
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 209–234. DOI:10.46586/tches.v2025.i2.209-234

KyberSlash: Exploiting secret-dependent division
timings in Kyber implementations

Daniel J. Bernstein1,2, Karthikeyan Bhargavan3,4, Shivam Bhasin5,7, Anupam
Chattopadhyay6,7, Tee Kiah Chia7, Matthias J. Kannwischer8, Franziskus
Kiefer4, Thales B. Paiva9,10,11, Prasanna Ravi6,7 and Goutam Tamvada4

1 University of Illinois at Chicago, Chicago, IL 60607-7045, USA
2 Academia Sinica, Taipei, Taiwan

3 Inria, Paris, France
4 Cryspen, Berlin, Germany

5 National Integrated Centre for Evaluation, Nanyang Technological University, Singapore
6 College of Computing and Data Science, Nanyang Technological University, Singapore

7 Temasek Labs, Nanyang Technological University, Singapore
8 Quantum Safe Migration Center, Chelpis Quantum Tech, Taipei, Taiwan

9 University of Sao Paulo, Sao Paulo, Brazil
10 Fundep, Belo Horizonte, Brazil

11 CASNAV, Rio de Janeiro, Brazil
authorcontact-kyberslash@box.cr.yp.to

Abstract. This paper presents KyberSlash1 and KyberSlash2 – two timing vulnera-
bilities in several implementations (including the official reference code) of the Kyber
Post-Quantum Key Encapsulation Mechanism, recently standardized as ML-KEM.
We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two
popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 mi-
croprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2
and a few hours for KyberSlash1. We responsibly disclosed these vulnerabilities to
maintainers of various libraries and they have swiftly been patched. We present two
approaches for detecting and avoiding similar vulnerabilities. First, we patch the
dynamic analysis tool Valgrind to allow detection of variable-time instructions operat-
ing on secret data, and apply it to more than 1000 implementations of cryptographic
primitives in SUPERCOP. We report multiple findings. Second, we propose a more
rigid approach to guarantee the absence of variable-time instructions in cryptographic
software using formal methods.
Keywords: KyberSlash · PQC · Kyber · ML-KEM · Timing attacks · Division
timing

1 Introduction
In 2016, the National Institute of Standards and Technology (NIST) launched a global
standardization process for Public Key Encryption (PKE), Key Encapsulation Mechanisms
(KEM), and Digital Signatures (DS) that can withstand quantum computer attacks,
which is widely recognized under the umbrella term “Post-Quantum Cryptography.” After
years of evaluation, NIST announced the first set of four algorithms to be standardized
in July 2022. Among these, one algorithm is selected for Public Key Encryption/Key
Encapsulation Mechanisms (PKE/KEM) and three algorithms were selected for Digital
Signatures. Kyber [ABD+20], a KEM based on the Module Learning With Errors (MLWE)
problem, is being standardized by NIST as ML-KEM in FIPS203 [Nat23]. We expect

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.209-234
mailto:authorcontact-kyberslash@box.cr.yp.to
http://creativecommons.org/licenses/by/4.0/


210 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

to soon witness wide-scale adoption of ML-KEM across a wide-spectrum of computing
devices, ranging from the high-end general purpose PCs to mobile phone processors all the
way until computationally constrained embedded devices.

Since the announcement of the NIST standardization process, Kyber has garnered
significant attention regarding its vulnerability to Side-Channel Attacks (SCA) [AAC+22].
This concern was a key focus during the NIST PQC standardization process, where the
susceptibility of Kyber to SCA and appropriate protection mechanisms were studied by
several reported works in literature [TUX+23,RCDB24,WBD24]. Given its anticipated
widespread adoption, the safety of Kyber implementations will be even more important in
the future.

In this work, we report the discovery of multiple timing vulnerabilities in the official
reference implementation of Kyber,1 as well as several well-known open-source Kyber
implementations. Notably, all these implementations are carefully designed to be constant-
time at the level of source code, by avoiding secret dependent branches and memory
accesses. However, we identify that compilers can introduce timing vulnerabilities through
utilization of instructions that execute in variable-time. In particular, we discover these
vulnerabilities being caused by certain subroutines that involve divisions by the Kyber
prime q = 3329 (written as /KYBER_Q in the code).

1.1 Division variations
It is well known that CPU division instructions are slower for some inputs than for others.
It has also been known for a long time that these timing variations might be exploitable;
see, e.g., [Lan13, “DIV instruction”] measuring timing variations in the context of fixing
Lucky Thirteen.

But this general background does not mean that there is a problem with the divisions
in the Kyber reference code. For those divisions, the numerator has a limited range,
and the denominator is a compile-time constant (whereas in [Lan13] the denominator
was variable). The code is not written to use the CPU’s division instruction, but rather
to use divisions in the C programming language. One can reasonably guess that any
modern compiler will optimize the division by a constant into a multiplication by a suitable
constant; multiplication instructions are well known to be faster than division instructions.

A programmer can easily try an experiment to check this: write the division in
C; compile it; check the resulting assembly to see that, yes, the compiler is using a
multiplication instruction rather than a division instruction. A pleasant consequence of
this automatic optimization is that the resulting binary is unaffected by any potential timing
variation from division instructions. (There is still a problem on some embedded processors
with variable-time multiplication instructions—see, e.g., [dG15] and [Por18]—but that
problem is outside the scope of this paper.)

Unfortunately, the experiment described in the previous paragraph is not sufficiently
systematic, and the guess stated above is an oversimplification. Common changes in
compiler options can easily end up producing division instructions instead. For example,
asking gcc to optimize for code size (-Os) generally disables the conversion of divisions
into multiplications.2 This creates a timing vulnerability.

We observe that exactly this vulnerability is triggered by the Kyber reference code. As
the vulnerability is caused by the appearance of divisions in Kyber’s C code (/), we name
the vulnerability KyberSlash. We distinguish two forms of KyberSlash, named KyberSlash1
and KyberSlash2; these arise from different aspects of the cryptography inside Kyber, and
turn out to open up very different exploitation mechanisms.

1https://github.com/pq-crystals/kyber
2Note that -Os is a very common compiler option, especially on embedded systems where code size is of

particular concern. See, e.g., [Int]. Also, -Os is just one example of the issue: for example, on 32-bit MIPS
CPUs, gcc 14.1.0 from May 2024 produces division instructions even when it is optimizing for speed.

https://github.com/pq-crystals/kyber


D.J.Bernstein et al. 211

Table 1: Summary of our practical results exploiting KyberSlash1 and KyberSlash2.

Vulnerability Processor Kyber variant Number of
decapsulations

Successful key recoveries
over number of tests

KyberSlash1 Cortex-A7 Kyber512 1,835,008 10/10
KyberSlash2 Cortex-M4 Kyber768 24,576 10/10
KyberSlash2 Cortex-A55 Kyber768 36,864,000 1/1

1.2 Contributions of this paper
First, this paper describes two variants of the KyberSlash vulnerability present in the
November 2023 version of the Kyber reference implementation: KyberSlash1 is present
in the decryption of the CPA-secure encryption scheme underlying Kyber and directly
leaks information about the secret key. KyberSlash2 is present in the encryption of the
CPA-secure encryption scheme and leaks information about the ciphertext. While this is
unproblematic inside encapsulation as the ciphertext is public, it can be used to construct
a plaintext-checking (PC) oracle in decapsulation allowing key recovery.

Second, this paper presents a practical demo showcasing the exploitability of Kyber-
Slash1 on a Raspberry Pi 2 (Arm Cortex-A7). It crafts special ciphertexts and measures the
time for decapsulation running on the same processor in a separate process. It successfully
recovers a Kyber512 secret key in 10 out of 10 experiments within 2 to 4 hours.

Third, this paper demonstrates the exploitability of KyberSlash2 in a separate demo
targeting the Arm Cortex-M4 microcontroller. We craft ciphertexts on a host and send
the ciphertexts using serial communication to the target microcontroller which performs a
decapsulation and reports back to the host when decapsulation is completed. When timing
is performed on the target itself, the attack succeeds for Kyber768 within 4 minutes in 10
out of 10 experiments. Most of this time is spent on transmitting 6144 ciphertexts to the
target device. We also demonstrate that the attack still works if timing is performed on a
separate attacker device transmitting the ciphertexts to the target device. Consequently,
KyberSlash2 is exploitable remotely3 in certain cases. The performance of our attacks,
together with the target devices and Kyber variants, is summarized in Table 1.

Fourth, this paper patches the dynamic analysis tool Valgrind [NS07] to allow detection
of variable-time instructions operating on secret data extending Langley’s ctgrind [Lan10]
methodology for detecting timing leaks. With the patched Valgrind, and with modified
test programs, we are able to detect the vulnerable division operations in the November
2023 version of the Kyber code. We perform a large scale study with the patched Valgrind
and apply it to more than 1000 implementations of various cryptographic primitives within
SUPERCOP [BL24] and identify various potential vulnerabilities due to secret-dependent
instruction timings.

Finally, this paper proposes a more rigid approach to guarantee the absence of variable-
time instructions in cryptographic software by using formal verification.

Our code for the two demos as well as the Valgrind patches are available at https:
//kyberslash.cr.yp.to.

1.3 Related work
There is a long literature on side-channel attacks. Attacks often rely on access to physical
sensors close to the targeted device; see, e.g., van Eck’s 1985 paper [vE85] on electromagnetic
leaks from monitors, or, as one of many recent examples, consider the EM probe in [RPJ+24,
Section 5]. Modeling and protecting against these information leaks is difficult, with
protections continually being broken (see, e.g., [SM23]) and with security seemingly relying
on the hope that attackers are too far away to carry out attacks. Sometimes attacks

3Here we follow the traditional distinction between “local” attacks (prerequisite: attacker can run code
on the victim device) and “remote” attacks (no such prerequisite). See, e.g., [KGA+20].

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to


212 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

exploit a lack of access control for physical sensors built into the targeted device, such as
the power monitors exploited in [LKO+21].

Many other attacks rely purely on timing information. An early example is a timing
attack recovering TENEX passwords; see, e.g., [Cam91]. Within cryptography, broad
awareness of the power of timing attacks began with Kocher’s 1996 paper [Koc96]. Specific
sources of timing variation listed in [Koc96] include “branching and conditional statements”
(exploited in that paper), “RAM cache hits” (exploited in [Ber05], [Per05], and [TOS10]),
and “processor instructions (such as multiplication and division) that run in non-fixed time”,
along with a general warning about “compiler optimizations” as a source of “unexpected
timing variations”. Many timing attacks exploit the fact that attackers are very often
allowed to run computations on the target machine (see, e.g., [ZMFT24]); there have
also been some remote timing attacks relying on timing information naturally percolating
through networks (see, e.g., [BB03]). Another avenue for timing attacks comes from the
fact that many CPUs vary clock speeds depending on power consumption by default,
creating a channel from power monitors to timing; see, e.g., [WPH+22] and [LCCR22].

By now there are many examples of side-channel attacks against post-quantum cryp-
tography, including systems submitted to the NIST post-quantum competition. For
example, [DTVV19] targeted non-constant-time error-correcting codes used in LAC, a
lattice-based KEM; [GJN20a] targeted a non-constant-time ciphertext-comparison opera-
tion within FrodoKEM, another lattice-based KEM; and [PT19] targeted non-constant-time
decoding in HQC, a code-based KEM.

Side-channel attacks against KEMs frequently work as follows. The attacker sends
maliciously crafted ciphertexts to the decapsulation procedure, such that the decrypted
message and its associated variables are related to a targeted portion of the secret key. The
attacker uses side channels to obtain information about whether the message decrypted
correctly. This reveals incremental information about the secret key, leading to full key
recovery once there are enough ciphertexts. Our attack demos follow this pattern but
exploit a different side channel, obtaining the first successful timing attacks against the
reference implementation of Kyber.

2 Notation

For any prime q, we denote the field of integers modulo q as Zq. When n is a fixed positive
integer, we let Rq denote the polynomial ring Zq[x]/(xn + 1). Then, Rkq is the module
of rank k whose scalars are polynomials in Rq. Polynomials a ∈ Rq are denoted using
lowercase letters. Vectors a ∈ Rkq and matrices A ∈ Rk×kq are denoted in bold using
lowercase and uppercase, respectively. When u,v ∈ Rkq , we let 〈u,v〉 ∈ Rq denote their
dot product. The ith entry of vector a ∈ Rkq is denoted as a[i]. Similarly, for a polynomial
a ∈ Rq, we use a[i] to denote its coefficient associated with the power xi.

We denote by Bη the centered binomial distribution (CBD) with range [−η, η]. For a
concise notation, we let a← Bη(Rkq ) mean that each coefficient from each polynomial of
vector a ∈ Rkq is drawn according to Bη. Furthermore, we write a ← Brη(Rkq ) to denote
a derandomized sampling where the randomness comes from a string r. Furthermore,
y ← Compress(x, d) denotes the lossy compression of x to d bits, where d < dlog2 qe.
The compression function is defined as Compress(x, d) =

⌊(
2d/q

)
x
⌉

mod 2d, where b·e
denotes the rounding function that rounds up on ties. The decompression is defined as
x′ = Decompress(y, d) =

⌊(
q/2d

)
y
⌉
.



D.J.Bernstein et al. 213

Table 2: Kyber parameters for each security level [SAB+].
NIST security Parameter set k η1 η2 du dv Failure probability
Level 1 Kyber512 2 3 2 10 4 2−139

Level 3 Kyber768 3 2 2 10 4 2−165

Level 5 Kyber1024 4 2 2 11 5 2−175

3 Kyber

Kyber is a KEM designed for CCA security based on the Module-Learning With Errors
problem (MLWE) [LS15,SAB+]. It offers parameter sets designed for NIST security levels
1, 3, and 5. For each security level, it uses fixed parameters q = 3329 and n = 256 that
define the polynomial ring Rq = Zq[x]/(xn + 1), over which most of the operations are
performed.

Given a desired security level, the setup takes public parameters k, η1, η2, du, and
dv from Table 2. Parameter k defines the rank of the modules used in the scheme.
Parameters η1 and η2 define the centered binomial distributions Bη1 and Bη2 used to
generate coefficients with small norm in Zq. Integers du and dv are the number of bits
into which coefficients from the two parts of the ciphertext are compressed.

Kyber uses an encoding procedure that allows it to recover the message even after some
noise accumulates during the encryption and decryption. It encodes a 256-bit message
m ∈ Z256

2 into a polynomial in Rq as Encode (m) = m0 + m1x + · · ·+ mn−1x
n−1 ∈ Rq,

where mi = m[i] dq/2e. In other words, if bit m[i] = 0 then mi = 0, otherwise mi = dq/2e .
A simple decoding procedure can then be applied to a polynomialm′. Namely, the decoding
function outputs a 256-bit message m′ = Decode (m′) from a noisy polynomial m′ by
simply checking if each coefficient of m′ is closer to 0 or to q/2, modulo q, and decoding it
to 0 or 1, correspondingly.

Similar to most proposed post-quantum KEMs, Kyber is built in two layers. The
bottom layer consists of a public-key encryption (PKE) scheme that is designed to be
secure against passive adversaries, or, more precisely, against chosen-plaintext attacks
(CPA). The top layer, which is a key encapsulation mechanism (KEM) designed to be
secure against more powerful chosen-ciphertext attacks (CCA), is then constructed by
applying a variation of the Fujisaki-Okamoto [FO99,HHK17] security conversion over the
PKE scheme. Sections 3.1 and 3.2 provide the details of these two layers of algorithms.

3.1 Kyber’s auxiliary PKE algorithms designed for CPA security

PKE schemes are defined by three algorithms: key generation, encryption and decryption.
These are described by the corresponding procedures listed in Figure 1a. The key generation
procedure is essentially a creation of an instance of the MLWE problem that protects
the secret key. Similarly, the encryption procedure consists of generating another MLWE
instance, which now protects the message m from being recovered from the ciphertext by
someone who does not know the secret key sk.

To see why decryption works, first notice that the ciphertext compression and de-
compression adds a small noise when going from (u, v) to (u′, v′). Now, by expanding
m′ = v − 〈u′, s′〉, one obtains m′ = Encode (m) + 〈e, r〉 − 〈s, e1 + ∆u〉+ e2 + ∆v, where
∆u = u′ − u and ∆v = v′ − v. That is, m′ is the sum of the encoded message and a
polynomial that is constructed from products and sums of elements whose coefficients came
from centered binomial distributions, and are, therefore, small. Kyber security parameters
are responsible for ensuring that the coefficients in ∆m are small enough so that decryption
errors occur only with negligible probability, as shown in Table 2.



214 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

(a) Kyber’s PKE algorithms.
1: procedure PKE.KeyGen
2: A← random element from Rk×kq

3: s← Bη1

(
Rkq
)

4: e← Bη1

(
Rkq
)

5: t← As + e
6: pk← (A, t)
7: sk← s
8: return (pk, sk)

9: procedure PKE.Encrypt(pk, m, r)
10: A, t← pk
11: .PRF is used for sampling
12: r← BPRF(r,0)

η1

(
Rkq
)

13: e1 ← BPRF(r,1)
η2

(
Rkq
)

14: e2 ← BPRF(r,2)
η2 (Rq)

15: u← ATr + e1
16: v ← Encode (m) + 〈t, r〉+ e2
17: cu ← Compress(u, du) . KyberSlash2
18: cv ← Compress(v, dv) . KyberSlash2
19: return (cu, cv)

20: procedure PKE.Decrypt(sk, (cu, cv))
21: u′ ← Decompress(cu, du)
22: v′ ← Decompress(cv , dv)
23: m′ ← v − 〈u′, s′〉
24: return Decode (m′) . KyberSlash1

(b) Kyber’s KEM algorithms.
1: procedure KEM.KeyGen
2: pk, skPKE ← PKE.KeyGen
3: z ← random 256-bit string
4: sk← (skPKE, pk, z)
5: return (pk, sk)

6: procedure KEM.Encaps(pk)
7: m← random 256-bit string
8: K̄, r ← G(m, H(pk))
9: c← PKE.Encrypt(pk, m, r)
10: K ← KDF

(
K̄, H(c)

)
11: return (c, K)

12: procedure KEM.Decaps(sk, c)
13: skPKE, pk, z ← sk
14: m′ ← PKE.Decrypt(skPKE, c)
15: K̄′, r′ ← G(m′, H(pk))
16: c′ ← PKE.Encrypt(pk, m′, r′)
17: if c = c′ then
18: return K ← KDF

(
K̄′, H(c)

)
19: return K ← KDF(z, H(c))

Figure 1: Kyber’s algorithms with notes indicating where KyberSlash1 and KyberSlash2 appear.

3.2 Kyber’s KEM algorithms designed for CCA security

The Kyber KEM is defined in Figure 1b. The scheme is constructed using an implicit
rejection [HHK17] variant of the Fujisaki-Okamoto [FO99] transform, which is designed to
achieve CCA security by combining hash functions H and G with a PKE designed for CPA
security. The KEM key generation is essentially the same as its PKE counterpart, except
for the fact that a secret string z and the public key pk are packed into the secret key
sk, to allow for additional verification procedures. The KEM encapsulation takes only pk
and returns a ciphertext c and a shared key K, that is computed using a key derivation
function (KDF). The main objective of the encapsulation is to make the randomness used
for encrypting message m depend on m itself by defining r based on G(m, H(pk)), and
sampling the disposable values used for encryption using a cryptographic pseudorandom
function PRF. This allows for a quick check, during decapsulation, to see whether a
ciphertext c is valid.

Suppose c is a chosen ciphertext that was manipulated by the attacker. First, we decrypt
c obtaining m′, then we reencrypt m′. Now, even if the ciphertext c can be successfully
decrypted by the PKE algorithm, if we get a different ciphertext after reencrypting m′
using randomness r′ defined by G(m′, H(pk)), then we consider c to an invalid ciphertext.
Now, to avoid giving information to an attacker about the validity of the ciphertext they
sent, a procedure called implicit rejection is used for deriving the shared key. If the
ciphertext was considered valid, then we compute the shared secret based on K ′ that was
derived from m′. Otherwise, we build a fake shared secret applying the KDF to z and c.
Since the attacker does not know z, the fake shared secret K is indistinguishable from a
valid one, thus not revealing additional information, and, since the output is deterministic,



D.J.Bernstein et al. 215

1 void poly_tomsg(uint8_t msg[32], const poly *a)
2 {
3 unsigned int i,j;
4 uint16_t t;
5 for(i=0;i<KYBER_N/8;i++) {
6 msg[i] = 0;
7 for(j=0;j<8;j++) {
8 t = a→ coeffs[8*i+j];
9 t += ((int16_t)t >> 15) & KYBER_Q;

10 /* Division by Kyber Prime */
11 t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
12 msg[i] |= t << j;
13 }
14 }
15 }

Figure 2: C code snippet of message decoding operation, containing the vulnerable division
operation by the Kyber prime KYBER_Q.

repeating the same challenge will result in exactly the same K.

4 KyberSlash

We first start by briefly explaining the adversary model for our attack: The attacker
attempts to recover the long-term secret key used by the target’s decapsulation procedure
of Kyber. We assume that the attacker has the ability to communicate with the target
decapsulation procedure with chosen ciphertexts. This is a standard adversarial model
used in several chosen ciphertext based side-channel attacks [RRD+23,UXT+22,BDH+21].
We assume that the attacker is able to observe the execution timing of the decapsulation
procedure.

We identified two timing vulnerabilities, which we call KyberSlash1 and KyberSlash2, in
implementations of division operations in Kyber. Sections 4.1 and 4.2 explain KyberSlash1
and KyberSlash2 respectively.

4.1 KyberSlash1: Leakage from message decoding

The first timing vulnerability is present within the message decoding operation within
the decryption procedure (Line 24 in PKE.Decrypt procedure in Fig. 1a). This operation
denoted as Decode (m′), essentially converts every coefficient ofm′ ∈ Rq into corresponding
bit of the decrypted message m′ ∈ Z256

2 . This decoding operation for each coefficient of
m′ is computed as follows: m′[i] = (((m′[i]� 1) + KYBER_Q/2)/KYBER_Q) & 1.

This operation should be implemented in constant time since the message polynomial
m′ ∈ Rq is sensitive, and incremental information about m′ for chosen ciphertexts can be
used to recover the secret key sk [RPJ+24,RRCB20,UXT+22]. Refer to Fig 2 for the C code
snippet of the message decoding procedure, taken from the official reference implementation
of Kyber. Notice that this operation contains a division by the Kyber prime (i.e. KYBER_Q)
in Line 11 in Fig. 2. We have added highlighting to our figures to emphasize divisions with
secret inputs. We compiled the code using gcc 14.1 for the x86-64 architecture using
the -Os compiler optimization flag, instructing gcc to optimize for code size. Part of the
resulting assembly is shown in Fig. 3 and an idiv operation presenting a timing leak is
highlighted in red (Line 8). Previous versions of gcc result in similar code containing
idiv instructions. It is important to note that this behavior is not observed for compiler
optimization flags -O0,-O1,-O2,-O3. We remark that similar behavior was observed for
Arm Cortex-A55 (Snapdragon 888) and Arm Cortex-A72 (BCM2835).



216 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

1 ...
2 and ax, 3329
3 add eax, edx
4 movzx eax, ax
5 lea eax, [rax+1664+rax]
6 cdq
7 /* Variable-Time Division Instruction */
8 idiv r10d
9 and eax, 1

10 sal eax, cl
11 inc ecx
12 ...

Figure 3: Assembly code snippet of the message decoding operation for a single coefficient, when
compiled with gcc 14.1 for the x86-64 architecture using the -Os compiler optimization flag.

1 void poly_compress(uint8_t r[128], const poly *a)
2 {
3 unsigned int i,j; int16_t u; uint8_t t[8];
4 for(i=0;i<KYBER_N/8;i++) {
5 for(j=0;j<8;j++) {
6 u = a→ coeffs[8*i+j];
7 u += (u >> 15) & KYBER_Q;
8 /* Division by Kyber Prime */
9 t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)/KYBER_Q) & 15;

10 }
11 r[0] = t[0] | (t[1] << 4);
12 r[1] = t[2] | (t[3] << 4);
13 r[2] = t[4] | (t[5] << 4);
14 r[3] = t[6] | (t[7] << 4);
15 r += 4;
16 }
17 }

Figure 4: C code snippet of the ciphertext compression operation, containing the vulnerable
division operation by the Kyber prime KYBER_Q.

4.2 KyberSlash2: Leakage from ciphertext compression
The second timing vulnerability is present within the ciphertext compression operation
within the encryption procedure (Line 17-18 in CPA.Encrypt procedure in Fig. 1a). The
compression procedure essentially compresses each coefficient of the input u ∈ Rq as
follows: compress_q(u[i], d) = d(2d/q) · xcmod 2d.

The ciphertext compression operation should also be implemented in constant time, as
it leaks information about the recomputed ciphertext within the decapsulation procedure
(Line 16 of KEM.Decaps procedure in Fig. 1b). The recomputed ciphertext is considered
sensitive, and leaks information about the secret key for chosen ciphertexts. Refer to Fig. 4
for the C code snippet for ciphertext compression operation from the official reference
implementation of Kyber. This operation contains a division by the Kyber prime KYBER_Q,
similar to that of the message decoding procedure, that is highlighted in red (Line 9).
Refer to Fig. 5 for the assembly code snippet of a single iteration of the message decoding
operation when compiled with gcc and -Os where the idiv operation is highlighted in red
(Line 7). We observe similar divisions appearing in other platforms when the -Os flag is used:
on AArch64 using arm64 gcc 14.1.0, and on Arm Cortex-M4 CPU (-mcpu=cortex-m4)
using arm-none-eabi-gcc 14.1.0.

5 Exploiting KyberSlash1
This section describes how KyberSlash1 can be exploited. We illustrate the exploitability
of the decapsulation-timing variations in the end-of-November-2023 official Kyber512



D.J.Bernstein et al. 217

1 ...
2 movzx eax, ax
3 sal eax, 4
4 add eax, 1664
5 cdq
6 /* Variable-Time Division Instruction */
7 idiv r9d
8 and eax, 15
9 mov BYTE PTR [rsp-8+rsi], al

10 ...

Figure 5: Assembly code snippet of a single iteration of ciphertext compression operation, when
compiled with gcc 14.1 for the x86-64 architecture using the -Os compiler optimization flag.

reference code running under Raspbian (gcc 8.3.0) on a Raspberry Pi 2 with a BCM2836
CPU, a quad-core Cortex-A7 running at 900MHz.

5.1 Attack methods
KyberSlash1 leakage is present in the decryption procedure of the PKE underlying Kyber.
By carefully crafting ciphertexts, the leakage reveals information about the secret key
directly. We first describe the timing behavior of divisions on our target platform and then
how exploitable ciphertexts for this target platform can be selected.

5.1.1 Soft divisions

On this platform, gcc -Os converts each division into a call to a division subroutine
divsi3. The CPU includes a hardware division instruction, but by default gcc compiles
for an ABI that does not guarantee division instructions.

Checking the cost of the divsi3 subroutine for divisions of n by 3329, for each n in the
range of interest, shows that there is a jump by 20 cycles when the numerator n reaches
3329, a further jump by 2 cycles when n reaches 4096, and a further jump by 1 cycle when
n reaches 8192.

5.1.2 Ciphertext selection

As noted above, this is a demo exploiting KyberSlash1, specifically the division in the
line t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1 applied to each coefficient in the
noisy message polynomial m′ = v′ − 〈s,u′〉, where s is the secret key and (u′, v′) is the
decompressed ciphertext.

Each input coefficient t inm′ turns into a division of 2t+1664 by q = 3329. Consequently,
there is a big jump in division cost on this platform when t reaches 833, and there are
smaller jumps when t reaches 1216 and 3264. The demo chooses ciphertexts (u, v) so that
these timings reveal the coefficients in s, as explained in the following paragraphs.

A Kyber512 ciphertext (u, v) consists of three elements u[0],u[1], v ofRq = Zq[x]/(x256+
1), that is, 256-coefficient polynomials, with each coefficient being an integer modulo q =
3329. There are some constraints on the coefficients because ciphertext compression enforces
rounding. The secret key s consists of two elements s[0], s[1] of Rq, each coefficient being
between −3 and 3. The polynomial m′ mentioned above is m′ = v′ − s[0]u′[0]− s[1]u′[1].

Consider what decryption does when u′[0] = 72x100, u′[1] = 0, and v = 2081 + 2081x+
· · ·+ 2081x254 + 208x255. Note that the final coefficient of v is 208, not 2081. All of the
coefficients listed here are compatible with the constraints on compressed ciphertexts.

The coefficient of x255 in m′ has the form m′[255] = 208 − 72s[0][155]. If s[0][155]
happens to be 3, then m′[255] mod 3329 is 3321, producing a slow division. Otherwise
m′[255] is between 64 and 424, producing a fast division. Other coefficients in m′ are
between 1865 and 2297, producing slow divisions with no obvious dependence upon secrets.



218 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

Consider an optimistic model of total decapsulation time as a constant plus the time
for this division. Then s[0][155] = 3 produces slow decapsulation, while other possibilities
for s[0][155] produce fast decapsulation, so decapsulation timings immediately distinguish
s[0][155] = 3 from the other possibilities. Replacing 72 with −72 similarly distinguishes
−3 from −2,−1, 0, 1, 2, 3; replacing 72 with 107, which is another allowed coefficient,
distinguishes 2, 3 from −3,−2,−1, 0, 1; etc. Replacing 72x100 with 72x101 targets s[0][154]
instead of s[0][155]. Exchanging the roles of u′[0] and u′[1] targets s[1] instead of s[0].

Converting this into a complete attack demo was a conceptually straightforward matter
of filtering out the noise that appears in real timings. Optimizing this demo turned out to
be unimportant, since KyberSlash2 allows a more powerful attack approach, explained in
Section 6.

5.2 Experimental results
The demo software consists of two files: a script demo1-pi2.sh and the main attack code
demo1-pi2.c. Executing sh demo1-pi2.sh; sh demo1-pi2.sh; sh demo1-pi2.sh runs
three attack experiments if both files are in the current directory. The script automatically
downloads the target Kyber code, compiles it, and runs the demo. The script assumes
that the packages git, time, and build-essential are installed.

A typical experiment takes a few hours. A successful experiment, i.e., an experiment
recovering the full Kyber512 secret key, prints yes, eve succeeded. The demo was
observed succeeding ten times in ten experiments, with run times of 2:13:53, 2:04:45,
3:32:45, 1:59:11, 3:23:30, 2:06:31, 2:34:05, 2:04:46, 3:16:21, 2:23:04.

The demo is not guaranteed to succeed: it gives up if it has not found the key from
timings of 7 · 218 decapsulations. An earlier version of the demo, differing only in the
mechanism used to check the computer’s clock, succeeded only twice in three experiments.

6 Exploiting KyberSlash2
In this section, first we discuss how an attacker can recover the key using leakage from
KyberSlash2, that occurs during ciphertext compression, then we present our experimental
results when attacking real-world implementations.

6.1 Attack methods
Since KyberSlash2 appears during reencryption (as presented in Section 4), we can exploit
the timing information to mount a plaintext-checking (PC) oracle attack [RRD+23,
RDB+21,UXT+22,GJN20b,TUX+23,BDH+21]. In the following sections, we describe
how to instantiate a robust PC-oracle capable of extracting key information under noisy
settings.

6.1.1 PC-oracle attack using decapsulation time

Let us begin by defining how to build ciphertexts whose decapsulation timings allow the
attacker to learn information on the secret key.

Chosen ciphertexts to extract key information. Each malicious ciphertext is defined
by 5 parameters: a 256-bit message m̂ ∈ Z256

2 , followed by four integers û, v̂, ı̂, and ̂. To
build the malicious ciphertext, first we compute (u, v) as

v = Encode (m̂) + v̂, and u[i] =
{
−ûx(256−̂), if i = ı̂,
0, otherwise.



D.J.Bernstein et al. 219

Table 3: The effect of (û, v̂) in the decoded messages for each possible secret coefficient, considering
Kyber768 [RDB+21].

s[̂ı][̂] Attack parameters (û, v̂)

(207, 937) (2, 729) (106, 521) (106, −728)

−2 m̂1 m̂1 m̂0 m̂0
−1 m̂1 m̂1 m̂0 m̂0

0 m̂1 m̂0 m̂0 m̂0
1 m̂0 m̂0 m̂0 m̂0
2 m̂0 m̂0 m̂0 m̂1

Remember that polynomial operations in Kyber are done in Rq = Zq[x]/
(
x256 + 1

)
. Then,

the malicious ciphertext is the compression of (u, v), as defined by Kyber.
To avoid having to deal with additional noise from compression and decompression, it

makes sense to choose attacking parameters û and v̂ that are not significantly affected by
the lossy compression. This way, during decapsulation, the malicious ciphertext produces
the following noisy message

m′ = v − 〈s,u〉 = Encode (m̂) + v̂ + ûx(256−̂)s[̂ı].

More specifically, each coefficient of the noisy message m′ is defined as

m′[j] =
{

m̂[0] dq/2e+ v̂ − ûs[̂ı][̂], if j = 0,
m̂[j] dq/2e − ûs[̂ı][j], otherwise.

We can now see that, since s[̂ı] is a polynomial of small coefficients, if û is sufficiently
small, then m′[j] will be correctly decoded, for all 1 ≤ j < 256. However, whether m′[0]
would be correctly decoded depends on how large the noise defined by v̂, û and s[̂ı][̂] is.
Therefore, if an attacker is careful in their selection of v̂, û, they may be able to learn the
coefficient s[̂ı][̂] when they have the information on whether m′ is correctly decrypted to
m̂ or not.

This is the core observation used by what are called plaintext-checking (PC) oracle
attacks [RRD+23,RDB+21,UXT+22,GJN20b,TUX+23,BDH+21]. PC-oracle attacks are
a generic class of attacks that assume access to an oracle that, given a ciphertext c and a
message m̂, returns whether c was decrypted to m̂ or not. Next we discuss how to build a
PC-oracle using the decapsulation time, and how it can be used to recover the secret key.

PC-oracle attack exploiting KyberSlash2. Take a pair of 256-bit messages m̂0 and m̂1
that differ only in their first bits, and assume that m̂0[0] = 0 and m̂1[0] = 1. Then, it is
possible [RRD+23,RDB+21] to find a small set of pairs (û, v̂) such that the knowledge
on whether the malicious ciphertext built with parameters (m̂0, û, v̂, ı̂, ̂) is decrypted to
m̂0 or m̂1 completely characterizes the secret key coefficient s[̂ı][̂]. In our attack, we used
the same parameters (û, v̂) as the ones used by Ravi et al. [RDB+21], which are shown in
Table 3.

Now, to use these ciphertexts to mount an attack relying on KyberSlash2, we proceed
as follows. Generate a pair of messages (m̂0, m̂1) differing only in their first bits, and let
c0 and c1 be their corresponding uncompressed encryptions using Kyber’s CPA encryption
algorithm. Let t0 and t1 be the decapsulation times when m̂0 and m̂1 are observed after
decryption of the malicious ciphertext generated with parameters (m̂0, û, v̂, ı̂, ̂). Notice
that the randomness used when computing ciphertexts c0 and c1 come from the hashes of
m̂0 and m̂1, respectively, thus the encryption of c0 and c1 should not share any noticeable
similarities.

In an idealized scenario where perfect timing is available and KyberSlash2 is the only
leakage from the implementation, then t0 is expected to be slightly different than t1. If



220 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

7700 7750 7800 7850

Total cycles for KyberSlash1 plus KyberSlash2

0

100

200
C

o
u
n
t

m̂0

m̂1

(a) Interference between KyberSlash1 and Kyber-
Slash2.

7700 7750 7800 7850

Total cycles for KyberSlash1 plus KyberSlash2

0

20

40

C
o
u
n
t

m̂0

m̂1

(b) Leakage within the same group of parameters
(û, v̂) = (2, 729).

7700 7750 7800 7850

Total cycles for KyberSlash1 plus KyberSlash2

0

20

40

C
o
u
n
t

m̂0

m̂1

(c) Leakage for (û, v̂) = (2, 729) considering the
most separated pair (m̂0, m̂1) of messages among
π = 500 randomly generated pairs.

7700 7750 7800 7850

Total cycles for KyberSlash1 plus KyberSlash2

0

20

40

C
o
u
n
t

m̂0

m̂1

(d) Average leakage for (û, v̂) = (2, 729) using µ =
20 pairs (m̂0, m̂1).

Figure 6: The series of observations that allow us to increase the separation of the distributions
that we need to distinguish for key recovery. We considered parameters for Kyber768, and the
values are simulated using our model for the Cortex-M4 division time.

t0 = t1, then we can simply restart the process with different pairs (m̂0, m̂1) until such a
difference is observed. This means that, from the decapsulation time, the attacker can
infer whether m̂0 or m̂1 was observed during decryption. Now, given a pair of indexes
(̂ı, ̂), the attacker can verify, for each of the 4 parameters (û, v̂) from Table 3, which row
matches their observations, thus learning secret coefficient s[̂ı][̂]. By iterating over the
possible kn index parameters (̂ı, ̂), the attacker then learns the full secret key s.

There are, however, two problems when using this approach in real attacks: in some
setups, time measurements come with noise, and the leakages from KyberSlash1 and
KyberSlash2 may interfere. In the following, we show how to recover the key in real-world
noisy environments.

6.1.2 Key recovery under noisy setups

From the last sections, we know that the problem of key recovery reduces to classifying the
observed decapsulation time into m̂0 or m̂1. However, because of the interference between
KyberSlash1 and KyberSlash2, the distributions that we need to distinguish may not be
well separated, as shown in Figure 6a. We now present a series of observations that allow
us to simplify this classification by using a careful choice of ciphertexts to be decapsulated.

Separating the analysis for pairs (û, v̂). The most important observation is that the
leakage from KyberSlash1 is very dependent on the value of û. This happens because
û scales the secret coefficients, resulting in different baselines for the coefficients upon
which the message decoding procedure will act. Therefore, we should analyze the leakage
distribution for each of the pairs (û, v̂) separately. Figure 6b illustrates how, by focusing on
only one pair, namely û, v̂ = (2, 729), we get a simpler pair of distributions to distinguish.

Dealing with random noise. The simplest way to deal with random timing noise is to
repeat the measurement a number ρ times and compute some robust measure (e.g. median)
over the observed values. However, since the leakage from KyberSlash1 is completely
determined by the ciphertext, we cannot get rid of it by repeating the measurement for
the same ciphertext. One way of lowering the effect of both measurement and KyberSlash1



D.J.Bernstein et al. 221

Table 4: Clock cycles of udiv instruction with numerator n and denominator d on Arm Cortex-M4
(STM32F407VG). For a simpler description, we let dfl = 2blog2 dc.

Case Clock cycles Range of n with d = 3329
d = 0 or n = 0 2 0
n/dfl < 1 3 1 to (211 − 1)
n/dfl < 24 5 211 to (215 − 1)
n/dfl < 28 6 215 to (219 − 1)
n/dfl < 212 7 219 to (223 − 1)
n/dfl < 216 8 223 to (227 − 1)
n/dfl < 220 9 227 to (231 − 1)
n/dfl < 224 10 231 to (232 − 1)
n/dfl < 228 11 –
n/dfl ≥ 228 12 –

noise in the separation is to be more careful in the selection of the pair of messages
(m̂0, m̂1).

Our idea is to generate a number π of message pairs (m̂0, m̂1), and select the pair whose
KyberSlash2 leakage is separated by the largest number of cycles. Notice that this can be
done offline, using only the target’s public key, and a model of the division timing for the
target device. For the Arm Cortex-M4, the Technical Reference Manual [Armb] states that
a udiv instruction takes 2–12 cycles depending on input data. We have reverse engineered
the division timings for the common STM32F407VG (present on the STM32F407-Discovery
board) and show the results on Table 4. We performed similar (but less extensive)
experiments on the STM32L476RG suggesting that the ultra-low-power L4 series has the same
division timings. While we present timings for arbitrary denominators, for KyberSlash only
the column with d = 3329 is relevant showing cross-over points at 1, 211, 215, 219, 223, 227, 231.
For d = 3329, we have confirmed these timings through exhaustive search over the entire
numerator space. This shows that for a fixed denominator, the division timing grows
monotonically in the value of the numerator allowing to binary search the cross-over points.
For variable denominator, we have picked random denominators and specially formed
denominators (very small values and powers of two) and searched for the corresponding
cross-over points using binary search. We performed a similar reverse engineering for the
more complex application-profile processors Arm Cortex-A55 and Arm Cortex-A72. Even
though a similar behavior was observed, there were significant differences in the numerator
and denominator thresholds for the changes in the number of cycles.

We can then use the division time model for the target microarchitecture to select the
best pair (m̂0, m̂1) of messages out of π pairs generated at random. Figure 6c shows how
the selection among π = 500 pairs allows to better distinguish between the two messages.

Reducing the noise from KyberSlash1. We observe that it is possible to actively reduce
the noise from KyberSlash1 if, instead of using only one message pair (m̂0, m̂1) for building
the malicious ciphertexts, we use a collection of µ pairs. Because each message pair has its
own KyberSlash1 leakage baseline, using more pairs and taking the average leakage allow
us to significantly reduce the deterministic noise. The effect of averaging the result for
µ = 20 pairs is illustrated in Figure 6d.

Key recovery. Synthesizing our methods for dealing with noise, we have the following
parameters:

• ρ is the number of repetitions we use for each ciphertext to lower random measurement
noise;

• π is the number of candidate pairs (m̂0, m̂1) we test offline to select only the one



222 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

whose KyberSlash2 leakage is the most separated. We have used 100,000 for all
experiments as it results in sufficient separation and ciphertext generation still
terminates within seconds.

• µ is the number of pairs (m̂0, m̂1) that we actually use when performing the attack.

Therefore, to attack Kyber768 using this setup, the number of decapsulations is 4ρµkn,
where the factor of 4 comes from the number of pairs (û, v̂) needed to distinguish the secret
coefficients (see Table 3).

Now, given the decapsulation time for each of the 4ρµkn ciphertexts, we proceed as
follows. First we take the median of the ρ repetitions of each ciphertext and consider
this value as the observed time. Then we group each set of ciphertexts with the same
parameters (û, v̂, ı̂, ̂), and take the average decapsulation time of the µ resulting values.
We are now left with a set of 4kn values that we need to classify.

For each pair (û, v̂), we use a Gaussian mixture model (GMM) to give the probability
that the decapsulation time is associated with m̂0 or m̂1. We remark that the GMM is a
rather simple model that does not require any training or complicated parameters. We
also tested the performance of k-means unsupervised clustering, but it did not perform as
well as the GMM. Furthermore, the probabilities that GMM outputs are very useful when
evaluating the likelihood of each row in Table 3 since, not only we are able to find the
most suitable value of s[̂ı][̂], we can also rank the different possibilities values by their
likelihoods.

6.2 Experimental results
We present software demonstrating our attack on Cortex-M4 implementations from
pqm4 [KPR+] described in [HZZ+22]. We target the Kyber768 parameter set, but
the attack script is straightforwardly modified to all parameter sets of Kyber. The vul-
nerable functions (poly_tomsg, poly_compress, polyvec_compress) are verbatim copies
of the Kyber reference implementations. We use the 4956a30 version of pqm4 which is
the commit before the KyberSlash fixes have been ported to pqm4. We use the Arm
GNU compiler toolchain version 13.2.1.Rel1 from [Arma]. We target the STM32F407VG
Cortex-M4 (present on the STM32F407-Discovery board).

We implement a simple Python script m4.py that can be used to perform the attacks.
It takes care of generating the corresponding ciphertexts, assembling the software to be run
on the board, flashing the software to the board, executing the experiment, and attempting
key recovery. In the end it reports if the secret key was recovered successfully. We present
two versions of attack software and describe the experiments and results in more detail in
the following.

6.2.1 Local attacker (demo2a)

The first version performs cycle counting directly on the target device returning exact cycle
counts of the decapsulation to the attacker (the host). Due to the simplicity of the Cortex-
M4 microarchitecture this results in predictable and deterministic cycle counts exactly
matching our expectations for timing differences due to KyberSlash1 and KyberSlash2.

As we do not have any noise in this setup, the attack succeeds with a minimum number
of measurements: We use the lowest sensible number of messages (µ = 2), and only perform
a single measurement (ρ = 1) per ciphertext resulting in n ·k ·8 = 6144 decapsulations. We
make use of the 32-bit DWT_CYCCNT cycle counter on the target device allowing us to obtain
the exact number of clock cycles a decapsulation took. This cycle count is then sent back
to the host using USART which attempts the key recovery. We clock the target at the
maximum clock frequency of 168 MHz at which one decapsulation requires approximately
900,000 clock cycles.



D.J.Bernstein et al. 223

Figure 7: demo2b experiment setup. The target device (left) receives ciphertext from the attacker
device (right) through the purple and gray jumper cables (USART3 to USART2) and reports
back after decapsulation has completed. The attacker device receives the ciphertexts generated
on the host through USART2 (yellow and orange jumper cables), forwards them to the target
device through USART3, and reports the timings back to the host.

An end to end attack takes approximately four minutes out of which only 33 seconds
are spent on actual decapsulations, while the remaining overhead is dominated by serial
communication with the target device. We achieve significantly higher baud rates using a
USB-TTL adapter with a FDTI FT232 chipset rather than the cheaper and more common
USB-TTL adapters with a Prolific PL2303 chipset. We determine 806,400 bps as the
maximum baudrate for which our setup works reliably.

We perform 10 experiments and successfully recover the secret key in each of them.
Executing ./m4.py -i 1 -n 2 runs the attack with the above parameters.

6.2.2 Remote attacker (demo2b)

The second more practical version of the attack software does not make use of the cycle
counter on the target device, but instead performs the timing on the device interacting with
the target device. The target reports back using USART after completing the decapsulation,
but does not report the cycle counts passed. Note that this adds some noise especially
due to the USART clock being much slower than the core clock. For simplicity, we make
use of a second Cortex-M4 performing the timing and passing it on to a host laptop. The
setup is shown in Figure 7.

The experiments proceed similarly as before, except that there is an intermediate
Cortex-M4 that acts as a proxy for the ciphertexts and performs the timing. To improve
the reliability of the timing, we make use of interrupts for receiving from the target device
(USART3). Between the two boards, we use the highest baud rate that reliably works,
which is 768,000 bps for our setup. Furthermore, we clock the target device at a lower
clock frequency (24 MHz) than the attacker device (168 MHz) improving the accuracy of
our timings.

We achieve reliable key recovery when using µ = 2 and ρ = 4. A full experiment takes
around 20 minutes out of which 17 minutes are spent on decapsulations. Note that, for
ρ > 1, we only transmit the ciphertext once which may not be possible for a real attack.
One could also increase µ, rather than ρ, however, increasing µ in our setup results in
a much more significant increase in runtime due to the slow serial communication. We
perform 10 experiments and successfully recover the secret key in each of them. Executing
./m4.py -i 4 -n 2 -r runs the remote attack.



224 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

6.2.3 Other platforms

We have performed similar experiments on the Arm Cortex-A55 (which is part of the
Qualcomm Snapdragon 888 present in many smartphones) and successfully recovered the
secret key when obtaining cycle counts using Perf. However, the measurements in that case
contain significantly more noise than in the Cortex-M4 experiments, therefore we require
significantly more decapsulations for recovering the key. Nevertheless, in this setup the
transmission of the ciphertext is less time consuming than in the M4 experiments, and it is
hence preferable to increase µ as discussed before. We have successfully recovered a secret
key for µ = 40 and ρ = 300 once, but have not yet performed any larger experiments.

7 Detecting secret-dependent divisions
There are many software-analysis tools aimed at systematically ensuring that secrets are
not used as branch conditions or as memory addresses, the two most famous sources
of timing attacks. The best usability scores in a recent study [FBJ+24] come from a
dynamic-analysis tool, TIMECOP, which has been applied to many existing cryptographic
implementations. On the other hand, dynamic-analysis tools inherently catch only what is
visible during specific program runs. Those runs do not always achieve the necessary path
coverage; the best guarantees require static analysis.

This section investigates what can be done to systematically ensure that secrets are
not used as inputs to division instructions. Section 7.1 covers dynamic analysis of many
existing cryptographic implementations, and Section 7.2 covers high assurance as a spinoff
of formal verification.

7.1 Dynamic scanning using Valgrind
TIMECOP was introduced in [Nei19] as a patch to the SUPERCOP test framework [BL24].
An evolution of TIMECOP is now maintained as part of SUPERCOP. We have modified
TIMECOP to check not just for secret branch conditions and secret load/store addresses
but also for secret divisions.

7.1.1 Patching Valgrind

Internally, like various other constant-timeness tools going back to ctgrind [Lan10], TIME-
COP runs cryptographic software under the Valgrind tool – specifically, under Valgrind’s
Memcheck memory error detector [SN05]. Our main patch is to Memcheck, and is designed
to also be usable via Valgrind-based tools other than TIMECOP, or by developers using
Valgrind directly for ad-hoc tests; see Section 7.1.2.

Memcheck applies binary instrumentation to a program to detect, among other things,
whether a program uses uninitialized values in non-trivial ways. In particular, it tests
for uninitialized branch conditions and uninitialized load/store addresses. Tools such as
TIMECOP mark secret data as uninitialized via a Valgrind “client request” [SN05, §3.1].
Memcheck does not test for uninitialized divisions; this is why a patch is needed.

Our patch, extending a simple 2015 prototype from Dove and Vasiliev [DV15], issues
a warning when a client program uses a division instruction – such as sdiv or udiv on
AArch64, or idiv or div on x86-64 – to operate on a secret (or uninitialized) data item.
The patch also includes preliminary support for catching other variable-latency instructions.
We developed the patch for Valgrind 3.22.0 (released October 2023), and it continues to
work with Valgrind 3.23.0 (released April 2024).

The patch also modifies Memcheck to print a distinct error message for these operations,
to make the operations easier to spot by human readers and scripts. To allow smooth
future integration into upstream Valgrind, the patch checks for variable-latency instructions



D.J.Bernstein et al. 225

==7174== Conditional jump or move depends
on uninitialised value(s)

==7174== at 0x108BBC: rej_uniform (indcpa.c:140) ...
==7174== Variable-latency instruction operand

of size 4 is secret/uninitialised
==7174== at 0x1090CC: pqcrystals_kyber512_ref_

polyvec_compress (polyvec.c:48) ...
==7174== Variable-latency instruction operand ...
==7174== at 0x109358: ...poly_compress (poly.c:28) ...
==7174== Variable-latency instruction operand ...
==7174== at 0x10952C: ...poly_tomsg (poly.c:191) ...

Figure 8: Sample of Valgrind log showing detection of variable-latency instructions, in modified
test_kyber.c with Kyber512, compiled with gcc 11.2.1 for AArch64 with -Os

as a run-time option, skipped by default but enabled by a new Valgrind client request
VALGRIND_ENABLE_TIMECOP_MODE.

7.1.2 Small-scale example: Kyber

We modified the test program ref/test/test_kyber.c from the November 2023 Kyber
reference code, to invoke the Valgrind client request for the new checking mode, to mark
the random number generator’s output as “uninitialized” (i.e. potentially secret), and to
mark public key data as “initialized”.

We cross-compiled, for Linux/AArch64, the patched version of Valgrind, as well as the
November 2023 version of the Kyber test programs linked with the Kyber512, Kyber768,
and Kyber1024 implementations. The Kyber code was built at optimization levels -O0,
-O1, -Os, -O2, and -O3, and with debugging information enabled (-g). The builds were
done on an Apple MacBook Pro (2018) with an Intel x86-64 Core i7, running Alpine Linux
3.19, and with a gcc 11.2.1 cross-compilation toolchain from [vR]. We then ran the Kyber
test programs under Valgrind, using the QEMU [Dev] emulator.

The Valgrind runs produced instrumentation logs, as partially shown in Figure 8. For the
-Os binaries, the runs flagged lines 28 and 191 of poly.c (poly_compress, poly_tomsg),
and line 48 of polyvec.c, for Kyber512 and Kyber768, and lines 43 and 191 of poly.c,
and line 24 of polyvec.c, for Kyber1024, as being involved in variable time operations.
The flagged instructions correspond to loads of operands for the vulnerable divisions, or
operands to be combined with results from the divisions (Figure 9). Moreover, all of the
KyberSlash divisions were successfully detected by this method.

We thus show that patching Valgrind can be a practical way to uncover this class of
timing vulnerabilities.

7.1.3 Large-scale example: SUPERCOP

Beyond the Valgrind patch, we patched SUPERCOP to provide TIMECOP as part of
SUPERCOP’s multi-core dependency-tracking data-do tool for collecting and updating a
large database of test results, whereas previously SUPERCOP provided TIMECOP only
as part of a single-core non-dependency-tracking do-part tool aimed at developers testing
their own code.

We completed the patch for a June 2024 development version of SUPERCOP. That
version contains 4433 implementations of 1383 cryptographic primitives, all following
SUPERCOP’s API, which has also been adopted by various cryptographic competitions
and cryptographic libraries. Within these 4433 implementations, 1283 are marked as
goal-constbranch and goal-constindex, meaning that they are designed to avoid secret-
dependent branches and array indices. This is also what triggers implementations to be
considered by TIMECOP; this does not always mean that they pass TIMECOP.

For example, two of the primitives are Kyber512 and Kyber768. The Kyber768 primitive
has three implementations in SUPERCOP, in three subdirectories ref, compact, and avx2



226 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

...
t[k] = a→ vec[i].coeffs[4*j+k];
10cc: 78e27828 ldrsh w8, [x1, x2, lsl #1]

t[k] += ((int16_t)t[k] >> 15) & KYBER_Q;
10d0: 0a887ce2 and w2, w7, w8, asr #31
10d4: 0b080042 add w2, w2, w8

t[k] = ((((uint32_t)t[k] << 10)
+ KYBER_Q/2)/ KYBER_Q) & 0x3ff;

10d8: 53163c42 ubfiz w2, w2, #10, #16
10dc: 111a0042 add w2, w2, #0x680
10e0: 1ac70842 udiv w2, w2, w7
...

u = a→ coeffs[8*i+j];
1358: 78e27826 ldrsh w6, [x1, x2, lsl #1]

u += (u >> 15) & KYBER_Q;
135c: 0a867ca2 and w2, w5, w6, asr #31
1360: 0b060042 add w2, w2, w6

t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)
/KYBER_Q) & 15;

1364: 531c3c42 ubfiz w2, w2, #4, #16
1368: 111a0042 add w2, w2, #0x680
136c: 1ac50842 udiv w2, w2, w5
...

t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msg[i] |= t << j;
152c: 38636805 ldrb w5, [x0, x3]
1530: 531f3c42 ubfiz w2, w2, #1, #16
1534: 111a0042 add w2, w2, #0x680
1538: 1ac60842 udiv w2, w2, w6
...

for(j=0;j<8;j++) {
1544: 11000484 add w4, w4, #0x1

msg[i] |= t << j;
1548: 2a050042 orr w2, w2, w5
154c: 38236802 strb w2, [x0, x3]
...

Figure 9: Disassembly showing secret operands flagged by patched Valgrind, and corresponding
variable-latency instructions, in modified test_kyber.c with Kyber512, compiled with gcc 11.2.1
for AArch64 with -Os

of the crypto_kem/kyber768 directory. All of these are marked as goal-constbranch
and goal-constindex. The compact implementation passes TIMECOP but the ref and
avx2 implementations do not. All of the implementations have rejection-sampling loops;
the reason the compact implementation passes TIMECOP is that it has an extra line of
code to declassify the rejection condition.

SUPERCOP compiles each implementation with a list of compilers. The default
list includes gcc -O, gcc -O2, gcc -O3, gcc -Os, in each case with -march=native and
-mtune=native to optimize for the host CPU, -fwrapv to avoid a well-known class of
vulnerabilities, and -fPIC -fPIE for position independence. The default list also includes
five clang options. It is important to note that analyzing binaries cannot make any
guarantees about what will happen when there are changes in compiler options (e.g., a
project not using -fwrapv), compiler versions, choice of compiler, and CPU; there is simply
the hope that trying more combinations will catch more problems.

We restricted SUPERCOP to the 1283 implementations described above—except that
we included SUPERCOP’s four implementations of New Hope CCA, an ancestor of Kyber,
by simply marking them as goal-constbranch and goal-constindex. As in Section 7.1.2,
we added -g to the compiler options so that Valgrind output would mention line numbers
in source code. We then ran our patched TIMECOP, along with SUPERCOP’s usual tests
and benchmarks. We used a dual AMD EPYC 7742 (128 cores in total) with 512GB of
RAM. We compiled natively to include, e.g., AVX2 implementations; of course, this also
meant that the run was excluding, e.g., Arm implementations. The machine owner had
disabled overclocking both for security reasons and for hardware-longevity reasons, so the
CPUs were limited to 2.245GHz. The machine is running Debian 12, with gcc 12.2.0 and



D.J.Bernstein et al. 227

clang 14.0.6. The run completed in 87 minutes of real time, using 5786 minutes of user
time and 193 minutes of system time. Spot-checks during the run showed that all cores
were in use at the beginning (with variable RAM usage, typically around 20GB in total
for 128 threads), but half the real time was spent waiting for implementations of a few
particularly expensive primitives to finish.

This patched TIMECOP run successfully detected various divisions, all of which were
specifically the New Hope code with gcc -Os (and not clang -Os). For example, within
newhope1024cca/avx2, Valgrind pointed to line 77 of poly.c. Manually checking that
line finds a division by NEWHOPE_Q. Within newhope1024cca/ref, Valgrind pointed to
lines 16, 41, 82, 83, 84, 85, 115, 116, 354, and 370 of poly.c, along with line 215 of ntt.c.
Manually checking these lines finds that line 16 of poly.c is the starting brace of a short
function inlined into lines 41, 82, 83, 84, 85, and 115, with a division (actually a mod
operator, %) on line 19. The other line numbers are directly pointing to divisions in the
code.

A separate scan of the New Hope source code finds other division operators, such as
an r / 8 division in fips202.c. What distinguishes the TIMECOP results from such a
scan is that TIMECOP locates divisions applied to data derived from secret inputs.

As a further experiment, we tried adding all of the KEMs in SUPERCOP and starting
an incremental run. Like the first run, this finished in under 2 hours real time. The
output contains 11610 “Variable-latency” lines; the immediately following lines have 2133
different instruction pointers coming from 556 different lines of code in 139 different
implementations. A full analysis of those 556 lines of code would be a large project,
but here are two illustrative examples. The first report in alphabetical order points
to crypto_kem/hila5/avx2, specifically a line saying % (HILA5_Q / 4) in kem.c. The
last in alphabetical order points to crypto_kem/sikep751/ref, specifically line 263 of
tdiv_qr.c, which is actually inside the GMP library for big-integer arithmetic. SIKE has
been broken in other ways, but this example illustrates the ability of binary analysis to
automatically investigate subroutines.

These experiments show that TIMECOP’s data-flow analysis, including our patches,
can be efficiently applied to large volumes of existing cryptographic software within
SUPERCOP’s API, in particular producing many examples of data flow from secrets to
division instructions. We confirmed that this approach is able to detect the vulnerabilities
in the original Kyber code. It is also able to find similar-looking divisions in New Hope,
HILA5, and SIKE code. Of course, this does not imply that the examples are exploitable.
We also emphasize that the analysis is not a guarantee: it is limited to the binaries
created in the TIMECOP run, and to the code paths that are actually taken in the
TIMECOP run. Nonetheless, it would have caught the problematic source code in the
Kyber implementations and deploying it at a large scale is feasible.

7.2 Using formal methods
Another approach that can help programmers detect and prevent bugs like KyberSlash is
the use of formal verification tools. Indeed, KyberSlash1 was first discovered by some of
the authors of this paper when they were trying to formally verify a Rust implementation
of Kyber.

The security ideal for cryptographic code is secret independence, that is, the attacker-
observable behavior of a program should not depend on its secret inputs. This means that
the program should, of course, not reveal its secrets via its input-output behavior, but also
that it does not leak secrets via (say) the program’s runtime or memory accesses.

There are several variations and formal definitions of secret independence defined in
the literature that cover different subsets of side-channel attacks. The most common
definition seeks to prevent branching on secrets, non-constant-time arithmetic operations



228 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

(such as division) on secrets, and using secrets as array indexes or memory addresses. This
discipline is sometimes called cryptographic constant time. [BBC+20]

There are a variety of tools that seek to ensure secret independence in cryptographic
code. We refer the reader to recent surveys of these tools and evaluations of their usability
for a more complete picture [BBB+21,JFB+22,FBJ+24]. In the rest of this section, we
use the definition of secret independence that is used in the HACL∗ verified cryptographic
library [ZBPB17], whose formal guarantees are defined and proven for C programs generated
from the F∗ programming language [PZR+17].

7.2.1 Secret independence by typechecking

To use any of the formal verification tools on cryptographic code, we must begin by
labeling every input and output as either public or secret. In expressive dependently-typed
languages like F∗, these secrecy labels can be embedded within the type of each variable,
alongside other logical properties needed for correctness (e.g. the range of integers that
may be contained in the variable). By default, it is safe to assume that all inputs and
outputs within cryptographic code is labeled secret, and the programmer only needs to
annotate inputs and outputs that they know to be public.

To verify these labels, we then need to annotate all the primitive operations in the
language to reflect our assumptions about whether or not they leak information about
their inputs via side-channels. If an operation may leak information about one of its inputs,
then that input is labeled as public, preventing cryptographic code from calling it with
a secret value. For example, we typically label both inputs to the division operation as
public, and on some platforms we may also want to label inputs to certain multiplications
as public. The labels given to language primitives and external libraries are trusted and
hence must be carefully reviewed to ensure that they capture the operational details of
the target platforms.

In the F∗ library used in HACL∗, for example, the types u8 and i16 are defined to
be secret integers and arithmetic operations like division and modulus are not defined
for them. Furthermore, secret integers cannot be compared or used as array indexes. All
these operations are only available for values declared with the public integer types pub_u8
or pub_i16. Public integers can be converted to secret integers, but converting a secret
integer to a public integer requires a call to an explicit declassify operation, every use
of which needs to be carefully audited.

Given such a secrecy labeling for a program and all the libraries it uses, the type
checker can statically verify that the program is secret independent, and point out any
parts of the code where the discipline is violated. It is worth noting that such a typing
discipline does not really need the full expressiveness of F∗; it can easily be implemented
in any type system that supports abstract types and interfaces, including Rust and Java.

7.2.2 Finding KyberSlash with F*

The first variant of KyberSlash was found during a larger project of formally verifying a
Rust implementation of ML-KEM by translating it to F∗ and then proving its correctness.
As a first step towards a correctness proof, we tried to prove that the translated ML-KEM
F∗ code was secret independent. By using the default integer types, all the inputs and
outputs in our code were initially labeled as secret. Then, inputs that are public, such
as algorithm parameters or public keys are manually labeled as public by changing their
types to use public integers. Finally, outputs that need to be revealed to the application,
such as ML-KEM ciphertexts, are declassified from secret to public.

When we then run the F∗ tyepchecker on the F∗ code generated from the Rust
implementation, it immediately finds and flags the secret dependent division on line 5:

1 let compress_q (coefficient_bits: u8) (fe: u16) =



D.J.Bernstein et al. 229

2 let compressed:u32 = (cast (fe <: u16) <: u32) <<!
3 (coefficient_bits +! 1uy <: u8) in
4 let compressed:u32 = compressed +! v_FIELD_MODULUS in
5 let compressed:u32 = compressed /!
6 (v_FIELD_MODULUS <<! 1ul) in
7 get_n_least_significant_bits coefficient_bits compressed

To fix this type error, we could label the input field element as pub_u16 to indicate
that it is public, and then prove that this input is indeed public at all call sites, which
would fail since this function is used to compress the IND-CPA message coefficient. And if
the function was going to be used with secret inputs, we need to rewrite the Rust code to
not use division.

Initially, we did both. We wrote a separate function for compressing message coefficients
that treated the input field element as secret, and we kept this function for compressing
IND-CPA ciphertext coefficients, since we were (incorrectly) assuming that the ciphertexts
were public and declassifying them. Later, when KyberSlash2 was discovered, we fixed
our model and moved this declassification from the IND-CPA ciphertexts to the IND-
CCA ciphertexts. When we do so, the KyberSlash2 variant also gets flagged by the F∗
typechecker, and we subsequently reimplemented ciphertext compression as well.

This experience shows both the strengths and the weaknesses of our approach. As
long as we correctly annotate and review all public inputs and outputs, the typechecker
is able to find secret independence bugs. However, one must be careful when reflecting
cryptographic assumptions in the secrecy labeling, or we may miss attacks.

7.2.3 Limitations and Future Directions

When writing code in a compiled language such as Rust or C, the methodology described
above ensures that there are no obvious timing leaks. However, even when carefully writing
and formally checking the source code, the compiler may produce secret-dependent code.

The formal verification guarantees we obtain from F∗ above are at the level of source
code, and nothing we check here guarantees that the compiler or microarchitecture will
not introduce new side-channels that were not visible in the source language semantics.

Modern compilers optimize code aggressively for performance when using high opti-
mization levels. During this process operations such as masking or shifts may be converted
into conditional jumps. Techniques as described in 7.1 can be used to analyze the compiled
code and detect compiler-introduced secret-dependent operations. To get more formal
guarantees, one would need to apply the secret independence checks at the level of ma-
chine code, using techniques like those used in the Jasmin assembly implementation of
ML-KEM [ABB+23].

Acknowledgment
The authors would like to thank Richard Petri and Shih-Ming Yin for their help with
setting up the Cortex-M4 demo. Part of this work was funded by FINEP (Financiadora de
Estudos e Projetos). Part of this work was funded by the Intel Crypto Frontiers Research
Center. Part of this work was funded by the Taiwan’s Executive Yuan Data Safety and
Talent Cultivation Project (AS-KPQ-109-DSTCP).

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the NIST post-quantum cryptography



230 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

standardization process. Technical report, National Institute of Standards and
Technology, 2022.

[ABB+23] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco,
Miguel Quaresma, Peter Schwabe, Antoine Séré, and Pierre-Yves Strub. For-
mally verifying Kyber episode IV: implementation correctness. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2023(3):164–193, 2023.

[ABD+20] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber (version 3.0): Algorithm specifications and support-
ing documentation (October 1, 2020). Submission to the NIST post-quantum
project, 2020.

[Arma] Arm. Arm GNU toolchain downloads. Accessed 2025-01-14.

[Armb] Arm Limited. Cortex-M4 Technical Reference Manual.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003. USENIX Association, 2003.

[BBB+21] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas
Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptography.
In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 777–795. IEEE, 2021.

[BBC+20] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Luna, and David
Pichardie. System-level non-interference of constant-time cryptography. Part
II: verified static analysis and stealth memory. J. Autom. Reason., 64(8):1685–
1729, 2020.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel Van Beirendonck. Attacking and defending masked polynomial com-
parison for lattice-based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 334–359, 2021.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.

[BL24] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of
cryptographic systems, 2024.

[Cam91] Larry Campbell. Tenex hackery, 1991.

[Dev] QEMU Project Developers. QEMU: A generic and open source machine
emulator and virtualizer. Accessed 2025-01-14.

[dG15] Wouter de Groot. A performance study of X25519 on Cortex-M3 and M4,
2015.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Pro-
ceedings of ACM Workshop on Theory of Implementation Security, TIS@CCS
2019, London, UK, November 11, 2019, pages 2–9. ACM, 2019.



D.J.Bernstein et al. 231

[DV15] Justin Dove and Victor Vasiliev. Automated testing against timing attacks.
Term project, Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 2015. https://courses.csail.mit.edu/
6.857/2015/projects.

[FBJ+24] Marcel Fourné, Daniel De Almeida Braga, Jan Jancar, Mohamed Sabt, Peter
Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “These
results must be false”: A usability evaluation of constant-time analysis tools,
2024. USENIX Security Symposium 2024, to appear.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual International Cryptology Conference,
pages 537–554. Springer, 1999.

[GJN20a] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part II, volume 12171 of Lecture Notes
in Computer Science, pages 359–386. Springer, 2020.

[GJN20b] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Annual International Cryptology
Conference, pages 359–386. Springer, 2020.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
Theory of Cryptography, pages 341–371, Cham, 2017. Springer International
Publishing.

[HZZ+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung,
Çetin Kaya Koç, and Donglong Chen. Improved Plantard arithmetic for
lattice-based cryptography. 2022:614–636, Aug. 2022.

[Int] Intel Corporation. Enable compiler optimizations. Accessed 2025-01-07.

[JFB+22] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter
Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “They’re
not that hard to mitigate”: What cryptographic library developers think
about timing attacks. In 43rd IEEE Symposium on Security and Privacy, San
Francisco, 2022. IEEE.

[KGA+20] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. NetCAT: Practical cache attacks from the network. In
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 20–38. IEEE, 2020.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

https://courses.csail.mit.edu/6.857/2015/projects
https://courses.csail.mit.edu/6.857/2015/projects


232 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[Lan10] Adam Langley. Checking that functions are constant time with valgrind, 2010.
https://www.imperialviolet.org/2010/04/01/ctgrind.html.

[Lan13] Adam Langley. Lucky Thirteen attack on TLS CBC, 2013.

[LCCR22] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency
throttling side-channel attack. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 1977–1991. ACM, 2022.

[LKO+21] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: software-based
power side-channel attacks on x86. In 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 355–371.
IEEE, 2021.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

[Nat23] National Institute of Standards and Technology. FIPS203: Module-lattice-
based key-encapsulation mechanism standard (initial public draft). Federal Inf.
Process. Stds. (NIST FIPS), National Institute of Standards and Technology,
2023-08-24 2023. https://doi.org/10.6028/NIST.FIPS.203.ipd.

[Nei19] Moritz Neikes. TIMECOP: automated dynamic analysis for timing side-
channels, 2019.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In 28th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 89–100,
June 2007. https://dl.acm.org/doi/10.1145/1250734.1250746; https:
//valgrind.org.

[Per05] Colin Percival. Cache missing for fun and profit, 2005.

[Por18] Thomas Pornin. The problem, 2018.

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography - SAC 2019 - 26th International Conference,
Waterloo, ON, Canada, August 12-16, 2019, Revised Selected Papers, volume
11959 of Lecture Notes in Computer Science, pages 551–573. Springer, 2019.

[PZR+17] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-
mananandro, Peng Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy.
Verified low-level programming embedded in F. Proc. ACM Program. Lang.,
1(ICFP):17:1–17:29, 2017.

[RCDB24] Prasanna Ravi, Anupam Chattopadhyay, Jan-Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (Kyber, Dilithium): Survey and new results. ACM Trans. Embed.
Comput. Syst., 23(2):35:1–35:54, 2024.

https://github.com/mupq/pqm4
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://dl.acm.org/doi/10.1145/1250734.1250746
https://valgrind.org
https://valgrind.org


D.J.Bernstein et al. 233

[RDB+21] Prasanna Ravi, Suman Deb, Anubhab Baksi, Anupam Chattopadhyay, Shivam
Bhasin, and Avi Mendelson. On threat of hardware trojan to post-quantum
lattice-based schemes: a key recovery attack on Saber and beyond. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 81–103. Springer, 2021.

[RPJ+24] Prasanna Ravi, Thales Paiva, Dirmanto Jap, Jan-Pieter D’Anvers, and Shivam
Bhasin. Defeating low-cost countermeasures against side-channel attacks in
lattice-based encryption: A case study on Crystals-Kyber. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2024(2):795–818, 2024.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel attacks
on LWE-based KEMs-parallel PC oracle attacks on KyberKEM and beyond.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023.

[SAB+] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gre-
gor Seiler, Damien Stehle, and Jintai Ding. CRYSTALS-KYBER.
Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[SM23] Marvin Staib and Amir Moradi. Deep learning side-channel collision attack.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):422–444, 2023.

[SN05] Julian Seward and Nicholas Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In USENIX’05 Annual Technical Confer-
ence, pages 17–30, April 2005. https://www.usenix.org/legacy/events/
usenix05/tech/general/seward.html.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on
AES, and countermeasures. J. Cryptol., 23(1):37–71, 2010.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2023(3):473–503, 2023.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: a generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 296–322, 2022.

[vE85] Wim van Eck. Electromagnetic radiation from video display units: An eaves-
dropping risk? Comput. Secur., 4(4):269–286, 1985.

[vR] Zach van Rijn. Your source for static cross- and native- musl-based toolchains.
Accessed 2025-01-14.

[WBD24] Ruize Wang, Martin Brisfors, and Elena Dubrova. A side-channel attack on a
higher-order masked CRYSTALS-Kyber implementation. In Christina Pöpper
and Lejla Batina, editors, Applied Cryptography and Network Security - 22nd

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.usenix.org/legacy/events/usenix05/tech/general/seward.html
https://www.usenix.org/legacy/events/usenix05/tech/general/seward.html


234 KyberSlash: Exploiting secret-dependent division timings in Kyber implementations

International Conference, ACNS 2024, Abu Dhabi, United Arab Emirates,
March 5-8, 2024, Proceedings, Part III, volume 14585 of Lecture Notes in
Computer Science, pages 301–324. Springer, 2024.

[WPH+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning power
side-channel attacks into remote timing attacks on x86. In Kevin R. B. Butler
and Kurt Thomas, editors, 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022, pages 679–697. USENIX
Association, 2022.

[ZBPB17] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. HACL*: A verified modern cryptographic library. pages
1789–1806. ACM, 2017.

[ZMFT24] Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, and Josep Torrellas.
Everywhere all at once: Co-location attacks on public cloud FaaS. In Rajiv
Gupta, Nael B. Abu-Ghazaleh, Madan Musuvathi, and Dan Tsafrir, editors,
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1, ASPLOS 2024,
La Jolla, CA, USA, 27 April 2024- 1 May 2024, pages 133–149. ACM, 2024.


	Introduction
	Division variations
	Contributions of this paper
	Related work

	Notation
	Kyber
	Kyber's auxiliary PKE algorithms designed for CPA security
	Kyber's KEM algorithms designed for CCA security

	KyberSlash
	KyberSlash1: Leakage from message decoding
	KyberSlash2: Leakage from ciphertext compression

	Exploiting KyberSlash1
	Attack methods
	Experimental results

	Exploiting KyberSlash2
	Attack methods
	Experimental results

	Detecting secret-dependent divisions
	Dynamic scanning using Valgrind
	Using formal methods


