
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 268–292. DOI:10.46586/tches.v2025.i2.268-292

CHERI-Crypt: Transparent Memory Encryption
on Capability Architectures

Jennifer Jackson1, Minmin Jiang2 and David Oswald3

1 University of Birmingham, Birmingham, UK, j.jackson@bham.ac.uk
2 University of Birmingham, Birmingham, UK, m.jiang@bham.ac.uk

3 University of Birmingham, Birmingham, UK, d.f.oswald@bham.ac.uk

Abstract. Capability architectures such as CHERI (Capability Hardware Enhanced
RISC Instructions) are an emerging technology designed to provide memory safety
protection at the hardware level and are equipped to eradicate approximately 70%
of the current software vulnerability attack surface. CHERI is an instruction set
architecture extension and has been applied to a small number of processors, including
various versions of RISC-V. One of the benefits of CHERI is that it inherently provides
segregation or compartmentalisation of software, making it suitable for supporting
other types of applications such as Trusted Execution Environments, where sensitive
data and computation is conducted inside a secure enclave, away from the rest
of the untrusted operating system and services. To prevent untrusted software
from accessing these compartments or secure regions of memory CHERI uses the
mechanism of sealed capabilities. Trusted execution environments however, have
been proven vulnerable to not just software-based attacks, but hardware attacks
as well. In this paper we present our CHERI-Crypt design, an encryption engine
extension to a CHERI-RISC-V 32-bit processor, for transparent memory encryption
of sealed CHERI capabilities to additionally protect sensitive data in memory against
physical hardware attacks. We show that our CHERI-Crypt design can run an enclave
test program within an encrypted CHERI seal and invoke process, requiring 626
additional clock cycles with a batch size of 32 bytes. Adding CHERI-Crypt reduces
the maximum frequency of the base CPU by only 6 MHz, and requires approximately
3.5× more flip flops and LUTs.
Keywords: Memory Encryption · CHERI · RISC-V · Capability Architectures ·
Confidential Computing · Trusted Execution Environments

1 Introduction
1.1 CHERI Capability Architectures
CHERI (Capability Hardware Enhanced RISC Instructions) (CHERI) [WNW+23] extends
Instruction-Set Architectures (ISAs) with architectural capabilities to provide memory
safety by the hardware and allow fine grained code protection against approximately 70%
[JEA20] of common memory vulnerabilities such as buffer overflows. CHERI capabilities
extend traditional pointers with additional information stored in the hardware relating to
their bounds and permissions to control fine grained access to memory. Along with this
additional information is a validity tag bit which maintains their integrity. When an illegal
operation is performed, such as writing beyond the bounds of a capability or de-referencing
a NULL capability, a hardware exception is raised and the program execution is halted
before the problem can be exploited. The CHERI model can be mapped into architectures
in different ways. For example capabilities may be stored in memory in compressed or

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.268-292
mailto:j.jackson@bham.ac.uk
mailto:m.jiang@bham.ac.uk
mailto:d.f.oswald@bham.ac.uk
http://creativecommons.org/licenses/by/4.0/

2 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

(4) Perms (12) (4) otype (12) offset (32) length (32) base (32)Tag

CHERI Capability format: 128 bit uncompressed

Figure 1: Example capability fields for an uncompressed 128 bit format for a 32-bit architecture.

uncompressed format and the bit width of the information fields may differ between
architectures. The 128 bit CHERI concentrate [WJX+19] compressed format model for 64
bit architectures is increasingly being adopted, however 128 bit uncompressed formats for
32 bit architectures as shown in Figure 1 is still useful for low complexity small embedded
devices, and where experimental research features can easily be added. In this format the
permissions (perms) field governs how the memory that the capability is pointing to can
be used, for example whether it can perform loads and stores or execute code. The object
type (otype) field indicates whether a capability is sealed by containing a unique identifier
(see Section 1.2), and consequently cannot be de-referenced. The base is the lower bound
of the capability. The length is the length of the memory section, where the sum of base
and length is the upper bound of the capability. The offset is the offset from the base,
where the sum of base and offset gives the address the capability currently points to.

1.2 Compartmentalisation, Sealed Capabilities, and TEEs
One of the benefits of CHERI is that it inherently provides compartmentalisation of software
or data, making it suitable for supporting applications beyond the fine grained memory
safety of preventing vulnerabilities such as buffer overflows. To prevent untrusted software
from directly accessing these compartments of memory CHERI uses the mechanism of
sealed capabilities [WWN+15]. A sealed capability is a capability that has been prevented
from directly accessing the area that it is pointing to. In software terms, this means that
the capability cannot be de-referenced. A capability can be sealed and unsealed by a
sealing capability containing an object identifier within its base field, which can be thought
of as a key to lock and unlock a memory space.

This mechanism can be useful in various ways, e.g. for isolating software such as
external libraries from the rest of the code and reducing the potential attack surface, or it
can be used as a representative method of encryption where the sealing capability is used
as an encryption key to access reads and writes to memory without physically encrypting
the data. Additionally, sealed capabilities are an ideal framework for enclaved execution, a
type of Trusted Execution Environment (TEE), where sensitive data and computation is
conducted inside a secure enclave, away from the rest of the untrusted operating system
and services. Previous CHERI-enclave work such as CHERI-TrEE [VSNJ+23] has shown
that a trusted application sealed in memory can be invoked through a secure CHERI
unsealing process. A pair of sealed capabilities pointing to the trusted code and data
sections can be accessed through a special CHERI invoke instruction. The CHERI invoke
instruction performs a domain transition off to an isolated piece of code and data, and
then returns. In CHERI-TrEE, the transitioned domain resides within a trusted and
carefully managed memory space. Part of this management involves ensuring there are no
overlapping capabilities pointing to the enclave memory. This is achieved by a memory
sweep operation over the whole of the memory space every time an enclave is initialised.

1.3 Transparent Memory Encryption of Sealed Capabilities
Relying on sealed and sealing capabilities alone for symbolic “encryption” (as in [VSNJ+23])
and other controlled memory admittance from the software side can leave the system vul-

Jennifer Jackson, Minmin Jiang and David Oswald 3

nerable to other forms of unwanted physical memory access. For example TEEs have been
proven vulnerable to not just software-based attacks, but also hardware attacks [CVM+21],
including those targeting the memory bus [LJF+20]. Therefore, the need for physically
encrypting sealed capabilities in memory can protect the data from physical hardware
attacks as well as protect the data from software attacks by sealing. In addition to this,
control over fine grained memory access with capabilities allows different memory areas to
be encrypted with different keys. Encrypting with different keys (through object types) is
useful in preventing accidental or adversarial overlapping capabilities from gaining access
to sensitive data, either during current use, or from past use of the same memory space if
it has not been cleared effectively. The only alternatives to this overlapping problem that
have been proposed are a full memory sweep [VSNJ+23], and linear capabilities [Lip19]
but linear capabilities are difficult to implement in practice. We propose that the concept
of transparent memory encryption can be achieved by seamlessly integrating the physical
encryption process into the sealing and unsealing operations of the CHERI instructions.

1.4 Our Contribution
In this paper we present our CHERI-Crypt design, a Memory Encryption Engine (MEE)
extension to a CHERI-RISC-V 32-bit processor for transparent memory encryption of
sealed CHERI capabilities to additionally protect sensitive data in memory against physical
attacks. The encryption engine can seamlessly encrypt data behind capabilities during a
seal operation and additionally decrypt and encrypt capabilities on-the-fly when running
invoked enclave code. Our main contributions of this paper are:

1. This work presents, for the first time, how transparent memory encryption and decryp-
tion meaningfully interacts with CHERI capabilities, in particular sealing. To this end,
we create two new instructions CSealEncrypt and CInvokeEncrypt to demonstrate
the encryption operations, with the intention to eventually roll them into the existing
CHERI CSeal and CInvoke instructions.

2. We implement our design as a 128-bit AES-Galois Counter Mode (GCM) encryption
engine extension to a CHERI-RISC-V 32-bit processor using the high-level Spinal HDL
language.

3. We show that our CHERI-Crypt design can run with a small enclave test program as
part of an encrypted CHERI seal and invoke process. To encrypt and run the enclave
with an encryption data batch size of 32 bytes requires 626 additional clock cycles.
Adding CHERI-Crypt reduces the maximum frequency of the base CHERI-RISC-V
CPU by only 6MHz, and requires approximately 3.5x more flip flops and LUTs.

The source code and additional material for CHERI-Crypt is available at: https://
github.com/cap-tee/cheri-crypt

Paper Organisation The rest of the paper is organised as follows: In Section 2 we discuss
background and related work, in Section 3 we outline the CHERI-Crypt concept, in
Section 4 we detail the design of CHERI-Crypt on a CHERI-RISC-V 32-bit processor, in
Section 5 we present benchmarking results, and finally in Section 6 we conclude.

2 Background and Related Work
Trusted Execution Environment A TEE provides a secure and isolated processor area
where sensitive computation can occur without interference or observation by untrusted
parts of the system. By using encryption, a TEE creates a clear boundary between
trusted and untrusted parties, protecting the data processed in the TEE even if the raw
content of the memory is tampered with. Intel Software Guard Extensions (SGX) [Int15], a

https://github.com/cap-tee/cheri-crypt
https://github.com/cap-tee/cheri-crypt

4 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

prominent implementation of TEE, was launched in 2015. SGX is a set of instructions built
into certain Intel architectures that enables the creation of hardware-enforced encrypted
memory regions known as enclaves, where code and data are protected from external access,
even from a compromised Operating System (OS) or hypervisor. However, SGX remains
vulnerable to Side-Channel Attacks (SCAs) and its performance overhead poses a burden
on the system, highly dependent on the frequency of enclave boundary crossings. The
original MEE for SGX used a Merkle tree and counters to prevent memory replay attacks,
limiting the memory available to an enclave. In subsequent revisions, SGX-Scalable and
Trust Domain Extensions (TDX) [Int23b, Int23a], Intel removed this aspect in favour of
large enclaves and higher performance.

In 2016, AMD introduced Secure Memory Encryption (SME) and Secure Encrypted
Virtualization (SEV) [KPW21] to protect memory from physical access. SME encrypts
the entire system memory through a dedicated hardware encryption engine that utilises a
single key. This approach offers a general protection for the system memory, making it
suitable for on-premise servers or personal devices. SEV is an extension of SME, specially
tailored to protect virtualised environments by encrypting each Virtual Machine (VM)
memory using a unique key, isolating them from each other, as well as the hypervisor. The
keys are protected and distributed by a dedicated secure processor. Although each VM
memory is encrypted and isolated from each other, the data structure that stores some
critical information such as VM states and configurations, the communication methods
with the hypervisor remains unencrypted, which can be exploited to gain control of the VM
execution [HB17]. SEV-Encrypted State (SEV-ES) [Kap17], introduced in 2017, mitigates
such attacks by splitting the unencrypted data structure into two parts: one accessible
by the hypervisor containing necessary control information for VM management, and the
other, protected from hypervisor, containing all remaining information with encryption
applied when VM exits. However, due to the lack of integrity protection in SEV-ES,
arbitrary code can be injected into a SEV-ES secured VM by reuse existing ciphertext to
create an encryption oracle and thereby break Xor-Encrypt-Xor (XEX)-based encryption
[WWME20]. To address this, AMD introduced SEV-Secure Nested Paging (SEV-SNP)
[AMD20], another variant of SEV that offers memory integrity protection through Reverse
Map Table (RMT), enabling detection of malicious memory modifications and preventing
attacks like replay attacks.

Memory Encryption Engines Hardware memory encryption primarily focuses on pro-
tecting data confidentiality/authenticity from hardware attacks. Yan et al. use GCM
with a split-counter scheme to reduce per-block counter size, improving performance and
security [YEP+06]. Memory encryption has subsequently been extended to smart cards,
Internet of Things (IoT) devices, and so on [HT14]. For example, Counter (CTR) and XEX
modes with AES and PRESENT block ciphers for securing Non-Volatile Memory (NVM)
on smart cards were proposed in [EKY11]. “MemEnc” offers a hardware-based, lightweight,
and low-latency memory encryption solution in resource-constrained IoT devices without
OS intervention [GJC21]. Transparent encryption and authentication pipelines are also
applied to modern System-on-Chips (SoCs) implemented on Field Programmable Gate
Arrays (FPGAs), using ciphers like PRINCE, AES, and ASCON to protect and validate
hardware and software Intellectual Property (IPs) at power-off and boot-up stages, as well
as sensitive data during runtime [WUS+17]. To address the limitation of coarse granularity
provided by memory encryption, an approach named “MEMES” was introduced that
allows fine-grained sub-page memory encryption on existing hardware to mitigate heap
memory vulnerabilities [SSL+23]. Recently, “Voodoo” introduced a combined scheme for
authenticated encryption, Dynamic Random-Access Memory (DRAM) error correction,
and memory tagging, reducing complexity and overhead while ensuring data integrity,
confidentiality, and runtime security with minimal performance impact [LUSM24].

Jennifer Jackson, Minmin Jiang and David Oswald 5

CHERI-RISC-V Cores and SoCs CHERI was initially integrated into the 64-bit Micro-
processor without Interlocked Pipelined Stages (MIPS) architecture in 2014, with a QEMU
CHERI-MIPS implementation developed for ISA-level simulation. Subsequently, the Uni-
versity of Cambridge extended CHERI to 32-bit RISC-V architecture (3-stage in-order
pipeline CHERI-Piccolo) and 64-bit RISC-V architecture (5-stage in-order pipeline CHERI-
Flute, superscaler out-of-order CHERI-Toooba). In collaboration with ARM, CHERI was
integrated into ARM architecture in 2014, including the 32/64-bit Armv8-A core, and
extended to a general-purpose ARM architecture (Neoverse N1) under the research program
known as Morello [ARM19], where the Morello board was released in early 2022. Last year,
Microsoft integrated CHERI into the 32-bit Ibex RISC-V core, designed by LowRISC,
creating a (Capability Hardware Extension to RISC-V for Internet of Things) (CHERIoT)
to provide security protection for low-cost embedded systems [ACC+23a] [ACC+23b].

CHERI-RISC-V cores can be added into various systems, such as BESSPIN Government
Furnished Equipment (BESSPIN-GFE) [Blu20], to form SoCs and then be implemented on
Field Programmable Gate Array (FPGA) boards (e.g., Xilinx). BESSPIN-GFE provides
an evaluation platform for testing the effectiveness of hardware security architectures. The
morello board, featuring the Morello SoC, is the most prominent CHERI-supported SoC to
date, designed specially for research and development. These setups allow for developing
and evaluating CHERI features within hardware environments. Although the progress of
CHERI is primarily academic, some industrial companies, such as Codasip [Cod24], have
shown strong interest in using CHERI to provide secure processors for their customers.

AES-GCM Authenticated Encryption Integrating an encryption engine into general-
purpose processors always requires additional memory space and design complexity leading
to an area/performance overhead. Since transparent memory encryption operates at the
hardware level, it does not require any modifications to the applications running within
the TEE. Like the XEX-based encryption engines applied to AMD SME, SEV, and SEV’s
variants, the ciphertext remains the same length as the plaintext, where no additional
memory space is required. For Intel SGX, storing the long tag bits generated by the
standard Message Authentication Code (MAC) algorithm expands the memory usage,
which increases hardware cost.

In this context, the Advanced Encryption Standard - Galois/Counter Mode (AES-GCM)
algorithm [MV07] offers an efficient, robust, and proven solution that ensures data con-
fidentiality and authenticity. The AES-GCM algorithm is a widely used cryptographic
method that provides both encryption and authentication in a single process. It operates
by encrypting data with the AES block cipher in counter mode, while also generating an
Authentication Tag (AT) using a Galois field multiplication to ensure data authentication.
AES-GCM can also benefit significantly from efficiency, as it performs encryption and au-
thentication in a parallelizable style, reducing performance overhead compared to separate
algorithms. Additionally, authentication prevents unauthorized tampering, such as fault
injection attacks. The tradeoff is that AES-GCM requires an Initialization Vector (IV) and
generates an AT for each batch of data, which must be stored. Furthermore, to guarantee
data remains encrypted in external memory, some form of temporary internal storage is
required to hold a decrypted batch of data while it is being used.

3 Concept
3.1 Adversary Model
Following the adversary model commonly employed in standard TEE attack scenarios, we
assume that the attacker has full software root access to the system. Additionally, we
consider that the attacker has physical access to the external memory and can monitor

6 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

data on the memory bus between the processor and the external memory, as shown in
Figure 2. We further assume that the adversary can tamper with the bus data to some
extent, but exclude full replay of memory contents by the adversary from our threat model.
We note that these assumptions are similar to commercial TEEs like SGX-Scalable, TDX,
and SEV-SNP, all of which do encrypt but do not cryptographically verify the freshness
of memory contents.

Host OS

Hypervisor

Processor EE*

CHERI-RISC-V

*EE: Encryption engine

System memory

Memory bus Encrypted
code/dataCache

Application

Figure 2: Adversary model: the attacker has root privileges on the processor, and in addition physical
access to the memory bus.

We do not consider physical attacks like fault injection and side-channel analysis. We
also exclude cache attacks and related microarchitectural vulnerabilities in the TEE code,
as these are orthogonal problems with different mitigations. In Section 6, we compare the
susceptibility of CHERI-Crypt w.r.t. different attack vectors with widely used TEEs.

3.2 CHERI-Crypt: Transparent Memory Encryption Concept
To show that the concept of transparent memory encryption is possible for a CHERI
enclaved execution scenario it is necessary to focus on the two main CHERI instructions,
CSeal and CInvoke, which need to be modified to support encryption and decryption of
the code and data sections of an enclave. We demonstrate memory encryption through a
basic seal and invoke process which form the building blocks of a more complex TEE.

3.2.1 The Basic CHERI Seal and Invoke Process

Before outlining the memory encryption concept, we briefly describe the seal and invoke
process as pictured in Figure 3 which can be called in sequence to perform a basic domain
transition to an isolated piece of code such as an enclave. (1) First, two capabilities, C0
and C1, are created pointing to a pre-loaded code and data memory section. (2) A second
capability, C2, is created called a sealing capability with an otype value loaded into the
base field of the capability. (3) A CHERI seal instruction, CSeal, is used to seal both
capabilities, C0 and C1, with the same otype using the sealing capability C2. During this
process the otype is copied from C2 to the otype fields of C0 and C1. (4) A CHERI invoke
instruction, CInvoke, performs the domain transition. If the otype of the code and data
capabilities are the same, the code capability is passed to the program counter capability,
PCC, and unsealed, and the data capability is passed to the data capability register, C31,
and unsealed. Enclave code is then run starting from the program counter address.

3.2.2 Modification to the Seal and Invoke Instructions

To perform transparent memory encryption we create two new instructions CSealEncrypt
and CInvokeEncrypt to demonstrate the encryption operations, with the intention to
eventually roll them into the existing CHERI CSeal and CInvoke instructions. With

Jennifer Jackson, Minmin Jiang and David Oswald 7

baseoffsetT

Permit
seal otype

c2

1

Sealing Capability

Sealed Capability
Tc0

1

2
3

Sealed Capability
Tc1

CSeal c0, c0, c2
CSeal c1, c1, c2

Permit
invoke

Permit
invoke

Code section

New domain

Data section

CMOVE c3, c4
…
…
CJALR

0110 1010
0011 1111
…
…

PCC

c31

Current domain

CInvoke c0, c1

Code

Data

c0
c1

0110 1010
0011 1111
…
…

4
a) b)

lengthotypeperms

baseoffset lengthotypeperms

baseoffset lengthotypeperms

Figure 3: (a) Sealing two capabilities with the same otype, (b) The invoke process.

Code
…..

3. Invoke enclave

1. Set up code capability and encrypt
CSealEncrypt SealedCodeCap, codeCap, sealingCap

CInvokeEncrypt SealedcodeCap, SealeddataCap

2. Set up data capability and encrypt
CSealEncrypt SealedDataCap, dataCap, sealingCap

CJALR cra

4. Run enclave code

Untrusted Domain Trusted Enclave Domain Trusted Hardware Operations

CSealEncrypt
Perform hardware checks

If permission to encrypt
 generate/get key
 encrypt memory the capability is pointing to
 store IV & key based on otype for later
End

Seal capability as normal

5. Return here to untrusted domain

CInvokeEncrypt
Perform hardware checks

If permission to encrypt
 get key based on otype
 enable encrypt/decrypt
 pass enclave bounds to EE
End

Transfer unsealed codecap and datacap to
PCC and C31.

Encryption Engine only
If Fetch PCC/DC out of enclave bounds
 Disable encrypt/decrypt
 Clear key

Re-instate old PCC and clear C31

Figure 4: Seal and Invoke process with added encryption hardware operations.

this intention, we use an extra hardware permission bit to indicate whether encryption is
selected. The CHERI specification defines two types of permissions: hardware permissions
and software permissions. As shown in Figure 1, there are 12 bits representing the hardware
permissions leaving 4 spare bits that can be used for software-defined permissions. We
transfer one of these software permission bits into a hardware bit, resulting in 13 hardware
permissions and 3 software permissions.

Figure 4 shows the hardware operations performed by the seal and invoke instructions
together with the additions (shown in italics) necessary to achieve transparent memory
encryption for the basic seal and invoke process. The new CSealEncrypt instruction
format follows the CHERI CSeal instruction except that if encryption takes place, as
determined by the permission bit, the output capability is a resized sealed capability whose
memory content is encrypted. As discussed previously two CSealEncrypt instructions are
performed to seal and encrypt a code and a data section. If encryption is permitted the
pipeline is stalled, a key is generated based on the otype, the contents of the memory is
read, encrypted, and then written back into the same location. At this stage we make some
assumptions: we assume the AT and IV will be stored in memory immediately following

8 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

the data and therefore assume the passed capability is large enough to accommodate these,
as well as the actual encrypted data (see Section 4.2). The bounds of the returned sealed
capability is then reduced to cover only the encrypted data. We also assume the encryption
engine provides two assurances associated with key generation: (1) a new encryption key
is generated for each new otype, and (2) once two seal instructions have been performed
with the same otype, a new encryption key is generated. This removes the potential issue
associated with having a repeated otype to seal a different capability pair.

The new CInvokeEncrypt instruction follows the CInvoke instruction format. Ad-
ditionally a hardware check tests that both the code and data capability encryption
permission bits are set the same, otherwise a hardware exception will result. If encryption
is not required the instruction will unseal and complete the domain switch straight away
as normal. Otherwise the pipeline is delayed whilst the encryption key and IV is obtained
based on the otype, and the bounds of the enclave are passed to the encryption engine,
which is then enabled. After the CInvokeEncrypt instruction completes, decryption/en-
cryption of the enclave code and data is performed until the PCC falls outside the bounds
of the enclave. At this point the encryption circuits are disabled and registers are cleared.

4 CHERI-Crypt Design and Implementation
We implement the transparent memory features on Proteus [BNP23, Pro23], a RISC-V 32
bit processor developed under the Spinal HDL language that has been extended with the
CHERI instruction set. We chose this five stage (fetch, decode, execute, memory, writeback)
pipelined processor because it can be extended readily using a plug-in feature, which is
used to add the new instructions and encryption circuitry. Also the uncompressed 128 bit
capability format it uses as given in Figure 1, allows the experimental proof-of-concept
features to be added without additional complexity.

4.1 Transparent Memory Encryption Engine: Outline Design
Figure 5 shows the extended modifications to the Proteus core: the basic blocks of CHERI-
Crypt and the transparent memory encryption engine. The CHERI-RISC-V-32 five-stage
pipeline is shown together with the CHERI Memory Tagger and Logic. The Tagger
component sits in the path of the data bus and stores and retrieves CHERI tag bits as
capabilities are loaded and stored to memory. The data bus from the Memory stage and the
instruction bus from the Fetch stage interface to the memory over the AXI interconnect.

The new CSealEncrypt and CInvokeEncrypt instructions (see Section 3.2.2) are
processed from the memory stage and are used to start the encryption engine and pass
control parameters such as capability bounds information. Each of the new instructions
take multiple cycles to process and so the pipeline is stalled while these take place.

The Key Generation and Management unit (see Section 4.4) generates and stores
the keys, as well as stores the next available IV invocation field for the AES core (see
Section 4.3). During the CSealEncrypt instruction, if encryption is required, a key
is requested based upon the sealing capability’s otype and this, together with an IV
and capability information relating to the area of memory to encrypt is passed to the
CSealEncrypt read/write unit (see Section 4.5). This unit controls access to the AXI
databus and hence memory via a control selector, DbusCntrlSelector component, and
access to the AES core via the AESCntrlSelector component. Data is read and encrypted
in 128 bit blocks, multiple blocks form a batch of data, and each batch is associated with
an AT and IV. These are written back out to memory (see Section 4.2).

During the CInvokeEncrypt instruction, a previously stored key associated with the
otype is requested from the Key Generation and Management unit along with the next
available IV invocation value. These are passed along with the bounds of the code section

Jennifer Jackson, Minmin Jiang and David Oswald 9

of the enclave to an Instruction Cache, and the bounds of the data section of the enclave
to a Data Cache (see Section 4.6). The CInvokeEncrypt instruction then completes.

The caches inspect commands on the instruction and data bus, and take control of the
data path from the AXI bus through to the encryption core via the DbusCntrlSelector,
IbusCntrlSelector and the AESCntrlSelector components. Each cache fetches a cacheline
of data from memory when required, and only if it falls within the bounds of the enclave,
decrypts it and temporarily stores it in the cache memory ready for use. Each cacheline
holds one batch of data, and each batch is associated with a single AT and IV. Write
operations may also occur to the Data Cache from the processor and therefore cachelines
can also be encrypted and written back into memory when necessary. These operations
continue until the Fetch stage PCC goes out of bounds, signaling that the processor has
left the enclave. Before disabling the encryption engine and releasing the instruction and
data bus, the caches are flushed and registers are cleared.

dbus_cmd_addr

dbus_rsp

dbus_cmd_wdata

Fetch
Stage

IbusCntrlSelector
ibus_cmd

dbus_rsp

ibus_cmd

dbus_rsp

Instruction Cache

AESCntrlSelector

Data Cache CSealEncrypt
read/write

CHERI
Memory
Tagger
and Logic

Memory stageKey
Generation
and
Management

CSealEncrypt
Instruction
Control

CInvokeEncrypt
Instruction
Control

CsealE
control

CInvokeE
control

DbusCntrlSelector

AES Core

Decode
Stage

Execute
Stage

Transparent Memory Encryption Engine CHERI RISC-V pipeline

dbus_cmd

dbus_rsp

Writeback Stage

FetchIo

dbus

cbus

CInvokeE
control

CSealE
control

CInvokeE
control

FetchIo
(PCC bounds)

FetchIo
(PCC
bounds)

AXI

RAM
Memory

Figure 5: CHERI-Crypt Outline design.

4.2 Encrypted Enclave Memory
We store the AT/IV alongside the encrypted data in memory as shown in Figure 6.
Encrypted data During encryption the data is split into fixed sized blocks of memory
called batches. The length of a batch (Lb) is assumed to be a multiple of 128-bit blocks (16
bytes) processed by the 128-bit AES core. Lb is a fixed hardware generic which can be
chosen to optimize speed and resources for typical enclave sizes.
Authentication Tag For each batch of data encrypted, a 128-bit authentication tag
is generated by the AES core which is stored alongside the data in memory. During
decryption this tag is used to validate the decrypted data.
Initialization Vector We use 96 bits for the IV, which is used by the 128-bit AES-GCM
algorithm because it is the most efficient [Dwo07]. For each batch of data encrypted
with a fixed key, the IV (nonce) is different and since the IV is authenticated it is also
stored visibly in memory alongside the data. We use the deterministic method [Dwo07]
for constructing the IV value which is comprised of an upper 32-bit fixed field, and a lower
64-bit invocation field determined by a counter.
Storage size of the authentication tag and initialisation vector For simplicity we
assume the storage size of the AT and IV should be a multiple of 16 bytes. This gives two

10 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

Ld

Lb b1

b2

bn

BaseAddr

Capability memory

LTag

AT1
IV1

ATn
IVn

16 bytes

LTIV

BatchAddr

Lc

Capability
length
specified by
software

TagAddr

Figure 6: Encrypted Capability Memory.

storage options, either truncate the AT to 64 bits and concatenate this with the 64-bit
invocation field of IV (since the upper 32 bits are fixed for the hardware instance), or store
the full 128-bit AT and pad the IV to 128 bits. The first method uses less storage but
reduces the authentication accuracy. We choose to use the second method to fully test the
design.
Capability length to be encrypted We assume the capability length (LC) specified by
the software to be encrypted is passed as a whole number of batches in size plus the
memory size required to store an AT and IV for each batch. It is also assumed that the
capability is aligned in memory to the batch size which also corresponds to the size of a
single decryption cache line.
Encrypting memory storage order As shown in Figure 6, data is stored one batch at a
time. Batch 1 (b1) is encrypted and stored starting at the lower bound (base address).
AT1 and IV1 are stored at the upper bound. The new resized length of the data (Ld1)
is calculated. This process is repeated for the second batch b2, AT2, IV2, Ld2, etc. The
end is determined when the current tag address (TagAddr) is no longer greater than the
current data address (DataAddr) plus the batch length (Lb). If these two are not equal,
then an encryption length error will occur, leading to a hardware exception. For each
batch n the iterative calculation is as follows:

DataAddrn = DataAddrn−1 + Lb, TagAddrn = TagAddrn−1 − LT IV and Ldn =
Ln−1 + Lb where DataAddr1 = BaseAddr, TagAddr1 = BaseAddr + LC − LT IV and
Ld1 = Lb.
Decrypting from memory Because the batches are aligned with the cache lines, a batch
address (BatchAddr) is first provided for decryption. To work out the corresponding
AT and IV addresses we firstly calculate the number of batches in the capability from
the resized capability length (Ld), and the batch number to be decrypted. From this we
can find the length of the AT (LT ag) from the base address, and then its corresponding
absolute address. Since the batch size is specified as a power of 2 we can apply bit shift
operations to find the AT length (LT ag) directly. We assume that the bits to shift are
fixed values, and that Lb ≥ LT IV , and are calculated as follows:

Sb = log2(Lb), St = log2(LT IV)

Jennifer Jackson, Minmin Jiang and David Oswald 11

Then the tag address can be calculated from the Tag length as follows (where >> is a
right shift and << is a left shift operation):

Number of batches: BN = Ld/Lb = Ld >> Sb

Batch number to decrypt: bn = (BatchAddr − BaseAddr) /Lb + 1 =
((BatchAddr − BaseAddr) >> Sb) + 1

Tag length from base address: LT ag = Ld + (BN − bn) × LT IV = Ld + (BN − bn) >>
St = Ld + (Ld >> (Sb − St) − ((BatchAddr − BaseAddr) >> (Sb − St) + LT IV))

Tag address: TagAddr = BaseAddr + LT ag

4.3 AES core: Encryption and Decryption
We conservatively chose AES-GCM as authenticated encryption algorithm, similar to
classic SGX. We note that other algorithms such as ASCON [TMC+24] or other modes
such as XEX-based Tweaked-codebook mode with Ciphertext Stealing (XTS) could be
used alternatively and might lead to lower runtime/size overheads. However, for the
present paper, our focus was on demonstrating a proof-of-concept of the overall design.
We acknowledge that further optimisations and different algorithm choices are possible as
discussed further in Section 6.

The AES core can be configured for encryption and decryption in multiple ways to
either minimise resources or maximise parallel processing for speed. We configure the AES
core with separate encryption and decryption functions to allow parallel processing during
simultaneous requirement. The encryption function is shared between the CSealEncrypt
Read/write component and the Data Cache via the AESCntrlSelector, since neither of these
require simultaneous use. Additionally, each cache has access to a dedicated decryption
function to allow simultaneous decryption operations of cachelines.

We design the encryption and decryption functionality according to the AES-GCM
NIST specification [MV07, Dwo07] (see Section 2). As the pipeline must be stalled whilst
waiting for the completion of the encryption and decryption functions, minimizing the
encryption latency is crucial. To address this, after the hash calculation, we process the
Galois field multiplication (GF MULT) in parallel with the encryption (AES ENC) and
thereby reducing the overall timing overhead, as illustrated in Figure 7.

Hash
calculation

AES ENC
(IV1)

GF MULT
(AAD data)

AES ENC
(IV2)

GF MULT
(CT1)

AES ENC
(IV3)

GF MULT
(CT2)

AES ENC
(IVN)

GF MULT
(CTN-1)

AES ENC
(IV0)

GF MULT
(CTN)

Tag
calculation

Figure 7: Parallel processing of authenticated encryption.

4.4 Key Generation and Management
Encrypting capability memories with distinct keys is essential for maintaining data integrity
and isolation in CHERI. Using different keys prevents accidental or adversarial overlapping
capabilities from gaining access to sensitive data, either during current use, or from past
use of the same memory space if it has not been cleared effectively. For multi-enclave
systems, such as CHERI-TrEE, encrypting each enclave with a unique key removes the
need for an exhaustive and time-consuming capability overlap check, which requires a full
memory sweep every time an enclave is initialised. The generation and storage of such
keys need to be carefully managed, and away from any addressable memory. For this, we
chose to implement a managed table stored internally to the CHERI-Crypt core.

12 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

The Key Generation and Management function is driven mainly by two components:
the Table block and the Key Generator block as shown in Figure 8. The Table block
contains a controller to store some critical values in a table, including the otype, key, used
entry, the next available 64-bit invocation field of the IV (NextIVCount), and a key usage
counter (usedCounter). The key generator is dedicated to producing the encryption keys,
and is implemented as a Random Number Generator (RNG) compliant with NIST SP
800-90A [BK15]. These two components work together to ensure secure key generation
and management throughout the encryption and decryption process. The mechanism of
key generation and management is explained in the following paragraphs.

Instantiate
function

Reseed
function

Uninstantiate
function

Generation
function

Internal
state

Personlized string

Seed

Nonce Entropy input

Key

if (request) otype := otype + 1otype

genKey

getKey

storeNextIVCount

return key
and IV

update table
(store IV count)

otype key NextIVCount usedCounter used

otype match?

generate a key

get the key

get the key

TCB table

return next IV counter

key used once

key not existing
or used twice

return next IV counter

reset next IV counter and return

Key GeneratorTable
CInvokeEncrypt

CSealEncrypt

CSealEncrypt

otype match?

usedCounter+
1

usedCounter
+1

update table
(store the key)

Figure 8: Mechanism of key generation and management.

Key Management Table The main principle of key management is that a single key can
be used only once to encrypt or decrypt a pair of capabilities (code capability and data
capability). Since the code and data capabilities are encrypted and sealed by two separate
instructions this requires the hardware to generate a new key after the second use with
the same otype (Section 3.2.2). When a genKey command is issued by the CSealEncrypt
instruction or a getKey command is issued by the CInvokeEncrypt instruction, the request
is transferred to the table unit to obtain a key. For the getKey command, the key is
directly extracted from the table and returned together with the NextIVCount. For the
genKey command, the first step is to verify whether a key already exists in the table
for the specified otype and if it has already been used. If the key exists and has only
been used once before, it is returned along with the NextIVCount, and the usedCounter
is incremented by 1. If the key has been used twice or does not exist, a handshake with
the Key Generator block is initiated to create a new key. Once generated, the new key
is stored in the table and returnedth a reset NextIVCount value, and the usedCounter is
incremented by 1. During the CSealEncrypt instruction, data is encrypted in batches,
requiring a new IV value each time. Once all batches of data have been encrypted, the
storeNextIVCount command is issued by the the CSealEncrypt instruction to store the
next available IV count value back into the table as NextIVCount for subsequent use by
the Data cache. Before exiting the enclave, the Data cache performs a final writeback
operation, encrypting data with the updated IV count.

Following a CInvokeEncrypt instruction, batches of data are decrypted by the AES
Core and controlled by both the Instruction Cache and the Data Cache. During this process
the authentication tags are checked. If any tag checks fail, an error flag is propagated
to the Table block which flushes all stored keys, and a hardware exception occurs. The
system thereby ensures that compromised data cannot continue to be processed.

Key Generator Upon receiving a new key request from the Table block along with the
otype value, the Key Generator starts generating the key. Using the Deterministic Random

Jennifer Jackson, Minmin Jiang and David Oswald 13

Bit Generators (DRBG) mechanism based on block ciphers from NIST SP 800-90A [BK15],
a personlised string, nonce, and an entropy input are fed into the initiate function to
generate a seed. In our implementation, the nonce is substituted with the otype value
supplemented by a counter, while the entropy input consists of a predefined length of
data used for proof-of-concept demonstration. This entropy input is flexible and can be
replaced with any desired entropy sources in future applications, including high-quality
entropy sources or combinations of independent entropy sources tailored to meet specific
security strength requirements of various scenarios [Bar20]. Using the seed output from
the instantiate function, the generation function outputs a pseudo-random key and passes
the key back to the Table block. In the key generation mechanism, the otype value is
extended with a counter that increments by 1 each time a new key is generated. As a
result, even if a capability pair is requested to be encrypted with the same otype, another
genKey command to the key management unit will result in a different key. This prevents
the risk of manipulating a malicious capability to recover the key of a trusted capability
using the same otype value.

4.5 CSealEncrypt Read and Write
The functionality of the CSealEncrypt Read/Write component is to control the reading
and writing of data from memory, and the encryption of capability data during the
CSealEncrypt instruction. It interfaces with the DbusCntrlSelector and the AESCntrlS-
elector to control access to the memory and AES Core. As shown in Figure 9 a state
machine waits for an encryption command from the CSealEncrypt instruction to start
encrypting a batch of data, along with a Batch Address, a Tag Address, Encryption key, and
a NextIVCount value. Firstly the IV is formed from the concatenation of the NextIVCount
and a fixed part, and is pushed into an input data buffer connected to the AES Core
encryption function. It then sends AXI commands to read the capability data from memory.
Since there is only one address bus it cannot read and write at the same time. Received
data is converted from 32 bits to 128 bits and directed to the input buffer. On the last
read, a last read flag is set and passed along with the data to indicate to the encryption
function when to start calculating the AT. When the input buffer is nearly full or all the
reads in the batch have completed, the state machine looks at the output buffer of the AES
Core encryption function for writing the encrypted data back to memory. This output data
is converted back from 128 bits to 32 bits. When all the data read and writes are finished
it will write the AT at the Tag Address followed by the IV before indicating the batch has
complete. This process is repeated until all batches of data for a given capability has been
encrypted. The CSealEncrypt instruction increments NextIVCount for each batch, and
issues a command to store the NextIVCount back to the Key Generator and Management
unit on completion of all batches of data.

4.6 Instruction and Data Cache
We chose a cache as the method to temporarily store the decrypted instructions and data
since the authenticated encryption algorithm works on batches of data where a whole
batch must be decrypted at a time (each batch has an AT and IV). A cache is an efficient
choice where a whole batch can be stored and worked on within the confines of internal
memory, whilst also being scalable with batch size. The type of cache implemented is a
classic direct mapped with write-back functionality where each cache line holds a single
batch of data. Both an Instruction Cache and a Data Cache is required. The Cache
component consists of the Cache Memory and Logic, together with a Cache Controller as
shown in Figure 10. A state machine in the Cache Controller resides in the waitInvoke
state until a CInvokeEncrypt instruction command is detected. During this command the
encryption key and enclave bounds are passed, along with the nextIVCount. Next, the

14 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

Idle Read Write finish

Output
Nearly empty

Done
all writes

Input
Nearly full

Done
all reads

Output buffer
nearly empty

Input buffer
nearly full

AXI write
commands

Encrypt
batch

Data Address, Tag Address,
Encryption key, NextIVCount

Done Tag Error
flag

Write
Tag & IV

AXI read
 commands

Figure 9: CSealEncrypt Read/Write controller

command part of the instruction or data bus is routed to the cache component via the
busCntrlSelector. Now in the waitRspStart state, the controller waits for the responses in
progress to finish before taking full control of the bus and then moves to the startInvoke
state where commands are directed to the cache memory component.

Whilst bound checks are carried out by the CHERI instructions, the cache controller
also needs to check they are specifically within the enclave region for transparent encryption.
A Bounds Checker component is used to check that the current PCC is within the bounds
of the enclave and at the same time the address commands on the bus are also checked.
For the instruction bus, out of bounds address commands can occur during pre-fetch of
instructions from memory which can happen when the PCC is still within the bounds of
the enclave but the requested commands are not. When this occurs the commands are
re-directed to the main memory. The cache controller will then continue and repeat this
process until the current PCC also goes outside the enclave bounds. This allows jumping
or branching towards the end of the enclave code to be unaffected. For the data bus this
scenario can happen if the enclave code reads or writes data outside of its own data section.

When the address commands and PCC are within the bounds of the enclave the decision
on what to do next is based on priority. For the Data cache, if there is a miss and the
dirty bit is set, then the first priority is to perform a write back operation of the cacheline,
(writebackcacheline state) before performing a read of the new cacheline (readcacheline),
where both operations are directed via the AES Core. For both the Data Cache and the
Instruction Cache, if there is a miss and the dirty bit is not set then the second priority is
to perform a read of a new cacheline only, via the AES Core for decryption. Once a read
of the new cacheline is undertaken, the current read or write command to the cache is
repeated (repeatReadWrite state) and then the next command is processed. If there are no
misses the cache can read or write data on every clock cycle.

For the read cacheline operation a batch of data is read from memory, along with the AT
and IV (see Section 4.2) and pushed into an input buffer to the decryption function within
the AES Core. Unlike the CSealEncrypt Read/Write block (see Section 4.5), reading and
writing takes place simultaneously and decrypted data is written into the cache memory as
soon as it becomes available. A similar process occurs for the writeback operation, where
data is read from the cache, encrypted using a new IV value and written to memory.

Exiting from the enclave occurs when the PCC is no longer within the bounds of the
enclave. The Data cache performs any writebacks of cachelines if they are required and
stores the nextIVCount back in the Key Generation and Management table. For both
caches the Cache Memory is flushed to empty out any decrypted contents. Before finishing
and releasing the bus, the Instruction Cache waits for the Data Cache to finish which may

Jennifer Jackson, Minmin Jiang and David Oswald 15

be some time after if a final writeback is required. This ensures registers are not cleared
and further instructions are not carried out before the data side is ready.

reset

waitInvoke

startInvoke

writeback
Cacheline

Read
Cacheline

repeatRead
Write

waitRsp
Finish

waitRspStart

1st priority
2nd priority

Invoke Trigger
PCCOutOfBounds

cmdSelect

rspSelect
startFetch

Cache

Cache
Memory Logic

Cache
Controller

To
busCntrlSelector

To AESSelector

Addr/PCCOutofBounds

To
FetchStage

To CInvokeEncrypt
(Memory Stage)

To
Other cache

Bounds
Checker

Flush

Figure 10: Encryption Cache

5 Microbenchmark
In this section we present microbenchmarks of our design. We firstly present the AES core,
and then the full CHERI-Crypt design under the basic seal and invoke process.

5.1 AES Core: Encryption and Decryption Function Block
The AES core is tested against the NIST test vectors [MV07], with a 128-bit tag, 0-bit
AAD, 128-bit key, and a 512-bit plaintext. Both encryption and decryption take 16 clock
cycles to complete encryption or decryption of a 128-bit block of data. An additional 22
clock cycles are needed to calculate the AT. The total latency, in clock cycles to encrypt
or decrypt a single batch of data can be calculated as follows:

Latbatch = (Nblks + 1) × clksdata + clksAT

where Latbatch is the latency of a single batch, Nblks is the number of blocks in a batch, 1
represents the additional IV processing, clksdata is the number of clock cycles to process
one 128 bit data block, and clksAT is the number of clock cycles to process the AT. For a
batch size of 32 bytes, the latency is calculated as 70 clock cycles.

The encryption block (AES_ENC) and decryption block (AES_DEC) were imple-
mented separately on a Zynq UltraScale+ XCZU9EG-2FFVB1156 FPGA. The area usage,
maximum operating frequency, and dynamic power estimates are presented in Table 1.
The AES_ENC and AES_DEC can achieve identical performance in terms of operating
frequency, while maintaining slightly different area usage and dynamic power estimation.

Table 1: Implementation metrics for AES_ENC and AES_DEC.

LUTs Flip-flops Maximum
freq. (MHz)

Dynamic
power (mW)

AES_ENC 4181 2457 100 148
AES_DEC 3701 2345 100 153

16 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

5.2 CHERI-Proteus with Full CHERI-Crypt Design
5.2.1 Software and Hardware Setup

We set up a small program to perform a basic seal and invoke process, where the code
section and the data section of the enclave, are given in Listing 1 and Listing 2 in the
Appendix, respectively. The enclave is aligned in memory, and the capabilities that point to
the enclave are derived from labelled addresses to cover the bounds of the data, ATs and IVs.
The CHERI-Proteus core is configured with on-chip 128 KiB RAM memory representative
of FPGA-based block RAM with low latency expectations. The Key Generation and
Management Unit is configured with a table size to accommodate a maximum of three
enclaves. The CSealEncrypt instruction is called twice, once for the code section and once
for the data section. The CInvokeEncrypt instruction is then called. We run the invoked
enclave multiple times. The enclave code itself writes a data value to its own data section
which is encrypted and reads and writes data to a location outside of the enclave area
which is not encrypted. This is representative of fetching input parameters and writing a
final result that is retrievable by the untrusted application. The enclave then returns.

5.2.2 Latency

We measured the latency of the CSealEncrypt instruction from simulation as given in
Table 2. The latency of the three main parts of the instruction are also given: AES_ENC,
key generation, and additional latency of reading and writing to memory. (Note that some
reading and writing also takes place in parallel with the encryption processing). We used a
batch size of 32 bytes which was initially chosen to cover the small enclave test code whilst
allowing the data section to be represented by multiple batches (two in this first case).

The time taken (in clock cycles) to run the enclave test code was also measured after
the CInvokeEncrypt instruction had been called. The results are given in Table 3 with
and without encryption, and show both the instruction and data caches together with
the latency of the operations performed for two different batch sizes. For the instruction
side, a first instruction read requires a read cacheline operation to decrypt the instructions.
Similarly when the enclave writes to its own data section this requires a read cacheline
operation to decrypt and load the cache with the current memory contents before writing
the value. On return of the enclave a writeback operation is performed before both
caches are flushed. During processing of commands and other wait operations (Command
Proc.) the data cache recognises the reads and writes outside the enclave and sends these
out to main memory but waits for these to complete before continuing. Since both the
instruction cache and data cache operate in parallel and wait for each other to complete
final operations, they both have the same total latency. To encrypt the enclave code and
data sections with a batch size of 32 bytes, and run the encrypted enclave required 626
additional clock cycles compared to the 17 clock cycles without encryption.

Table 2: CSealEncrypt latency for the enclave code given in Listing 2, with a batch size of 32 bytes

Code/Data
Size

(bytes)

AES Enc
Lat.
(clks)

Key Gen.
Lat.
(clks)

Read/Write
Lat.
(clks)

Total
Latency
(clks)

CSealEncrypt (Code)
Without encryption 32 - - - 1
With encryption 32 70 19 20 109

CSealEncrypt (Data)
Without encryption 64 - - - 1
With encryption 64 140 19 25 184

Jennifer Jackson, Minmin Jiang and David Oswald 17

Table 3: Enclave runtime latency for the code given in Listing 2, with batch sizes of 32 and 64 bytes

Readline
Lat.
(clks)

Writeback
Lat.
(clks)

Flush Lat.
(clks)

Wait Lat.
(clks)

Command
Proc. Lat.
(clks)

Total
Latency
(clks)

Instruction cache
Without encryption - - - - - 15

With encryption (32 bytes) 90 0 32 92 136 350
With encryption (64 bytes) 122 0 64 123 167 476

Data Cache
Without encryption - - - - - 15

With encryption (32 bytes) 90 90 32 0 138 350
With encryption (64 bytes) 120 122 64 0 170 476

Figure 11(a) shows the measured latency of the CSealEncrypt instruction for the test
enclave, whist varying the size of the data section and hence number of batches of data to
be encrypted. Results are presented for two different batch sizes (32 and 64 bytes). For
the 32 byte batch case Figure 11(b) also shows the main components as a percentage of
the total latency. As the data size increases the latency of the CSealEncrypt instruction
increases, as we would expect. For the same amount of data, latency is greater for a
smaller batch size due to the added overheads of generating extra AT and IV values and
stopping and starting the reading and writing process. As the amount of data increases,
the latency is more dominated by the AES encryption function. As shown in Table 3
changing from a 32 to 64 byte batch size increases the running latency of the enclave code
since more memory is decrypted, but the same amount of instructions and data is being
run and processed. If memory allows, it makes sense to have the biggest batch size possible
(with minimal padding), to reduce initial encryption latency, however when running the
enclave code, consideration would also need to be given to what the enclave code is doing.
Processing small amounts of data with large batch sizes could cause a large unnecessary
writeback delay on return.

0 1,000 2,000 3,000 4,0000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Data (Bytes)

La
te
nc

y
(c
lo
ck

cy
cl
es
) batch (32bytes) batch (64bytes)

(a) Latency with two different batch sizes.

0 1,000 2,000 3,000 4,0000

20

40

60

80

100

Data (Bytes)

La
te
nc

y
(p
er
ce
nt
)

AES read/write keygen

(b) Latency percentage of individual components

Figure 11: CSealEncrypt latency with increasing amounts of data.

5.2.3 Performance of Larger Applications

To assess performance of more realistic applications, enclaves with a larger code base
were considered for two types of computation scenario (1) a program containing repeated
instruction sequences to read/write data to a consecutive block of memory within the

18 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

0 1,000 2,000 3,000 4,0000

100

200

300

400

500

Batch Size (Bytes)

La
te
nc

y
(K

cl
oc
k
cy
cl
es
) Encrypted(2) Encrypted(1)

Normal(2) Normal(1)

(a) Enclave computation latency.

0 1,000 2,000 3,000 4,0000

200

400

600

800

1,000

1,200

Batch Size (Bytes)

O
ve
rh
ea
d
(p
er
ce
nt
)

Encrypted(2) Encrypted(1)

(b) Encryption overhead.

Figure 12: Encrypted enclave computation latency and encryption overhead with increasing batch size for
two types of computation: (1)Data access, (2)Instructions only. (Where Normal = not encrypted)

enclave’s data section, and (2) a program containing repeated instruction sequences without
accessing memory. The programs were written to fill 128KiB of memory. The latter scenario
represents a baseline program where only consecutive instructions are decrypted, whereas
the former scenario additionally requires data to be decrypted and encrypted, which
could be representative of a data processing application. Figure 12 (a) shows the enclave
computation latency and Figure 12 (b) shows the encryption overhead (as a percentage
of the computation without encryption) for the two program scenarios as the batch size
is increased. For both programs, increasing the batch size to around 1KiB minimises
the encrypted latency and overhead. However, whilst adding data accesses increases the
over-all computation latency, the encrypted case increased by a smaller rate than the
non-encrypted, (contributed to by simultaneous decryption of instructions and data),
resulting in a smaller overhead for a more complex processing scenario.

5.2.4 FPGA Implementation

We implement our design on a Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 FPGA
board. Section 5.2.4 shows the utilisation, frequency and dynamic power of CHERI-Proteus,
with and without the CHERI-Crypt design. The results include the processor core and
AXI interconnect with peripherals and all ports connected. For implementation, the
CHERI-Crypt encryption engine is configured with a batch size of 32 bytes, 4 cache lines,
and a key generator table with a maximum of three enclaves. CHERI-Crypt utilises four
times as many flip flops and more than three times as many LUTs compared to the normal
CHERI-Proteus core. CHERI-Crypt utilisation is dominated by the three AES encryption
and decryption functions, followed by the data cache. The addition of the CHERI-Crypt
encryption engine has some impact on frequency performance but further optimisation
of the design could see this impact reduced. Utilisation will vary depending upon the
configuration parameters such as: (1) batch size, which will impact the size of the required
cache, and (2) the number of enclaves catered for, which will impact the size of the table
component within the key generation and management unit.

6 Conclusions
Possible Optimisations As our implementation serves as a basic proof-of-concept, we
believe that further optimisations of the design can be achieved to reduce utilisation and

Jennifer Jackson, Minmin Jiang and David Oswald 19

Table 4: Implementation on the Zynq UltraScale+ XCZU9EG-2FFVB1156 FPGA board with 128KiB
memory, 32 byte batch size with 4 cache lines, and a key table for 3 enclaves. Percentages indicate area
usage relative to total FPGA size.

Processor (128
KiB memory)

Area occupation Maximum
freq. (MHz)

Dynamic
power (mW)LUTs Flip-flops BRAMs

CHERI-Proteus 7790 (3%) 3905 (1%) 32 (4%) 63 143
AXI and peripherals 232 232 32

Pipeline 7558 3673 0

CHERI-Crypt-Proteus 25 512 (9%) 15 831 (3%) 32 (4%) 57 257
AXI and peripherals 291 295 32

Pipeline 8083 3671 0
CHERI-Crypt: 17 138 11 865 0

Instructions 451 290 0
Control Selectors 211 0 0

CSealEncrypt Read/Write 966 941 0
Data Cache 2017 2260 0

Instruction Cache 1416 1444 0
Key Gen: Table 728 214 0

Key Gen: Generator 1088 429 0
AES Core (1*ENC, 2*DEC) 10 261 6287 0

increase performance, with the aim to maintain the maximum frequency that can be
achieved by the standard CHERI-Proteus. It is possible to reduce the utilisation of the
AES Core for example by sharing the decryption function between caches, or amalgamating
the encryption and decryption functions into a single design, but this would impact the
latency of the read cacheline and write back operations whilst running enclave code, as well
requiring additional multiplexing logic. It would also be possible to clock the encryption
and decryption functions at a greater frequency than the rest of the design to reduce over-all
latency, and these options could be further explored. While we opted for the (conservative)
choice of AES-GCM, CHERI-Crypt could equally use other cryptographic constructions
commonly employed for memory encryption. This includes modes like XTS, as well as
use-case-optimised ciphers like PRINCE [BCG+12], QARMA [Ava16], ASCON [TMC+24],
or Voodo [LUSM24]. The batch size is a configurable element of the design so that it can
be tailored to the encryption requirement of sealed capabilities and enclave sizes used
by the required application. For example to reduce utilization of the cache it would be
favourable to have small batch sizes but this may come at a latency cost if there is a large
overhead of requiring lots of read cacheline and writeback operations, as well as storing the
extra AT and IV values. Similarly, large batch sizes would require more storage space in
terms of the cache, but may reduce the number of read cacheline and writeback operations
performed. In addition, large batch sizes may consume more of the main memory, if for
example the enclave code or data section needed padding up to the size of a whole batch
size. We use 32 bytes to store the AT and IV values in memory. This has less of an impact
on large batch sizes, but more of an impact on small batch sizes. As discussed previously
this storage requirement can be halved by truncating the AT and IV values and by only
checking the truncated AT part on decryption.

Limitations There are some limitations in terms of design and results. First, as CHERI-
Crypt currently does not provide freshness, e.g., through counters and a Merkle tree as
in the SGX MEE [CD16]. Hence, an active attacker could theoretically replay memory
contents, though we note that this (i) requires a sophisticated setup in practice (see e.g.,
[LJF+20]) and (ii) is limited in time until the renewal of encryption keys. We remark
that adding freshness is somewhat orthogonal to encryption/authentication, and that
CHERI-Crypt shares this limitation in principle with other commercial TEE designs like
SEV-SNP [AMD20] and Intel SGX-Scalable and TDX [Int23b, Int23a], where the freshness
guarantees were weakened to support large enclave size and maximum performance. We
compare the susceptibility of CHERI-Crypt and other common TEEs w.r.t. different

20 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

Table 5: Attacks prevented (), partially prevented (G#), and not prevented (#) by CHERI-Crypt and
other commercial TEEs.

CHE
RI-C

rypt

SGX
-Cla

ssic

SGX
-Sca

labl
e/T

DX

SEV
-SN

P
Trus

tzon
e

Direct memory read∗ #
Direct memory write∗ G# #
Direct replay of memory∗ # # # #
Side channels and fault injection # # # # #
Spatial mem. safety of enclaves # # # #
Microarchitectural and cache at-
tacks on enclaves

#

∗ Assuming direct access to the memory bus, not taking MMU/CPU restrictions into account.

relevant attack vectors in Table 5.
The CHERI-Crypt design introduces additional hardware exception rules for checking

permissions and other encryption aspects, but does not prevent all types of encryption
errors. For example, while encrypting data during the CSealEncrypt instruction, the
hardware design has some capability length checks in place leading to hardware exceptions,
but will not guard against all length errors. If no space is allocated for AT and IV in
the capability length passed from the software but it still passes the length checks, the
returned result will be partial encryption of data. Another limitation is that the latency
measurements of the instructions are based on simulation results with a low latency path
to the main memory and does not include any latency that may occur if an alternative
off-chip RAM (e.g., DRAM module) is used. While this represents a good picture of the
instructions themselves, further testing is required with external memory usage.

Conclusion With our CHERI-Crypt transparent encryption engine design, we presented
a solution to safeguarding sealed capabilities stored within external memory. We developed
the design based on the assumption that it could help protect CHERI-based TEE from
hardware-based attacks, whilst taking advantage of the inherent memory safety provided
by the CHERI architecture. CHERI-Crypt also eliminates the need for a complete memory
sweep operation or the use of linear capabilities necessary for current CHERI-TrEE
designs [VSNJ+23]. An advantage of the design is the configurable nature of the batch
size allowing it to be optimised for specific applications. Additionally, we have options to
optimise our design further in the future.

Acknowledgements
This research was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) under grants EP/R012598/1, EP/V000454/1, and EP/S030867/1. Our
project is funded by the DSbD (Digital Security by Design) Programme delivered by UKRI
to support the DSbD ecosystem.

Jennifer Jackson, Minmin Jiang and David Oswald 21

References
[ACC+23a] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Wesley

Filardo, Kunyan Liu, Robert M. Norton, Yucong Tao, Robert N. M. Watson,
and Hongyan Xia. CHERIoT: Rethinking security for low-cost embedded
systems. Technical report, Microsoft, 2023.

[ACC+23b] Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. Cheriot: Complete memory safety for em-
bedded devices. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, page 641–653. Association for Computing
Machinery, October 2023.

[AMD20] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More. Technical report, AMD, January 2020.

[ARM19] ARM. ARM Morello Program, 2019. https://www.morello-project.org/.

[Ava16] Roberto Avanzi. The QARMA block cipher family – almost MDS matrices
over rings with zero divisors, nearly symmetric even-mansour constructions
with non-involutory central rounds, and search heuristics for low-latency
s-boxes. Cryptology ePrint Archive, Paper 2016/444, 2016.

[Bar20] Elaine Barker. Recommendation for Key Management: Part 1 – General.
Technical report, NIST, 2020.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
PRINCE - a low-latency block cipher for pervasive computing applications
(full version). Cryptology ePrint Archive, Paper 2012/529, 2012.

[BK15] Elaine Barker and John Kelsey. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. Technical report,
National Institute of Standards and Technology (NIST), June 2015.

[Blu20] Bluespec. BESSPIN Government Furnished Equipment (GFE)., 2020. https:
//github.com/GaloisInc/BESSPIN-GFE.

[BNP23] Marton Bognar, Job Noorman, and Frank Piessens. Proteus: An Extensible
RISC-V Core for Hardware Extensions. In RISC-V Summit Europe ’23, June
2023.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint
Archive, Paper 2016/086, 2016.

[Cod24] Codasip. The only commercial implementation of CHERI technol-
ogy, 2024. https://codasip.com/solutions/riscv-processor-safety-
security/commercial-cheri/.

[CVM+21] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald,
and Flavio D. Garcia. VoltPillager: Hardware-based fault injection attacks
against intel SGX enclaves using the SVID voltage scaling interface. In
30th USENIX Security Symposium (USENIX Security 21), pages 699–716.
USENIX Association, August 2021.

https://www.morello-project.org/
https://github.com/GaloisInc/BESSPIN-GFE
https://github.com/GaloisInc/BESSPIN-GFE
https://codasip.com/solutions/riscv-processor-safety-security/commercial-cheri/
https://codasip.com/solutions/riscv-processor-safety-security/commercial-cheri/

22 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

[Dwo07] Morris Dworkin. NIST Special Publication 800-38D: Recommendation for
Block Cipher Modes of Operation:Galois/Counter Mode (GCM) and GMAC.
Technical report, National Institute of Standards and Technology (NIST),
November 2007.

[EKY11] Barış Ege, Elif Bilge Kavun, and Tolga Yalçın. Memory encryption for smart
cards. In Smart Card Research and Advanced Applications, pages 199–216.
Springer Berlin Heidelberg, 2011.

[GJC21] Naina Gupta, Arpan Jati, and Anupam Chattopadhyay. Memenc: A
lightweight, low-power, and transparent memory encryption engine for iot.
IEEE Internet of Things Journal, 8(9):7182–7191, 2021.

[HB17] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual
machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, page 129–142. Association
for Computing Machinery, 2017.

[HT14] Michael Henson and Stephen Taylor. Memory encryption: A survey of existing
techniques. ACM Comput. Surv., 46(4), March 2014.

[Int15] Intel. Software Guard Extensions (Intel® SGX) (Developer Guide). Technical
report, Intel, 2015.

[Int23a] Intel. Architecture specification: Intel trust domain extensions (Intel TDX)
module. Specification 344425-005US, Intel, February 2023.

[Int23b] Intel. Intel Xeon scalable processors: NEX eagle stream platform, Intel
platform security. Technical Report 784473, Intel, August 2023.

[JEA20] Nicolas Joly, Saif ElSherei, and Saar Amar. Security Analysis of CHERI ISA.
Technical report, Microsoft Security Response Center (MSRC), October 2020.

[Kap17] David Kaplan. Protecting VM Registers State with SEV-ES. Technical report,
AMD, February 2017.

[KPW21] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryption.
Technical report, AMD, October 2021.

[Lip19] Aaron Lippeveldts. Linear capabilities for cheri: an exploration of the design
space. In Proceedings Companion of the 2019 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software
for Humanity, SPLASH Companion 2019, page 47–48, New York, NY, USA,
2019. Association for Computing Machinery.

[LJF+20] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia che Tsai, and Raluca Ada
Popa. An Off-Chip attack on hardware enclaves via the memory bus. In
29th USENIX Security Symposium (USENIX Security 20), pages 487–504.
USENIX Association, August 2020.

[LUSM24] Lukas Lamster, Martin Unterguggenberger, David Schrammel, and Stefan
Mangard. Voodoo: Memory tagging, authenticated encryption, and error
correction through MAGIC. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 7159–7176, Philadelphia, PA, August 2024. USENIX
Association.

[MV07] David A. McGrew and John Viega. The Galois/Counter Mode of Operation
(GCM). Technical report, NIST, 2007.

Jennifer Jackson, Minmin Jiang and David Oswald 23

[Pro23] Proteus developers. Proteus: a configurable RISC-V core., 2023. https:
//github.com/proteus-core/proteus.

[SSL+23] David Schrammel, Salmin Sultana, Michael LeMay, David Durham, Martin
Unterguggenberger, Pascal Nasahl, and Stefan Mangard. Memes: Memory
encryption-based memory safety on commodity hardware. In Proceedings of
the 20th International Conference on Security and Cryptography - SECRYPT,
pages 25–36, 2023.

[TMC+24] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Jinkeon Kang,
and John Kelsey. Ascon-Based Lightweight Cryptography Standards for
Constrained Devices. Technical report, NIST, 2024.

[VSNJ+23] Thomas Van Strydonck, Job Noorman, Jennifer Jackson, Leonardo Alves Dias,
Robin Vanderstraeten, David Oswald, Frank Piessens, and Dominique De-
vriese. Cheri-tree: Flexible enclaves on capability machines. In 2023 IEEE 8th
European Symposium on Security and Privacy (EuroS&P), pages 1143–1159,
2023.

[WJX+19] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,
Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W.
Filardo, A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert
N. M. Watson, and Simon W. Moore. CHERI Concentrate: Practical Com-
pressed Capabilities. IEEE Transactions on Computers, 68(10):1455–1469,
2019.

[WNW+23] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme Barnes,
David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley
Filardo, Franz A. Fuchs, Richard Grisenthwaite, Alexandre Joannou, Ben
Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyn-
dylan Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg, Peter
Sewell, Stacey Son, and Hongyan Xia. Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture (Version 9). Technical
Report UCAM-CL-TR-987, University of Cambridge, Computer Laboratory,
September 2023.

[WUS+17] Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffenrath,
and Stefan Mangard. Transparent memory encryption and authentication.
In 2017 27th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–6, 2017.

[WWME20] Luca Wilke, Jan Wichelmann, Mathias Morbitzer†, and Thomas Eisenbarth.
Sevurity: No security without integrity breaking integrity-free memory en-
cryption with minimal assumptions. In IEEE Symposium on Security and
Privacy (SP), pages 1483–1496. IEEE Computer Society Technical Committee
on Security and Privacy, August 2020.

[WWN+15] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan
Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey
Son, and Munraj Vadera. Cheri: A hybrid capability-system architecture
for scalable software compartmentalization. In 2015 IEEE Symposium on
Security and Privacy, pages 20–37, 2015.

https://github.com/proteus-core/proteus
https://github.com/proteus-core/proteus

24 CHERI-Crypt: Transparent Memory Encryption on Capability Architectures

[YEP+06] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan
Solihin. Improving cost, performance, and security of memory encryption and
authentication. In Proceedings of the 33rd Annual International Symposium
on Computer Architecture, ISCA ’06, page 179–190. IEEE Computer Society,
2006.

A Test code for Seal and Invoke with Encryption

1 TEST_CASE_START (1)
2 // 1. Set up code capability to be sealed in c1
3 la t0 , capcode_mem_start
4 CSetAddr c1 , ROOT , t0
5 la t1 , capcode_mem_end
6 sub t0 , t1 , t0
7 CSetBoundsExact c1 , c1 , t0
8 // 2. Set up data capability to be sealed in c2
9 la t0 , capdata_mem_start

10 CSetAddr c2 , ROOT , t0
11 la t1 , capdata_mem_end
12 sub t0 , t1 , t0
13 CSetBoundsExact c2 , c2 , t0
14 li t0 , ~(1 << PERM_PERMIT_EXECUTE)
15 CAndPerm c2 , c2 , t0
16 // 3. Set up third data capability outside enclave in c5
17 la t0 , outside_mem_start
18 CSetAddr c5 , ROOT , t0
19 la t1 , outside_mem_end
20 sub t0 , t1 , t0
21 CSetBoundsExact c5 , c5 , t0
22 // 4. Set up o- type seal in c29
23 li t1 , 0x04
24 CSetOffset c29 , ROOT , t1
25 // 5. Seal and encrypt code and data , c3 and c4
26 CSealEncrypt c3 , c1 , c29
27 CSealEncrypt c4 , c2 , c29
28 // 6. Set up return address in c6
29 la t0 , enclaveret
30 CSetOffset c6 , ROOT , t0
31 // 7. Do invoke 10 times
32 li t5 , 0xa
33 dosub :
34 CInvokeEncrypt c3 , c4
35 enclaveret :
36 addi t5 , t5 , -1
37 beqz t5 , 1f
38 j dosub
39 1:
40 TEST_PASSFAIL

Listing 1: CHERI-RISC-V Seal and invoke with encryption test code.

B Test Code for Enclave
1 // ---code section ---
2 capcode_mem_start :
3 // 1. set the return address for when the enclave completes
4 Cmove cra , c6
5 // 2. write first word to the enclave data section c31
6 li t1 , 0x44
7 sw.cap t1 , (c31)
8 // 3. read / write to data outside the enclave
9 lw.cap t2 , (c5)

10 addi t2 , t2 , +1
11 sw.cap t2 , (c5)
12 // 4. clear tag and return from enclave
13 CClearTag c31 , c31
14 CJALR cra
15 capcode_code_end :
16 // PADDING for 32 byte batch - none needed
17 capcode_pad_end :
18 // AT and IV - 32 bytes for 1 batch

Jennifer Jackson, Minmin Jiang and David Oswald 25

19 .fill 8, 4, 0x00
20 capcode_mem_end :
21 // ---data section ---
22 capdata_mem_start :
23 // Two batches of data - 64 bytes
24 .fill 16, 4, 0x22
25 capdata_data_end :
26 // PADDING for 32 byte batch - none needed
27 capdata_pad_end :
28 // AT and IV - 64 bytes for 2 batches
29 .fill 16, 4, 0x00
30 capdata_mem_end :
31 // ---data outside enclave ---
32 outside_mem_start :
33 .fill 16, 4, 0x66
34 outside_mem_end :

Listing 2: Enclave test code.

	Introduction
	CHERI Capability Architectures
	Compartmentalisation, Sealed Capabilities, and TEEs
	Transparent Memory Encryption of Sealed Capabilities
	Our Contribution

	Background and Related Work
	Concept
	Adversary Model
	CHERI-Crypt: Transparent Memory Encryption Concept

	CHERI-Crypt Design and Implementation
	Transparent Memory Encryption Engine: Outline Design
	Encrypted Enclave Memory
	AES core: Encryption and Decryption
	Key Generation and Management
	CSealEncrypt Read and Write
	Instruction and Data Cache

	Microbenchmark
	AES Core: Encryption and Decryption Function Block
	CHERI-Proteus with Full CHERI-Crypt Design

	Conclusions
	Test code for Seal and Invoke with Encryption
	Test Code for Enclave

