calculates the Euclidean division of an 8-bit
payload ciphertext by the encryption of a
nibble and returns encrypted the quotient.

21 14 1624

(U)DIV(4)i Calculates the Euclidean division of an 8-
bit payload ciphertext by an 8-bit (or 4-bit)
plaintext and returns the encrypted quotient.

2 1 133

(U)DIV Calculates the Euclidean division of an 8-bit
payload ciphertext by another 8-bit payload
ciphertext and returns the encrypted quo-
tient.

97 56 7711

EQ Equality test: homomorphically compares
two 8-bit payload ciphertexts and returns
an encrypted boolean corresponding to the
evaluation.

6 3 393

EQi Equality test: homomorphically compares
one 8-bit payload ciphertext with one 8-bit
plaintext and returns an encrypted boolean
corresponding to the evaluation.

2 0 88

GT(E)/LT(E) Greater Than (or Equal to)/Less Than (or
Equal to): compares two 8-bit payload ci-
phertexts and returns an encrypted boolean
corresponding to the evaluation.

9 5 623

GT(E)i/LT(E)i Greater Than (or Equal to)/Less Than (or
Equal to): compares one 8-bit payload ci-
phertext with one 8-bit plaintext and returns
an encrypted boolean corresponding to the
evaluation.

2 1 127

MAX/MIN Homomorphically computes the maximum
(or minimum) of two 8-bit payload cipher-
texts and returns the encrypted result.

16 10 1176

MAXi/MINi Homomorphically computes the maximum
(or minimum) of an 8-bit payload ciphertext
and an 8-bit plaintext and returns the en-
crypted result.

2 1 133
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Instr. Description Nbr Nks
Exec.
(ms)

MOD4 Homomorphically calculates the Euclidean
division of an 8-bit ciphertext by a 4-bit
ciphertext and returns the remainder.

10 6 724

MOD4i Homomorphically calculates the Euclidean
division of an 8-bit payload ciphertext by a
4-bit plaintext and returns the encryption of
the remainder.

2 1 133

MOD Homomorphically calculates the Euclidean
division of an 8-bit payload ciphertext by
another 8-bit payload ciphertext and returns
the encryption of the remainder.

91 50 7584

MODi Homomorphically calculates the Euclidean
division of an 8-bit payload ciphertext by an
8-bit plaintext and returns the encryption of
the remainder.

3 2 267

MUL Multiplies two 8-bit payload ciphertexts and
returns the encrypted result (only returns
the result modulo 256).

10 6 725

MUL(M)i Multiplies one 8-bit payload plaintext with
an 8-bit payload ciphertext and returns the
result on 8 bits.

2 1 133

MULM Multiplies two 8-bit payload ciphertexts and
returns the overhead result on 8-bits.

32 20 2442

NEG Returns the negation of the input on a signed
8-bit payload ciphertext.

2 1 215

OR Computes the logical OR of two 8-bit pay-
load ciphertexts.

4 2 278

ORi Computes the logical OR of an 8-bit payload
ciphertext and an 8-bit plaintext.

2 0 69

RC Recomposition of eight binary ciphertexts
into two 4-bit payload ciphertexts encoding
one 8-bit payload ciphertext.

8 0 267

ROL/ROR Rotates an 8-bit payload ciphertext to the
left (or right) by an 8-bit payload encrypted
index and returns the rotated ciphertext.

9 6 714

ROLi/RORi Rotates an 8-bit payload ciphertext to the
left (or right) by an 8-bit payload plaintext
and returns the rotated ciphertext.

4 0 125

(U)SHL/(U)SHR Shifts an 8-bit payload ciphertext to the left
(or right) by an 8-bit encrypted index and
returns the shifted ciphertext.

6 4 478

(U)SHLi/(U)SHRi Shifts an 8-bit payload ciphertext to the left
(or right) by an 8-bit plaintext index and
returns the shifted ciphertext.

2 0 72

TZR Test Zero: Homomorphically tests if an 8-bit
payload ciphertext is an encryption of zero.

2 0 88

XOP User’s defined operator. 3 2 229
XOR Computes the logical XOR of two 8-bit pay-

laod ciphertexts.
4 2 278



566 Designing a General-Purpose 8-bit (T)FHE Processor Abstraction

Instr. Description Nbr Nks
Exec.
(ms)

XORi Computes the logical XOR of an 8-bit pay-
laod ciphertext and an 8-bit plaintext.

2 0 69

B Instruction Set Implementation Details
B.1 Univariate Operations
Cleartext-ciphertext operations are also called univariate operations, as they only take one
encrypted input. Such operations can be cleartext-ciphertext multiplications in GF(256),
cleartext-ciphertext additions in GF(256), cleartext-ciphertext comparisons, ... In such
cases, the generic use of our LUT evaluation tools is as follows.

In order to homomorphically compute the evaluation of a univariate function f ∶ M →M
on an 8-bit encrypted input C = (c0, c1) ∈ JhK × JlK, we have to create basis 16 tables from
tabf , the basis 256 LookUp Table corresponding to f . Indeed, we need one table tabmsn to
compute the msn of f(M) = f(16h + l) and one tablsn to compute its lsn part.
Such tables are easily defined by tabmsn[i] = ⌊ tabf [i]

16 ⌋ and tablsn[i] = tabf [i]%16 for
i ∈ {0,⋯,255}. Note that these tables can be efficiently generated on the fly. In fact,
compared to the cost of bootstrapping, this operation is almost free of charge and offers a
good time-memory compromise.
Then the naive way to evaluate f is to first compute c̄0 = LUTeval(c0, c1; tabmsn), which
gives us the encryption of the msn part of f(M). Then we can similarly obtain the
encryption of the lsn part of f(M) by computing c̄1 = LUTeval(c0, c1; tablsn). Thus, we
obtain C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K, such that f(M) = 16h̄ + l̄.
It is important to see that as the calls to LUTeval are applied on the same encrypted inputs,
they can be factorized in a single call to MVLUTeval, giving us an optimized execution
of the homomorphic evaluation of f . In the rest of this Section, we only present such
optimized versions of our operators.
Following the same logic, we provide a user-defined operation XOP allowing one to
homomorphically evaluate any univariate function on an 8-bit encrypted input of his
choice.

XOP

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and a LUT tabf
// tabmsn and tablsn are created on the fly depending on tabf
(c̄0, c̄1) =MVLUTeval(c0; c1, c1; tabmsn, tablsn)

Almost all univariate instructions can be implemented using the structure of the optimized
XOP operation. However, this is often not optimal. For instance, we here further detail
the cleartext-ciphertext addition (ADDi).
In the case of addition modulo 256 of C = (c0, c1) ∈ JhK × JlK with an 8-bit plaintext
T = 16u + v ∈ M, we have to create the tables corresponding to the function

f ∶ M → M
M ↦ M + T

The one giving the most significant nibble of computation is tab_addmsn such that
tab_addmsn[i] = ⌊ i+T16 ⌋ for i ∈ {0,⋯,255}. Similarly, the table giving the least signifi-
cant nibble of the computation is tab_addlsn such that tab_addlsn[i] = (i + T ) (mod 16)
for i ∈ {0,⋯,255}.
Using these tables (that can be computed on the fly), we can execute the ADDi operation
following the pattern of XOP. But, if we twist our MVLUTeval tool just a bit (following
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Remark 2), we can obtain an even more optimized version of these operators. To compute
the lsn part of the homomorphic addition of C = (c0, c1) ∈ JhK × JlK and T = 16u + v, the
table tablsn such that for i ∈ {0,⋯, 15}, tablsn[i] = i + v%16 is sufficient. That means that
a call to SimpleBoot on c1 can give us the lsn part of the computation (instead of a call
to LUTeval). To factorize this bootstrapping with the one implied by the computation
of c̄0 we modify the MVLUTeval instruction: we create MVLUTeval2 so that the MVB
method is used with selector c1 on tabmsn and tablsn. Then we apply the extractions:
we get 17 new ciphertexts. Sixteen of these ciphertexts (corresponding to the first part
of the evaluation of tabmsn are used to proceed to the final bootstrapping (giving an
encryption of tabmsn[16h+ l]), and the last ciphertext is c̄1 ∈ Jl+u (mod 16)K. The generic
implementation of such optimized versions is as follows:

ADDi, SUBi, LT(E)i, GT(E)i, MULi, MULMi, DIV(4)i, MOD(4)i, MINi, MAXi, NEG,
ABS, ...

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tabmsn and tablsn are created on the fly
(c̄0, c̄1) =MVLUTeval2(c1; c0, c0; tabmsn, tablsn)

This optimization saves us one bootstrapping and one TLWE to TRLWE keyswitch.

B.1.1 Shifts ((U)SHLi, (U)SHRi)

In logical (unsigned) shift, zeros are inserted to replace displaced bits as well in signed
representation as in unsigned representation. In the specific case of cleartext-ciphertext
logical shift, one wants to shift an 8-bit encrypted input C = (c0, c1) ∈ JhK × JlK by a
plaintext K ∈ M. To be as efficient as possible and avoid as many unnecessary FHE
calculations as possible, we must proceed by considering different cases based on the
value of the plaintext index. Indeed, since we work with messages of only 8 bits, an
offset index greater than or equal to 8 would not require any homomorphic calculation:
it would suffice to return encryption of 0, that is to say C̄ = (c̄0, c̄1) ∈ J0K × J0K. Similarly,
if the offset index is K = 16 ⋅ 0 + 4, it is sufficient to simply return C̄ = (c̄0, c̄1) ∈ JlK × J0K
or C̄ = (c̄0, c̄1) ∈ J0K × JhK depending on the direction of the shift. Finally, if the index
is K = 16 ⋅ 0 + 0, then the output is the unmodified input (C̄ = C = (c0, c1) ∈ JhK × JlK).
Now, if K ∈ {1,2,3,5,6,7}, we have to use LUTs to compute the new msn and lsn of the
ciphertext. As the offset index K is known, the tables are easy to compute. For instance for
the unsigned shift to the left (USHLi), for i ∈ {0,⋯, 15}, we have tab_ushlimsn[i] = ((i<<K)
>> 4) &0xf and tab_ushlilsn[i] = (i<<K) &0xf. This way, we can compute USHLi(C,K)
by means of SimpleBoot and native TFHE addition LweAdd:

USHLi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
c̄1 = SimpleBoot(c1, tab_ushlilsn)
ct = SimpleBoot(c0, tab_ushlilsn)
cu = SimpleBoot(c1, tab_ushlimsn)
c̄0 = LweAdd(ct, cu)

The computations of c̄1 and cu can be factorized with an MVB.

The final result is C̄ = (c̄0, c̄1) = USHLi(C,T ) ∈ Jtab_shlimsn[16h+ l]K×Jtab_shlilsn[16h+ l]K.
Here we can use the native TFHE addition for two reasons. First, the noise of ciphertext
after a classic bootstrapping is small enough (regarding our parameters set designed
especially to work for ciphertexts obtained following a tree-based method), and second,
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Figure 2: New msn and lsn of an 8-bit encrypted value rotated by three to the left
(C ′ = UROLi(C,3)).

this is a carryless addition, so there will not be any carry to propagate, meaning that the
result stays an encryption of a nibble value. The cleartext-ciphertext logical shift to the
right and arithmetic shift to the left are computed in a similar way. In the case of signed
right arithmetic (signed) shift (SHRi), the sign bit is replicated to fill in all the vacant
positions. The tables to use are thus the following:

• tab_shrilsn such that for i ∈ {0,⋯,7}, tab_shrilsn[i] = (i<<4)>>K & 0xf
and for i ∈ {8,⋯,15}, tab_shrilsn[i] = ((i&0xf0)<<4)>>K & 0xf

• tab_shrimsn such that for i ∈ {0,⋯,7}, tab_shrimsn[i] = (i>>K) & 0xf
and for i ∈ {8,⋯,15}, tab_shrimsn[i] = ((i&0xf0)>>K) & 0xf

• tab_ushrimsn such that for i ∈ {0,⋯,15}, tab_ushrimsn[i] = (i>>K) & 0xf

SHRi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
c̄0 = SimpleBoot(c0, tab_shrimsn)
ct = SimpleBoot(c1, tab_ushrimsn)
cu = SimpleBoot(c0, tab_shrilsn)
c̄1 = LweAdd(ct, cu)

The computations of c̄0 and cu can be factorized with an MVB.

B.1.2 Rotations (ROLi, RORi)

With rotations, bits that are “shifted out” are reinserted at the end or beginning of the
word, depending on the shift direction (see Figure 2). To implement cleartext-ciphertext
rotations, it is sufficient to use the same tables as for the unsigned shifts. For instance,
here is the left rotation (ROLi).

ROLi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
ct = SimpleBoot(c1, tab_ushlimsn)
cu = SimpleBoot(c0, tab_ushlilsn)
c̄1 = LweAdd(ct, cu)
ct = SimpleBoot(c0, tab_ushlimsn)
cu = SimpleBoot(c1, tab_ushlilsn)
c̄0 = LweAdd(ct, cu)

The computations of ct and cu can be factorized with an MVB.
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B.1.3 Univariate Bitwise Operations

All univariate bitwise operators can be homomorphically evaluated using the same tools
LUTeval and MVLUTeval as before. But in this specific case, it is not the most efficient way.
Indeed, regarding bitwise operands, msn and lsn parts are independent. Thus, two simple
bootstrappings are sufficient to compute the resulting msn and lsn, there is no need for a
tree-based method. For instance, to homomorphically compute the bitwise operation XORi
of a ciphertext C = (c0, c1) ∈ JhK × JlK with an 8-bit immediate value T = 16u + v, we only
need to create two 16-elements tables. The first one, corresponding to the evaluation of the
msn is tabXORiu such that for j ∈ {0,⋯, 15}, tabXORiu[j] = j⊕u. The second, corresponding
to the lsn is tabXORiv such that for j ∈ {0,⋯, 15}, tabXORiv [j] = j⊕v. Then, the evaluation
of XORi is as follows.

XORi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tabmsn and tablsn are created on the fly depending on T
c̄0 = SimpleBoot(c0, tabmsn)
c̄1 = SimpleBoot(c1, tablsn)

The final result is C̄ = (c̄0, c̄1) = XORi(C,T ) ∈ Ju⊕ hK× Jv ⊕ lK. All other univariate bitwise
operations (including CDUPi) are similarly implemented.

B.1.4 Other Exceptions

Other cleartext-ciphertext operations that have a different structure to XOP include EQi,
which tests whether a ciphertext C = (c0, c1) ∈ JhK × JlK is an encryption of a plaintext
T = 16u + v. Only one 256-element table, depending on the immediate value T and
straightforward to compute, is needed. This table is tab such that for i ∈ {0,⋯, 255}, tab[i] =
(i == T ). Then, the instruction is implemented as follows:

EQi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tab is created on the fly depending on T
c̄1 = LUTeval(c0, c1, tab)

Depending on the programmer choice, c̄0 is either an encryption of 0, a plaintext value 0,
or �. This choice is left to the programmer’s discretion since the value of c̄0 will not be
used in subsequent calculations (the boolean result is encrypted only in c̄1).

B.2 Bivariate Operations
Unlike univariate operators, there is no generic way of efficiently handling bivariate
operators. The number of tables and calls to LUTeval and MVLUTeval will depend on the
type of operation required, which is why we provide more details for numerous types of
operations.

B.2.1 Bitwise Operators

For clarity’s sake, let us denote ⊛ any bitwise operator (such as XOR, AND, NOR, etc.) or
any composition of these operators. All bitwise bivariate operators can be homomorphically
evaluated using one 256-element table and MVLUTeval. Indeed, the LUT table correspond-
ing to the bitwise operator ⊛ is tab⊛ such that for i, j ∈ {0,⋯,15}, tab⊛[16i + j] = i ⊛ j.
Note that the coefficients of tab⊛ are in {0,⋯, 15}. Then, the homomorphic computation of
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the ⊛ bitwise operand on two ciphertexts C = (c0, c1) ∈ JhK×JlK and C ′ = (c′0, c′1) ∈ Jh′K×Jl′K
only costs two calls to LUTeval. For instance, the XOR instruction is computed as follows.

XOR

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K
c̄0 = LUTeval(c0, c′0; tabXOR)
c̄1 = LUTeval(c1, c′1; tabXOR)

The final result is C̄ = (c̄0, c̄1) = XOR(C,C ′) ∈ Jh⊕ h′K × Jl⊕ l′K. All other bivariate bitwise
operations are similarly implemented.

B.2.2 Addition (ADD, SUB)

With 8-bit messages decomposed into two nibbles, the addition over Z256 is not completely
straightforward. Indeed, to sum M = 16h + l and M ′ = 16h′ + l′, we first have to sum the
two least significant nibbles of the messages. That is to say to compute L = l + l′ = 16u + v.
As the sum of l and l′ may be greater than 15, we have to compute not only v, but also
the carry u. Then we can compute H = h + h′ + u, but in this case we do not compute the
carry as we work modulo 256.
To proceed to these computations in the homomorphic domain, we thus need two tables:

• tab_add which computes the lsn part of the addition of two nibbles. That is to say for
i, j ∈ {0,⋯,15}, tab_add[16i + j] = (i + j) (mod 16).

• add_carry which computes the carry corresponding to the addition of two nibbles. That
is to say for i, j ∈ {0,⋯,15}, add_carry[16i + j] = ⌊ i+j16 ⌋.

Using these two tables, we implement the homomorphic addition the following way:

ADD

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K
(c̄1, cr) =MVLUTeval(c1; c′1, c′1; tab_add, add_carry)
cv = LUTeval(c0, c′0, tab_add)
c̄0 = LUTeval(cv, cr, tab_add)

The final result is C̄ = (c̄0, c̄1) = ADD(C,C ′) ∈ J⌊ 16h+l+16h′+l′
16 ⌋K × Jl + l′ (mod 16)K. Note

that the substraction modulo 256 (SUB) works similarly, only the LUTs are different.
The Case of the Addition by Zero (ADDZ) – If the user knows that at least one of the
two ciphertexts C = (c0, c1) ∈ JhK× JlK or C ′ = (c′0, c′1) ∈ Jh′K× Jl′K is an encryption of zero,
then he should use a less expensive operator than the one described above. Indeed, if one
of the two ciphertexts encrypts zero, then the addition with any other ciphertext will not
produce any carry. It is thus more efficient to compute such an addition as follows:

ADDZ

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K
c̄0 = LUTeval(c0, c′0, tab_add)
c̄1 = LUTeval(c1, c′1, tab_add)

This specific operator can be needed in several cases: for instance a homomorphic array
assignment (Algo 4), a bubble sort (Algo 1), or the computation of the Sigmoid (Section
8.2).
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B.2.3 Multiplication (MUL(M))

The multiplication of two 8-bit messages each decomposed into two nibbles relies on the
same principle as the addition: we progress nibble by nibble and propagate the carry.
We note C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K two ciphertexts respectively
encrypting T = 16h + l and T ′ = 16h′ + l′. Then, the following relation stands for all
T,T ′ ∈ M.

T × T ′ = (16h + l) × (16h′ + l′) = 162hh′ + 16(hl′ + lh′) + ll′

Since we work with 8-bit messages, we do not need to compute the term in 162. Thus,
we only have to compute 16(hl′ + lh′) + ll′, which involves three multiplications and two
additions over Z256. To compute the additions, we use the tables created in Section B.2.2.
For the multiplication, we create two new tables:

• tab_mul which computes the lsn part of the multiplication of two nibbles. That is to
say for i, j ∈ {0,⋯,15}, tab_mul[16i + j] = (i × j) (mod 16).

• mul_carry which computes the carry corresponding to the addition of two nibbles. That
is to say for i, j ∈ {0,⋯,15}, mul_carry[16i + j] = ⌊ i×j16 ⌋.

Note that we only need to compute the lsn parts of hl′ and lh′, as well as the lsn of the
sum of these two terms (the msn parts will be multiples of 162 modulo 256). For the same
reason, the msn of ll′ will be added with regards only to the least significant bits of the
result. Finally, multiplication can then be achieved as follows:

MUL

(c̄1, ct, cu) =MVLUTeval(c1; c′1, c′1, c′0; tab_mul,mul_carry, tab_mul)
//ct encrypts the carry of ll′, cu encrypts the lsn of lh′
cv = LUTeval(c0, c′1; tab_mul)
cw = LUTeval(cu, cv; tab_add)
c̄0 = LUTeval(cw, ct; tab_add)

The final result is C̄ = (c̄0, c̄1) =MUL(C,C ′) ∈ J⌊ (16h+l)×(16h′+l′)
16 ⌋K × Jll′ (mod 16)K.

To Obtain the Most Significant Byte – When we multiply two 8-bit integers, we obtain
a result on 16 bits. By working with an 8-bit processor, we need a different operation than
the multiplication modulo 256 to obtain the Most Significant Byte. To do so, we have no
choice but to compute the whole operation without using the ADD instruction, which only
works modulo 256. That is to say, to obtain the Most Significant Byte of the multiplication
of a ciphertext C = (c0, c1) ∈ JhK × JlK with a ciphertext C ′ = (c′0, c′1) ∈ Jh′K × Jl′K, we have
to homomorphically compute

T × T ′ = (16h + l) × (16h′ + l′) = 162hh′ + 16(hl′ + lh′) + ll′.

with T = 16h + l and T ′ = 16h′ + l′ the corresponding two 8-bit plaintexts. The only
unnecessary computation is the one giving the lsn of the term ll′. Indeed, all the other
operations need to be computed in order to propagate the carry. We can summarize this
method as follows:
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MULM

(cu, cv, cw, cx) =MVLUTeval(c0; c′0, c′0, c′1, c′1; tab_mul, tab_mul, tab_mul, tab_mul)
(ct, cy, cz) =MVLUTeval(c1; c′0, c′0, c′1;mul_carry, tab_mul,mul_carry)
(cx, cy) =MVLUTeval(cx; cy, cy; add_carry, tab_add)
(ct, cw) =MVLUTeval(cw; ct, ct; add_carry, tab_add)
(cc, cs) =MVLUTeval(cx; cw, cw; add_carry, tab_add)
cz = LUTeval(cy, cz, add_carry)
(cs, cz) =MVLUTeval(cs; cz, cz, add_carry, tab_add)
cc = LUTeval(cc, cs, add_carry)
( ¯c0, c̄1) = ADD((cu, cv), (cc, cz))

The result is C̄ = (c̄0, c̄1) = MULM(C,C ′) ∈ J⌊(16h + l) × (16h′ + l′)/4096⌋K × J⌊(16h + l) ×
(16h′ + l′)/256⌋ (mod 16)K.

B.2.4 Minimum and Maximum (MIN, MAX)

Without loss of generality, we describe here the homomorphic computation of the minimum
of two ciphertexts C = (c0, c1) ∈ JhK× JlK and C ′ = (c′0, c′1) ∈ Jh′K× Jl′K. The computation of
the maximum is very similar and can easily be inferred from that of the minimum.
To evaluate the MIN instruction with our MVLUTeval and LUTeval tools, several tables are
needed:

• tab_min, such that for i, j ∈ {0,1,⋯,15}, tab_min[16i + j] = min(i, j)
• is_inf such that for i, j ∈ {0,1,⋯,15}, is_inf[16i + j] = (i < j).
• is_sup such that for i, j ∈ {0,1,⋯,15}, is_sup[16i + j] = (i > j).
• is_eq such that for i, j ∈ {0,1,⋯,15}, is_eq[16i + j] = (i == j).

Then, we can obtain cx = LUTeval(c0, c′0, is_inf) ∈ Jh < h′K ⊂ C, cy = LUTeval(c0, c′0, is_sup) ∈
Jh > h′K ⊂ C, and cz = LUTeval(c0, c′0, is_eq) ∈ Jh == h′K ⊂ C with a factorized call to

MVLUTeval(c0; c′0, c′0, c′0; is_inf, is_sup, is_eq).

Then, the result of the evaluation of the minimum of two ciphertexts C and C ′ is

C̄ =MIN(C,C ′) = (LUTeval(c0, c′0,min_tab), cx ⋅c1 + cy ⋅c′1 + cz ⋅LUTeval(c1, c′1,min_tab)).

Note that the required homomorphic multiplications always involve a ciphertext that
encrypts 0 or 1 (because cx, cy, and cz are encryptions of booleans). This means that these
multiplications will not produce any carry. It is thus sufficient to only compute the lsn
result of these multiplications. The same goes for the required additions: only one of the
three terms will be positive, and the others will encrypt zero.

MIN

(cx, cy, cz, c̄0) =MVLUTeval(c0; c′0, c′0, c′0, c′0; is_inf, is_sup, is_eq, tab_min)
(cy, c̃1) =MVLUTeval(c′1; cy, c1, tab_mul, tab_min)
cz = LUTeval(cz, c̃1, tab_mul)
cx = LUTeval(cx, c1, tab_mul)
cxy = LUTeval(cx, cy, tab_add)
c̄1 = LUTeval(cxy, cz, tab_add)
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B.2.5 Division by a 4-bit Ciphertext (DIV4)

Following the presentation of the homomorphic division in Section 5.4.2, we use the
following tables to implement the division by a ciphertext Ck ∈ J0K × JkK:

• divmsn1 such that for i, j ∈ {0,⋯,15}, divmsn1[16i + j] = ⌊ 16i
j
⌋/16

• divmsn2 such that for i, j ∈ {0,⋯,15}, divmsn2[16i + j] = ⌊ 16i
j
⌋%16

• divlsn such that for i, j ∈ {0,⋯,15}, divlsn[16i + j] = ⌊ i
j
⌋

• modlsn such that for i, j ∈ {0,⋯,15}, modlsn[16i + j] = i%j
• modmsn such that for i, j ∈ {0,⋯,15}, modmsn[16i + j] = 16i%j

DIV4

(cu, cv, cw, cx, cy) =MVLUTeval(ck; c0, c0, c1, c0, c1;divmsn1 ,divmsn2 ,divlsn,modmsn,modlsn)
(ct, cz) =MVLUTeval(cx; cy, cy, add_carry, tab_add)
ct = LUTeval(ct, cz, tab_add)
cs = LUTeval(ct, cw, tab_add)
(cs, c̄1) =MVLUTeval(cv; cs, cs; add_carry, tab_add)
c̄0 = LUTeval(cu, cs, tab_add)

Details on division by an 8-bit encrypted value C ′
k = (ck0 , ck1) ∈ Jk0K × Jk1K are given in

Section 5.4.2, as well as the pseudo code of DIV.

B.2.6 Modulo

(a) MOD4
Let us say that we want to compute the homomorphic modulo of one 8-bit encrypted
value C = (c0, c1) ∈ JhK × JlK corresponding to the encryption of T = 16h + l by the 4-bit
encrypted value ck ∈ JkK (note that if ck ∈ J0K, the instruction should return an error, but
we choose to return encryptions of 0). This means we have to homomorphically compute

16h + l (mod k) = (16h (mod k) + l (mod k)) (mod k).

But, to do so, computing 16h (mod k) + l (mod k) is not sufficient and could result in
a ciphertext encrypting a value superior to k. For instance, given k = 15, h = 14 and
l = 14 we obtain 16h (mod k) + l (mod k) = 28 > k. This example also highlights that 16h
(mod k) + l (mod k) may require two nibbles to hold the result.

However, we have:

16h (mod k) + l (mod k) ≤ k − 1 + k − 1
≤ 2k − 2

If we note 16h (mod k) + l (mod k) = 16h′ + l′ with h′, l′ ∈ {0, ...,15}, then

16h′ (mod k) + l′ (mod k) ≤ k − 1

Indeed, if h′ = 0, then 16h′ (mod k) + l′ (mod k) = l′ (mod k) < k, and if h′ > 0, then
16h′ > k so 16h′ (mod k) ≤ 16h′−k and 16h′ (mod k)+ l′ (mod k) < 2k−2−k = k−2. Thus
computing 16h′ (mod k) + l′ (mod k) gives us a ciphertext encrypting a value inferior to
k, that is the smallest positive representative of the class of T (mod k).
To implement it with our LUT evaluation tools, we need two tables, mod16 and mod,
defined by mod16[16i + j] = 16i%j and mod[16i + j] = i%j with i, j ∈ {0,1,⋯,15}.
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MOD4

(cr, cu) =MVLUTeval(ck; c0, c1;mod16,mod)
(ct, cz) =MVLUTeval(cr; cu, cu, add_carry, tab_add)
cs =MVLUTeval(ck; ct, cz,mod16,mod)
c̄1 = LUTeval(ct, cs, tab_add)

Depending on the user’s choice, c̄0 is either an encryption of 0, a plaintext value 0, or �.

(b) MOD
Now, let us say that a user wants to compute the homomorphic modulo of a ciphertext
C = (c0, c1) ∈ JhK×JlK by another ciphertext C ′ = (c′0, c′1) ∈ Jh′K×Jl′K respectively encrypting
the 8-bit values T = 16h+l and T ′ = 16h′+l′. This computation is similar to the computation
of DIV, we recall here how it can be computed.

MOD

cd = LUTeval(c0, c′1,divlsn)
cs = LUTeval(c′0, cd, tab)
ct = LUTeval(cs, c′1,mul_carry)
cd = LUTeval(c0, ct, tab_sub)
// Computation of the msn part of the result is over, we now compute the lsn
C̃ = (cd, c1)
For i = 3 to 0
Cm = (cl0, cl1) = SHLi(C ′, i)
cg = GTE(C̃,Cm)
cb = LUTeval(c′0, cg, tab_and_mulm_zero)
Cs =MVLUTeval(cb; cl0, cl1; tab_mul, tab_tab_mul)
C̃ = SUB(C̃,Cs)

With C̃ the final result. tab is such that for i, j ∈ {0,⋯,15}, tab[16i + j] = (i == 0) × j.
Other tables are defined in Section 5.4.2.

B.2.7 Comparisons

In this section, we discuss the case of several ciphertext-ciphertext comparisons that return
an encrypted boolean. Depending on the programmer choice, c̄0 is either an encryption of
0, a plaintext value 0, or �. This choice is left to the programmer’s discretion since the
value of c̄0 will not be used in subsequent calculations (the boolean result is encrypted in c̄1).

(a) Equality Test of Two Ciphertext (EQ)
To compute the homomorphic equality test of two ciphertexts C = (c0, c1) ∈ JhK × JlK and
C ′ = (c′0, c′1) ∈ Jh′K × Jl′K two methods are available. The first one is to homomorphically
compute the subtraction of one of the two 8-bit ciphertexts by the other and then
homomorphically test if the result ciphertext is an encryption of zero. We have already
created all the tools required for these operations (see previous sections). So, it is only
a question of reusing what has already been made rather than creating new tables. The
other method involves creating a new table for evaluating comparisons of 4-bit ciphertexts.
Indeed, we have to precompute a 16×16 equality table tab_eq such that for i, j ∈ {0,⋯, 15},
tab_eq[16i + j] = (i == j). Then we implement the EQ operator the following way:
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EQ

ct = LUTeval(c0, c′0, tab_eq)
cs = LUTeval(c1, c′1, tab_eq)
c̄1 = LUTeval(ct, cs, tab_mul)

(b) Greater/Less Than (GT(E)/LT(E))
Given two 8-bit ciphertexts C = (c0, c1) ∈ JhK×JlK and C ′ = (c′0, c′1) ∈ Jh′K×Jl′K respectively
encrypting T = 16u + v and T ′ = 16u′ + v′, we want to homomorphically determine either if
one of them is greater or smaller than the other. To do so, we have to create new tables
for evaluating comparisons of 4-bit ciphertexts. Indeed, for instance, for the “Greater
Than” operator, we have T > T ′ if and only if h > h′ or h == h′ and l > l′. So we need a
table that gives the evaluation "Greater Than" and one that gives the evaluation “Equal
To”. The first one we call tab_greater_than, and is computed such that for i, j ∈ {0,⋯, 15},
tab_greater_than[16i + j] = (i > j). Similarly, as seen in the previous section, we create
tab_eq such that for i, j ∈ {0,⋯,15}, tab_eq[16i + j] = (i == j). Instructions GTE, LT and
LTE are implemented in a similar way.

GT

(ct, cs) =MVLUTeval(c0; c′0, c′0; tab_greater_than, tab_eq)
cu = LUTeval(c1, c′1, tab_greater_than)
cb = LUTeval(cs, cu, tab_mul)
c̄1 = LUTeval(ct, cb, tab_mul)

B.2.8 Rotations and Shifts

(a) Shifts ((U)SHL, (U)SHR)
In the case of a shift of an 8-bit encrypted input C = (c0, c1) ∈ JhK × JlK by an encrypted
4-bit index ck ∈ JkK,as the offset index is encrypted, one cannot proceed by considering
different cases based on the value of the offset to optimize the FHE calculations. We thus
have to create LUTs encoding the result of the shift and evaluate them with our LUTeval
and MVLUTeval tools to be able to compute the operation. Without loss of generality, let
us say that we want to compute a homomorphic arithmetic signed shift to the right SHR.
Several tables are needed:

• shrmsn such that for i, j ∈ {0,⋯,15}, shrmsn[16i + j] = (i>>j)&0xf

• ashrmsn such that for i ∈ {0,⋯,7} and j ∈ {0,⋯,15}, ashrmsn[16i + j] = shrmsn[16i + j]
and for i ∈ {8,⋯,15} and j ∈ {0,⋯,15}, ashrmsn[16i + j] = ((i&0xf0)>>j)&0xf

• ashrlsn such that for i ∈ {0,⋯,7} and j ∈ {0,⋯,15}, ashrlsn[16i + j] = ((i<<4)>>j)&0xf
and for i ∈ {8,⋯,15} and j ∈ {0,⋯,15}, ashrlsn[16i + j] = (((i&0xf0) << 4)>>j)&0xf

Then, SHR can be implemented as follows:
SHR

(c̄0, cs, cu) =MVLUTeval(ck; c0, c0; c1ashrmsn, ashrlsn, shrmsn)
c̄1 = LUTeval(cu, cs, tab_add)

Other shifts are computed in a similar way with their corresponding tables.
(b) Rotations (ROL,ROR)

Rotations are computed using the same logic as the logical shift. The only difference is
that instead of inserting zeros (or signed bit) to fill the space left by the bits that have
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been pushed out, we recover these bits and reinsert them. The LUTs are identical to the
one needed for logical shift. ROR instruction is computed in a symmetric way.

ROL

(ct, cs, cu, cx) =MVLUTeval(ck; c0, c0, c1; c1; shlmsn, shllsn, shlmsn, shllsn)
c̄0 = LUTeval(ct, cx, tab_add)
c̄1 = LUTeval(cu, cs, tab_add)

B.2.9 Conditional Assignment

We propose two conditional assignment operators that we call CDUP and NCDUP. They
each take two ciphertexts C = (c0, c1) ∈ JhK × JlK and C ′ = (c′0, c′1) ∈ Jh′K × Jl′K as inputs.
The first one is an encryption of a boolean value (meaning h = 0 and l ∈ {0,1}), and the
second one can be an encryption of any 8-bit value. We define these instructions so that
CDUP(C,C ′) = C̄ ∈ Jh × l′K × Jl × l′K and NCDUP(C,C ′) = C̄ ∈ Jh × (1 − l′)K × Jl × (1 − l′)K.
To implement these, we either need the tab_mul table used to compute the lsn of the
multiplication of two encrypted nibbles (CDUP) or a modified tab_mul called tab_mul_spe
such that for i, j ∈ {0,⋯,15}, tab_mul_spe[16i + j] = (j == 0) × i (NCDUP).

(N)CDUP

//Depending on the instruction to be computed, we use tab which is either tab_mul
//or tab_mul_spe
(c̄0, c̄1) =MVLUTeval(c′1; c0, c1; tab, tab)

C Additional Background on TFHE Bootstrapping
C.1 Further Details on TFHE Bootstrapping
TFHE bootstrapping relies on three building blocks:

• BlindRotate: rotates a plaintext polynomial m encrypted with a TRLWE sample (a, b)
and the secret key k by a position p encrypted with a TLWE sample (a′, b′) with the
secret key s. It takes as inputs: the TRLWE ciphertext (a, b) ∈ JmKk, a rescaled and
rounded vector of (a′, b′) ∈ JpKs represented by (a′1,⋯, a′n, a′n+1 = b′) where ∀i, a′i ∈ Z2N ,
and n TRGSW ciphertexts encrypting (s1,⋯, sn) where ∀i, si ∈ B. It returns a TRLWE
ciphertext (a”, b”) ∈ (JX⟨a,s⟩−b ⋅mKk).

• TLWESampleExtract: takes as inputs both a TRLWE sample c ∈ JmKk and a position
p ∈ J0,NJ, and returns a TLWE ciphertext c′ ∈ JmpKk where mp is the pth coefficient of
the polynomial m.

• PublicFunctionalKeyswitch: transforms a set of p ciphertexts ci ∈ JmiKk into the resulting
TRLWE ciphertext c′ ∈ Jf(m1,⋯,mp)Ks, where f() is a public linear morphism from Tp

to TN [X]. Note that N = 1 when keyswitching to a TLWE ciphertext. This algorithm
requires 2 parameters: a decomposition basis BKS and a precision t.

TFHE specifies a gate bootstrapping to reduce the noise level of a TLWE sample that
encrypts the result of a boolean gate evaluation on two ciphertexts, each of them encrypting
a binary input. TFHE gate bootstrapping steps are summarized in Algorithm 6. The step
1 consists in selecting a value m̂ ∈ T which will serve later for setting the coefficients of
the test polynomial testv (in step 3). The step 2 rescales the components of the input
ciphertext c as elements of Z2N . The step 3 defines the test polynomial testv. Note that
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for all p ∈ J0,2NJ, the constant term of testv ⋅Xp is m̂ if p ∈KN2 ,
3N
2 K and −m̂ otherwise.

The step 4 returns an accumulator ACC ∈ Jtestv ⋅X⟨ā,s⟩−b̄Ks′ . Indeed, the constant term
of ACC is −m̂ if c ∈ J0Ks, or m̂ if c ∈ J1Ks. Then, step 5 creates a new ciphertext c by
extracting the constant term of ACC and adding to it (0, m̂). That is, c either encrypts 0
if c ∈ J0Ks, or m if c ∈ J1Ks (By choosing m = 1

2 , we get a fresh encryption of 1).

Algorithm 6 TFHE gate bootstrapping
Require: a constant m ∈ T, a TLWE sample c = (a, b) ∈ Jx ⋅ 12Ks with x ∈ B, a bootstrapping

key BKs→s′ = (BKi ∈ JsiKS′)i∈J1,nK where BKi is a TRGSW sample of si with the key
S′; the TRLWE interpretation of a secret key s′,

Ensure: a TLWE sample c ∈ Jx.mKs
1: Let m̂ = 1

2m ∈ T (pick one of the two possible values)
2: Let b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉ ∈ Z,∀i ∈ J1, nK
3: Let testv ∶= (1 +X +⋯ +XN−1) ⋅X N

2 ⋅ m̂ ∈ TN [X]
4: ACC ← BlindRotate((0, testv), (ā1,⋯, ān, b̄), (BK1,⋯,BKn))

5: c = (0, m̂) +TLWESampleExtract(ACC)
6: return PublicFunctionalKeyswitchs′→s(c)

C.2 Further Details on Multi-Value Bootstrapping
Multi-Value Bootstrapping (MVB) [CIM18] refers to the method for evaluating k different
LUTs on a single input with a single bootstrapping. MVB factors the test polynomial Pfi

associated with the function fi into a product of two polynomials v0 and vi, where v0 is a
common factor to all Pfi . In practice, we have:

(1 +X +⋯ +XN−1) ⋅ (1 −X) ≡ 2 mod (XN + 1)
Now by writing Pfi in the form Pfi = ∑N−1

j=0 αi,jX
j with αi,j ∈ Z, we get from the

previous equation:

Pfi =
1
2
⋅ (1 +X +⋯ +XN−1) ⋅ (1 −X) ⋅ Pfi mod (XN + 1)

= v0 ⋅ vi mod (XN + 1)

where:

v0 =
1
2
⋅ (1 +X +⋯ +XN−1)

vi = αi,0 + αi,N−1 + (αi,1 − αi,0) ⋅X +⋯ + (αi,N−1 − αi,N−2) ⋅XN−1

This factorization allows computing many LUTs using a unique bootstrapping. Indeed, it
is enough to initialize the test polynomial testv with the value of v0 during bootstrapping.
Then, after the BlindRotate operation, one has to multiply the obtained ACC by each vi
corresponding to the LUT of fi to get ACCi. Figure 3 illustrates the advantage of this
method. This optimization reduces the number of bootstrappings required for an operation
and, thus, the overall computation time. The MVB technique can be applied on the first
“round” of a tree-based method evaluation, as several bootstrappings are performed on
different polynomials but with the same encrypted input. For instance, regarding Figure 1,
instead of doing five bootstrappings to compute the evaluation of the identity function on
the encrypted message M = (1, 2), one can use the MVB and compute the same evaluation
at the cost of only two bootstrappings (and four multiplications).
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Figure 3: Illustration of the MVB optimization. (a) represents the classic method to
process several bootstrapping, while (b) represents the MVB optimization. As seen here,
it reduces the number of BlindRotate operations, which is the most expansive one of the
bootstrapping.
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