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Abstract.
We implement an optimized BGJ (Becker–Gama–Joux 2015) sieve and analyze its
behavior in a study of RAM access overheads (and their minimization) in sieving
algorithms for large lattice problems. Both experiment and theory points to BGJ’s
inherent structure being much more memory-efficient than the BDGL (Becker–Ducas–
Gama–Laahoven 2016) sieve, which uses asymptotically the fewest logical operations.
In particular, a dimension-n BGJ sieve uses only 20.2075n+o(n) streaming (non-
random) main memory accesses. A key insight: Bucket sizes decrease by orders of
magnitude after each BGJ filtering layer, so that sub-buckets fit into successively much
smaller (hence faster) storage areas. Our refined BGJ is competitive at cryptographic
sizes and should outperform BDGL for all practically achievable dimensions.
The above is corroborated by the results from our efficient CPU-based BGJ imple-
mentation in an optimized framework, which saves about 40% RAM footprint and is
≥ 24.5× more efficient gate-count-wise compared to the Ducas–Stevens–van Woerden
2021 4-GPU implementation, which like most prior sieving-based SVP computations
is a HK3 (Herold–Kirshanova 2017) sieve. Notably, we solved the 183-dimensional
SVP Darmstadt Challenge in 30 days on a 112-core server and 0.87 TB of RAM;
similarly we also found a short vector in the 796-dimensional Ideal-SVP Challenge.
Our implementation may offer further insights into the behavior of asymptotically
“fast” sieving algorithms when applied to large-scale problems. Moreover, our refined
cost estimation of SVP based on this implementation suggests that some NIST PQC
candidates (e.g. Falcon-512), are not sure to meet NIST’s security requirements.
Keywords: Sieving · Lattice Cryptanalysis · SVP

1 Introduction
BKZ [Sch87, SE94] is currently one standard method for estimating the concrete hardness of
lattice-based cryptosystems. BKZ uses a shortest vector problem (SVP) subroutine, whose
concrete hardness estimation therefore plays a central role in the security analysis of lattice-
based cryptosystems. Enumeration and sieving are the two main strategies for solving
SVP. Enumeration [Poh81, Kan83] solve SVP using superexponential time and polynomial
space (in particular the optimized algorithms [GNR10, CN11]). Sieving [AKS01], whose
space use is exponential in the dimension of the lattice, is asymptotically faster in gate
complexity1. But it was not until circa 2018 for sieving to catch up to enumeration, after
many asymptotic improvements on sieving itself [NV08, MV10, BGJ13, Laa15, BDGL16],
and its frameworks [Duc18a, Duc18b, ADH+19]. Today, a sieving-based SVP subroutine
is a standard and required component in lattice-based cryptanalysis.

1We will use this term to denote an idealized concept of time complexity in which each logical operation
costs the same regardless of how far the operands need to travel.
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Sieving’s exponential space requirement is a significant challenge when scaling to larger
problems, because each random access to a massive 2-dimensional storage array containing
N bits of data may be reasonably assumed to incur an O(N 1

2 ) cost, both in terms of time
and energy consumption2, but how — indeed even whether — to assess the impact of this
communication cost on the overall complexity is a subject of ongoing debate [Ber20, Ber23].

Indeed, many sieving algorithms, including the [BDGL16] sieve — usually regarded
as the state of the art — use a randomized divide-and-conquer approach to accelerate
the process of searching for reducing pairs. E.g., [BDGL16] itself divides the vectors in
the main memory first into many small buckets (the bucket size is subexponential in the
dimension of the lattice, but each vector is assigned to exponentially many buckets) then
search for reducing pairs within each bucket3. This strategy is very efficient for gate
complexity, but it requires a larger number of random memory accesses in the reduction
step. This cost is already significant in real-world sieving implementations: E.g., [DSv21]
shows the asymptotically “slower” but more memory-friendly HK3 sieve [HK17] to be equal
or superior to the BDGL sieve in all achievable dimensions, due to the limited CPU-GPU
bandwidth. Hence the majority of computations for the sieving-based SVP Darmstadt
Challenges [SG10] are currently conducted using sieving algorithms that are far from being
asymptotically optimal in gate-complexity, with the practical behavior of asymptotically
faster sieving algorithms in large-scale problems remaining unclear.

Contributions.

This work presents a detailed implementation and analysis of an optimized version of
the BGJ sieve [BGJ15], demonstrating its significant theoretical and practical interest.
Intuitively, the BGJ sieve applies successive random filters to create a series of progressively
smaller buckets from the main database and searches for reducing pairs only in the smallest
buckets. We found that such a structure can be implemented in a highly memory-efficient
manner for large-scale sieving attacks. The key idea is that the bucket size decreases by
several orders of magnitude after each filtering, allowing sub-buckets to be stored in a
much smaller and therefore faster storage device. No communication between sub-buckets
is necessary. Under reasonable assumptions, we show the most costly filtering and reducing
steps to take only 20.2075n+o(n) streaming main memory accesses, where n is the lattice’s
dimension. This is corroborated by our empirical results. We also discuss how to insert
the shorter reduced vectors back into the main database with streaming memory accesses.

One should keep in mind that streaming memory accesses are significantly cheaper
than random access in the real world. From a memory access point of view, this result is
therefore much better than the BDGL sieve, which requires at least 20.292n+o(n) random
memory accesses. And it makes the implementation of a large-scale BGJ sieve reasonable.
However, to argue that the memory cost should not be an essential problem in the concrete
security estimation of lattice-based cryptosystems, one also needs to show that the speed
of the refined BGJ sieve is competitive when compared to the state-of-the-art.

Following the complexity analysis in [BGJ15] and the idea of the bgj1 sieve in [ADH+19],
our refined BGJ sieve replaces the original simhash-like filters with spherical cap-shaped
filters. That is, a vector v can pass the filter Fc,α if |〈v, c〉| > α‖v‖‖c‖, where Fc,α is
the filter with center c and radius α. It turns out that such a choice is highly efficient in
practice. Our implementation actually shows that the BDGL sieve is still much slower than
the refined BGJ sieve for SVP with dimensions around 200, and it seems unlikely that the
BDGL sieve will outperform in those dimensions (around 400) of cryptographic interest.
One may speculate, based on both theoretical and practical evidence, that this refined
BGJ sieve has an asymptotic complexity something close to 20.292n+o(n). However, due to
the complex geometric shapes of the filter regions (in our case, the intersection of several

2One can assume a probably less practical 3-dimension storage, see e.g., [Jaq24].
3We describe a more practical version and not the original [BDGL16] that requires much more memory.
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spherical caps) we have not provided such a formula and leave it to future work. In fact,
such a formula offers few insights for concrete security estimation because the o(n) term
typically plays a significant role for cryptographically relevant sieving dimensions. For
example, as estimated in [Duc22], the overhead caused by non-uniformity is approximately
26 for sieving dimensions around 380.

Optimized Sieving Framework. Furthermore, we propose some improvements that can be
applied to general sieving algorithms. First, our implementation shows that high-precision
floating-point numbers are dispensable in the most costly steps of sieving. By appropriately
scaling and rounding, the coordinates of the lattice vectors are stored as 8-bit signed
integers. We use a “dual-LLL-reduced” basis to efficiently recover the coefficients of these
rounded vectors when necessary. Using a lower precision representation can save not only
time and memory but, more importantly, memory bandwidth.

We also provide a unified concept for sieving and enumeration. During the current
sieving process on a local projected lattice, one will find numerous short vectors that are
not short enough to be inserted back into the main database. However, if one finds such
vectors during enumeration, they will definitely be lifted to see if they yield a shorter
vector in the original lattice. So we choose to further push the idea of on-the-fly-lifting
[ADH+19] by directly inserting back into the main database the vectors that are still
short after lifting. This strategy saves both time and memory by offering a much larger
dimension for free.

Implementation and Performance. The implementation constituted the most labor-intensive
aspect of our work. We have developed a low-level optimized, multi-threaded, and memory-
efficient CPU implementation of the bgj1, bgj2, and bgj3 sieves, which correspond to the
BGJ sieve with 1, 2, and 3 levels of filtering, respectively. Our implementation also includes
a dual hash [DSv21] optimized with a locality sensitive filter. All these algorithms can
be invoked via a command-line interface, with parameters such as the number of threads,
maximum sieving dimension, sieving context, and so forth, passed as arguments. We aim
to provide a tool that is user-friendly and can offer the community deeper insights into
these sieving algorithms. The code is available at https://github.com/zhaoziyu0008/
BGJ-Sieve-AMX.

In terms of performance, the bgj3 sieve solved a 169-dimensional SVP Darmstadt
Challenge in 3.4 days using a 112-core server. This is already several orders of magnitude
faster than the previous highest records based on CPU, which required 8 months with 224
cores to solve a 166-dimensional challenge. We further implemented a three-level BGJ
sieve on the latest Intel architectures, which we refer to as bgj3-amx. The bgj3-amx is
approximately 7 times faster than the bgj3, and it managed to solve the 179-dimensional
SVP Darmstadt Challenge in just 11.2 days. This is about 4 times faster than the previous
4-GPU implementation [DSv21], and the RAM cost is also reduced by 40%. Considering
the significantly higher computational power of the GPUs, we actually achieve an efficiency
gain of about 24.5, as shown in Table 5. We also applied our results, in conjunction with
recent BKZ techniques [ZD23], to the Ideal Lattice Challenge4 [PS13]. This resulted in an
improvement of approximately 210 in total over the previous highest record, see Table 6.

Refined Security Analysis. A refined concrete hardness estimation for SVP, based on our
implementation, is given in Section 7. It shows that some of the NIST PQC candidates,
such as Falcon-512, are not sure to meet NIST’s security requirements. We suggest, for
instance in the case of Falcon-512, to modify the parameters to balance the hardness of
forgery and key recovery attacks if a security level of 143 bits is truly necessary.

4Viewed as an approximate-SVP instance.

https://github.com/zhaoziyu0008/BGJ-Sieve-AMX
https://github.com/zhaoziyu0008/BGJ-Sieve-AMX
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Roadmap.

In Section 2, we introduce necessary notations and basic definitions. Subsequently, the
refined BGJ sieve is presented in Section 3, followed by an analysis of its performance
in Section 4. Section 5 is dedicated to discussing optimizations for the general sieving
framework. The specifics of our implementation, along with its performance, are detailed
in Section 6. In Section 7, we provide a refined security analysis of SVP based on our
implementation. Finally, we conclude our work and discuss future directions in Section 8.

2 Preliminaries
2.1 Lattices and the Shortest Vector Problem
We start counting at zero. All vectors are denoted by bold lowercase letters and are to
be read as column vectors. Matrices are denoted by bold capital letters. Sn−1 is the
unit sphere in Rn. For a full rank matrix B = (b0,b1, · · · ,bn−1), we denote the lattice
generated by the basis B as L(B) = {Bx|x ∈ Zn}. The dual lattice of L(B) is defined to
be L(B∨) where B∨ = (b∨0 ,b∨1 , · · · ,b∨n−1) such that the dot product

〈b∨i ,bj〉 =
{

1 if i = j,
0 otherwise

and span〈b∨0 ,b∨1 , · · · ,b∨n−1〉 = span〈b0,b1, · · · ,bn−1〉.
The Euclidean norm of a vector v is denoted by ‖v‖, and the volume of a lattice L(B)

is Vol(L(B)) =
√

det(BTB). For a lattice L, λ1(L) denotes the length of the shortest
nonzero vector in L.

Definition 1 (Shortest Vector Problem (SVP)). Given a lattice basis B, the shortest
problem asks to find a nonzero vector v ∈ L(B) such that ‖v‖ = λ1(L(B)).

The hardness of the shortest vector problem is the cornerstone of the security of
lattice-based cryptosystems. No efficient (quantum) algorithm is known for solving SVP.
However, the length of the shortest vector in random lattices can be efficiently estimated
as follows

Theorem 1 (Gaussian Heuristic). Suppose K is a measurable body in Rn, for “random”
full-rank lattice L ⊂ Rn, the number of lattice points in K is approximately Vol(K)/Vol(L).
In particular, λ1(L) ≈

√
n/(2πe)Vol(L) 1

n =: gh(L).

2.2 Local Projected Lattices, Sieving and Dimension For Free
The Gram-Schmidt orthogonalization of a lattice basis B is denoted by B∗ = (b∗0, · · · ,b∗n−1),
which satisfies

µij =
〈b∗j ,bi〉
〈b∗j ,b∗j 〉

and b∗i = bi −
i−1∑
j=0

µijb∗j .

We denote the projection orthogonally to span〈b∗0,b∗1, · · · ,b∗i−1〉 by πi, for i = 0, 1, · · · , n.
For 0 6 l 6 r 6 n, if L is the lattice generated by B, the local projected lattice L[l,r]
with respect to B (only one fixed basis will be used in the paper, thus we ignore B in the
notation) is defined as the lattice generated by B[l,r] = (πl(bl), πl(bl+1), · · · , πl(br−1)).
Also, for v ∈ L[l′,r] where l′ 6 l, we denote πl(v) by v[l,r].

Given a vector v =
∑r−1
i=l λiπl(bi) ∈ L[l,r], l′ 6 l, one can efficiently obtain a lifted

vector which we denote by Liftl′(v) through a “size-reduction”. That is, first compute
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ṽ =
∑r−1
i=l λiπl′(bi) in L[l′,r], then repeat the process ṽ = ṽ − d 〈ṽ,b

∗
j 〉

‖b∗
j
‖2 cπl′(bj) for j =

l − 1, · · · , l′.
Now we briefly recall the concept of sieving and dimension for free. Sieving algorithms,

first proposed by Ajtai et al. [AKS01], are the asymptotically best known algorithms to
solving SVP in terms of their gate complexity, which (as well as their space complexity)
are both exponentially large in the dimension of the lattice. A generic form of sieving is
summarized in Algorithm 1. By “saturate the ball of radius R”, we mean that a constant
ratio of the lattice points within the ball are found5. The saturation radius is typically
chosen to be

√
4/3 · gh(L).

Algorithm 1 Sieving Algorithm [NV08, ADH+19]
Require: The basis B of an n-dimensional lattice L, a saturation radius R.
Ensure: A list L of lattice vectors.
1: L ← a set of 20.2075n+o(n) random vectors in L.
2: while L does not saturate the ball of radius R do
3: for each pair u,v ∈ L do
4: if ‖u− v‖ < maxw∈L ‖w‖ then
5: replace the longest vector in L with u− v.
6: return L

The sieving algorithm starts with an exponentially large database of lattice vectors.
Then it tries to find reducing pairs, i.e., pairs of vectors whose difference is short, and
replaces those longer vectors in the list with the difference, until the list saturates the ball
of radius R6. After the sieving procedure, for example, 50% of the lattice points in the
ball of radius R will be found, which contains the shortest vector with high probability.

To reduce time and memory costs, it is suggested in [Duc18a] to first sieve on a locally
projected lattice L[l,n], and then lift all the vectors in the list to L[0,n]. Note that if
v is a short vector in L[0,n], then v[l,n] is likely also short, and thus contained in the
list. Therefore, we may successfully find the shortest vector in L[0,n] by sieving on L[l,n],
thereby gaining l dimensions “for free”. This is the so-called “dimension for free” technique.
According to heuristic analysis, the free dimension l is asymptotically n ln(4/3)

ln(n/2πe) . In practice,
as demonstrated in [Duc18a, DSv21], it can reach up to n/ ln(n).

3 The Sieving Algorithms
3.1 Sieving with locality sensitive filters
The most time-consuming step in Algorithm 1 is the search for reducing pairs. A naive
approach that checks all pairs would lead to a gate complexity quadratic in the size of the
list. Since practical sieving algorithms like [MV10, NV08] were proposed, a long series of
work [BGJ13, BGJ15, Laa15, BDGL16] has been dedicated to accelerating the search for
reducing pairs. The key idea is to use a randomized divide-and-conquer approach called
locality sensitive filters.

Generally speaking, after the initial database of lattice vectors is generated, the locality
sensitive filter based sieving algorithms repeat three steps, filtering, reducing, and inserting,
until the list saturates the ball of radius R. In the filtering step, the vectors in the list
are filtered into many small buckets, such that reducing pairs are more likely to enter the

5The exact number of vectors in the ball is typically hard to know. It is commonly estimated using the
Gaussian heuristic.

6Of course, one should also stop the algorithm when no pair of list vectors generates shorter vectors.
This is unlikely to happen with sane choices of R.
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same bucket. For example, the state-of-the-art BDGL sieve uses filters that correspond to
spherical cap-shaped filter regions in the unit ball. That is, a vector v can pass the filter
Fc,α with center c and radius α if and only if |〈v, c〉| > α‖v‖‖c‖. Then, in the reducing
step, the vectors in the same buckets are pairwise checked for reducing pairs. Finally,
during the inserting step, the longest vectors in the list are replaced with the shorter
vectors found in the reducing step.

3.2 The Refined BGJ Sieve
The original BGJ sieve, introduced by Becker, Gama, and Joux in 2015 [BGJ15], has a
gate complexity of 20.311n+o(n). This algorithm efficiently generates buckets by applying a
series of random filters to the main database, creating progressively smaller buckets. The
search for reducing pairs is confined to the smallest buckets.

In the following sections, we will use “AllPairSearch” to denote the procedure that
identifies a significant portion of reducing pairs, such as 50% or 99% of all possible pairs
in the vector list, with high probability. The primary distinction among most sieving
algorithms lies in how they implement AllPairSearch. Therefore, our focus will be on this
procedure.

Algorithm 2 AllPairSearch - BGJ15
Require: A list L of N lattice vectors, a minimum number Nmin, a number of repetitions

B, a goal norm `, and a set of filters F .
Ensure: A list of reducing pairs in L with a sum/difference shorter than `.
1: if N 6 Nmin then
2: return (v,u) ∈ L2 s.t. ‖v± u‖ < `.
3: N ← ∅.
4: for i = 0, 1, · · · , B − 1 do
5: Pick a random filter f from F
6: L′ is defined as the set of vectors v in L that can pass the filter f .
7: N ← N ∪ AllPairSearch(L′, Nmin, B, `,F).
8: return N .

Algorithm 2 shows the AllPairSearch used in BGJ15, without specifying the details of
the filters. We replace the original filters with spherical cap-shaped filters in our refined
BGJ sieve, as these filters have been shown to be optimal in terms of gate complexity in
[KL21], and the bgj1 sieve in [ADH+19] has proven efficient in practice.

We will refer to the refined BGJ sieve with 1, 2, and 3 levels of filtering as bgj1, bgj2,
and bgj3, respectively. A general version with k levels of filtering will be denoted by bgjk.
Algorithm 3 illustrates the AllPairSearch used in bgj3. From Algorithm 3, it should be clear
what bgjk with a number of repetitions (B0, · · · , Bk−1) and filter radius (α0, · · · , αk−1)
looks like.

Here a vector v can pass the filter Fc,α if and only if |〈v, c〉| > α‖v‖‖c‖, as mentioned
in Section 3.1. Now, we discuss how we choose the parameters αi’s and Bi’s in our
implementation. In a real implementation, we do not need to find almost all reducing pairs
at once, so the choice of Bi’s is quite flexible. Usually, we do insertions and resort the
database according to length after 0.025N0 reducing pairs are found. The key points are
that the Bi’s should be large enough to ensure that sufficient computations occur each time
we read the vectors from the database, thereby minimizing the memory access overhead.
They should also be small enough to keep the RAM usage by these temporary buckets
acceptable. Typical values of Bi/Bi−1 range from 64 to 512, and this largely depends on
the architecture.

The choice of the αi’s is more delicate. The goal is to balance the cost of the filtering and
the quality of the buckets. As shown for the case of bgj1 in [ADH+19], the asymptotically
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Algorithm 3 AllPairSearch - bgj3
Require: A list L ofN0 (n-dimensional) lattice vectors, number of repetitions (B0, B1, B2),

filter radius (α0, α1, α2) and a goal norm `.
Ensure: A list of reducing pairs in L with a sum/difference shorter than `.
1: N ← ∅.
2: for i = 0, 1, · · · , B0 − 1 do
3: Pick a random filter center c0 from Sn−1.
4: Compute Li := {v ∈ L|v can pass Fc0,α0}
5: for j = 0, 1, · · · , B1/B0 − 1 do
6: Pick a random filter center c1 from Sn−1.
7: Compute Lij := {v ∈ Li|v can pass Fc1,α1}
8: for k = 0, 1, · · · , B2/B1 − 1 do
9: Pick a random filter center c2 from Sn−1.
10: Compute Lijk := {v ∈ Lij |v can pass Fc2,α2}
11: N ← N ∪ {(u,v) ∈ L2

ijk|‖u± v‖ < `}.
12: return N .

optimal choice (α0 = 0.366) can be far from the practical optimum (α0 = 0.315 ∼ 0.325).
We directly provide the optimal values we selected for our bgj1, bgj2, bgj3, and bgj3-amx
in Table 1. These values were obtained through a brute force search, meaning we ran the
codes with all reasonable choices of αi’s and chose the fastest one7. It’s worth noting that
even a small change of approximately 0.01 in αi’s can result in a noticeable slowdown.

Table 1: Chosen Filter Radius in bgj1, bgj3, bgj3, and bgj3-amx

Algorithm α0 α1 α2

bgj1 0.325 - -
bgj2 0.257 0.280 -
bgj3 0.200 0.210 0.280

bgj3-amx 0.210 0.215 0.285

4 Performance Analysis
4.1 Gate Complexity
The gate complexity of the algorithm in Algorithm 2 is intrinsically tied to the class
of filters, F . Following [BGJ15], we model the lattice points in the sieving database as
random points in the high-dimensional sphere. We use Pf to represent the probability that
a vector will pass a random filter from F , and Pp is used to denote the probability that a
pair of vectors, which form an angle of π/3, are both accepted by the same random filter.
The effectiveness of the filters is typically assessed by the exponent ρ such that P ρf = Pp,
to which the time complexity is tightly related.

Theorem 2 (Complexity of AllPairSearch-BGJ15, Theorem 1 in [BGJ15]). Suppose L is a
list of N uniformly random vectors in the sphere of dimension n, ρ is the exponent such
that P ρf = Pp, then the gate complexity of Algorithm 2 is Õ(Nρ).

7We first did a (coarse) grid search within the boundaries [0.15, 0.35], then performed stochastic
gradient descent around those promising points several times. The global minimum point appears to be
unique
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In our case, F is a set of spherical cap-shaped filters Fc,α for random centers c and
a certain radius α. To compute Pf and Pp in this case, we need to know the volume of
spherical caps Cc,α = {x ∈ Rn|‖x‖2 = 1, 〈x, c〉 > α‖c‖} and wedges (i.e. intersections of
spherical caps) Wc1,α1,c2,α2 = Cc1,α1 ∩ Cc2,α2 .

Lemma 1 (Volume of spherical caps and wedges, Lemma 2.1, 2.2 in [BDGL16]). Let µ
be the canonical Lebesgue measure over Rn, Sn−1 be the unit sphere in Rn, then for any
α ∈ (0, 1) we have

µ(Cc,α)
µ(Sn−1) = poly(n) ·

(√
1− α2

)n
.

Furthermore, if the angle between c1 and c2 is θ, then

µ(Wc1,α,c2,α)
µ(Sn−1) = poly(n) ·

(√
1− 2α2

1 + cos θ

)n
.

According to Lemma 1, we have Pf = poly(n)·(1−α2)n/2 and Pp = poly(n)·(1− 4
3α

2)n/2.
This implies that asymptotically

ρ ≈ ln(1− 4
3α

2)/ ln(1− α2)

This equation suggests that by choosing a very small α and using multiple levels of
filters, our AllPairSearch can achieve the asymptotically optimal [KL21] time complexity
of Õ(N4/3) in the sparse regime8 (N = 2o(n)). This result is better than the original
BGJ sieve where ρ = 1.5. Thus, we did the implementation with the anticipation that
it would be highly efficient in practice. It turns out that the refined BGJ sieve is not
only memory-friendly but also competitive in terms of gate complexity compared to the
state-of-the-art.
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Figure 1: Comparison of bgj1, bgj2 and bgj3

We ran a left progressive sieve [ADH+19] on a 100-dimensional lattice from Darmstadt
SVP Challenge[SG10] using the bgj1, bgj2, and bgj3 sieves. The tests were conducted on a

8It is not guaranteed that filters optimal in the sparse regime will remain optimal in the dense regime
(N = 2O(n)), i.e. in the case of lattice sieving. For instance, cross-polytope hashing is known to be
optimal in the sparse regime [TT07, AIL+15], but it leads to a suboptimal gate complexity of 20.2972n+o(n)

[LdW15] when applied to lattice sieving. Our main interest lies in the practical performance of sieving for
dimensions related to cryptography (approximately 380), so we leave the asymptotic complexity analysis
to future work.
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machine equipped with an Intel Xeon Gold 6338 CPU, running at around 2.8GHz, using a
single thread. The results are shown in Figure 1. The timings represent the amount of time
spent in each sieving dimension before reaching a saturation of 37.5% with a database size
of 3.2 · 20.2075n. We can see that the crossover point between bgj1 and bgj2 is only around
77, and the crossover point between bgj2 and bgj3 is around 92. That is, the refined BGJ
sieve quickly benefits from the improved bucket quality provided by the second and third
levels of filtering.

For sieving dimension 140, which is close to the largest practical sieving dimension,
we compare our bgj3-amx with 2-bdgl_gpu from [DSv21]. To run a left progressive sieve
up to a sieving dimension of 140 with a saturation ratio of 37.5%, our bgj3-amx takes
approximately 215.2 seconds using 112 threads on a dual Intel Xeon Platinum 8479 CPU
server. In contrast, 2-bdgl_gpu requires about twice the wall time (estimated from Fig.7
of [DSv21]) and around eight times more floating-point operations. Even with a sieving
dimension 240 larger, the BDGL sieve would only gain at most 2240·(0.3112−0.2925) = 24.5

times more speed up than the original BGJ sieve from the leading term in the exponent.
Therefore, it’s unlikely that the BDGL sieve can beat the refined BGJ sieve in a sieving
dimension of 380, unless more improvements are made in the o(n) term of 20.292n+o(n).

4.2 Solving the Memory Access Issue
In this section, we provide a detailed analysis of the memory access overhead in bgjk sieves.
It turns out that 20.2075n+o(n) streaming main memory accesses are sufficient for the entire
sieving process, and the memory access overhead can be negligible.

Firstly, we note that streaming memory access is inexpensive, and unlike random access,
its speed should not decrease by a factor square root in the size of the storage device. If
an attacker can afford the GPUs for conducting the computations in sieving for dimension
380 within a reasonable time, for example within 10 years, then such an attacker should
certainly be able to afford the disks to store the database of the lattice vectors. The data
in different disks can be streamed out in parallel. Therefore, it is reasonable to assume
that the streaming memory access only slows down by a constant factor, regardless of the
size of the sieving database. Here a subtle point is the necessity of processing the read
data locally. Transferring the data elsewhere adds a cost linear to the distance, which
is O(N3/2) (with a very small constant term for streaming transfer) if we want to move
the data out of a 2D storage device containing N bytes of data. This movement cost is
negligible for cryptographic size sieving9, so we ignore it in the following analysis.

Before proceeding through each steps, we illustrate the key idea by giving a comparison
with the BDGL sieve. If n is the sieving dimension, BDGL uses a single filter layer
to generate 2O(n) small buckets. Putting the vectors in the main database into some
of these buckets requires randomly accessing the exponentially large space for these
buckets. However, if BGJ uses O(log(n)) successive filter layers to generate progressively
smaller buckets, the number of subbuckets for each bucket can be 2O(n/ log(n)), which is
subexponential (in practice in [64; 512], cf. page367). Thus, BGJ only needs to randomly
access a subexponential space for the subbuckets, which is clearly more efficient.

Now we address the most costly part of sieving, the filtering and reducing steps. To
compute all the subbuckets from a large database (a larger bucket or the main database),
it is sufficient to stream the vectors in the larger database once to a machine that contains
all the centers of the filters. This machine checks whether the streamed vectors can pass
those filters and moves them into corresponding buckets. The pairwise dot product in
the last-level buckets in the reducing step is just a matrix multiplication, which can be

9For a sieving dimension of 380, if we use 16TB disks to store the vectors, each occupying 0.01m2, the
sieving database will cover an area of 300km × 300km. Transporting 250 vectors (by car) over 300km may
cost approximately $100, but the corresponding computation will be at least (250)0.292/0.208 × 380 ≈ 279

FMA operations, which would cost more than $100,000.
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implemented trivially with streaming memory accesses. Therefore, all memory access in
these steps can be streamed, and only 20.2075n+o(n) such accesses to the main database
are necessary. To make the memory access overhead negligible, we need to further ensure
that the memory access cost of generating each subbucket is less than the cost of further
computations within this subbucket. Note that the computations required are superlinear
(with an exponent range from 0.292/0.2075 ≈ 1.4 to 2) in the size of the subbucket. Thus,
as long as the subbucket size is larger than some constant, the memory access overhead
caused by the streaming memory access, which is only linear in the bucket size, is negligible.
A sketch of why we can do everything in 20.2075n+o(n) (streaming) accesses is presented in
Appendix A.

For the last several levels of very small buckets, the memory access may slow down the
computations if the hardware architectures are not well designed. A similar phenomenon
can already be observed in our bgj3-amx implementation. Intel’s AMX instructions were
initially designed for AI applications, and thus are not entirely suitable for sieving, where
we need to compute many dot products of vectors with no more than 160 entries. It only
provides 8 tmm registers, so each register can only be used in 2 ∼ 3 tdpbssd instructions
after loading the data from the cache. As a result, our bgj3-amx suffers significantly from
the latency of tileloadd and tilestored instructions. Nevertheless, this slowdown can only be
at most a constant factor, and such a problem, which is only related to the speed and size
of small caches, is completely different from the issue of accessing random vectors from
an exponentially large database. We also note that this problem is minor for most of the
current CPU (with AVX2 or even AVX512) and GPU architectures.

The insertion step, although it only requires 20.2075n+o(n) computations, is somewhat
tricky to stream in practice. Current sieving implementations usually maintain a hash table
to check whether a vector is already in the list. Such a check, although it has a constant
gate complexity, requires random memory access. If we do not check for duplicates before
a vector is inserted into the list, the list will soon be “polluted” by duplicated vectors. Our
solution is to first mergesort the list vectors and the newly found short vectors together,
and then remove the duplicates and the longest ones. This procedure can be performed
using a streaming memory accesses at the cost of slightly increasing the time complexity
of the insertion step to O(20.2075n+o(n) log(20.2075n+o(n))) = 20.2075n+o(n), which should be
acceptable.

The concept in this subsection is also demonstrated in our bgj3-amx implementation.
Actually, the authors’ idea of how to address the memory access issue in sieving was initially
inspired by the implementation. The detailed computation speed, time, and bucket size
for different steps are listed in Table 2. Data were collected while sieving in dimension
140 with 112 threads on the dual Intel Xeon Platinum 8479 CPU server. From this, we
can see that although the speed of the first two filters suffers heavily from the poor RAM
bandwidth, this cost only slightly affects the overall performance, because most of the
computations happen when the buckets get small enough to fit into faster caches, where
the memory bandwidth is no longer a bottleneck.

Table 2: Profiling Data of bgj3-amx

Step Filter-0 Filter-1 Filter-2 Reducing

Speed (TOPS) 11.81 11.10 39.19 116.4
Bucket size 278.8GB 3.386GB 80.75MB 556.7KB
Data in RAM RAM L3-Cache L2-Cache

Total Time 544.7s 451.4s 762.4s 3397s
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5 Optimizations
5.1 Sieving with Low Precision
In all of the sieving algorithms we implemented (bgj1, bgj2, bgj3, bgj3-amx), the entries of
the lattice vectors in the main sieving database are stored as 8-bit signed integers. Most
of the computationally intensive parts of the sieving, including the filtering and reducing
steps, are also performed with 8-bit precision. Only during the insertion step do we recover
the newly found vectors with 32-bit precision. These vectors are then properly scaled,
rounded, and carefully checked before being inserted into the main database. Vectors that
do not pass the check are discarded (e.g., because the norm is too large or not all the
entries lie in the range [−127, 127]). It turns out that if one carefully maintains the main
database, the relative error of the dot product results is typically less than 1% and the
outliers are rejected during the check before being inserted into the main database. Thus
the precision loss does not significantly affect the sieving procedure.

We provide details on the most intricate parts of the 8-bit implementation. For the
choice of the scaling factor, if B is the basis of the lattice, using the notation in Section 2,
the scaling factor in our implementation is chosen to be 254.0 · (max06i6n−1 ‖b∗i ‖)−1. This
ensures that no vector entry exceeds 127 in absolute value after size reduction. To recover
the accurate vectors from the 8-bit representations, we first use short dual vectors of the
basis to compute the integer coefficients with respect to the basis B. We then recover the
vector using these coefficients. Such short dual vectors can be obtained by first computing
the dual basis of B, and running the LLL algorithm [LLL82] on the dual basis. The LLL
algorithm here is necessary.

Compared to previous sieving implementations based on 32-bit floating-point numbers,
the use of 8-bit precision leads to a 2 ∼ 4 times improvement, both in terms of speed
and memory usage. These improvements contribute significantly to the refined security
estimation in Section 7.

5.2 Seeking More Dimension for Free
From Dual Hash to LSF-based Dual Hash. In practice, to reduce both time and memory
costs, a common strategy is to aim for more dimension for free, i.e., to find short enough
vectors with a smaller sieving dimension. One way to achieve this is by using the dual
hash technique proposed in [DSv21]10. Once sieving on the local projected lattice L[l,n]
is complete, i.e., exponentially many short vectors in L[l,n] have been found, the dual
hash technique suggests lifting all pairwise sums/differences of these vectors to L[0,l]. The
lifting is done cleverly: a hash value is computed for each vector, and only the “lift-worthy”
vector pairs with hash values close to each other are lifted. Checking for hash value pairs
is much faster than lifting, thus the dual hash technique can significantly reduce the lifting
cost and works well in the GPU implementation in [DSv21].

However, the cost of the dual hash technique is nevertheless quadratic in the size of
the list. In our preliminary CPU implementation, we tried the dual hash technique and
found it to be unacceptably slow in sieving dimensions only around 120. A natural idea to
improve this is to use locality sensitive filters. We choose to use the filters Gc,` such that
v ∈ L[l,n] can pass Gc,` iff ‖Lift0(v ± c)‖2 − ‖v ± c‖2 < `2. Pairwise checks for the dual
hash values are only done for vectors that can pass the same filter. This leads to a 2 ∼ 10
times improvement in efficiency for sieving dimensions ranging from 100 to 140. However,
even the LSF-based dual hash still takes extra time at least comparable to the time for
sieving itself, thus not “free”, which is still unsatisfactory.

Observations. Our current solution is based on two simple observations. Firstly, we propose
10We refer to Section 4.5 of van Woerden’s thesis [vW23] for a more detailed and expository discussion.
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a unified concept for the left progressive sieve and enumeration. During the sieving process
on a local projected lattice, numerous found vectors are not short enough to be inserted
back into the main database. However, many of these vectors are only slightly longer (for
example, 5%∼10% longer) than the threshold. If such short vectors in the local projected
lattice L[l,n] are found during enumeration, they will certainly be lifted to see if they yield
a short vector in L[l′,n] for some l′ 6 l. In our preliminary implementation, these vectors
are simply discarded, wasting potential short vectors that could be helpful in enumeration.
This suggests that our implementation may not be optimal and could benefit from these
short vectors.

The second observation is that if a vector v ∈ L[l,n] is short after lifting to L[0,n], then
it cannot be too long. According to Gaussian heuristics, if we are sieving on L[l,n] and
lifting all sums/differences of the vectors in the list to L[0,n], we suggest estimating the
minimal length of those lifted vectors as follows:

min
06α60.5

((
N2 · (1− α2)n/2

)−2/l
· gh(L[0,l])2 + (2− 2α) ·

(
1.18 · gh(L[l,n])

)2
)1/2

where N is the size of the list, and the number 1.18 is chosen because after the sieving
is done, the median length of the vectors in the list is around 1.18 · gh(L[l,n]). The
second term represents the norm in [l, n] of the difference between two vectors with angle
arccosα, and the first term is the expected minimal norm in [0, l] among these differences.
This estimation is slightly pessimistic, as many vectors in the list are much shorter than
the median length. In practice, this estimated length can be achieved on average after
exhausting 15%∼25% of the search space. If we are targeting a dimension for free of
around 30, it turns out that the α to minimize the estimation formula is typically larger
than 0.4, even larger than 0.45 when the sieving dimension is large (e.g., 140). This
suggests that even if a pair of vectors pass the dual hash test, they are still unlikely to
be “lift-worthy” because the cosine of the angle between them is usually much less than
0.4, i.e., the sum/difference of the two vectors is already too long without lifting. This
observation suggests that it may be possible to further reduce the number of lifts while
maintaining comparable lifting quality.

Our Solution. In our final implementation, we assign a score to each vector in the list,
rather than naively using the length to assess the quality of the vectors. The score of a
vector v ∈ L[l,n] is computed as

score(v) = min
06l′6l.

‖Liftl′(v)‖
gh(L[l′,n])

Vectors with smaller scores are preferred, and we use newly found vectors with small scores
to replace the vectors in the list with larger scores during the insertion step. To find vectors
with small scores, in the filtering and reducing steps, if s is the score of a 77% quantile
vector in the list, we aim to find vectors in L[l,n] with a length less than 1.07 · s · gh(L[l,n]).
During insertion, scores for these vectors are computed and only 0.5% ∼ 2% of these
collected vectors turn out to have a small enough score to be inserted into the list. The
score computing speed in our implementation is about 221 ∼ 222 vectors/(second·core),
and the overall cost of computing the scores is typically less than 10% of the sieving time,
which is negligible.

In summary, our final implementation further pushes the idea of on-the-fly-lifting
[ADH+19] by directly inserting vectors that are short after lifting into the main database.
It turns out that the left progressive sieve procedure even becomes slightly faster after
enabling this new technique. Intuitively, this is because some work in the next few
sieving dimensions is done by reusing the vectors discarded in the original implementation.
Both the overall time and space cost for solving SVP are significantly reduced by the
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larger dimension for free. For a comparison with the state of the art, one can compare
the dimension for free of our Darmstadt SVP Challenge results (those challenges with
dimension 6 162 were solved with the preliminary code) in Section 6.4 with Table 1 in
[DSv21].

6 Implementation Details

6.1 General Design Principles
Our implementation, crafted in C++, extensively utilizes intrinsic functions for low-
level optimizations. We compile the code using the clang-17.0.6 compiler, with the -O3
-march=native optimization flag enabled to support the latest Intel CPU architectures. For
multi-threading, we have opted for the OpenMP library.

Most of our implemented algorithms, including bgj1, bgj2, bgj3, bgj3-amx, and the
locality sensitive filter-based dual hash, are accessible directly from a command-line
interface. Parameters such as the number of threads, maximum sieving dimension, sieving
context, among others, can be passed as arguments. Notably, all our SVP challenges
were solved using this command-line tool, eliminating the need for direct interaction with
the C++ interfaces. We anticipate that this tool will be user-friendly and provide the
community with deeper insights into these sieving algorithms.

6.2 Vector Representation and Data Structures
In our implementation of the sieving algorithms, we manage the following data: the lattice
basis, the main database of lattice vectors, a unique identifier (uid) hash table, and a list
of “compressed vectors” for sorting.

Each coordinate of the lattice basis is stored as the quad_float type in NTL [Sho],
offering 106-bit precision. We perform the computation of Gram-Schmidt orthogonalization,
the local projected lattice, and the LLL reductions using the quad_float type to ensure the
original basis remains unaffected by numerical errors. Notably, we have developed inline
assembly code based on AVX512 instructions for the basic quad_float vector operations,
which makes these basis-related computations extremely fast.

For each vector in the main database, we record its coordinates (8-bit signed integers,
aligned to 32 bytes), the square of the norm (32-bit signed integers), the sum of all
coordinates (32-bit signed integers), and a 64-bit uid. Before inserting a vector into the
primary database, we first recover it to 32-bit precision and then round it, preventing the
accumulation of numerical errors during the sieving procedure. Consequently, this most
space-consuming part of the data only requires 176 bytes per vector. The rationale for
maintaining the sum of the vector coordinates will be explained in Section 6.3.

The uid hash table serves to check whether a vector already exists in the main database.
We initially tried the std::unordered_set in the standard C++ library, and found it extremely
inefficient in terms of RAM usage. It consumed 40 ∼ 50 bytes per uid, which is more than
25% of the space cost of the main database. Therefore, we strongly recommend replacing
the std::unordered_set with a better unordered set implementation, for instance, Sparsepp
[Pop] to reduce both time and RAM costs. Also, one should keep in mind that for sieving
dimensions > 140, the uid of different vectors may collide with a high probability.

To efficiently sort the vectors in the list, we follow the approach in [ADH+19] to maintain
a list of “compressed vectors”. Our compressed vectors contain a 16-bit norm/score of the
vector and a 32-bit integer to record the address of the corresponding vector in the main
database. Sorting is only performed with these “compressed vectors” to minimize the cost
of data movement.
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6.3 Low-level Optimizations
In the ensuing subsection, we give details of those computationally intensive parts of the
sieving implementation. Predominantly, the computations involved in the filtering and
reduction phases consist of dot products followed by comparisons to check whether the
result exceeds a predetermined threshold.

In our “AVX2” implementations, namely bgj1, bgj2, and bgj3, the dot products of
int8_t vectors are first computed by vpdpbusd on ymm registers. We then use the vphaddd
instruction to horizontally add the 32-bit results in the ymm registers, simultaneously
for 8 dot products. The final comparison is conducted using vpcmpgtd. As a result,
the theoretical throughput for a dot product computation is less than 4 clock cycles.
Consequently, we have opted not to use the simhash trick [Cha02, FBB+15, Duc18a],
which gives no improvement even in our preliminary bgj1 implementation based on 32-bit
floating-point numbers. Furthermore, in our bgj2, bgj3, and particularly in the bgj3-amx
implementation, we have chosen to discard the 3-reductions [HK17] due to the excessive
cost of additional comparisons and data movements.

The vpdpbusd instruction, originally designed for AI applications, can only compute
the dot product of a uint8_t vector and a int8_t vector. Therefore, when computing the
dot product, we first need to add 0x80 to each entry of one of the vectors to convert it
into a uint8_t vector. Subsequently, we subtract 128 times the sum of the entries of the
other vector, after the dot product is done.

In our bgj3-amx implementation, the dot products are computed using the tdpbssd
instruction in Intel’s Advanced Matrix Extensions (AMX). The AMX extension equips
each core with eight 1KB tile registers (tmm0 to tmm7) and a set of instructions designed
to efficiently handle matrix operations. It supports both int8(tdpbssd) and fp16(tdpbf16ps)
data types, achieving an 8x throughput improvement over the previous AVX-512 VNNI
extension for int8 FMA. AMX is primarily designed for efficiently computing large matrix
multiplications, thus not very suitable for sieving. In fact, while only 3 tdpbssd instructions
are sufficient to compute 256 dot products, a significant amount of time is spent on loading
the data and storing the results with tileloadd and tilestored. Additionally, we need to
transpose one of the 16 by 64 int8_t matrices before it is loaded into the tmm registers
for computing dot products. Our current implementation uses vpunpckldq, vpunpckhdq,
and vshufi64x2 instructions to accomplish this, which is relatively slow. Furthermore, the
comparisons performed after the dot products are also costly. As a result, our bgj3-amx
implementation only achieves a speedup of 6 to 7 times compared to bgj3, which is not
satisfactory. We plan to further optimize the code to improve performance.

6.4 Performance and SVP Challenge results
We now proceed to showcase the results of the Darmstadt SVP challenge[SG10], as a
means to justify our work and compare it with the current state-of-the-art. The specifics of
the machines used for our SVP challenges are detailed in Table 3. Most of the large-scale
challenges were solved with a combination of CPU times on X1 and X2, differing only in
the amount of RAM, hence we do not distinguish between them and simply refer to them
as X in Table 4. Also, in our low-level optimized implementations, hyperthreading does
not offer any benefits.

The performance details of our implementation for solving Darmstadt SVP Challenges
are provided in Table 4. Here, “D4F”, “MSD”, and “dh” denote “dimension for free”,
“maximum sieving dimension” and “locality-sensitive filter-based dual hash” (see Section 5.2
for more details), respectively. The RAM usage for most of the smaller challenges was
not meticulously recorded, hence it is not displayed in the table. We just report that
our implementation only requires 0.87TB of RAM for a sieving dimension of 146, with
approximately 3.2 · (4/3)146/2 ≈ 232 vectors in the main database. This is merely 60% of
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Table 3: Details of the Machines Used in the Challenges

Machine CPUs base freq. cores RAM
D 2xIntel Xeon Gold 6338 2.00Ghz 64 256GB
Y 2xIntel Xeon Platinum 8336C 2.30Ghz 64 256GB
X1 2xIntel Xeon Platinum 8479 2.00Ghz 112 512GB
X2 2xIntel Xeon Platinum 8479 2.00Ghz 112 1024GB

the RAM usage of the currently most memory-efficient implementation [DSv21], and only
25% of the RAM usage of previous CPU implementations.

As proof, we present our short vector for the 183-dimensional Darmstadt SVP Challenge
with seed 0:

(155, -136, 243, 312, -81, 355, -116, 714, -632, 102, -711, 48, 201, -224, -60, -672,
151, -45, 197, -223, -153, 143, 133, 38, -56, 133, -482, -41, -102, 201, 220, 87, -116,
-141, 116, -690, -246, 104, -209, 152, 422, 165, -51, -452, -308, -366, 424, 122, 308,
-109, -277, -244, -273, 30, 33, 221, -484, -19, -112, 116, 206, -151, 69, 63, 37, 111,
-240, 128, -48, 93, -157, -354, -216, 263, -87, -61, -212, 254, -120, 210, 309, -164,

52, -19, -6, 91, -124, -74, 181, 369, -237, 133, -10, -26, -607, -50, -132, -6, 123,
-345, -130, -147, -3, -64, 174, 65, -375, 57, -673, 466, 83, 51, -465, -254, -8, -221,
17, -159, -142, -524, 24, 284, 99, -32, 492, -95, 251, -68, -108, 29, -577, 984, 301,
111, -58, 394, -102, -330, 17, -225, -151, -46, -35, 381, -211, -24, -207, 304, 133,

-189, -37, 59, 245, -53, 44, -97, -94, 104, -475, 326, 271, -115, -575, -69, -330, 199,
-238, 2, 316, -170, -164, -100, 5, -66, -532, 64, 258, -316, 66, 315, 167, -236, 52)

Table 4: Darmstadt SVP Challenge Results

Dim D4F MSD Norm Norm/GH CPU time Wall time Machine Algorithm
100† 18 82 2214 0.87028 44.7s 44.7s‡ D bgj1
120† 21 99 2654 0.95660 73.7m 73.7m‡ D bgj2
130† 26 104 2812 0.97516 9.92h 11.2m D bgj2
140† 20 120 2875 0.96283 74.1h 77.3m D bgj3
150 31 119 3084 0.99791 14.5d 5.70h D bgj3 & dh
151 24 127 3195 1.03167 58.2d 22.3h D bgj3 & dh
153 20 133 3173 1.01477 109d 41.6h D bgj3 & dh
157 23 134 3271 1.03367 185d 70.2h D bgj3
161 31 130 3344 1.04346 266d 4.20d Y bgj3 & dh
162 26 136 3325 1.03752 211d 3.30d Y bgj3 & dh
165∗ 40 125 3370 1.04215 117d 1.05d X bgj3
166∗ 28 138 3376 1.03988 352d 3.14d X bgj3
169∗ 33 136 3415 1.04120 1.05y 3.43d X bgj3
179∗ 32 147 3523 1.04651 3.40y 11.2d X bgj3-amx
183∗ 34 149 3536 1.04034 9.20y 30d X bgj3-amx & dh

† The seed is not zero.
‡ Only a single thread is used.
∗ The technique in Section 5.2 is enabled for these instances.

As seen in Table 4, even without AMX accelerations, the plain bgj3 implementation is
already extremely fast. It solved the 169-dimensional challenge in just 3.43 days using 112
cores. This is several hundred times faster compared to the previous highest record based
on CPU, which took eight months with 224 cores to solve a 166-dimensional challenge.
Moreover, when AMX acceleration is enabled, bgj3-amx solved the 179-dimensional chal-
lenge in only 11.2 days. This is approximately four times faster than the previous 4-GPU
implementation in [DSv21], which solved the 180-dimensional challenge in 51.6 days.

We believe direct GPU-CPU time comparisons are not apples-to-apples due to the
significantly higher computational power of GPUs. A comparison of our results with
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previous GPU-based records, in terms of gate count, is summarized in Table 5. It shows
our efficiency gain relative to [DSv21] is approximately 24.5, as fp16 > 2 ∗ int8.

Table 5: Comparison with Previous GPU Records

Dim Walltime Platform FLOP
179 11.2d 112 cores, no GPU∗ 266.0 ≈ 213.6 · (3/2)179/2 int8 operations
183 30d 112 cores, no GPU∗ 267.4 ≈ 213.9 · (3/2)183/2 int8 operations
180 51.6d 4 × Nvidia RTX 2080ti 269.9 ≈ 217.3 · (3/2)180/2 fp16 operations†

186 50.3d 4 × Nvidia A100 271.4 ≈ 217.0 · (3/2)186/2 fp16 operations‡

∗ The average speed is approximately 70TOPS.
† See Table 1 in [DSv21] for more details.
‡ Unclear how many floating-point operations the 186 took. This number is estimated as
269.9 · (50.3/51.6) · (312/107) ≈ 271.4, where 312/107 represents the ratio of the theoretical performance of
the A100 to the 2080ti.

Moreover, we have integrated our sieving implementation into the BKZ framework
[ZD23] and successfully found a vector of length 761113 in a 796-dimensional Ideal-SVP
Challenge[PS13]. A detailed comparison with the previous record is presented in Table 6.
It is once again a bit subtle to compare a 4-A100 system with a pure CPU server,
but it is reasonable to estimate11 the ratio to be between 10 and 100, whether we are
comparing price or computational capability. Therefore, we estimate our efficiency gain to
be (3/2)(121−109)/2 · (49/9.9) · 101∼2 ≈ 29∼12. Note that for this challenge, we mainly used
bgj3, which only achieves about 10 TOPS.

Table 6: Comparison with Previous Approximate-SVP Records

Dim Walltime Platform Hermite Factor
796 9.9d 64 cores, no GPU 1.00834796 ≈ (Γ( 121

2 + 1)1/121/
√
π)796/121

750 49d 48 cores, 4 × Nvidia A100 1.00878750 ≈ (Γ( 109
2 + 1)1/109/

√
π)750/109

7 Refined Security Analysis
Finally, we present a refined security analysis of lattice-based schemes based on the results
from the previous sections. We will mainly focus on Falcon [PFH+] which will be a NIST
PQC standard, but this work is also applicable to Kyber [BDK+] and Dilithium [DLL+].

In Falcon’s document [PFH+], the BKZ block size B required to forge a Falcon-512
signature is estimated to be 411. The cost of BKZ is computed as n3

4B2 times the cost of
solving the shortest vector problem instances in dimension B, according to [ADH+19].
Taking into account the dimensions for free, the actual sieving dimension B′ is estimated
to be B −

⌊
B ln(4/3)
ln(B/2πe)

⌉
= 374. Therefore, considering only the first asymptotic term in

the complexity of a sieve leads to a number of n3

4B2 · (
√

1.5)B′ ≈ 2120.0 classical gates.
Now the key point is, in Falcon’s document, the constant term of the sieving complexity
was estimated based on the real performance of the sieving implementation in [ADH+19],
which, however, has been significantly reduced in our work.

For example, on the dual Intel Gold 6338 server mentioned in Table 3, a 100-dimensional
left progressive sieve with bgj3 takes only 1056.85 seconds on a single core. Profiling data

11On Sept. 24, 14:00 GMT we looked up spot prices on AWS instances closest to us; the cheapest
instance for the former is 32.77 USD/hr and for the latter 2.176 USD/hr for a ratio ≈ 15.
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indicates that the total number of dot products during the left progressive sieve does
not exceed 650G. Therefore, if we model the gate cost of an int8_t FMA operation as
2 · 82 + 8 = 136 classical gates, an upper bound of the gate cost for a 100-dimensional left
progressive sieve is

650 · 230 · 100 · 136 ≈ 223.8 · (
√

1.5)100,

which suggests the constant term to be at most around 223.8. Thus, the total number of
gates required to forge a Falcon-512 signature is now estimated to be 2120.0 · 223.8 ≈ 2143.8,
using the same methodology as in Falcon’s document, without considering

1. The refined BKZ strategy, for example, as described in [ZD23]. Expected influence
on the gate-count estimate: 2−4 ∼ 2−3.

2. The asymptotic slowdown of the BGJ sieve compared to the BDGL sieve, which
is at most 2(0.311−0.2925)·274 ≈ 25 times more slowdown for sieving dimension 374.
Expected influence on the gate-count: 20 ∼ 25.

3. The simhash trick [Cha02, FBB+15, Duc18a], which, although not beneficial in our
implementation, can significantly reduce the cost if we focus solely on the gate count.
It’s possible to perform a gate-saving xor-popcnt check on the simhash values before
each int8_t dot product, and only compute the dot product if the xor-popcnt check
passes. Being conservative, we discount this part.

As a result, we estimate that the minimal number of classical gates required to forge a
Falcon-512 signature falls within the range [2139.8, 2145.8]. This is not sure to meet NIST’s
security requirement of 143 bits for level 1 security. More importantly, now the cost of
memory access should no longer be used to argue for even one more bit of security in this
range. We suggest modifying the parameters for Falcon-512 to balance the difficulty of
forgery and key recovery attacks if a security level of 143 bits is truly necessary.

In the end, in Table 7, we present our refined bit security estimates for Falcon, Kyber,
and Dilithium, taking into account the three factors mentioned in the previous paragraph.
Specifically, an upper bound of log2(gates) is estimated as log2(n3/4B2)+log2(1.5) ·B′/2+
23.8− 3 + 5. The BKZ block size B and the sieving dimension B′ in the table are directly
taken from their respective documents without any modifications.

Table 7: Refined Estimation of Bit Security

Falcon-512 Kyber-512 Dilithium-2
B 411 413 433
B′ 374 375 394
log2(gates) [139.8, 145.8] [140.1, 146.1] [148.5, 154.5]

8 Conclusion and Future Directions
In this work, we revisit the BGJ sieve, which proves to be of both theoretical and
practical interest. We show that the BGJ sieve is inherently memory-friendly and exhibits
performance comparable to the state-of-the-art BDGL sieve, at least for problem scales
related to cryptography. This could provide a solution to the long-debated issue of
estimating RAM access overhead in large-scale, sieving-based lattice attacks. Supported
by our implementation, it suggests that the NIST PQC standardization candidate Falcon-
512, especially, may not meet NIST’s security requirements. Parameter adjustments are
recommended if 143 bits security is really necessary. A deeper theoretical analysis of the
refined BGJ sieve could be a direction for future work.
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From a practical perspective, we have provided a highly optimized implementation of
the BGJ sieves based solely on CPU, which even surpasses the current state-of-the-art GPU
implementations. The improvement stems from the smaller o(n) term of the BGJ sieve,
smaller bucket size, better locality, an improved sieving framework, and a highly optimized
implementation. Such an implementation should be helpful for a deeper understanding of
these asymptotically faster sieving algorithms.

Finally, we would like to note that our choice to implement the BGJ sieve solely based
on CPU does not mean that a GPU implementation is infeasible. Indeed, if one uses a 20
to 30 TB disk to store the main database, places the buckets after the first filter in a 1 to
2 TB system RAM, and puts the buckets after further filters in each RTX 4090 GPU’s
24GB with ECC memory, one may be able to do a disk-based bgj3- or bgj4-gpu that gets
close to the GPUs’ theoretical throughput. This is because the buckets transferred to the
GPU RAM are still very large and should not suffer much from the poor bandwidth from
system RAM to GPU RAM, which led to a significant slowdown in the case of 2-bdgl_gpu
in [DSv21]. We estimate that the 1.05-Hermite-SVP challenge with dimensions ranging
from 200 to 210 should be solvable in a reasonable time, for example, on an 8x Nvidia
RTX 4090 machine, which has a theoretical peak performance of 8 · 660 = 5280TOPS for
8-bit precision, with a sieving dimension of 160 to 170. However, for dimensions greater
than 210, the challenge should be considered hard due to the bottleneck of computational
resources, even though increasing the disk space for a larger sieving dimension is not too
difficult.

Nevertheless, such an implementation is by no means easy. Therefore, we have chosen
to develop a CPU-based implementation, which is much easier to develop, tune, debug,
and use. Moreover, it is sufficient to illustrate most of the concepts we aim to demonstrate,
and it is already fast enough to validate the improvements.

Parallel Work. We recently became aware of a parallel work by Samuel Jaques [Jaq24],
which also explores the memory access cost of sieving algorithms. [Jaq24] focuses more on
the theoretical side, while our research is rooted in and supported by concrete implementa-
tion. Another very recent study by Martin R. Albrecht and Joe Rowell [AR24] explores the
possibility of distributed sieving implementation. Their work concentrates on the BDGL
sieve and the results should be considered orthogonal to ours. Although our approaches
and findings are independent and differ significantly, we appreciate the contributions of
their research, and believe that both our works collectively advance the understanding of
the concrete cost of lattice attacks.

Acknowledgements.
This work is supported by National Key R&D Program of China (No. 2021YFB3100100)
and Beijing Natural Science Foundation (No. M22001). Also by Academia Sinica Grand
Challenge Program AS-GCP-114-M01.

References
[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-

monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Cham, May 2019.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Lud-
wig Schmidt. Practical and optimal lsh for angular distance. In C. Cortes,



380 Sieving with Streaming Memory Access

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In 33rd ACM STOC, pages 601–610. ACM Press, July
2001.

[AR24] Martin R. Albrecht and Joe Rowell. Scaling lattice sieves across multiple
machines. Cryptology ePrint Archive, Report 2024/747, 2024.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016.

[BDK+] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS-KYBER.
Technical report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
selected-algorithms-2022.

[Ber20] D. J. Bernstein. round 2 official comment: crystals-kyber, 2020.

[Ber23] D. J. Bernstein. Structure of memory access in sieving, 2023.

[BGJ13] Anja Becker, Nicolas Gama, and Antoine Joux. Solving shortest and closest
vector problems: The decomposition approach. Cryptology ePrint Archive,
Report 2013/685, 2013.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving
without increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, 2015.

[Cha02] Moses Charikar. Similarity estimation techniques from rounding algorithms.
In 34th ACM STOC, pages 380–388. ACM Press, May 2002.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.
In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 1–20. Springer, Berlin, Heidelberg, December 2011.

[DLL+] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Technical re-
port, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
selected-algorithms-2022.

[DSv21] Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice
sieving on GPUs, with tensor cores. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
249–279. Springer, Cham, October 2021.

[Duc18a] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 125–145. Springer, Cham, April / May 2018.

[Duc18b] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free
(talk), April 2018.

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022


Ziyu Zhao , Jintai Ding (�) and Bo-Yin Yang 381

[Duc22] Léo Ducas. Estimating the hidden overheads in the BDGL lattice sieving
algorithm. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum
Cryptography - 13th International Workshop, PQCrypto 2022, pages 480–497.
Springer, Cham, September 2022.

[FBB+15] Robert Fitzpatrick, Christian H. Bischof, Johannes Buchmann, Özgür Dagdelen,
Florian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning GaussSieve for
speed. In Diego F. Aranha and Alfred Menezes, editors, LATINCRYPT 2014,
volume 8895 of LNCS, pages 288–305. Springer, Cham, September 2015.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 257–278. Springer, Berlin, Heidelberg, May / June 2010.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the approxi-
mate k-list problem in euclidean norm. In Serge Fehr, editor, PKC 2017, Part I,
volume 10174 of LNCS, pages 16–40. Springer, Berlin, Heidelberg, March 2017.

[Jaq24] Samuel Jaques. Memory adds no cost to lattice sieving for computers in 3 or
more spatial dimensions. Cryptology ePrint Archive, Report 2024/080, 2024.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In 15th ACM STOC, pages 193–206. ACM Press, April 1983.

[KL21] Elena Kirshanova and Thijs Laarhoven. Lower bounds on lattice sieving
and information set decoding. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 791–820, Virtual Event,
August 2021. Springer, Cham.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 3–22. Springer, Berlin,
Heidelberg, August 2015.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors
using spherical locality-sensitive hashing. In Kristin E. Lauter and Francisco
Rodríguez-Henríquez, editors, LATINCRYPT 2015, volume 9230 of LNCS,
pages 101–118. Springer, Cham, August 2015.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Miklós Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261:515–534,
1982.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms
for the shortest vector problem. In Moses Charika, editor, 21st SODA, pages
1468–1480. ACM-SIAM, January 2010.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

[PFH+] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Techni-
cal report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
selected-algorithms-2022.

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022


382 Sieving with Streaming Memory Access

[Poh81] Michael Pohst. On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications. SIGSAM Bull., 15(1):37–
44, feb 1981.

[Pop] Gregory Popovitch. Sparsepp: A fast, memory efficient hash map for c++.
https://github.com/greg7mdp/sparsepp.

[PS13] Thomas Plantard and Michael Schneider. Creating a challenge for ideal lattices.
Cryptology ePrint Archive, Report 2013/039, 2013.

[Sch87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53(2):201–224, jun 1987.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program., 66:181–
199, 1994.

[SG10] Michael Schneider and Nicolas Gama. Darmstadt svp challenges, 2010.

[Sho] Victor Shoup. Ntl: A library for doing number theory. https://libntl.org/.

[TT07] Kengo Terasawa and Yuzuru Tanaka. Spherical lsh for approximate nearest
neighbor search on unit hypersphere. In Frank Dehne, Jörg-Rüdiger Sack, and
Norbert Zeh, editors, Algorithms and Data Structures, pages 27–38, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[vW23] Wessel van Woerden. Lattice cryptography: from cryptanalysis to New Founda-
tions. PhD thesis, Leiden University, 2023.

[ZD23] Ziyu Zhao and Jintai Ding. Practical improvements on bkz algorithm. In Shlomi
Dolev, Ehud Gudes, and Pascal Paillier, editors, Cyber Security, Cryptology, and
Machine Learning, pages 273–284, Cham, 2023. Springer Nature Switzerland.

A Details of the Bucketing Procedure
We consider a slight variation of Algorithm 3 here: we choose the i-th filter center ci to be
orthogonal to the previous centers c0, . . . , ci−1 for all i = 1, . . . , k − 1, instead of choosing
them uniformly from the unit sphere in Rn. From now on, for any vector v ∈ Rn, we
denote its entries by v0, . . . , vn−1. For a set A, we mean sampling x uniformly at random
from A by writing x ← A. By abuse of language, we denote the canonical measure on
high-dimensional spheres by µ.

For sieving dimension n, take the number of filter layers k = O(logn), α = 1/
√

4k,
then for each i = 1, . . . , k an i-th layer bucket corresponds to regions isomorphic to

Wi,α := {x = (x0, · · · , xn−1) ∈ Sn−1 : x0 > α, x1 > α, ..., xi−1 > α}

Theorem 3 (Collision Probabilities for Wi,α). The probability that a random vector lies
in Wi,α is

P[v ∈Wi,α|v← Sn−1] = nO(i) (1− iα2)n/2+o(n) =
(

1− i

4k

)n
2 +o(n)

.

Furthermore, the probability of a pair uniformly sampled from Wk,α×Wk,α being a reducing
pair is

P[〈u,v〉 > 0.5|u,v←Wk,α] > 2poly(logn)

(
1−

(
0.5− kα2)2

(1− kα2)2

)n/2+o(n)

=
(

8
9

)n
2 +o(n)

.

https://github.com/greg7mdp/sparsepp
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That is, we only lose a 2poly(logn) factor from the non-spherical filter regions, and thus
taking the batch size B = ( 3

2 )n/2k+o(n/k), a possible strategy may be:

number of buckets bucket size
main database 1

( 4
3
)n

2 +o(n)

i-th layer Bi
( 4

3
)n/2+o(n) (1− i

4k
)n/2+o(n)

k-th layer Bk =
( 3

2
)n/2+o(n) 2o(n)

where the gate complexity is
( 3

2
)n/2+o(n) and we could collect

( 3
2
)n/2+o(n) ( 8

9
)n/2+o(n) =( 4

3
)n/2+o(n) reducing-pairs from the k-th layer buckets, if the distribution for the k-th

layer bucket centers is idealized to be uniform. We are currently not sure whether the
non-uniformity of the bucket centers also causes only a subexponential loss as in [BDGL16].
However, if this is not the case, we can increase the batch size B without increasing the
main database access.

proof of Theorem 3. For the first part, we have

P[v ∈Wi,α|v← Sn−1] = µ(Wi,α)
µ(Sn−1)

= 1
µ(Sn−1)

∫
x0>α,··· ,xi−1>α,

∑n−2
`=0

x2
`
<1

2√
1−

∑n−2
`=0 x

2
`

dx0 · · · dxn−2

= µ(Sn−i−1)
µ(Sn−1)

∫
x0>α,··· ,xi−1>α,

∑i−1
`=0

x2
`
<1

(
1−

i−1∑
`=0

x2
`

)n−i−1
2

dx0 · · · dxi−1

= µ(Sn−i−1)
µ(Sn−1)

∫ 1

√
i/4k

g(r)(1− r2)
n−i−1

2 dr

where g(r) is the surface area of {x0 > α, ..., xi−1 > α,
∑i−1
`=0 x

2
` = r}. We know

µ(Sn−i−1)/µ(Sn−1) is nO(i) from the sphere area formula. It remains to estimate the
integral I :=

∫ 1√
i/4k g(r)(1− r

2) n−i−1
2 dr.

On the one hand,

I 6
∫ 1

√
i/4k

g(r)
(

1− i

4k

)n−i−1
2

dr 6
(

1− i

4k

)n−i−1
2

=
(

1− i

4k

)n
2 +o(n)

On the other hand, taking ε = ε(n) = 1/n, we have

I >
∫ √i/4k+ε

√
i/4k

g(r)dr ·
(

1− i

4k − ε
)n−i−1

2

= Vol
({

i−1∑
`=0

x2
` <

i

4k + ε, x0 > α, ..., xi−1 > α

})
·
(

1− i

4k − ε
)n−i−1

2

>

(√
1
4k + ε

i
−
√

1
4k

)i
·
(

1− i

4k − ε
)n−i−1

2

=
(

1− i

4k

)n
2 +o(n)

.

as desired.
In the proof of the second part, we write W := Wk,α for short, and µu, µv for the

spherical measures on the first and second spheres, respectively. For ε = ε(n) = 1/n,
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denote by pε =
(

1−
(

1
3−4ε

)2
)n/2+o(n)

the probability that two random vectors in Sn−k−1

have a dot product of at least 1/(4(1− (0.25 + ε))). We have

∫
(u,v)∈W×W

1〈u,v〉>0.5dµudµv

=
∫ 1

0.5
dhu

∫ 1

0.5
dhv

∫
(u,v)∈W×W,

∑k−1
`=0

u2
`
=h2

u,
∑k−1

`=0
v2

`
=h2

v

1〈u,v〉>0.5
dµu

dhu

dµv

dhv

>
∫ √0.25+ε

0.5
dhu

∫ √0.25+ε

0.5
dhv

∫
(u,v)∈W×W,

∑k−1
`=0

u2
`
=h2

u,
∑k−1

`=0
v2

`
=h2

v

1〈u,v〉>0.5
dµu

dhu

dµv

dhv

>
∫ √0.25+ε

0.5
dhu

∫ √0.25+ε

0.5
dhv

∫
(u,v)∈W×W,

∑k−1
`=0

u2
`
=h2

u,
∑k−1

`=0
v2

`
=h2

v

pε
dµu

dhu

dµv

dhv

= pε

∫
(u,v)∈W×W,

∑k−1
`=0

u2
`
<0.25+ε,

∑k−1
`=0

v2
`
<0.25+ε

dµudµv

> pε

∫
(u,v)∈W×W,u`,v`<α+ε/3αk,`=0,...,k−1

dµudµv

> pεO
(( ε

3αk

)2k
)
µ(W )2

which concludes the proof.
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