
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 293–332. DOI:10.46586/tches.v2025.i2.293-332

A Code-Based ISE to Protect Boolean Masking
in Software

Qi Tian1,2, Hao Cheng1,3∗, Chun Guo1,3, Daniel Page4, Meiqin Wang2,1,3 and
Weijia Wang2,1,3(�)

1 School of Cyber Science and Technology, Shandong University, Qingdao, China.
tianqi512@mail.sdu.edu.cn

{hao.cheng,chun.guo,mqwang,wjwang}@sdu.edu.cn
2 Quan Cheng Laboratory, Jinan, China

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Qingdao, China

4 School of Computer Science, University of Bristol, Bristol, UK.
daniel.page@bristol.ac.uk

Abstract. Side-Channel Attacks (SCAs) pose a significant threat to data security
in embedded environments. To counteract the power-based SCAs, masking is a
widely used defense technique, that introduces randomness to obscure the side-
channel information generated during the processing of secret data. However, in
practice, some challenges exist when implementing masking schemes. For example,
in the implementation of Boolean masking, they may refer to low noise level and
implementation flaws. To address the said implementation challenges, we present an
effective and efficient solution that incorporates the code-based masking technique:
We mask the shares of Boolean masking with code-based masking and then use a self-
designed Instruction Set Extension (ISE) to perform efficient private computations
within this masked domain. Based on a 32-bit RISC-V Ibex core, we develop
a prototype implementation of our ISE, whereby it mainly wraps the ALU with
three code-based encoders/decoders and integrates a leakage-resilient pseudo-random
generator (PRG). Compared to the base core (vanilla Ibex), the hardware overhead
of the ISE implementation is only 8%. The security evaluation based on formal
verification and practical evaluation demonstrates that our ISE can provide a more
robust practical security guarantee. Furthermore, our approach significantly reduces
the signal-to-noise ratio (SNR) of each share, decreasing it to just 2% of the original
SNR on the base core.
Keywords: side-channel attack, code-based masking, RISC-V, ISE

1 Introduction
Side-channel attacks and masking. Modern embedded computing devices are ubiquitous
in nearly every aspect of daily life and have brought significant convenience, with typical
examples including home automation, healthcare, transportation, etc. However, the
widespread adoption of embedded devices also poses new security challenges, since a great
number of them deal with sensitive or secret data while simultaneously being deployed in
an adversarial environment. In this context, Side-Channel Attack (SCA) is a major threat,
which does not crack encryption algorithms directly to access secret information. Instead,
SCA can obtain encryption keys or sensitive data indirectly through the analysis of the

∗Part of this work was done while Hao Cheng was at the University of Luxembourg.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.293-332
mailto:tianqi512@mail.sdu.edu.cn
mailto:hao.cheng@sdu.edu.cn,chun.guo@sdu.edu.cn,mqwang@sdu.edu.cn,wjwang@sdu.edu.cn
mailto:daniel.page@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/

294 A Code-Based ISE to Protect Boolean Masking in Software

physical side-channel information, which is produced during cryptographic operations on
the device, such as power consumption, electromagnetic radiation, and execution time.

In this paper, we focus on Differential Power Analysis (DPA) [KJJ99] and its variants.
To counteract DPA, various defense techniques have been explored and studied, which are
usually categorized as being based on hiding [MOP07, Chapter 7] and/or masking [MOP07,
Chapter 9]. Our focus is on masking, an encryption technique that introduces randomness
to obscure the side-channel information generated during the processing of secret data. By
interleaving the signals with randomness to counter potential breaches, masking therefore
reduces the susceptibility of cryptographic implementations against side-channel attacks.
In general, a masking scheme, sometimes called a private circuit compiler, comprises two
components: encoder and private computation. The former encodes the secrets and some
randomness into sharings, while the latter mainly computes the cryptographic algorithms
over the sharings.

Boolean masking. The simplest and most popular encoder is the additive one, which is
used in a d-th order Boolean masking scheme. It randomly encodes any secret variable x
into a sharing comprising d+ 1 shares 〈x0, x1, . . . , xd〉 such that x = x0 ⊕ x1 ⊕ . . .⊕ xd,
and we use x ∈ Fq as an example throughout the paper. To compute the cryptographic
algorithms over the sharings, one shall transform each elementary operation (e.g., addition
and multiplication over Fq) into a masked and compatible version, which is called gadget.
An advantage of the additive encoder is, due to its simple structure, the corresponding
private computations (e.g., gadgets) can be quite efficient. In detail, the addition gadget
with inputs 〈x0, x1, . . . , xd〉 and 〈y0, y1, . . . , yd〉 can be easily implemented by adding the
corresponding shares with the same index, and outputs the result shares zi = xi ⊕ yi,
for i ∈ {0, . . . , d}. As for the multiplication gadget, it is not isomorphic to the additive
sharings thus a bit more complex, and a well-known instance, namely ISW multiplication,
is proposed by Ishai, Sahai, and Wagner [ISW03].

Challenges in practice. However, when implementing Boolean masking schemes in prac-
tice, several challenges arise, primarily related to implementation efficiency and security.
In particular, given the target devices have (highly) constrained resources, these challenges
may be amplified (terribly). In terms of efficiency, although offering demonstrable and
adjustable security against side-channel attacks, the higher-order masking scheme often
results in substantial computational and storage overhead. For example, the computational
complexity of ISW multiplication, along with its many variants, exhibits a quadratic
growth to the security order d. As for the implementation security, Boolean masking
schemes on microprocessors confront at least two significant difficulties:

1. Lack of sufficient noise, and thus the masked implementation may suffer from some
attacks such as horizontal attacks [BCPZ16] and side-channel dissection [BS20]. This
stems mainly from the sequential circuits, because the data processed in the registers
and data bus habitually leak (significantly) more than those in the combinational
circuits.

2. Implementation flaws such as transitional leakage. Since the combinational circuits
are stateless, most defects (excluding the glitches) also come from sequential circuits.

Code-based masking. Code-based masking is a very general type of masking scheme,
including inner product masking [DF12, BFGV12], direct sum masking [BCC+14], etc. It
has two primary advantages. First, the higher algebraic complexity of the sharing function
decreases the information leakage in the “low noise conditions” and may provide a better
security than the Boolean masking. Second, compared to the simple additive encoder, its
complicated encoder allows a smaller size of the sharing. Specifically, it can encode m-bit

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 295

Figure 1: An example describing how to use code-based masking to protect a software
implementation of Boolean masking.

secret1 in Fq, into n-bit (n ≥ d+m) sharing in Fq. In particular, if q ≤ m+ d, there exists
an encoder such that n = d+m, while the additive encoder requires n = dm. However,
the downside of code-based masking is that designing a corresponding private computation
is challenging. The existing works only benefit the cryptographic algorithms over Fq with
q ≥ 24 [WMCS20].

Use of ISE to support masking. The implementation strategy of a masking scheme
includes at least two options: hardware-only and software-only. When comparing the two,
the former is believed to ensure a higher practical security, since it can address leakage via
directly the micro-architecture, while the latter has only the architectural means to use.
However, when coming to the cost of hardware resources, the former relies on a dedicated
circuit, which implies a high overhead, but the latter is zero overhead. In addition, the latter
offers greater flexibility, while the former is limited. Apart from them, the hybrid strategy,
namely hardware/software co-design, is the third option, which combines the characteristics
of the two extremes and attempts to offer a more attractive trade-off. Instruction Set
Extension (ISE) is a promising approach in this scope, which extends the Instruction
Set Architecture (ISA) by a small set of custom instructions to support the masking-
related tasks. Various ISE proposals have been presented in literature aiming to improve
the efficiency and/or security of masked implementation, which can be classified into
compute-oriented (e.g., [TKS10, KS20, GGM+21, MP21, CKK+22, CB23, LT23, KLS+23])
and data-oriented (e.g., [GMPP20, CPW24]) two categories. According to definitions in
[CPW24], the compute-oriented ISE means “[in compute-oriented ISEs] software indicates
that the micro-architecture should execute masking-specific computation on masking-specific
data”, and the data-oriented ISE means “[in data-oriented ISEs] software indicates that the
micro-architecture should execute generic computation on masking-specific data”. Notably,
the data-oriented ISE is currently less explored than the compute-oriented one.

296 A Code-Based ISE to Protect Boolean Masking in Software

1.1 Contributions
To address the challenges in software implementations of Boolean masking, we use code-
based masking to mask the Boolean shares, and then present a data-oriented ISE to
facilitate efficient private computations within the code-based masked domain. Figure 1
provides an overview of our concept. On the left side of the figure, we depict the process
of encoding secret x into the corresponding d + 1 code-based sharings, we call them
protected-Boolean shares of the secret x: First, the secret x is encoded into d+ 1 Boolean
shares using a Boolean encoder, and then each Boolean share is further encoded into the
corresponding protected-Boolean share by a code-based encoder. The right side of the
figure shows the computation in the masked domain, taking the execution of software-
based ISW multiplication as an example. During this process, hardware-based code-based
masking is used to resist micro-architectural leakage. We refer to the software-based
ISW multiplication process as the outer masked operations and the hardware-based code-
based masking as the inner masked operations. Throughout the process, Boolean shares
remain invisible to software, while protected-Boolean shares are visible. During inner
masked multiplication or addition, the two protected-Boolean shares are decoded into
their respective Boolean shares, followed by performing multiplication or addition on the
Boolean shares, and finally encoding the resulting value to obtain the protected-Boolean
share. Specifically, our contributions are threefold:

1. Design of a data-oriented ISE. Our ISE includes two classes of instructions, namely
1) computation and 2) pseudorandom generator (PRG) management. Aligned with
the design philosophy of data-oriented ISE, one computation instruction performs
a single bit-manipulation operation in the code-based masked domain, which is
trivially constructed in hardware (by decoding the sharing, computing and encoding
the result). Although this trivial construction ensures probing security for only
input/output code-based sharings not intermediates (since hardware computations
in the code-based masked domain do not have probing security), it is sufficient to
secure the data stored in the general-purpose registers or memory. Consequently, it
can prevent the transitional leakage in registers and increase the noise level. It is
important to emphasize that in our design, the primary sources of noise are: 1) the
use of code-based masking and the introduction of randomness; and 2) the use of
hardware instead of software, as hardware often introduces higher levels of noise.

2. Implementation of the ISE. Based on a 32-bit RISC-V Ibex2 core, we demonstrate
that our ISE can be efficiently implemented by simply integrating two (code-based)
decoders, one encoder, four multiplexers, and four demultiplexers. Besides, we
also integrate a leakage-resilient pseudorandom generator to produce the necessary
random bits, which are essential for the masked operations in both code-based and
Boolean masking. To further mitigate combinational leakage, such as switching
wires leakage, we integrate the register gating technique described in [GHP+21]
into our implementation. We also provide a formal verification of our ISE using
Coco [GHP+21, HB21].

3. Practical validation of the ISE implementation. The efficiency evaluation shows that
the hardware overhead of our ISE is only 8% compared to the base core (vanilla Ibex).
On the other hand, the security evaluation based on first-order ISW multiplication
and bit-sliced AES S-box demonstrates that the security order is guaranteed on the
core extended with our ISE, while the significant leakage is detected on the base
core. Furthermore, our approach significantly reduces the signal-to-noise ratio (SNR)
of each share, decreasing it to just 2% of the original SNR on the base core.

1Note that the term “secret” in this context differs from the secret mentioned later in the context. For
example, in Figure 2, the “secret” refers to one of the d + 1 Boolean shares, rather than the secret x.

2https://github.com/lowRISC/ibex

https://github.com/lowRISC/ibex

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 297

1.2 Related works
First, we recall two works related to data-oriented ISE for masking. Gao et al. [GMPP20]
present a special fence instruction, which prevents transitional leakage by flushing the
micro-architectural resources specified by a CSR. By setting the value of this CSR, users
can target different resources, which offers a high flexibility. This instruction is tightly
integrated with the processor design. Cheng et al. [CPW24] focus on the transitional
leakage stemming from architectural and micro-architectural overwriting. They equip a
certain set of masking-related instructions with a special “hint”: the said instructions
remain the same functionality, but the hint informs the micro-architecture to flush the
destination resource before the actual writing of a result. Both approaches operate at
the micro-architecture level, e.g., they propose to flush micro-architectural resources. In
contrast, our approach considers the data level by encoding Boolean shares. In addition
to eliminating implementation flaws, our approach significantly increases the noise in
side-channel leakage, which is a critical requirement for the effectiveness of masking.

Besides, Arsath et al. [AGBR20] propose a SCA-resistant microprocessor design called
PARAM, which utilizes obfuscation techniques to reduce or eliminate leakage. Before
loading data from off-chip memory to the processor, PARAM employs a 4-round Feistel
obfuscation function with a secret key to obfuscate (or encrypt) the data, thereby min-
imizing its associated leakage in the datapath (e.g., data cache, register file). Our ISE
design bears some similarities to that of Arsath et al. For example, we also propose to
obfuscate the data (i.e., Boolean shares in our case) in hardware. However, we emphasize
that our concept is fundamentally different. The goal of our ISE is only to secure the
software Boolean masking, allowing for a much simpler obfuscation approach that requires
no key—specifically, i.e., a usage of linear code. In this respect, the hardware overhead is
considerably small compared to that in Arsath et al.’s work, but also the approach can be
verified more comprehensively through both formal verification and practical evaluation.

1.3 Organization
The paper is organized as follows. Section 2 presents various background information,
namely RISC-V, notation, the challenges in practical implementation of Boolean masking,
the benefits of code-based masking and stateful pseudorandom generator. Section 3
provides the details of our ISE design, where we introduce the design principles and
define the functionality and encoding of custom instructions. In Section 4, we analyze our
design, identify the requirements on processor and software implementation sides, and
demonstrate that our design can address the challenges described in Section 2.3. Using
the open-source 32-bit RISC-V Ibex core as the base core, in Section 5 we illustrate
the prototype implementation of our ISE and the formal verification of the security. In
Section 6 we evaluate our ISE implementation with regard to both efficiency and security,
after which we finally draw the conclusion in Section 7.

2 Background

2.1 RISC-V
RISC-V is an ISA based on the RISC design principles, and has received massive interests
from both academia and industry since its inception. RISC-V is provided under royalty-free
open-source licenses, allowing anyone to use and implement it freely for any purpose. An
important feature of RISC-V is that it adopts a modular design: the ISA, designed with a
compact base integer instruction set, can be supplemented with standard and/or custom
instruction set extensions. In this paper, our focus is the 32-bit integer RISC-V base ISA,

298 A Code-Based ISE to Protect Boolean Masking in Software

namely RV32I. RISC-V uses the XLEN to denote the word size of the architecture, which
in our case is XLEN=32.

2.2 Notation
The Boolean operators are represented in the following way: ¬ for NOT, ∧ for AND, ∨
for OR, and ⊕ for XOR. In addition, x← y denotes the assignment of the value y to x.
About bit extraction, [x]y extracts the lower y bits of x. The notation x ‖ y means the
concatenation of x and y. Related to the masking, we use 〈x0, x1, . . . , xd〉 to denote the
Boolean shares of x. Related to the (micro-)architecture, GPR[i], where 0 ≤ i < r, denotes
the i-th, w-bit entry in the r-entry general-purpose register files. Since we focus on RV32I,
the parameters w = XLEN = 32 and r = 32 are instantiated with concrete values, and
GPR[0] is always 0, meaning that any read from GPR[0] returns zero and any write to
GPR[0] is ignored.

2.3 Implementation of Boolean Masking
Boolean masking is an effective and widely-used countermeasure against power side-channel
attacks, in which each sensitive variable is divided into multiple shares. These shares are
carefully manipulated to ensure that the original sensitive variable is not exposed during
computation, thereby reducing the risk of side-channel leakage.

However, the Boolean masking has several implementation weaknesses. For example,
knowing one bit of each share is sufficient to reveal one bit of the secret. This limitation
makes it challenging to increase the noise level, and the software code must be carefully
designed to avoid the known implementation flaws caused by architecture leakage, which
can damage the independent assumption. These implementation flaws are generally
categorized into two classes: transitional leakage and combinational leakage.

Transitional leakage. It is the leakage caused by the transition in a storage element such
as register or memory, and leaks the change of stored value in consecutive cycles, with
typical examples including overwrite leakage and operand leakage. Note that it covers all
registers in a microprocessor, including general-purpose registers, pipeline registers, and
etc. Balasch et al. [BGG+14] discuss how transitional leakage reduces the security of a
masked implementation.

Combinational leakage. It is the leakage occurred in the combinational circuits and also
includes the leakage caused by glitches. Balasch et al. [BGG+14] discuss also how glitches
can reduce the security of a masked implementation. Marshall et al. [MPW21] provide the
(simple) examples of the non-glitching and glitching cases. The possible types are listed
below.

• Glitchy register read. It can cause the leakage of the bits (including their
combinations) in all general-purpose registers, regardless of the source or destination
operands in the instructions.

• Always-active computation units. It continuously leaks all values, including the
glitchy ones, which are connected to the ALU. In the case of at most two operands,
if an implementation can prevent the glitchy register read, then the “always-active
computation units” only leak the combination of the two operands.

• Bitwise interaction leakage. In some implementations of cryptographic algo-
rithms, data processing involves bitwise interaction operations such as shifts and
rotations, where a single bit occurred in the computation may depend on multiple
bits from the operators. This type of leakage exposes all bits in a register.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 299

• Switching wires leakage. The selection of operands from general-purpose registers
is typically implemented using a multiplexer tree. When two secret shares appear at
the output of a multiplexer, an attacker may observe leakage. For example, assuming
that the secret shares are stored in registers x1 and x2, reading register x3 in the first
cycle and x4 in the second cycle causes the 5th bit of the read address to switch from
1 to 0. An attacker observes leakage on the output wire of the first L0 multiplexer,
which switches from x1 to x2. This type of leakage is first discussed by Gigerl et
al. [GHP+21], where the authors propose using register gating (RG) as a solution.
However, apart from the multiplexer tree, leakage from the switching wires can also
occur within the ALU, which cannot be resolved by register gating.

We omit the coupling wire leakage which originates from coupling capacitors between
adjacent wires [CBG+17, Dho21]. Addressing this type of leakage necessitates specific
consideration during the routing process, which is beyond the scope of our work. It is still
an interesting open problem that whether it can be captured with abstract models [CS21].

2.4 Code-based Masking

Code-based masking demonstrates significant advantages in resisting side-channel attacks.
The main advantage brought from the generalization is its robustness against the implemen-
tation flaws. Wang et al. [WGY+22] have shown that the more complex algebraic structure
of code-based masking makes it more robust to the transitional leakage. Additionally,
it has been demonstrated that the code-based masking reduces information leakage in
low-noise conditions, and may increase the “statistical security order” of an implementation
(with linear leakages).

We consider the code-based masking over F2. That is, it encodes an m-bit secret
into an n-bit sharing comprising n shares, with each bit of this sharing representing one
share. For an n-bit variable a and an invertible bit matrix A of size n× n. For an m-bit
secret x, code-based masking defines the encoder Enc (x), which randomly encodes x
into a code-based sharing x̂ as follows: Enc (x) = A · (r ‖ x), where · represents matrix
multiplication with the left operand treated as a vertical bit vector and the n-bit variable
r ‖ x is a concatenation of an (n−m)-bit uniformly random variable r and x. The decoder
Dec (x̂) is then defined as Dec (x̂) = [A−1 · x̂]m, where A−1 is the inverse of A, and [a]m
extracts the lower m bits of A−1 · x̂.

However, the code-based masking incurs larger implementation overheads in software,
compared to Boolean masking. This is primarily because its masked operations are not
directly supported by microprocessors, which significantly reduces the practical efficiency
of code-based masking. As discussed in [GR17], this limitation poses a major challenge to
the adoption of such masking techniques in real-world systems.

2.5 (Stateful) Pseudorandom Generator

As mentioned in Section 1, we utilize a leakage-resilient PRG. To formalize, we adopt a
definition that is adapted from the stateful PRG proposed by Bellare and Yee [BY03].

Definition 1 (Stateful pseudorandom generator [BY03]). A stateful pseudorandom gener-
ator is a pair of algorithms (Setup,Request), where Setup is a probabilistic algorithm which
takes a seed seed as input and initializes an internal state S, Request is a deterministic
algorithm which computes and outputs y (that is expected to be pseudorandom) from the
internal state S and updates S.

300 A Code-Based ISE to Protect Boolean Masking in Software

Figure 2: The process of splitting the secret x randomly into d + 1 protected-Boolean
shares, such that x = x0 ⊕ x1 ⊕ · · · ⊕ xd = Dec (x̂0)⊕ Dec (x̂1)⊕ · · · ⊕ Dec (x̂d).

Figure 3: The (added) components and their connections used to support code-based
masking.

3 Design
We present a robust yet efficient approach to address the challenges faced by software
implementations of Boolean masking, by combining the code-based masking and an
associated self-designed ISE. Conceptually, given the Boolean shares 〈x0, x1, . . . , xd〉 of the
secret x, each share xi where i ∈ {0, . . . , d} is randomly encoded into a sharing x̂i

def= Enc (xi)
with a code-based encoder Enc (), ensuring that x = Dec (x̂0)⊕ Dec (x̂1)⊕ · · · ⊕ Dec (x̂d)
with a code-based decoder Dec (). As x̂i where i ∈ {0, . . . , d} is the code-based sharing
of the Boolean share xi, we call it protected-Boolean share of the secret x hereafter in
the paper, and Figure 2 illustrates the associated process. The inherent implementation
weaknesses of Boolean masking can thus be addressed by manipulating the protected-
Boolean shares instead of Boolean shares. Our ISE facilitates various operations between
protected-Boolean shares by providing: 1) a series of computation instructions to support
different bit-manipulations required by the code-based masking and 2) three instructions
to manage a PRG to provide sufficient randomness.

Microarchitecture: components to support code-based masking. As per the descrip-
tion of our approach, several additional components are required, for example, encoder,
decoder, and PRG. Figure 3 illustrates the related design that connects all of them. We

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 301

assume x̂, ŷ are two code-based sharings (which can be regarded as protected-Boolean
shares of two secret variables respectively), and we aim to perform an operation to get
a result ẑ which is also a code-based sharing. In Figure 3, x̂ and ŷ first go through the
decoders individually to get their un-shared correspondences (which can be regarded as
Boolean shares of two secret variables respectively). The un-shared variables are then
computed by the ALU to get a result, which is finally encoded to obtain ẑ. To prevent
transitional leakage in decoders, the decoders are activated only when executing CBM
instructions. When CBM instructions are not being executed, the decoders remain dis-
abled. In addition, we introduce a PRG to generate random numbers, and before the final
encoding, the computation result from ALU can be optionally XORed with a random
number thus to refresh the randomness in ẑ. Note that the associated computation is not
required to be secure in the probing model, since the code-based masking is purposed for
only 1) preventing the transitional leakage in registers and 2) increasing the noise level of
Boolean shares.

Instruction functionality: computation in code-based masking. For the design of
computation instructions, we take the same consideration and strategy described in
[CPW24, Section 4.1]: “[Gadgets] are implemented using a (short) sequence of bit-wise
logical and shift instructions. As such, the goal of this instruction class is to provide
a minimal set of such instructions to support the implementation of a maximal set of
gadgets”. Similarly, our computation instructions can serve as a secure version of the
corresponding RV32I instructions (including and[i], or[i], xor[i], sll[i], srl[i]).
In detail, a single register-register instruction performs an operation in a fashion of
GPR[rd] = Enc (Dec (GPR[rs1])� Dec (GPR[rs2])), where � is a bitwise logical or a
shift operator. In the case of register-immediate instruction, it performs an operation
GPR[rd] = Enc (Dec (GPR[rs1])� imm), namely the second operand is used straightfor-
wardly without decoding. In addition, to refresh a protected-Boolean share, one can
XOR/OR the share with GPR[0] ,using cbm.xor/cbm.or.

Instruction functionality: PRG management. Given a PRG is added, we need a ded-
icated instruction to manage the PRG, e.g., to manually/automatically generate the
pseudo-random numbers. In detail, we expect the following four PRG operations3 to be
available on the software side:

• Operation #0: resetting PRG with the current seed.

• Operation #1: manually generating a new random number.

• Operation #2: disabling the automatic generation of random numbers.

• Operation #3: enabling the automatic generation of random numbers.

Note that the operation #1 is only effective when the automatic generation of random
numbers is disabled. Besides, the data transfer between (the state of) the PRG and the
register file is needed, e.g., to refresh the PRG seed, to obtain a pseudo-random number for
subsequent use, etc. Therefore, two associated instructions are added for two directions.

Instruction encoding. The detail of instruction encoding for our ISE is shown in Figure 4.
Our ISE is called CBM, the acronym for Code-Based Masking, in a way that the name of
all the custom instructions is with a prefix cbm, e.g., cbm.and. We obey the wider RISC-V
design principles, e.g., we use only standard R-type and I-type formats for our custom
instructions. In the encoding of computation instructions, 2 MSbs are used by a 2-bit

3The operations are numbered from 0 to align with the encoding of PRG management instruction.

302 A Code-Based ISE to Protect Boolean Masking in Software

Computation instructions

cbm.and rd, rs1, rs2, es :
012345678910111213141516171819202122232425262728293031

es 00000 rs2 rs1 000 rd 00010 11

cbm.or rd, rs1, rs2, es :
012345678910111213141516171819202122232425262728293031

es 00000 rs2 rs1 001 rd 00010 11

cbm.xor rd, rs1, rs2, es :
012345678910111213141516171819202122232425262728293031

es 00000 rs2 rs1 010 rd 00010 11

cbm.sll rd, rs1, rs2, es :
012345678910111213141516171819202122232425262728293031

es 00000 rs2 rs1 011 rd 00010 11

cbm.srl rd, rs1, rs2, es :
012345678910111213141516171819202122232425262728293031

es 00000 rs2 rs1 100 rd 00010 11

cbm.andi rd, rs1, imm, es :
012345678910111213141516171819202122232425262728293031

es imm rs1 000 rd 01010 11

cbm.ori rd, rs1, imm, es :
012345678910111213141516171819202122232425262728293031

es imm rs1 001 rd 01010 11

cbm.xori rd, rs1, imm, es :
012345678910111213141516171819202122232425262728293031

es imm rs1 010 rd 01010 11

cbm.slli rd, rs1, imm, es :
012345678910111213141516171819202122232425262728293031

es imm rs1 011 rd 01010 11

cbm.srli rd, rs1, imm, es :
012345678910111213141516171819202122232425262728293031

es imm rs1 100 rd 01010 11

PRG management instructions

cbm.prg imm :
012345678910111213141516171819202122232425262728293031

00000 imm 00000 00000 000 00000 10110 11

cbm.s2r rd, imm :
012345678910111213141516171819202122232425262728293031

00000 imm 00000 00000 001 rd 10110 11

cbm.r2s rs1, imm :
012345678910111213141516171819202122232425262728293031

00000 imm 00000 rs1 010 00000 10110 11

Figure 4: The encoding for instructions in our CBM ISE.

immediate es (meaning the Encoding Selector). In brief, the higher (resp. lower) bit of
es selects whether the result generated by ALU will be encoded (resp. XORed) with the
encoder (resp. a random number from PRG), and more detail is described in Section 5.2.
As for cbm.prg, the 2-bit immediate selects a corresponding PRG management operation
to perform, e.g., imm = 0 indicates a PRG operation #0 is to be executed. Finally, an
instruction cbm.s2r moves the data from PRG to a general-purpose register, while cbm.r2s
does the opposite. The 2-bit immediate is used to select a specific part of the state of
PRG, i.e., 32 bits from 32 · imm to 32 · imm + 31.

4 Security Analysis and Discussions
The purpose of employing code-based masking is to prevent transitional leakage in the
registers, thereby simplifying the prevention of implementation flaws. Section 3 has shown
that, to support the code-based masked operations, it inserts combinational decoder/en-
coder circuits at the input/output of the ALU, however, this is not sufficient to prevent all
known implementation flaws.

Processor modeling and overview of analysis. As shown in Figure 5, we model the
processor as a combination of the ALU, general-purpose registers (GPRs), memory, and

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 303

Figure 5: Processor modeling and overview of our analysis.

I/O. We consider the RISC-V base instruction set, where each instruction contains at
most two operands, and the result is stored in a register. To implement our ISE, encoder
and decoders are placed at the output and input of the ALU, respectively. The circuit
connecting the general-purpose registers to the decoder is referred to as the “operand-
transfer circuit”. This operand-transfer circuit may include the register-selection logic and
several pipeline registers. Unlike the operand-transfer circuit, the circuit connecting the
encoder to the general-purpose registers (referred as the “result-transfer circuit”) mainly
consists of pipeline registers and does not involve any bitwise operations on the data.
Similarly, neither memory nor I/O involves bitwise operations on the data. By encoding
the Boolean shares, our ISE effectively addresses the implementation flaws in GPRs,
memory and I/O. In this section, we describe the auxiliary requirements from processor
and software implementation sides to address the implementation flaws in operand-transfer
circuit, encoder/decoder and ALU, followed by the related security analysis.

4.1 Requirements of the Implementation
4.1.1 Preventing Flaws in the Operand-transfer and Result-transfer Circuit (hard-

ware)

Recall that, in our approach, although the registers hold protected-Boolean shares instead
of Boolean shares, the Boolean shares appear in the combinational circuits. Therefore,
it is important that in pipeline registers there should be no combination of bits from

304 A Code-Based ISE to Protect Boolean Masking in Software

general-purpose registers.
Furthermore, as illustrated in Section 3, the main purpose of code-based masking

is to mitigate implementation flaws within (pipeline) registers. This underscores the
necessity for additional efforts in averting such flaws within the combinational circuits.
Specifically, it is imperative to avoid the intermingling of bit combinations across different
general-purpose registers. To achieve this, additional attention must be directed towards
the implementation of the operand-transfer circuit.

In the following, we commence by delineating a specific type of wire within the operand-
transfer circuit that relates to the protected-Boolean shares.

Definition 2 (Sensitive wire). A wire in the operand-transfer circuit is sensitive if it
depends on the bits that appear in the general-purpose registers.

Then, the requirement of the operand-transfer circuit can be inferred from the charac-
teristics of the sensitive wire.

Requirement 1. For each gate in the operand-transfer circuit, at most one input is
sensitive.

It is pertinent to acknowledge that the Requirement 1 is feasible across numerous
processor cores. In the context of the Ibex core, which is under consideration for implemen-
tation and practical evaluation, we advocate the adoption of the register gating technique
proposed in [GHP+21]. This method entails storing the one-hot encoded enable signal
within the register, with the combinatorial logic responsible for interpreting the register.

To better illustrate the rationale, we present an example as follows. Assuming x and
y are bits from different general-purpose registers, there should exist a multiplexer in
the operand-transfer circuit with a selection signal b to select x or y, and the output
during the read operation is z = xb∨ yb′, where b and b′ are stable complementary one-hot
encoded selection signals, xb and yb′ are two logical AND operations, and ∨ represents a
logical OR operation. Requirement 1 ensures that each gate in the operand-transfer circuit
has at most one input dependent on general-purpose registers. For the AND gate xb or
yb′, only the input x or y depends on general-purpose registers. Meanwhile, due to the
complementary nature of b and b′, at most one of the OR inputs is non-zero at any time.
This ensures that only one input of the OR gate depends on general-purpose registers.

4.1.2 Preventing Switching Wires Leakage in Encoder/Decoder and ALU (software)

In addition to the (pipelined) registers, combinational circuits may also be susceptible to
transitional leakage. This phenomenon occurs because the power consumption of a gate
is influenced by changes in its output value, which is concluded as the switching wires
discussed in Section 2.3. To address this, we propose the following requirements for using
the new instructions on the software side.

Transitional leakage can also occur in the combinational circuits of the ALU. This may
lead to the leakage of bitwise combinations information of the input operand a, which we
denote as g(a). Consequently, when the input operand changes across consecutive clock
cycles, information about the bitwise combinations of these operands may be leaked.

For instance, consider two protected-Boolean shares of secret x, denoted as x̂0 and x̂1.
The always-active computation units in the ALU, due to their complex structure (such
as the non-linear structure in multiplication unit, etc.), may leak g(x̂0)⊕ g(x̂1) if x̂0 and
x̂1 are accessed in consecutive instructions, even if these instructions are not related to
multiplication. Although this leakage may seem secure since it only reveals information
about the bitwise combinations between protected-Boolean shares, there is a possibility
that g(x̂0) and g(x̂1) may equal certain bits of the Boolean shares x0 and x1, which are
Boolean shares of secret x, thereby failing to ensure security.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 305

To address this, we propose a strict requirement in Requirement 2.a. This requirement
can be easily met by inserting nop instructions to ensure that related sensitive data are
not processed in consecutive cycles, thereby reducing leakage risks.

In practical software implementations of Boolean masking, due to the extremely low
probability of the aforementioned issues occurring and the presence of noise further reducing
the risk of leakage, we propose a relatively loose requirement in Requirement 2.b. This
requirement does not imply that any two consecutive CBM instructions are disallowed;
instead it means that accessing two or more related sensitive data in two consecutive CBM
instructions is impermissible. This requirement can be met by appropriately arranging
the execution order of instructions with out-of-order execution disabled. For example, in
d-th order ISW multiplication, which requires (d+ 1)2 cbm.and operations and more than
(d+ 1)2 xor operations, interleaving cbm.and and xor instructions is sufficient to fulfill
this requirement.

Requirement 2.

a (Strict). Related sensitive data, such as shares of the same secret, etc. must not be
accessed within two consecutive instructions.

b (Loose). Related sensitive data, such as shares of the same secret, etc. must not be
accessed within two consecutive CBM instructions.

In practical software implementations of Boolean masking, it is sufficient to meet
Requirement 2.b (Loose), while for scenarios with higher security requirements (e.g.,
formal verification in Section 5.5) it is necessary to satisfy Requirement 2.a (Strict).

4.1.3 Increasing the Noise Level of Leakage (hardware)

In addition to preventing implementation flaws, our approach also aims to elevate the
noise level of leakage. This is achieved by ensuring that both the (pipeline) registers and
memory solely retain protected-Boolean shares, ensured by Requirement 1. Furthermore,
the augmentation of the noise level hinges on the fulfillment of the subsequent requirement.

Requirement 3. The SNR of combinational circuits should be notably lower than that
of registers and memory.

This requirement applies to most circuits because combinational circuits only exhibit
instantaneous power consumption, without maintaining a state over time. Consequently,
the frequency and amplitude of power variations are relatively low. In contrast, registers
and memory retain data states, leading to more pronounced power fluctuations during
data reads and writes, which results in a higher SNR.

4.2 Security Analysis
In this subsection, we demonstrate how the implementation flaws discussed in Section 2.3
can be mitigated within the CBM instructions by ensuring the fulfillment of Requirement 1
and 2.

Combinational leakage naturally occurs in the combinational circuits. To delve into the
analysis of this phenomenon, we initially establish a corollary of Requirement 1 through
the lemma presented below.

Lemma 1. Requirement 1 guarantees that for every cycle, each wire within the operand-
transfer circuit depends to at most one bit of the general-purpose register.

306 A Code-Based ISE to Protect Boolean Masking in Software

Proof. We employ proof by contradiction, initially supposing the existence of a wire,
denoted as w, which connects to multiple bits within the protected-Boolean shares. We
can see that w cannot function as an output wire of a general-purpose register, given that
protected-Boolean shares are typically housed within such registers. Consequently, we
separate our analysis into two cases below.

1. If this wire is an output of a pipeline register, then its value is equivalent to the
input wire (referred to as w′) of the pipeline register in the preceding clock cycle.

2. If this wire is the output of a gate G, according to Requirement 1, at most one input
of G is associated with the bits appeared in the general-purpose registers. Then, we
further separate our analysis into two cases below.

(a) If none of the inputs of G are associated with the bits appeared in the general-
purpose registers, then w is similarly not associated with the bits within these
registers, thus contradicting the initial assumption.

(b) If one of the inputs of G, denoted as w′, corresponds to the bits in the general-
purpose registers, then w′ should correspond to multiple bits within the code-
based sharing.

For the cases 1 and 2(b), we proceed to examine the wire w′. This process of analysis
can iteratively continue until we reach a stage where the current wire under examination
either serves as the output of a general-purpose register, or it bears no relevance to any
bit within the general-purpose registers, thus contradicting the initial assumption.

By Lemma 1, for every cycle, each wire in the operand-transfer circuit corresponds to
only one bit of the protected-Boolean shares. Besides, since result-transfer circuit does
not involve any bitwise operations on the data, each wire within the operand-transfer
circuit corresponds to at most one bit of the encoder output. This directly eliminates the
possibility of implementation flaws in operand-transfer and result-transfer circuits caused
by combinational leakage except for the switching wires.

For the switching wires in the operand-transfer (resp., result-transfer) circuit, as each
wire corresponds to at most one bit of a general-purpose register (resp., the encoder
output), when a wire switches its value from a to b, the transitional leakage actually leaks
a⊕ b. As we illustrated in Section 3, for any two independently masked shares (say, x̂1
and x̂2), any bit in x̂1 ⊕ x̂2 is independent of x1 and x2. This ensures the security order in
the presence of leaking wires in the operand-transfer circuit.

For the switching wires in the ALU and encoder/decoder, Requirement 2.a (Strict)
ensures that sensitive data, such as shares of the same secret, cannot be accessed by the
ALU and encoder/decoder in consecutive cycles. This prevents the wires in the ALU
and encoder/decoder from holding related bits during consecutive operations, thereby
reducing the risk of leakage and ensuring the security order is maintained even in the
presence of potentially leaking wires. For Requirement 2.b (Loose), it ensures that related
sensitive data should not be accessed by consecutive CBM instructions in the ALU and
encoder/decoder, thereby reducing the risk of leakage while still allowing more flexibility
compared to Requirement 2.a (Strict). This looser requirement not only ensures security
but also offers greater practicality in real-world applications.

To analyze implementation flaws caused by transitional leakage, we need to demonstrate
that each pipeline register in the operand-transfer (resp., result-transfer) does not combine
bits from general-purpose registers (resp., the encoder output). This indicates that each
pipeline register stores only the value from a single bit of a protected-Boolean share,
thereby ensuring the security order in the presence of transitional leakage.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 307

Remark. Formal proofs within the transition-glitch leakage model [HHB+24, FGDP+18]
are known to provide strong and reliable guarantee of the security order in hardware.
However, this paper does not include such rigorous proofs, as they require extensive
preliminaries on the transition-glitch leakage model, which could render the paper overly
cumbersome. In this respect, our analysis cannot make strong claims regarding the security
order. We leave the formal proof/discussion within the transition-glitch leakage model for
future work.

5 Implementation and Formal Verification
5.1 Base core: Ibex
General overview. Ibex is an open-source 32-bit RISC-V core designed for use in em-
bedded environments. The micro-architectural design of Ibex core is highly configurable.
Specifically, Ibex core supports either integer RV32I [RIS19, Chapter 2] or embedded
RV32E [RIS19, Chapter 4] base ISA, which can be supplemented by the standard M
(Multiplication) [RIS19, Chapter 7], C (Compressed) [RIS19, Chapter 16], or B (Bit-
manipulation) [RIS19, Chapter 17] extensions. The core can be configured to use either
a 2- or 3-stage pipeline, by enabling or disabling a dedicated Write Back (WB) stage
independent of an Instruction Fetch (IF) stage and an Instruction Decode and Execute
(ID/EX) stage. Additionally, different types of multipliers (e.g., single-cycle, fast/slow
multi-cycle) and register files (e.g., flip-flop-based, FPGA, latch-based) are also available.

Specific configuration. We develop the prototype ISE implementation and perform
associated experiments on Ibex Demo System4, which consists of the Ibex core and some
peripherals (e.g., UART, GPIO, SPI). We select to use the flip-flop-based register file,
with all other options set to the default configuration. The base ISA is RV32IMC; 2-stage
pipeline is used; a fast multi-cycle multiplier is used; PMP and the instruction cache are
disabled.

5.2 Encoder and Decoder
Given an abstract design of our approach has been provided in Figure 3, here Figure 6
attempts to explain the corresponding specific implementation: an additional circuit is
inserted to wrap the ALU, containing mainly an encoder, two decoders, four multiplexers,
and four demultiplexers. The workflow is straightforward. There are four pairs of multi-
plexers and demultiplexers, and each pair shares the same selector signal. Before entering
the ALU, the operand operand_a (resp. operand_b) is processed by an associated decoder,
depending on a selector signal cbm_opa_sel (resp. cbm_opb_sel) whose value will be 1 if
a CBM instruction is currently being executed. In the other direction, the 16 MSbs of
the ALU output can be optionally XORed with 16 random bits from PRG, selected by
cbm_enc_sel[0] whose value is from the lower bit of es in a CBM instruction (see, e.g.,
Figure 4). This allows the subsequent final encoding, which is selected by cbm_enc_sel[1]
(determined by the higher bit of es), to be dynamically refreshed (i.e., adding noise),
thereby enhancing the flexibility of the overall implementation.

Matrix multiplication. The input/output of the linear encoder/decoder is 32 bits, and,
more specifically, an element in F8

24 . Using A to denote an 8× 8 MDS matrix over F24

and given x ∈ F8
24 , the encoder and decoder are formally defined as:

Enc (x) = A× x,
4https://github.com/lowRISC/ibex-demo-system

https://github.com/lowRISC/ibex-demo-system

308 A Code-Based ISE to Protect Boolean Masking in Software

Figure 6: The overview of the implementation of our approach.

Dec (x) = A−1 × x.

Concretely, we use the involutory MDS matrix in [SKOP15], namely

A = A−1 =

2 3 4 12 5 10 8 15
3 2 12 4 10 5 15 8
4 12 2 3 8 15 5 10
12 4 3 2 15 8 10 5
5 10 8 15 2 3 4 12
10 5 15 8 3 2 12 4
8 15 5 10 4 12 2 3
15 8 10 5 12 4 3 2

.

The problem of optimizing the implementation of matrix multiplication can be translated
into “how to compute a set of linear expressions with a minimum number of linear
operations”. This is known as the Shortest Linear Program (SLP) and is essentially an
NP-hard problem. We use the framework5 proposed by Lin et al. [LXZZ21] to optimize
the matrix multiplication implementation. Specifically, using an example where given a
matrix

B =

1 1 1 0
0 1 1 0
1 1 1 1
0 1 1 1

and t = (t0, t1, t2, t3) in F4

2, when performing the multiplication r = B × t over F2, we can
compute in sequence: 1) r1 = t1⊕ t2; 2) r0 = t0⊕ r1; 3) r3 = r1⊕ t3; 4) r2 = r1⊕ t3. With
this approach, only four XOR operations are needed for the entire matrix multiplication
process.

Although finding the minimum number of XORs for matrix multiplication is an NP-hard
problem, after a careful optimization, we have found a computation path that requires

5https://github.com/DaLin10512/framework

https://github.com/DaLin10512/framework

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 309

Variable: internal state S ∈ {0, 1}b

procedure Setup(seed) // seed length |seed| = κ

1. S ← P([0]b−κ‖seed)

procedure Request()

1. y ← msbr(S), S ← P(S)

2. return y

Figure 7: The duplex-based leakage-resilient PRG DPRGP, where P : {0, 1}b → {0, 1}b
and S ∈ {0, 1}b.

Figure 8: PRG module.

only 182 XORs for the matrix multiplication in encoder/decoder, refer to Appendix A. We
note that this implementation results in a relatively larger reduction in the maximal core
frequency (but relatively lower area overhead). Therefore, we also develop an implementa-
tion optimized for frequency by using the tool of Liu et al. [LWF+22], which requires 251
XORs, refer to Appendix B. To make it clear, we refer to the former implementation (182
XORs) as “area-optimized”, while the latter (251 XORs) as “frequency-optimized”. In this
paper, our primary focus is the area-optimized vision, meaning the evaluation results in
Section 6 reflect the implementation using the area-optimized matrix multiplication. For
reference, we also present the evaluation results related to the frequency-optimized version
in Appendix B.

5.3 Pseudorandom Generator
As mentioned in the Section 1, we utilize a leakage-resilient PRG DPRGP. Concretely,
DPRGP is the standard duplex construction-based PRG built upon a keyless permutation
P : {0, 1}n → {0, 1}n, as described in Figure 7 (following the formalism of Definition 1).
To justify its theoretical soundness, in Appendix C we formally prove the leakage-resilience
of DPRGP under the assumptions that leakages are non-invertible and P is a public
random permutation. More specifically, given the outputs and leakages of q executions
of DPRGP.Request, the next non-leaky execution of DPRGP.Request still yields an r-bit
pseudorandom string. The parameter q can be determined by the side-channel adversary
and can be large. Therefore, DPRGP is sound in the continuous leakage model. We
instantiate the permutation P with Keccak-p[100] permutation. As shown in Figure 8, the
round function of Keccak-p is executed once per clock cycle, thereby updating the PRG
state.

This design aims to provide an efficient and scalable pseudorandom generation scheme,
suitable for a diverse range of security applications. However, if random numbers are

310 A Code-Based ISE to Protect Boolean Masking in Software

requested too frequently before a sufficient number of hash function rounds have been
called, the generated bits may not strictly adhere to a uniform distribution. Despite this,
we propose the following viewpoints:

• For the randomness used in software, the frequency of randomness calls should be
low enough to sufficiently generate random numbers. We validate this intuition by
conducting evaluation based on ISW multiplication and bit-sliced AES S-Box. The
results in Section 6.2 confirm the secure order, indicating that the randomness is
adequate for practical use.

• For the randomness used to refresh the hardware code-based masking, since the
leakage caused by implementation flaws (e.g., transitional leakage) is highly noisy,
the security should still be maintained in practice even if the acquisition of random
numbers is very frequent.

In conclusion, although frequent acquisition of random numbers may pose the risk of
inhomogeneity, in practice, our new design still provides a highly secure random number
generation capability to meet security requirements.

5.4 Register Gating

As discussed in [GHP+21, Chapter 3], register gating addresses the problems of wire
switching in the multiplexer tree, unintended reads, and glitchy signals by placing an
AND gate after each register. This mechanism works by using the register value as the
first input to the AND gate, and a 32-bit one-hot encoded read address as the second
input. Consequently, the entire multiplexer tree can be replaced by a simpler tree of OR
gates [GHP+21, Figure 2]. This not only prevents the leakage of secret share data during
register transitions but also ensures that reads are only enabled when necessary, reducing
the likelihood of unintended reads. To avoid glitchy signals, the one-hot signal is computed
during the IF stage and stored in an intermediate register to ensure its stability when
reaching the ID/EX stage. In our implementation, to balance efficiency and security, we
only apply the gating technique to both read ports, but not to the write port. As stated
in Section 4.1.1, the Requirement 1 can be fulfilled in Ibex core with register gating.

5.5 Formal Verification

To verify the security of the design and requirements, we conduct a formal verification.
Coco [GHP+21, HB21] is used as the verification tool. Coco is a co-design and co-
verification tool for masked software implementations on CPUs, capable of verifying
leakage security of masked assembly code down to the gate level. It can detect any CPU
design flaws that may reduce the protection order of masked software implementations.

We employ first-order ISW multiplication on our ISE-extended core, separately using
CBM instructions and standard RV32I instructions. Our ISE-extended core implemen-
tation fulfills Requirements 1 (because of the register gating) and 3, and our software
implementation of the ISW multiplication fulfills Requirement 2.a (Strict). The result
from the Coco shows that no leakage is present when using our CBM instructions, whereas
leakage is captured when using standard RV32I instructions, as detailed in Appendix D. A
practical security evaluation concerning the ISW multiplication fulfilling Requirement 2.b
(loose) can be found in Section 6.2.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 311

Table 1: Comparison of area, stemming from FPGA synthesis of the base core plus
implementation of the CBM.

Registers LUTs
Base core 2362 (1.00×) 3951 (1.00×)
Base core + CBM (excl. RG and PRG) 2369 (1.00×) 3964 (1.00×)
Base core + CBM (excl. PRG) 2425 (1.03×) 4626 (1.17×)
Base core + CBM (excl. RG) 2476 (1.05×) 4250 (1.08×)
Base core + CBM 2530 (1.07×) 4795 (1.21×)

Table 2: Comparison of area, stemming from ASIC synthesis of the base core plus
implementation of the CBM.

Cells GE
Base core 19445 (1.00×) 30627 (1.00×)
Base core + CBM (excl. RG and PRG) 19593 (1.01×) 31407 (1.03×)
Base core + CBM (excl. PRG) 19546 (1.01×) 31604 (1.03×)
Base core + CBM (excl. RG) 20730 (1.07×) 33616 (1.10×)
Base core + CBM 20306 (1.05×) 33057 (1.08×)

6 Evaluation in Practice
To evaluate our ISE, we use a NewAE ChipWhisperer CW3056 board, which hosts a
Xilinx Artix-7 FPGA (model XC7A100T2FTG256). Xilinx Vivado 2022.2 is used to
synthesize the implementations of the base core and the core extended with our ISE. Once
programmed into the FPGA, the core is provided with an 8 MHz clock frequency via the
CW305 Phase Locked Loop (PLL). To measure power consumption, we connect a NewAE
ChipWhisperer CW1173 (or ChipWhisperer-Lite)7 board to the CW305 (via its X4 pin).
This setup amplifies the measured power signal by Low-Noise Amplifiers (LNA) on both
CW305 (fixed to 20 dB gain) and CW1173 (configured to 20 dB gain) boards.

6.1 Efficiency
Area. As shown in Table 1, we summarize the area overhead of the ISE, presenting
the hardware overhead for both the base core and the ISE-extended core. We take
an incremental approach to illustrate the overhead introduced by each component. By
analyzing these data, we identify two main sources of additional area overhead in our design.
The first is register gating, which increases the overall resource usage. The second is the
PRG module, in which the primary contributors to the overhead are the state registers
and the associated 1-round Keccak-p[100] permutation. These components determine the
resources and area requirements of our design. By default, our implementation includes
register gating, which contributes to a 2% increase in registers and a 13% increase in
LUTs compared to the hardware implementation without register gating. Overall, our ISE
introduces up to 7% more registers and 21% more LUTs compared to the base core.

In addition to the FPGA synthesis, we also synthesize our implementation using ASIC
technology. For ASIC evaluation, we adhere to the guidelines provided in the official Ibex
documentation8, selecting the 45nm Nangate45 open library and using the Yosys tool for
synthesis. The evaluation result demonstrates that our implementation achieves excellent
efficiency, with only a 5% increase in cells and an 8% increase in GE (per Table 2).

6https://rtfm.newae.com/Targets/CW305ArtixFPGA
7https://rtfm.newae.com/Capture/ChipWhisperer-Lite
8https://github.com/lowRISC/ibex/tree/master/syn

https://rtfm.newae.com/Targets/CW305 Artix FPGA
https://rtfm.newae.com/Capture/ChipWhisperer-Lite
https://github.com/lowRISC/ibex/tree/master/syn

312 A Code-Based ISE to Protect Boolean Masking in Software

Table 3: Comparison of frequency, stemming from FPGA/ASIC synthesis of the base core
plus implementation of the CBM.

FPGA ASIC
Base core 72.03 MHz (1.00×) 347.22 MHz (1.00×)
Base core + CBM 62.43 MHz (0.87×) 289.85 MHz (0.83×)

(a) Base core: RV32I instructions (b) ISE-extended core: CBM instructions

Figure 9: T-test results of experiments regarding overwriting on base core and the ISE-
extended core. Each experiment uses 10 million traces.

Frequency. Through the FPGA and ASIC synthesis, we evaluate the impact of our imple-
mentation on the maximum achievable frequency. As shown in Table 3, the implementation
of CBM reduces the maximum frequency. Specifically, the maximum frequency obtained
from FPGA synthesis decreases from 72.03 MHz to 62.43 MHz, representing 87% of the
base core. Similarly, in ASIC synthesis, the maximum frequency decreases from 347.22
MHz to 289.85 MHz, which is 83% of the original maximum frequency. These results
highlight the trade-off between security and the associated performance cost in terms of
frequency.

Latency. The execution latency of each instruction in CBM is 1 clock cycle.

6.2 Security
To validate the effectiveness of our proposed solution in addressing the issues discussed in
Section 2.3, we perform a series of empirical tests.

Empritical tests regarding overwriting. To verify that our design can address the transi-
tional leakage in registers, we conduct the experiments of executing an overwrite operation
on both the base core and the core extended with CBM. We use the mv instruction to
overwrite a general-purpose register and apply the T-test [Wel47] to assess the presence
of leakage. Specifically, we overwrite Enc (y) with Enc (x) using the “mv” instruction and
collect 10 million traces during the process. These traces are classified into two groups
based on the distance between x and y (i.e., x ⊕ y): 1) one group in which x and y
are random, i.e., the distance is random, and 2) the other group in which the distance
between x and y is fixed. Finally, we perform a T-test analysis of these traces. These
tests are crucial for determining whether our extended core provides the expected security
enhancements over the base core. Figure 9 shows the T-test results of 10 million traces
during the overwrite process. The significant peaks above 4.5 are present on the base core,
but these peaks no longer exist on our ISE-extended core.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 313

1 # Using standard RV32I instructions
2 # rX0 , rX1: hold x0 , x1
3 # rY0 , rY1: hold y0 , y1
4 # rRM: holds random mask
5 # rZ0 , rZ1: to hold z0 , z1
6
7 and rZ0 , rX0 , rY0
8 xor rZ0 , rZ0 , rRM
9 and rZ1 , rX0 , rY1

10 xor rZ1 , rZ1 , rRM
11 and tmp , rX1 , rY0
12 xor rZ1 , rZ1 , tmp
13 and tmp , rX1 , rY1
14 xor rZ1 , rZ1 , tmp

1 # Using CBM instructions
2 # rX0 ,rX1: hold x̂0 , x̂1
3 # rY0 ,rY1: hold ŷ0 , ŷ1
4 # rRM: holds random mask
5 # rZ0 ,rZ1: to hold ẑ0 , ẑ1
6
7 cbm.and rZ0 , rX0 , rY0 , 3
8 xor rZ0 , rZ0 , rRM
9 cbm.and rZ1 , rX0 , rY1 , 3
10 xor rZ1 , rZ1 , rRM
11 cbm.and tmp , rX1 , rY0 , 3
12 xor rZ1 , rZ1 , tmp
13 cbm.and tmp , rX1 , rY1 , 3
14 xor rZ1 , rZ1 , tmp

Figure 10: Micro-benchmarks of first-order ISW multiplication.

(a) Base core: RV32I instructions (b) ISE-extended core (excl. RG): RV32I instructions

(c) ISE-extended core: RV32I instructions (d) ISE-extended core: CBM instructions without
Requirement 2 satisfied

(e) ISE-extended core (excl. RG): CBM instructions (f) ISE-extended core: CBM instructions

Figure 11: T-test results of experiments regarding ISW multiplication on base core and
the ISE-extended core, using standard RV32I instructions or CBM instructions. Each
experiment uses 10 million traces.

314 A Code-Based ISE to Protect Boolean Masking in Software

(a) SNR result (b) MI result

Figure 12: SNR and MI results of experiments regarding ISW multiplication on base core
and the ISE-extended core, using standard RV32I instructions or CBM instructions. Each
experiment uses 300 thousand traces.

Empritical tests regarding first-order ISW multiplication. To comprehensively evaluate
the presence of leakage, we utilize several statistical techniques, including the T-test,
Signal-to-Noise Ratio (SNR), and Mutual Information (MI) [Sha48], while conducting
comparative tests under various conditions. Figure 10 illustrates the micro-benchmarks
used in our testing. The code on the left-hand side uses only standard RV32I instructions,
while the code on the right-hand side uses our CBM instructions. Figure 11 and Figure 12
show the results of our empirical tests. For the T-test analysis, we use 10 million traces
per test, while for the SNR and MI analyses, we use 300 thousand traces. As expected,
significant peaks in the T-test values above 4.5 are observed when using standard RV32I
instructions, indicating the presence of potential leakage. However, when using our CBM
instructions, these peaks are eliminated regardless of whether register gating is used,
demonstrating the effectiveness of CBM instructions in reducing side-channel leakage.
Furthermore, by comparing Figures 11(d) and 11(f), we demonstrate the necessity of
Requirement 2.b. It is a bit surprised that the ISE-extended core without register gating
also exhibits no leakage. However, we still believe that Requirement 1 is necessary, since
we latter show that ISE-extended core exhibits less SNR when register gating is excluded.

For the computation of SNR and MI, we first randomly generate four shares x0, x1, y0
and y1, with their [15 : 8] bits fixed to 0 to simplify analysis during the data collection
phase. These shares serve as input values, and both the shares and the corresponding
traces are saved for later processing. During the SNR calculation, one of the four shares is
selected as the signal data, and the traces are categorized into 256 classes based on the
selected share. The average trace of each class is then incrementally calculated. Using
these averages, the noise mean and variance are determined by computing the deviations of
individual trace samples from their respective class averages. Finally, the SNR is calculated
as the ratio of the variance of the signal to the variance of the noise. For MI calculation,
one of the four shares is selected as the input variable. The MI is then computed using
the mutual_info_score function from the Python library scikit-learn9. This function
calculates MI by determining the joint probability distribution of the given input and
comparing it with its marginal distributions.

The results of SNR and MI analyses reveal significant differences between using standard
RV32I instructions and CBM instructions. When using RV32I instructions, prominent
peaks are observed, indicating areas of high signal compared to noise and potential leakage.
In contrast, these peaks are significantly reduced or even completely eliminated when CBM

9https://scikit-learn.org/

https://scikit-learn.org/

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 315

(a) Base core: RV32I instructions (b) ISE-extended core: CBM instructions without
Requirement 2.b satisfied

(c) ISE-extended core (excl. RG): CBM instructions (d) ISE-extended core: CBM instructions

Figure 13: T-test results of experiments regarding bit-sliced AES S-box on base core and
the ISE-extended core, using standard RV32I instructions or CBM instructions. Each
experiment uses 10 million traces.

instructions are used, demonstrating the effectiveness of the ISE in mitigating sensitive
information leakage. Furthermore, a comparison of the results with and without register
gating shows that enabling register gating further reduces SNR and MI, offering enhanced
leakage suppression. It is important to note that the data presented in the Figure 12 have
been logarithmically transformed.

Empritical tests regarding first-order bit-sliced AES S-Box. To further validate the
effectiveness of our ISE, we extend our evaluation to include the bit-sliced AES S-Box
proposed by Goudarzi and Rivain [GR17]. For this test, we use the first-order bit-sliced
AES S-Box and perform a series of analyses, including the T-test, SNR, and MI, to assess
potential side-channel leakage. Figure 13 and Figure 14 show the results of these tests.
Similar to our previous evaluation, we use 10 million traces per test for the T-test analysis,
while the SNR and MI analyses use 300 thousand traces. During these tests, the T-test
results for standard RV32I instructions exhibit significant peaks again, indicating the
presence of side-channel leakage. In contrast, applying our ISE effectively eliminates these
peaks, aligning with the observations from earlier experiments. Additionally, the comparison
between Figure 13(b) and 13(d) further corroborates the necessity of Requirement 2.b.
This recurring pattern across different test cases highlights the robustness and reliability
of our ISE in reducing side-channel leakage. Moreover, the reduction of SNR and MI
peaks indicates that our ISE not only eliminates potential leakage points but also reduces
overall information leakage, thereby enhancing security. Our ISE consistently reduces
these leakages, regardless of the underlying cryptographic implementation, showcasing its
versatility.

These consistent results across different methods and cryptographic components demon-

316 A Code-Based ISE to Protect Boolean Masking in Software

(a) SNR result (b) MI result

Figure 14: SNR and MI results of experiments regarding bit-sliced AES S-box on base
core and the ISE-extended core, using standard RV32I instructions or CBM instructions.
Each experiment uses 300 thousand traces.

strate the robustness of our proposed approach. They strongly indicate that our ISE can
be an important addition to secure embedded systems, especially in environments where
preventing side-channel attacks is crucial.

7 Conclusion and Future Works
7.1 Summary
This paper focuses on designing an ISE for the RISC-V architecture, aimed at improving
resistance against side-channel attacks while balancing efficiency and security. Specifically,
we introduce an ISE named CBM, which employs code-based masking to safeguard
the shares of software Boolean masking. By masking Boolean shares with code-based
masking, we ensure that the Boolean shares are not directly stored in registers or memory.
This approach addresses two key issues: 1) it mitigates implementation flaws caused by
transitional leakage, and 2) it significantly reduces the SNR of Boolean shares. Nevertheless,
it’s crucial to recognize that our design serves as a foundational principle that necessitates
further extensions depending on the specific base core used in practical implementations.
For example, when utilizing the Ibex core, we integrate the register gating technique to
counteract other implementation flaws associated with combinational leakage. Finally, our
evaluation results indicate that our design and implementation achieve a favorable balance
between efficiency and security, offering a practical solution for enhancing side-channel
security in the RISC-V architecture.

7.2 Future Work
Increasing computational capacity. In Section 5, we propose a scheme where 16 bits of
the 32-bit result from the ALU are XORed with a 16-bit random number generated by
the PRG module. This scheme aims to increase the noise level and reduce the leakage of
sensitive information, thereby improving resistance against side-channel attacks. Although
this scheme has demonstrated initial effectiveness, the limitation in resource efficiency
cannot be ignored due to the fact that only 16 bits of the 32-bit register are used, potentially
leading to underutilization of the core’s computational capacity. To address this limitation
and further enhance robustness, future work could focus on developing a dynamic bit-
selection mechanism for the XOR operation. By dynamically adjusting the number of bits

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 317

to be XORed in response to varying security requirements, a more flexible and resource-
efficient solution could be achieved. This would not only allow for a more precise control
of the efficiency-security trade-off but also enable real-time adjustments in response to
evolving threat landscapes. Additionally, exploring more advanced noise injection methods
may also provide significant efficiency and security gains.

Fault detection. In addition to addressing resource efficiency, another important direction
for future work involves the introduction of fault detection into the design. Given the
critical role of fault detection in code-based masking schemes, we could split the 16-bit
XOR operation into two parts: one part for randomness and the other for fault detection.
The fault detection bits would be fixed and encoded into protected-Boolean shares. During
operations, after decoding, these bits could be verified to detect any faults, ensuring the
integrity of the masked values and providing protection against fault injection attacks. For
instance, consider a 16-bit Boolean share xi. Its corresponding protected Boolean share,
with fault detection capability, can be represented as x̂′i = A · (18 ‖ r′ ‖ xi), where 18

consists of eight bits of 1’s, and r′ is an 8-bit random number. A fault detection component
can then be added between the decoder and the ALU to check whether the higher 8 bits
of the decoded value are all ones. Therefore, we view the exploration of the above design
as a promising future work.

Acknowledgments
The authors would like to thank the anonymous reviewers for their constructive comments
and suggestions. This work was supported by the Key R&D Program of Shandong
Province, China (Grant No. 2024ZLGX05), National Key R&D Program of China (Grant
Nos. 2023YFA1009500, 2021YFA1000600, 2024YFA1013000), the National Natural Science
Foundation of China (Grant Nos. 62372273, 62032014, 62372274, U2336207), the Program
of Taishan Young Scholars of the Shandong Province, Department of Science & Technology
of Shandong Province (Grant No. SYS202201), Quan Cheng Laboratory (Grant Nos.
QCLZD202301, QCLZD202306), the Luxembourg National Research Fund (FNR) via the
CORE project ImPAKT (C21/IS/16221219/ImPAKT), and the Innovate UK via project
10065634 (SCHEME: Safety Critical Harsh Environment Micro-processing Evolution).

References
[AGBR20] Muhammad Arsath K.F., Vinod Ganesan, Rahul Bodduna, and Chester

Rebeiro. PARAM: A microprocessor hardened for power side-channel attack
resistance. In Hardware Oriented Security and Trust (HOST), pages 23–34.
IEEE, 2020. https://doi.org/10.1109/HOST45689.2020.9300263.

[BCC+14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and Houssem
Maghrebi. Orthogonal direct sum masking: A smartcard friendly computation
paradigm in a code, with builtin protection against side-channel and fault
attacks. In Workshop on Information Security Theory and Practices (WISTP),
LNCS 8501, pages 40–56. Springer-Verlag, 2014. https://doi.org/10.1007/
978-3-662-43826-8_4.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 9813, pages 23–39. Springer-Verlag, 2016. https://doi.org/10.1007/
978-3-662-53140-2_2.

https://doi.org/10.1109/HOST45689.2020.9300263
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2

318 A Code-Based ISE to Protect Boolean Masking in Software

[BFGV12] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.
Theory and practice of a leakage resilient masking scheme. In Advances in
Cryptology (ASIACRYPT), LNCS 7658, pages 758–775. Springer-Verlag, 2012.
https://doi.org/10.1007/978-3-642-34961-4_45.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In Smart Card Research and Advanced Applications
(CARDIS), LNCS 8968, pages 64–81. Springer-Verlag, 2014. https://doi.
org/10.1007/978-3-319-16763-3_5.

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel countermea-
sures’ dissection and the limits of closed source security evaluations. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2020(2):1–25, 2020. https://doi.org/10.13154/tches.v2020.i2.1-25.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography.
In Topics in Cryptology (CT-RSA), LNCS 2612, pages 1–18. Springer-Verlag,
2003. https://doi.org/10.1007/3-540-36563-X_1.

[CB23] Songqiao Cui and Josep Balasch. Efficient software masking of AES through
instruction set extensions. In Design, Automation & Test in Europe (DATE),
pages 1–6, 2023. https://doi.org/10.23919/DATE56975.2023.10137150.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does coupling affect the security of masked
implementations? In Constructive Side-Channel Analysis and Secure Design
- 8th International Workshop, COSADE 2017, Paris, France, April 13-14,
2017, Revised Selected Papers, pages 1–18, 2017. https://doi.org/10.1007/
978-3-319-64647-3_1.

[CKK+22] Piljoo Choi, Won Bae Kong, Ji-Hoon Kim, Mun-Kyu Lee, and Dong Kyue
Kim. Architectural supports for block ciphers in a RISC CPU core by
instruction overloading. IEEE Transactions on Computers, 71(11):2844–2857,
2022. https://doi.org/10.1109/TC.2021.3050515.

[CPW24] Hao Cheng, Daniel Page, and Weijia Wang. eLIMInate: a leakage-focused ISE
for masked implementation. IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES), 2024(2):329–358, 2024. https://doi.org/
10.46586/tches.v2024.i2.329-358.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158, 2021.
https://doi.org/10.46586/tches.v2021.i2.136-158.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without
computational assumptions. In Theory of Cryptography Conference (TCC),
LNCS 7194, pages 230–247. Springer-Verlag, 2012. https://doi.org/10.
1007/978-3-642-28914-9_13.

[Dho21] Siemen Dhooghe. Analyzing masked ciphers against transition and coupling
effects. In Avishek Adhikari, Ralf Küsters, and Bart Preneel, editors, Progress
in Cryptology - INDOCRYPT 2021 - 22nd International Conference on Cryp-
tology in India, Jaipur, India, December 12-15, 2021, Proceedings, volume
13143 of Lecture Notes in Computer Science, pages 201–223. Springer, 2021.
https://doi.org/10.1007/978-3-030-92518-5_10.

https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.13154/tches.v2020.i2.1-25
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.23919/DATE56975.2023.10137150
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1109/TC.2021.3050515
https://doi.org/10.46586/tches.v2024.i2.329-358
https://doi.org/10.46586/tches.v2024.i2.329-358
https://doi.org/10.46586/tches.v2021.i2.136-158
https://doi.org/10.1007/978-3-642-28914-9_13
https://doi.org/10.1007/978-3-642-28914-9_13
https://doi.org/10.1007/978-3-030-92518-5_10

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 319

[DM19] Christoph Dobraunig and Bart Mennink. Leakage resilience of the du-
plex construction. In Advances in Cryptology (ASIACRYPT), LNCS
11923, pages 225–255. Springer-Verlag, 2019. https://doi.org/10.1007/
978-3-030-34618-8_8.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In Foundations of Computer Science (FOCS), pages 293–302. IEEE Computer
Society, 2008. https://doi.org/10.1109/FOCS.2008.56.

[FGDP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 89–120, 2018. https:
//doi.org/10.13154/tches.v2018.i3.89-120.

[GGM+21] Si Gao, Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham, and
Francesco Regazzoni. An instruction set extension to support software-based
masking. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2021(4):283–325, 2021. https://doi.org/10.46586/
tches.v2021.i4.283-325.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Rod-
erick Bloem. Coco: Co-design and co-verification of masked software
implementations on cpus. In USENIX Security Symposium, pages 1469–
1468, 2021. https://www.usenix.org/conference/usenixsecurity21/
presentation/gigerl.

[GMPP20] Si Gao, Ben Marshall, Dan Page, and Thinh Pham. FENL: an ISE to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2020(2):73–98, 2020. https:
//doi.org/10.13154/tches.v2020.i2.73-98.

[GPPS20] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. To-
wards low-energy leakage-resistant authenticated encryption from the duplex
sponge construction. IACR Transactions on Symmetric Cryptology (ToSC),
2020(1):6–42, 2020. https://doi.org/10.13154/tosc.v2020.i1.6-42.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order mask-
ing be in software? In Advances in Cryptology (EUROCRYPT), LNCS
10210, pages 567–597. Springer-Verlag, 2017. https://doi.org/10.1007/
978-3-319-56620-7_20.

[HB21] Vedad Hadzic and Roderick Bloem. Cocoalma: A versatile masking verifier.
In CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN–FMCAD 2021, page 14, 2021. https://doi.org/10.34727/2021/
isbn.978-3-85448-046-4_9.

[HHB+24] Johannes Haring, Vedad Hadži, Roderick Bloem, et al. Closing the gap: Leak-
age contracts for processors with transitions and glitches. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2024(4):110–132, 2024.
https://doi.org/10.46586/tches.v2024.i4.110-132.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology (CRYPTO),
LNCS 2729, pages 463–481. Springer-Verlag, 2003. https://doi.org/10.
1007/978-3-540-45146-4_27.

https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.46586/tches.v2021.i4.283-325
https://doi.org/10.46586/tches.v2021.i4.283-325
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tosc.v2020.i1.6-42
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.46586/tches.v2024.i4.110-132
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27

320 A Code-Based ISE to Protect Boolean Masking in Software

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-
Verlag, 1999. https://doi.org/10.1007/3-540-48405-1_25.

[KLS+23] Markus Krausz, Georg Land, Florian Stolz, Dennis Naujoks, Jan Richter-
Brockmann, Tim Güneysu, and Lucie Kogelheide. To extend or not to
extend: Agile masking instructions for PQC. Cryptology ePrint Archive,
Paper 2023/1287, 2023. https://eprint.iacr.org/2023/1287.

[KS20] Pantea Kiaei and Patrick Schaumont. Domain-oriented masked instruction
set architecture for RISC-V. Cryptology ePrint Archive, Report 2020/465,
2020. https://eprint.iacr.org/2020/465.

[LT23] Fabrice Lozachmeur and Arnaud Tisserand. A RISC-V instruction set ex-
tension for flexible hardware/software protection of cryptosystems masked
at high orders. In International Midwest Symposium on Circuits and Sys-
tems (MWSCAS), pages 360–364. IEEE, 2023. https://doi.org/10.1109/
MWSCAS57524.2023.10405991.

[LWF+22] Qun Liu, Weijia Wang, Yanhong Fan, Lixuan Wu, Ling Sun, and Meiqin
Wang. Towards low-latency implementation of linear layers. Cryptology ePrint
Archive, 2022. https://eprint.iacr.org/2022/231.

[LXZZ21] Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. A framework to
optimize implementations of matrices. In Topics in Cryptology (CT-RSA),
LNCS 12704, pages 609–632. Springer-Verlag, 2021. https://doi.org/10.
1007/978-3-030-75539-3_25.

[Men23] Bart Mennink. Understanding the duplex and its security. IACR Transactions
on Symmetric Cryptology (ToSC), 2023(2):1–46, 2023. https://doi.org/10.
46586/tosc.v2023.i2.1-46.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007. https://doi.org/10.
1007/978-0-387-38162-6.

[MP21] Ben Marshall and Dan Page. SME: Scalable masking extensions. Cryptology
ePrint Archive, Report 2021/1416, 2021. https://eprint.iacr.org/2021/
1416.

[MPW21] B. Marshall, D. Page, and J. Webb. MIRACLE: MIcRo-ArChitectural Leakage
Evaluation. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2022(1):175–220, 2021. https://doi.org/10.46586/
tches.v2022.i1.175-220.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Advances in
Cryptology (EUROCRYPT), LNCS 5479, pages 462–482. Springer-Verlag,
2009. https://doi.org/10.1007/978-3-642-01001-9_27.

[RIS19] The RISC-V instruction set manual, Volume I: User-level ISA (version
20191213-base-ratified). Technical report, 2019. http://riscv.org/
specifications.

[Sha48] Claude E. Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948. https://doi.org/10.1002/j.
1538-7305.1948.tb01338.x.

https://doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2023/1287
https://eprint.iacr.org/2020/465
https://doi.org/10.1109/MWSCAS57524.2023.10405991
https://doi.org/10.1109/MWSCAS57524.2023.10405991
https://eprint.iacr.org/2022/231
https://doi.org/10.1007/978-3-030-75539-3_25
https://doi.org/10.1007/978-3-030-75539-3_25
https://doi.org/10.46586/tosc.v2023.i2.1-46
https://doi.org/10.46586/tosc.v2023.i2.1-46
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://eprint.iacr.org/2021/1416
https://eprint.iacr.org/2021/1416
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.1007/978-3-642-01001-9_27
http://riscv.org/specifications
http://riscv.org/specifications
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 321

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas
Peyrin. Lightweight MDS involution matrices. In Fast Software Encryption
(FSE), LNCS 9054, pages 471–493. Springer-Verlag, 2015. https://doi.org/
10.1007/978-3-662-48116-5_23.

[TKS10] Stefan Tillich, Mario Kirschbaum, and Alexander Szekely. SCA-resistant
embedded processors: The next generation. In Annual Computer Security
Applications Conference (ACSAC), pages 211–220, 2010. https://doi.org/
10.1145/1920261.1920293.

[Wel47] Bernard L. Welch. The generalization of ‘STUDENT’S’ problem when several
different population varlances are involved. Biometrika, 34(1-2):28–35, 1947.
https://doi.org/10.1093/biomet/34.1-2.28.

[WGY+22] Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji, and Yang Su. Side-channel masking
with common shares. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 290–329, 2022. https://doi.org/10.46586/tches.
v2022.i3.290-329.

[WMCS20] Weijia Wang, Pierrick Méaux, Gatan Cassiers, and Franois Xavier Standaert.
Efficient and private computations with code-based masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020:128–171, 2020. https://doi.org/10.
13154/tches.v2020.i2.128-171.

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical
leakage-resilient pseudorandom generators. In Computer and Communications
Security (CCS), pages 141–151. ACM, 2010. https://doi.org/10.1145/
1866307.1866324.

https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1145/1920261.1920293
https://doi.org/10.1145/1920261.1920293
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.46586/tches.v2022.i3.290-329
https://doi.org/10.46586/tches.v2022.i3.290-329
https://doi.org/10.13154/tches.v2020.i2.128-171
https://doi.org/10.13154/tches.v2020.i2.128-171
https://doi.org/10.1145/1866307.1866324
https://doi.org/10.1145/1866307.1866324

322 A Code-Based ISE to Protect Boolean Masking in Software

A Area-optimized Matrix Multiplication
Figure 15 illustrates the area-optimized matrix multiplication computation process for the
encoder and decoder. The optimization of matrix multiplication translates to finding the
minimum number of linear operations needed to compute a set of linear expressions. This
is known as the Shortest Linear Program (SLP) problem, which is essentially NP-hard.

We utilize the framework10 designed by Lin et al. [LXZZ21] to optimize the implemen-
tation of matrix multiplication, embedding several state-of-the-art algorithms, including
Paar1, RPaar1, BP, RNBP, A1, and A2. The Paar1 algorithm enhances efficiency
by decomposing a matrix into smaller submatrices, optimizing the linear operations of
matrices, and improving processing speed for large-scale data. This approach is partic-
ularly effective in cryptography and matrix optimization. The RPaar1 algorithm, a
randomized version of Paar1, introduces randomness to improve flexibility and adaptability
by selecting operation paths randomly, which helps avoid local optimal solutions and
yields better optimization for specific matrix structures. The BP algorithm simplifies
subsequent optimization by employing two randomly generated substitution matrices to
alter the original matrix structure, thereby reducing the complexity and time required for
operations. This technique is particularly advantageous in data encryption and algorithm
optimization. The RNBP algorithm, a randomized non-block localization optimization
method, focuses on determining the optimal sequence of matrix operations. By randomly
selecting operation paths and sequences, RNBP can identify the optimal solution within
complex matrix structures, making it highly suitable for scenarios requiring efficient opti-
mization. The A1 and A2 algorithms reduce the complexity of matrix computations
by optimizing XOR operations, thereby significantly lowering computational costs, which
is particularly beneficial for cryptographic algorithms and matrix operation optimization.

The framework includes two key functions: “Further Reduction” and “Iterative Reduc-
tion”, and supports both single-threaded and multi-threaded execution. By default, we use
the multi-threaded mode with the “Iterative Reduction” function, which reads a matrix M
and searches for its optimized implementation. Each time the framework is employed, an
algorithm is randomly selected to find an optimized implementation of the given matrix.
Eventually, using this framework, matrix multiplication requires only 182 XOR operations.

B Frequency-optimized matrix multiplication
B.1 Computation process
Figure 16 illustrates the frequency-optimized matrix multiplication computation process
for the encoder and decoder. We utilize the framework11 designed by Liu et al. [LWF+22]
to optimize the implementation of matrix multiplication, which is a new low-latency
framework to implement linear layers in lightweight cryptography. The proposed method
employs a backward search strategy that iteratively splits the output bits until all input
bits are present, thus optimizing the circuit depth and achieving low latency.

B.2 Efficiency
As shown in Table 4 and 5, in terms of hardware overhead, the implementation of CBM
with frequency-optimized matrix multiplication shows a slight increase compared to the
area-optimized version, but the overall resource overhead remains at a low level. Specifically,
the frequency-optimized implementation only increases about 2% more LUTs and GEs
than the area-optimized version.

10https://github.com/DaLin10512/framework
11https://github.com/QunLiu-sdu/Towards-Low-Latency-Implementation

https://github.com/DaLin10512/framework
https://github.com/QunLiu-sdu/Towards-Low-Latency-Implementation

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 323

t[32] = t[6] ⊕ t[5] t[78] = t[52] ⊕ t[70] t[124] = t[32] ⊕ t[15] t[170] = t[138] ⊕ t[96]
t[33] = t[17] ⊕ t[22] t[79] = t[70] ⊕ t[65] t[125] = t[15] ⊕ t[72] t[171] = t[134] ⊕ t[141]
t[34] = t[10] ⊕ t[25] t[80] = t[78] ⊕ t[62] t[126] = t[107] ⊕ t[30] t[172] = t[160] ⊕ t[99]
t[35] = t[20] ⊕ t[21] t[81] = t[25] ⊕ t[72] t[127] = t[3] ⊕ t[89] t[173] = t[149] ⊕ t[116]
t[36] = t[26] ⊕ t[29] t[82] = t[34] ⊕ t[13] t[128] = t[30] ⊕ t[125] t[174] = t[168] ⊕ t[93]
t[37] = t[31] ⊕ t[33] t[83] = t[13] ⊕ t[67] t[129] = t[125] ⊕ t[89] t[175] = t[96] ⊕ t[172]
t[38] = t[36] ⊕ t[9] t[84] = t[67] ⊕ t[54] t[130] = t[94] ⊕ t[105] t[176] = t[175] ⊕ t[162]
t[39] = t[23] ⊕ t[30] t[85] = t[84] ⊕ t[63] t[131] = t[105] ⊕ t[82] t[177] = t[109] ⊕ t[159]
t[40] = t[37] ⊕ t[24] t[86] = t[79] ⊕ t[14] t[132] = t[100] ⊕ t[111] t[178] = t[93] ⊕ t[155]
t[41] = t[12] ⊕ t[35] t[87] = t[86] ⊕ t[77] t[133] = t[111] ⊕ t[123] t[179] = t[169] ⊕ t[170]
t[42] = t[11] ⊕ t[2] t[88] = t[77] ⊕ t[66] t[134] = t[123] ⊕ t[89] t[180] = t[159] ⊕ t[166]
t[43] = t[8] ⊕ t[16] t[89] = t[50] ⊕ t[60] t[135] = t[72] ⊕ t[38] t[181] = t[170] ⊕ t[147]
t[44] = t[42] ⊕ t[43] t[90] = t[88] ⊕ t[49] t[136] = t[128] ⊕ t[120] t[182] = t[141] ⊕ t[163]
t[45] = t[41] ⊕ t[39] t[91] = t[66] ⊕ t[46] t[137] = t[120] ⊕ t[71] t[183] = t[116] ⊕ t[161]
t[46] = t[24] ⊕ t[0] t[92] = t[49] ⊕ t[59] t[138] = t[129] ⊕ t[82] t[184] = t[161] ⊕ t[179]
t[47] = t[40] ⊕ t[39] t[93] = t[91] ⊕ t[44] t[139] = t[89] ⊕ t[116] t[185] = t[147] ⊕ t[156]
t[48] = t[4] ⊕ t[14] t[94] = t[92] ⊕ t[54] t[140] = t[102] ⊕ t[80] t[186] = t[157] ⊕ t[167]
t[49] = t[22] ⊕ t[15] t[95] = t[46] ⊕ t[54] t[141] = t[113] ⊕ t[140] t[187] = t[182] ⊕ t[185]
t[50] = t[47] ⊕ t[32] t[96] = t[54] ⊕ t[18] t[142] = t[140] ⊕ t[104] t[188] = t[115] ⊕ t[178]
t[51] = t[28] ⊕ t[29] t[97] = t[18] ⊕ t[62] t[143] = t[118] ⊕ t[124] t[189] = t[183] ⊕ t[176]
t[52] = t[29] ⊕ t[48] t[98] = t[97] ⊕ t[44] t[144] = t[135] ⊕ t[71] t[190] = t[133] ⊕ t[142]
t[53] = t[48] ⊕ t[27] t[99] = t[90] ⊕ t[98] t[145] = t[71] ⊕ t[127] t[191] = t[142] ⊕ t[167]
t[54] = t[16] ⊕ t[52] t[100] = t[98] ⊕ t[56] t[146] = t[124] ⊕ t[87] t[192] = t[99] ⊕ t[174]
t[55] = t[53] ⊕ t[35] t[101] = t[62] ⊕ t[69] t[147] = t[104] ⊕ t[127] t[193] = t[172] ⊕ t[184]
t[56] = t[1] ⊕ t[32] t[102] = t[69] ⊕ t[14] t[148] = t[127] ⊕ t[80] t[194] = t[163] ⊕ t[158]
t[57] = t[19] ⊕ t[35] t[103] = t[14] ⊕ t[73] t[149] = t[112] ⊕ t[145] t[195] = t[174] ⊕ t[193]
t[58] = t[57] ⊕ t[34] t[104] = t[73] ⊕ t[56] t[150] = t[119] ⊕ t[145] t[196] = t[158] ⊕ t[154]
t[59] = t[55] ⊕ t[2] t[105] = t[56] ⊕ t[65] t[151] = t[87] ⊕ t[117] t[197] = t[167] ⊕ t[194]
t[60] = t[58] ⊕ t[39] t[106] = t[65] ⊕ t[44] t[152] = t[137] ⊕ t[121] t[198] = t[194] ⊕ t[188]
t[61] = t[39] ⊕ t[5] t[107] = t[44] ⊕ t[81] t[153] = t[117] ⊕ t[109] t[199] = t[188] ⊕ t[180]
t[62] = t[51] ⊕ t[45] t[108] = t[101] ⊕ t[81] t[154] = t[152] ⊕ t[139] t[200] = t[155] ⊕ t[173]
t[63] = t[9] ⊕ t[56] t[109] = t[108] ⊕ t[74] t[155] = t[132] ⊕ t[131] t[201] = t[180] ⊕ t[184]
t[64] = t[27] ⊕ t[18] t[110] = t[83] ⊕ t[72] t[156] = t[80] ⊕ t[144] t[202] = t[173] ⊕ t[181]
t[65] = t[2] ⊕ t[45] t[111] = t[103] ⊕ t[110] t[157] = t[121] ⊕ t[133] t[203] = t[136] ⊕ t[166]
t[66] = t[64] ⊕ t[38] t[112] = t[81] ⊕ t[110] t[158] = t[153] ⊕ t[145] t[204] = t[171] ⊕ t[164]
t[67] = t[61] ⊕ t[38] t[113] = t[110] ⊕ t[59] t[159] = t[139] ⊕ t[130] t[205] = t[162] ⊕ t[177]
t[68] = t[35] ⊕ t[50] t[114] = t[59] ⊕ t[74] t[160] = t[145] ⊕ t[148] t[206] = t[131] ⊕ t[151]
t[69] = t[68] ⊕ t[43] t[115] = t[114] ⊕ t[30] t[161] = t[150] ⊕ t[144] t[207] = t[193] ⊕ t[154]
t[70] = t[7] ⊕ t[21] t[116] = t[74] ⊕ t[60] t[162] = t[144] ⊕ t[126] t[208] = t[192] ⊕ t[143]
t[71] = t[33] ⊕ t[5] t[117] = t[106] ⊕ t[60] t[163] = t[130] ⊕ t[38] t[209] = t[178] ⊕ t[166]
t[72] = t[45] ⊕ t[18] t[118] = t[60] ⊕ t[63] t[164] = t[126] ⊕ t[138] t[210] = t[176] ⊕ t[187]
t[73] = t[5] ⊕ t[21] t[119] = t[95] ⊕ t[76] t[165] = t[38] ⊕ t[82] t[211] = t[156] ⊕ t[186]
t[74] = t[21] ⊕ t[66] t[120] = t[76] ⊕ t[32] t[166] = t[82] ⊕ t[134] t[212] = t[203] ⊕ t[189]
t[75] = t[43] ⊕ t[0] t[121] = t[85] ⊕ t[3] t[167] = t[165] ⊕ t[93] t[213] = t[143] ⊕ t[197]
t[76] = t[75] ⊕ t[49] t[122] = t[63] ⊕ t[112] t[168] = t[146] ⊕ t[96]
t[77] = t[0] ⊕ t[67] t[123] = t[122] ⊕ t[107] t[169] = t[148] ⊕ t[136]

Figure 15: Matrix multiplication computation process for encoder/decoder. In the figure,
t[0] to t[31] denote 32-bit input, { t[202], t[164], t[189], t[184], t[209], t[205], t[210], t[186],
t[195], t[211], t[196], t[177], t[213], t[185], t[199], t[166], t[201], t[154], t[208], t[181], t[198],
t[191], t[207], t[151], t[179], t[206], t[204], t[190], t[212], t[187], t[200], t[197]} denote 32-bit
output.

324 A Code-Based ISE to Protect Boolean Masking in Software

t[32] = t[2]⊕ t[18] t[95] = t[1]⊕ t[22] t[158] = t[154]⊕ t[157] t[221] = t[101]⊕ t[220]
t[33] = t[12]⊕ t[29] t[96] = t[92]⊕ t[95] t[159] = t[14]⊕ t[28] t[222] = t[221]⊕ t[151]
t[34] = t[21]⊕ t[27] t[97] = t[6]⊕ t[28] t[160] = t[24]⊕ t[27] t[223] = t[208]⊕ t[222]
t[35] = t[34]⊕ t[19] t[98] = t[97]⊕ t[15] t[161] = t[159]⊕ t[160] t[224] = t[179]⊕ t[222]
t[36] = t[6]⊕ t[10] t[99] = t[61]⊕ t[98] t[162] = t[32]⊕ t[161] t[225] = t[206]⊕ t[222]
t[37] = t[34]⊕ t[36] t[100] = t[3]⊕ t[27] t[163] = t[162]⊕ t[70] t[226] = t[221]⊕ t[144]
t[38] = t[24]⊕ t[26] t[101] = t[97]⊕ t[100] t[164] = t[162]⊕ t[133] t[227] = t[226]⊕ t[200]
t[39] = t[38]⊕ t[19] t[102] = t[9]⊕ t[26] t[165] = t[12]⊕ t[22] t[228] = t[1]⊕ t[27]
t[40] = t[0]⊕ t[15] t[103] = t[102]⊕ t[1] t[166] = t[159]⊕ t[165] t[229] = t[20]⊕ t[23]
t[41] = t[40]⊕ t[19] t[104] = t[0]⊕ t[16] t[167] = t[166]⊕ t[44] t[230] = t[228]⊕ t[229]
t[42] = t[13]⊕ t[40] t[105] = t[102]⊕ t[104] t[168] = t[166]⊕ t[94] t[231] = t[230]⊕ t[77]
t[43] = t[5]⊕ t[23] t[106] = t[11]⊕ t[18] t[169] = t[168]⊕ t[129] t[232] = t[205]⊕ t[231]
t[44] = t[43]⊕ t[40] t[107] = t[22]⊕ t[26] t[170] = t[2]⊕ t[9] t[233] = t[230]⊕ t[158]
t[45] = t[3]⊕ t[13] t[108] = t[106]⊕ t[107] t[171] = t[6]⊕ t[17] t[234] = t[233]⊕ t[196]
t[46] = t[45]⊕ t[34] t[109] = t[1]⊕ t[3] t[172] = t[170]⊕ t[171] t[235] = t[234]⊕ t[86]
t[47] = t[8]⊕ t[21] t[110] = t[106]⊕ t[109] t[173] = t[172]⊕ t[121] t[236] = t[30]⊕ t[31]
t[48] = t[47]⊕ t[40] t[111] = t[17]⊕ t[29] t[174] = t[168]⊕ t[173] t[237] = t[228]⊕ t[236]
t[49] = t[32]⊕ t[48] t[112] = t[111]⊕ t[107] t[175] = t[172]⊕ t[153] t[238] = t[79]⊕ t[237]
t[50] = t[24]⊕ t[31] t[113] = t[63]⊕ t[112] t[176] = t[19]⊕ t[28] t[239] = t[196]⊕ t[238]
t[51] = t[50]⊕ t[13] t[114] = t[18]⊕ t[24] t[177] = t[170]⊕ t[176] t[240] = t[169]⊕ t[239]
t[52] = t[14]⊕ t[25] t[115] = t[114]⊕ t[5] t[178] = t[177]⊕ t[108] t[241] = t[239]⊕ t[222]
t[53] = t[52]⊕ t[13] t[116] = t[41]⊕ t[115] t[179] = t[141]⊕ t[178] t[242] = t[191]⊕ t[239]
t[54] = t[39]⊕ t[53] t[117] = t[114]⊕ t[23] t[180] = t[86]⊕ t[179] t[243] = t[2]⊕ t[10]
t[55] = t[15]⊕ t[22] t[118] = t[117]⊕ t[105] t[181] = t[177]⊕ t[37] t[244] = t[11]⊕ t[12]
t[56] = t[55]⊕ t[47] t[119] = t[118]⊕ t[67] t[182] = t[7]⊕ t[14] t[245] = t[243]⊕ t[244]
t[57] = t[16]⊕ t[20] t[120] = t[7]⊕ t[31] t[183] = t[182]⊕ t[170] t[246] = t[245]⊕ t[156]
t[58] = t[57]⊕ t[34] t[121] = t[120]⊕ t[5] t[184] = t[5]⊕ t[11] t[247] = t[116]⊕ t[246]
t[59] = t[4]⊕ t[30] t[122] = t[25]⊕ t[29] t[185] = t[16]⊕ t[22] t[248] = t[247]⊕ t[200]
t[60] = t[14]⊕ t[23] t[123] = t[122]⊕ t[120] t[186] = t[184]⊕ t[185] t[249] = t[26]⊕ t[29]
t[61] = t[59]⊕ t[60] t[124] = t[3]⊕ t[21] t[187] = t[61]⊕ t[186] t[250] = t[249]⊕ t[8]
t[62] = t[13]⊕ t[19] t[125] = t[124]⊕ t[120] t[188] = t[187]⊕ t[113] t[251] = t[250]⊕ t[183]
t[63] = t[59]⊕ t[62] t[126] = t[125]⊕ t[94] t[189] = t[188]⊕ t[174] t[252] = t[196]⊕ t[251]
t[64] = t[63]⊕ t[58] t[127] = t[3]⊕ t[23] t[190] = t[51]⊕ t[186] t[253] = t[201]⊕ t[252]
t[65] = t[10]⊕ t[25] t[128] = t[127]⊕ t[122] t[191] = t[175]⊕ t[190] t[254] = t[250]⊕ t[96]
t[66] = t[65]⊕ t[59] t[129] = t[41]⊕ t[128] t[192] = t[13]⊕ t[15] t[255] = t[254]⊕ t[211]
t[67] = t[66]⊕ t[46] t[130] = t[8]⊕ t[13] t[193] = t[184]⊕ t[192] t[256] = t[163]⊕ t[255]
t[68] = t[0]⊕ t[20] t[131] = t[16]⊕ t[30] t[194] = t[16]⊕ t[19] t[257] = t[254]⊕ t[99]
t[69] = t[68]⊕ t[65] t[132] = t[130]⊕ t[131] t[195] = t[194]⊕ t[184] t[258] = t[257]⊕ t[252]
t[70] = t[69]⊕ t[33] t[133] = t[132]⊕ t[103] t[196] = t[69]⊕ t[195] t[259] = t[14]⊕ t[20]
t[71] = t[7]⊕ t[28] t[134] = t[4]⊕ t[6] t[197] = t[6]⊕ t[12] t[260] = t[13]⊕ t[17]
t[72] = t[30]⊕ t[71] t[135] = t[130]⊕ t[134] t[198] = t[197]⊕ t[192] t[261] = t[259]⊕ t[260]
t[73] = t[71]⊕ t[68] t[136] = t[91]⊕ t[135] t[199] = t[75]⊕ t[198] t[262] = t[83]⊕ t[261]
t[74] = t[3]⊕ t[16] t[137] = t[116]⊕ t[136] t[200] = t[199]⊕ t[82] t[263] = t[35]⊕ t[262]
t[75] = t[74]⊕ t[60] t[138] = t[4]⊕ t[22] t[201] = t[199]⊕ t[178] t[264] = t[263]⊕ t[201]
t[76] = t[18]⊕ t[28] t[139] = t[12]⊕ t[19] t[202] = t[85]⊕ t[201] t[265] = t[137]⊕ t[263]
t[77] = t[76]⊕ t[30] t[140] = t[138]⊕ t[139] t[203] = t[5]⊕ t[25] t[266] = t[262]⊕ t[147]
t[78] = t[3]⊕ t[22] t[141] = t[132]⊕ t[140] t[204] = t[203]⊕ t[197] t[267] = t[266]⊕ t[85]
t[79] = t[78]⊕ t[76] t[142] = t[9]⊕ t[23] t[205] = t[204]⊕ t[56] t[268] = t[262]⊕ t[181]
t[80] = t[1]⊕ t[29] t[143] = t[138]⊕ t[142] t[206] = t[205]⊕ t[126] t[269] = t[268]⊕ t[255]
t[81] = t[20]⊕ t[80] t[144] = t[123]⊕ t[143] t[207] = t[204]⊕ t[110] t[270] = t[193]⊕ t[261]
t[82] = t[66]⊕ t[81] t[145] = t[5]⊕ t[31] t[208] = t[113]⊕ t[207] t[271] = t[118]⊕ t[270]
t[83] = t[80]⊕ t[78] t[146] = t[145]⊕ t[138] t[209] = t[2]⊕ t[5] t[272] = t[271]⊕ t[206]
t[84] = t[83]⊕ t[72] t[147] = t[146]⊕ t[108] t[210] = t[209]⊕ t[194] t[273] = t[9]⊕ t[14]
t[85] = t[84]⊕ t[49] t[148] = t[1]⊕ t[10] t[211] = t[89]⊕ t[210] t[274] = t[31]⊕ t[273]
t[86] = t[84]⊕ t[54] t[149] = t[18]⊕ t[21] t[212] = t[2]⊕ t[8] t[275] = t[274]⊕ t[73]
t[87] = t[17]⊕ t[31] t[150] = t[148]⊕ t[149] t[213] = t[3]⊕ t[10] t[276] = t[113]⊕ t[275]
t[88] = t[12]⊕ t[18] t[151] = t[150]⊕ t[42] t[214] = t[212]⊕ t[213] t[277] = t[218]⊕ t[276]
t[89] = t[87]⊕ t[88] t[152] = t[8]⊕ t[23] t[215] = t[123]⊕ t[214] t[278] = t[22]⊕ t[25]
t[90] = t[9]⊕ t[20] t[153] = t[148]⊕ t[152] t[216] = t[215]⊕ t[64] t[279] = t[0]⊕ t[278]
t[91] = t[87]⊕ t[90] t[154] = t[25]⊕ t[26] t[217] = t[164]⊕ t[216] t[280] = t[89]⊕ t[279]
t[92] = t[11]⊕ t[24] t[155] = t[28]⊕ t[30] t[218] = t[215]⊕ t[167] t[281] = t[216]⊕ t[280]
t[93] = t[4]⊕ t[21] t[156] = t[154]⊕ t[155] t[219] = t[17]⊕ t[24] t[282] = t[280]⊕ t[257]
t[94] = t[92]⊕ t[93] t[157] = t[11]⊕ t[17] t[220] = t[212]⊕ t[219]

Figure 16: Matrix multiplication computation process for frequency-optimized. In the
figure, t[0] to t[31] denote 32-bit input, { t[240], t[241], t[272], t[276], t[256], t[264], t[281],
t[119], t[189], t[235], t[282], t[232], t[242], t[217], t[223], t[255], t[267], t[265], t[258], t[200],
t[224], t[225], t[248], t[252], t[253], t[202], t[227], t[174], t[180], t[277], t[269], t[222]} denote
32-bit output.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 325

Table 4: Comparison of area, stemming from FPGA synthesis of the base core plus
implementation of the CBM, with frequency-optimized matrix multiplication.

Registers LUTs
Base core 2362 (1.00×) 3951 (1.00×)
Base core + CBM (excl. RG and PRG) 2365 (1.00×) 3931 (1.00×)
Base core + CBM (excl. PRG) 2425 (1.03×) 4738 (1.20×)
Base core + CBM (excl. RG) 2472 (1.05×) 4317 (1.09×)
Base core + CBM 2530 (1.07×) 4865 (1.23×)

Table 5: Comparison of area, stemming from ASIC synthesis of the base core plus
implementation of the CBM, with frequency-optimized matrix multiplication.

Cells GE
Base core 19445 (1.00×) 30627 (1.00×)
Base core + CBM (excl. RG and PRG) 20415 (1.05×) 31785 (1.04×)
Base core + CBM (excl. PRG) 19475 (1.00×) 31988 (1.04×)
Base core + CBM (excl. RG) 21102 (1.09×) 33646 (1.10×)
Base core + CBM 20501 (1.06×) 33772 (1.10×)

In terms of performance, the frequency-optimized matrix multiplication exhibits signif-
icant advantages. For maximum frequency, the CBM with frequency-optimized version
demonstrates a significant improvement over the area-optimized one. In FPGA synthesis,
the maximum frequency has increased from 86% to 87%; while in ASIC synthesis, it is
significantly increased from 83% to 98% (per Table 6).

B.3 Security
In terms of security, the results in Figures 17 and 18 show that both implementations
perform equally well, meeting the expected security requirements.

C Leakage-Resilience of the Duplex-based PRG
Before we formally prove our claim on DPRGP in C.3, we first introduce our leakage model
in C.1 and define leakage-resilience of stateful PRGs and our leakage assumptions in C.2.

C.1 Oracle-free Leakages: Preventing Future Computation Attacks
An n-bit cryptographic permutation sampled uniformly at random from the set of all
n-bit permutations is called a random permutation. We follow [GPPS20] and analyze the
duplex-based PRG in the random permutation model, i.e., we model P as a public random
permutation. Note that this is also the common approach in most research papers on the
duplex construction (see e.g., [Men23]).

The execution of DPRGP only consists of invocations of the permutation P and the
corresponding leakages. We model these leakages as PPT functions of the involved values.
Following [GPPS20], we further split the leakage into an input and an output part, i.e.,
we write (Lin(S), Lout(S′)) for the leakage due to evaluating P(S)→ S′. This distinction
between Lin and Lout allows to independently quantify the secrecy of the input and the
output which better reflects the designers implementation goals for each functions/calls.

We require that the leakage functions Lin and Lout have no access to the random
permutation (oracle) P. This restriction effectively excludes the artificial future computation
attacks from the model: it guarantees that Lin(S) and Lout(S′) only leak information

326 A Code-Based ISE to Protect Boolean Masking in Software

Table 6: Comparison of frequency, stemming from FPGA/ASIC synthesis of the base core
plus implementation of the CBM, with frequency-optimized matrix multiplication.

FPGA ASIC
Base core 72.03 MHz (1.00×) 347.22 MHz (1.00×)
Base core + CBM 64.11 MHz (0.89×) 340.64 MHz (0.98×)

(a) SNR result (b) MI result

Figure 17: SNR and MI results of experiments regarding ISW multiplication on the
ISE-extended core with the frequency-optimized matrix multiplication. Each experiment
uses 300 thousand traces.

about the computation that is happening in the device rather than the computation that
may happen in “future” invocations of P. Oracle-freeness restriction was first used by Yu
et al. [YSPY10]. For the sake of space, we refer to [YSPY10] or earlier [DP08] for detailed
discussion about future computation attacks.

Based on L = (Lin, Lout), we consider a leaky implementation of DPRGP, which
consists of two leaky procedures DPRGP.SetupL(seed) and DPRGP.RequestL(). The leaky
procedure DPRGP.SetupL(seed) invokes DPRGP.Setup(seed) and outputs the corresponding
leakages Lin([0]b−κ‖seed) and Lout(S) for S = P([0]b−κ‖seed). Similarly, the procedure
DPRGP.RequestL() invokes DPRGP.Request() and outputs the corresponding output and
leakages Lin(S) and Lout(P(S)), where S is the value of the internal state before this call
to RequestL. These two procedures will be used in Figure 19.

C.2 Leakage-Resilience Definition for Stateful PRGs

With the above notations, we consider the experiment PredDPRG,L,β(A) introduced by
Yu et al. [YSPY10] (adapted to the random permutation model) to define the security
of stateful PRG. It is parameterized by a leakage function L = (Lin, Lout) chosen by the
adversary at the very beginning of the experiment (therefore, it is the non-adaptively
chosen leakage setting).

The adversary AP makes q queries to DPRG.RequestL, the leaky implementation of
DPRG.Request, and then makes 1 query to the non-leaky DPRG.Request. The goal of AP

is to distinguish the output of the final call to DPRG.Request from a uniformly distributed
random value, while given the outputs and leakages of the first q leaky queries.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 327

(a) SNR result (b) MI result

Figure 18: SNR and MI results of experiments regarding bit-sliced AES S-Box on the
ISE-extended core with the frequency-optimized matrix multiplication. Each experiment
uses 300 thousand traces.

Experiment PredDPRG,L,β(A): // L = (Lin, Lout)

1. A seed seed $← {0, 1}κ is sampled and DPRGP.SetupL(seed) is invoked.

2. When AP submits a test query, a value z $← {0, 1}r is chosen uniformly at random,
and z is given to AP if β = 0 or the honest output DPRGP.Request() is given
otherwise.

3. AP outputs its guess β′.

Figure 19: The experiment PredDPRG,L,β(A) formalizing leakage security of PRGs. The
leaky procedures SetupL and RequestL are defined in C.1.

Definition 3. For any stateful DPRGP built upon a random permutation P, the advantage
of A against DPRGP is

AdvLRPRG
DPRG,L (A) :=

∣∣∣Pr
[
PredDPRG,L,0(A) = 1

]
− Pr

[
PredDPRG,L,1(A) = 1

]∣∣∣. (1)

Asymptotically, if AdvLRPRG
DPRG,L (A) is a negligible function of the security parameter, then

DPRG is physically unpredictable w.r.t the leakage function L.

C.2.1 Non-invertible leakage: Bounding leakage per permutation-calls

To have meaningful security, we have to assume that the leakages are somewhat bounded.
To this end, we adapt [GPPS20] and assume that the leakages of the following three actions
do not enable recovering the critical internal secret (i.e., non-invertible): (1) deriving
a critical secret b-bit state S from the previous state Spre: S ← P(Spre); (2) squeezing
and outputting r bits from S: y ← msbr(S); (3) deriving a new state: S′ ← P(S). We
assume that the side-channel adversary cannot predict the value of lsbω(S) within a limited
number of guesses, even if all the other involved (b− ω)-bit values are revealed to him.

Definition. Formally, we define

AdvInv[ω]
L (A) := Pr

[
sch

$← {0, 1}ω,G ← AP(leak) : sch ∈ G
]
,

328 A Code-Based ISE to Protect Boolean Masking in Software

where G is a finite set of guesses, and A’s input leak is a list of leakages depending on a
value y ∈ {0, 1}b−ω chosen by A, i.e.,

leak =
[
Lout(y‖sch), Lin(y‖sch)

]
.

Further Insights. To clarify, the random state sch is the secret that is to be challenged
by A. A is required to choose y ∈ {0, 1}r to “fill in the gap” and gets the leakages, as if
y‖sch ∈ {0, 1}b is the value of the state S upon the query to RequestL.

In such an invertibility game, the power of A is quantified along four dimensions, i.e.,
the number p of queries to P, the number q of queries to DPRGP.RequestL, the running
time t, and the number NG of allowed guesses (i.e., |G| ≤ NG; clearly the larger NG,
the higher AdvInv[ω]

L (A)). To simplify, we call such adversaries (p, q, t,NG)-bounded, and
further define

AdvInv[ω]
L (p, q, t,NG) := max

(p,q,t,NG)-bounded A

{
AdvInv[ω]

L (A)
}
.

As discussed [YSPY10, GPPS20], while the use of random permutation model is very
strong, the assumption of non-invertibility is the weakest leakage assumption.

C.3 Leakage-Resilience of DPRGP

We now show that the duplex-based PRG DPRGP (see Figure 7) is leakage-resilient in
the sense of Definition 3, as long as the chosen leakage function L is oracle-free and
non-invertible.

Theorem 1. For any (p, q, t,NG)-bounded adversary AP and any oracle-free leakage
function L = (Lin, Lout), it holds

AdvLRPRG
DPRG,L (A) ≤ 2(q + 2)2

2c+1 + 2AdvInv[κ]
L (p, t′, 2p) + (q + 1) · 2AdvInv[c]

L (p, t′, 2p) ,

where t′ = O(t+ qtl) and tl is the total time needed for evaluating Lin and Lout.

Interpreting the bound. Consider the parameter c = 84 of our concrete instantiation.
The first term indicates that the number of requested pseudorandom outputs has to be
q � 284/2 = 242. In our scenario q would not be too large, and this limitation is fulfilled.

On the one hand, the terms 2AdvInv[κ]
L (p, t′, 2p) and (q + 1) · 2AdvInv[84]

L (p, t′, 2p)
capture the influences of side-channel state recovery attacks, and they are roughly of some
birthday type, namely

O

(
p+ t

λ · 2κ

)
+O

(
q · p+ t

λ · 284

)
= O

(
p+ t

λ · 2κ

)
+O

(
q · (p+ t)q

λ · 284

)
for some parameter λ that depends on the concrete implementation and attack techniques.
Yet, it is nowadays a common assumption that with such a small data complexity (only 2
relevant leakage traces), the value of λ should be very small [Pie09].

We remark that when leakages are entropy-preserving, leakage-resilience of DPRGP can
also be derived from [DM19]. As complementary, our Theorem 1 provides a positive result
under the weaker assumption of non-invertible leakages.

Proof. Instead of proving from the scratch, we invoke a technical lemma of Guo et
al. [GPPS20]. Concretely, [GPPS20, Lemma 2] defined two leaky processes LDuStr and
LIdealS, which are given in Figure 20 and Figure 21 respectively. Briefly speaking, the
process LDuStr in Figure 20 consists of computing a duplex-based stream cipher to have `

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 329

ciphertext blocks C[1], ..., C[`] and the corresponding leakages, while the process LIdealS
in Figure 21 consists of sampling a sequence of random state values to have ` random
ciphertext blocks and the leakages computed from these random state values. To closely
mimic the encryption of a duplex-based AEAD of [GPPS20, Lemma 2], the two processes
have a number of XOR operations that are actually irrelevant to us. Guo et al. [GPPS20,
Lemma 2] proved that the two processes are indistinguishable.

Lemma 2. For every (p, t)-bounded distinguisher DP and every adversary-chosen input
triple (IV,A,M) such that (A,M) has ` blocks in total, it holds∣∣∣Pr

[
DP(LDuStrP

seed(IV,A,M))⇒ 1
]
− Pr

[
DP(LIdealS(IV,A,M))⇒ 1

]∣∣∣
≤ (`+ 2)2

2c+1 + AdvInv[κ]
L (p, t∗, 2p) + (`+ 1) ·AdvInv[c]

L (p, t∗, 2p) ,

where t∗ = O (t+ `tl), and tl is the total time needed for evaluating Lin, Lout,L⊕, and the
xor of two r-bit values.

As mentioned, LDuStr and LIdealS have a number of XOR operations and their
leakages. The information gained by AP in our real world game PredDPRG,L,0 is almost
the same as those provided by LDuStrP

seed(IV,⊥, ([0]r)q) with δ1 = [0]c. By Lemma 2, the
distance between LDuStrP

seed(IV,⊥, ([0]r)q) and IdealS(IV,⊥, ([0]r)q) is bounded by

(q + 2)2

2c+1 + AdvInv[κ]
L (p, t′, 2p) + (q + 1) ·AdvInv[c]

L (p, t′, 2p) ,

where t′ = O(t+ qtl) and tl is the total time needed for evaluating Lin and Lout.
On the other hand, the information gained by AP in the ideal game PredDPRG,L,1(A)

is the same as those provided by the modified stream cipher LDuStr2P
seed(IV,⊥, ([0]r)q) in

Figure 22. LDuStr2P
seed(IV,⊥, ([0]r)q) only deviates from IdealS(IV,⊥, ([0]r)q) in the first

q − 1 output blocks. Therefore, the difference between LDuStr2P
seed(IV,⊥, ([0]r)q) and

IdealS(IV,⊥, ([0]r)q) is bounded by

(q + 1)2

2c+1 + AdvInv[κ]
L (p, t′, 2p) + q ·AdvInv[c]

L (p, t′, 2p) .

Therefore,

AdvLRPRG
DPRG,L (A)

=
∣∣∣Pr
[
PredDPRG,L,0(A) = 1

]
− Pr

[
PredDPRG,L,1(A) = 1

]∣∣∣
≤
∣∣∣Pr
[
AP(LDuStrP

seed(IV,⊥, ([0]r)q))⇒ 1
]
− Pr

[
AP(LDuStr2P

seed(IV,⊥, ([0]r)q))⇒ 1
]∣∣∣

+
∣∣∣Pr
[
DP
(

LDuStr2P
seed(IV,⊥, ([0]r)q)

)
⇒ 1

]
− Pr

[
DP(LIdealS(IV,⊥, ([0]r)q))⇒ 1

]∣∣∣
≤ 2(q + 2)2

2c+1 + 2AdvInv[κ]
L (p, t∗, 2p) + 2(q + 1) ·AdvInv[c]

L (p, t∗, 2p)

as claimed.

330 A Code-Based ISE to Protect Boolean Masking in Software

The duplex-based leaky stream cipher LDuStrP
seed(IV,A,M), |seed| = κ:

1. Computes S′0 ← IV ‖seed, S1 ← P(S′0). The leakages of this step are Lin(S′0) and
Lout(S1);

2. For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖[0]c)⊕ Si and Si+1 ← P(S′i). The
leakages are Lin(S′i), Lout(Si+1), leak⊕(msbr(Si), A[i]);

3. Sν+1 ← Sν+1 ⊕ ([0]r‖δ1) for a fixed offset δ1. The leakages are leak⊕ (lsbc (Sν+1) ,
δ1);

4. For i = 1, . . . , `, ` = |M |/r, computes j ← i + ν, C[i] ← msbr (Sj) ⊕M [i], S′j ←
C[i]‖ lsbc(Sj), Sj+1 ← P(S′j). Leakages are leak⊕(msbr(Sj),M [i]) and Lin(S′j),
Lout(Sj+1);

5. Returns C[1]‖ . . . ‖C[`].

Figure 20: The duplex-based leaky stream cipher LDuStrP
seed.

The ideal stream cipher IdealS(IV,A,M):

1. Samples seed $← {0, 1}κ;

2. Computes S′0 ← IV ‖seed and samples S1
$← {0, 1}b. The leakages of this step are

Lin(S′0) and Lout(S1);

3. For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖[0]c) ⊕ Si and samples Si+1
$←

{0, 1}b. The leakages are Lin(S′i), Lout(Si+1), leak⊕(msbr(Si), A[i]);

4. Sν+1 ← Sν+1 ⊕ ([0]r‖δ1). The leakages are leak⊕ (lsbc (Sν+1) , δ1);

5. For i = 1, . . . , `, ` = |M |/r, computes j ← i + ν, C[i] ← msbr(Sj) ⊕M [i], S′j ←
C[i]‖ lsbc(Sj), and samples Sj+1

$← {0, 1}b. The leakages are leak⊕(msbr(Sj),M [i])
and Lin(S′j), Lout(Sj+1)

6. Returns C[1]‖ . . . ‖C[`].

Figure 21: The ideal leaky stream cipher IdealS.

Qi Tian, Hao Cheng, Chun Guo, Daniel Page, Meiqin Wang and Weijia Wang(�) 331

The leaky stream cipher LDuStr2P
seed(IV,A,M), |seed| = κ:

1. Computes S′0 ← IV ‖seed, S1 ← P(S′0). The leakages of this step are Lin(S′0) and
Lout(S1);

2. For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖[0]c)⊕ Si and Si+1 ← P(S′i). The
leakages are Lin(S′i), Lout(Si+1), leak⊕(msbr(Si), A[i]);

3. Sν+1 ← Sν+1 ⊕ ([0]r‖δ1) for a fixed offset δ1. The leakages are leak⊕(lsbc(Sν+1), δ1);

4. For i = 1, . . . , ` − 1, ` = |M |/r, computes j ← i + ν, C[i] ← msbr(Sj) ⊕ M [i],
S′j ← C[i]‖ lsbc(Sj), Sj+1 ← P(S′j). Leakages are leak⊕(msbr(Sj),M [i]) and Lin(S′j),
Lout(Sj+1);

5. Finally, C[`] $← {0, 1}r. Namely, in contrast to LDuStrP
seed, the last output block is

truly random.

6. Returns C[1]‖ . . . ‖C[`].

Figure 22: LDuStr2P
seed: replacing the last r-bit block of output of LDuStr with a random

block.

D Formal verification

1 # Using standard RV32I instructions
2 # x31: holds random mask
3 nop
4 cbm.or x31 , x31 , x0 , 3
5 cbm.srli x31 , x31 , 16 , 3
6 nop
7 and x20 , x5 , x6
8 nop
9 xor x20 , x20 , x31

10 nop
11 and x21 , x5 , x13
12 nop
13 xor x21 , x21 , x31
14 nop
15 and x22 , x12 , x6
16 nop
17 xor x21 , x21 , x22
18 nop
19 and x23 , x12 , x13
20 nop
21 xor x21 , x21 , x23
22 nop
23 nop
24 nop
25 nop
26 # Leakage captured

1 # Using CBM instructions
2 # x31: holds random mask
3 nop
4 cbm.or x5 , x5 , x0 , 0
5 cbm.or x5 , x5 , x0 , 3
6 cbm.or x6 , x6 , x0 , 0
7 cbm.or x6 , x6 , x0 , 3
8 cbm.or x12 , x12 , x0 , 0
9 cbm.or x12 , x12 , x0 , 3
10 cbm.or x13 , x13 , x0 , 0
11 cbm.or x13 , x13 , x0 , 3
12 cbm.or x31 , x31 , x0 , 3
13 cbm.srli x31 , x31 , 16 , 3
14 cbm.and x20 , x5 , x6 , 3
15 xor x20 , x20 , x31
16 nop
17 cbm.and x21 , x5 , x13 , 3
18 xor x21 , x21 , x31
19 nop
20 cbm.and x22 , x12 , x6 , 3
21 xor x21 , x21 , x22
22 nop
23 cbm.and x23 , x12 , x13 , 3
24 xor x21 , x21 , x23
25 nop
26 # No leakage

Figure 23: Micro-benchmarks of first-order ISW multiplication for formal verification.

Figure 23 shows the micro-benchmarks used in our formal verification. Note that the first
12 lines on the right are dedicated to transforming shares into protected shares, while lines
4/5 on the left and lines 13/14 on the right are used to generate the random numbers
required for the execution of ISW multiplication. During the verification process, GPR[5]
and GPR[12] are labeled as two shares of the same secret, while GPR[6] and GPR[13] are

332 A Code-Based ISE to Protect Boolean Masking in Software

labeled as two shares of another secret. For the verification, we set the key parameters as
follows: the cycles is set to 50, and the mode is TRANSIENT.

The verification results are as follows: when using standard RV32I instructions, leakage
between GPR[6] and GPR[13] is captured at line 11, with the leakage location identified at
the general-purpose register write port, and the verification takes approximately 10 seconds.
In contrast, when using CBM instructions, no leakage is detected, and the verification
takes approximately 180 seconds.

	Introduction
	Contributions
	Related works
	Organization

	Background
	RISC-V
	Notation
	Implementation of Boolean Masking
	Code-based Masking
	(Stateful) Pseudorandom Generator

	Design
	Security Analysis and Discussions
	Requirements of the Implementation
	Security Analysis

	Implementation and Formal Verification
	Base core: Ibex
	Encoder and Decoder
	Pseudorandom Generator
	Register Gating
	Formal Verification

	Evaluation in Practice
	Efficiency
	Security

	Conclusion and Future Works
	Summary
	Future Work

	Area-optimized Matrix Multiplication
	Frequency-optimized matrix multiplication
	Computation process
	Efficiency
	Security

	Leakage-Resilience of the Duplex-based PRG
	Oracle-free Leakages: Preventing Future Computation Attacks
	Leakage-Resilience Definition for Stateful PRGs
	Leakage-Resilience of DPRGP

	Formal verification

