
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 69–93. DOI:10.46586/tches.v2025.i2.69-93

SeaFlame: Communication-Efficient Secure
Aggregation for Federated Learning against

Malicious Entities
Jinling Tang1,2, Haixia Xu1,2(�), Huimei Liao1,2 and Yinchang Zhou1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS,
Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{tangjinling,xuhaixia,liaohuimei,zhouyinchang}@iie.ac.cn

Abstract. Secure aggregation is a popular solution to ensuring privacy for federated
learning. However, when considering malicious participants in secure aggregation,
it is difficult to achieve both privacy and high efficiency. Therefore, we propose
SeaFlame, a communication-efficient secure aggregation protocol against malicious
participants. Inspired by the state-of-the-art work, ELSA, SeaFlame also utilizes two
non-colluding servers to ensure privacy against malicious entities and provide defenses
against boosted gradients. Crucially, to improve communication efficiency, SeaFlame
uses arithmetic sharing together with arithmetic-to-arithmetic share conversion to
reduce client communication, and uses the random linear combination to reduce
server communication.
Security analysis proves that our SeaFlame guarantees privacy against malicious
clients colluding with one malicious server. Experimental evaluation demonstrates
that, compared to ELSA, SeaFlame optimizes communication by up to 10.5, 6.00,
and 8.17 times for a client, a server, and all entities, at the expense of 1.25-1.86 times
additional end-to-end runtime.
Keywords: Secure aggregation · communication efficiency · malicious privacy ·
federated learning

1 Introduction
Federated learning (FL) [MMR+17] has emerged as a promising paradigm for privacy-
preserving distributed machine learning (ML). In a typical FL iteration, clients upload
gradients to the server after local training, and the server computes the aggregate of
gradients received to update the global model and broadcast the fresh global model to
clients. It ensures privacy by enabling clients to upload their local gradients instead of
exposing sensitive raw data.

However, the discovery of the gradients’ vulnerability, which could leak private in-
formation about raw data [ZLH19], [YMV+21], highlights the significance of gradient
privacy. Therefore, gradients should also be aggregated in a privacy-preserving way. Secure
aggregation is one of the most popular solutions. The work [BIK+17] first focuses on
mobile devices and presents dropout-robust secure aggregation based on Shamir secret
sharing (SSS) and pairwise random masking, such that surviving clients can still finish
secure aggregation even if some clients drop out.

Besides dropout, which can also happen to benign parties, many works consider the
malicious behaviors of parties. This consideration is essential because, in the real world,
malicious adversaries may corrupt both clients and servers. For example, the client or the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.69-93
mailto:tangjinling@iie.ac.cn,xuhaixia@iie.ac.cn,liaohuimei@iie.ac.cn,zhouyinchang@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

70 SeaFlame

server could deviate from the protocol specification to obtain information about individual
gradients, and the client could intentionally poison its gradients. This promotes two
desirable security properties for secure aggregation: malicious privacy and input validation.

Many studies guarantee either the privacy of individual gradients [BIK+17], [TBA+19],
[BBG+20], [MWA+23], [TXW+24] or resilience to malformed gradients [BMGS17], [SKSM19],
[CFLG21]. Satisfying both of them appears to be a dilemma. Intuitively, the privacy
of gradients also provides convertivity for poisonous gradients, thereby increasing the
difficulty of detecting malformed gradients. Some works address this dilemma, but they
either fall outside the malicious model [AGJ+22], [MMM+22], [PKH22] or are inefficient
[CB17], [CGJvdM22], [LBV+23], particularly for large-scale systems.

ELSA [RSWP23] is the state-of-the-art secure aggregation protocol that addresses
all these concerns. It focuses on a practical model poisoning attack in the FL setting:
malicious clients boost local gradients by scaling up their gradients to a large norm. Such
an attack can easily bias the global model. Based on non-colluding two servers, ELSA can
filter out boosted gradients and achieves malicious privacy in a lightweight way. To improve
efficiency, it lets each client generate cryptographic correlations (i.e., oblivious transfers
and square correlations) locally instead of having two servers generate them interactively.
Despite these desirable properties, the task of generating both oblivious transfers (OTs)
and square correlations brings each client considerable communication overhead, especially
when the number of gradients is large. Actually, communication efficiency has always been
one of FL’s research hotspots [MMR+17], [BBG+20], [KMY+16], [SWMS20], [GLL+21],
[KMA+21], and online secure aggregation is often the communication bottleneck for the
entire FL system.

Therefore, we propose SeaFlame, a more communication-efficient secure aggregation
protocol against malicious entities. We base SeaFlame on ELSA’s architecture, replacing
key components to reduce communication overhead, as detailed in Section 4. SeaFlame also
aims to defend against malicious clients boosting local gradients. Gradient explosions may
occur during model training, leading to non-converging or low accuracy. Malicious clients
could take advantage of this vulnerability by uploading boosted gradients, which would
cause the averaged global gradients to explode based on the aggregation feature. Norm-
bounding, which commonly uses 2-norm and infinite norm bounding, is resilient to such an
attack. Previous works [SKSM19] and [SHKR22] have pointed out that using a bounded
2-norm to filter out boosted gradients is effective against many model poisoning attacks
for practical FL. Because the fraction of malicious clients manipulated by adversaries is
small in practical FL, their poisonous local gradients have no clear impact on the averaged
global gradients after using norm-bounding. So SeaFlame utilizes norm-bounding to defend
against boosted gradients. Note that SeaFlame can’t mitigate malformed gradients less
than the norm bounds (e.g., shrunk gradients) because they are indistinguishable from the
benign gradients in SeaFlame. Defenses against other malformed gradients are of interest
for our future research.

Besides, SeaFlame achieves only privacy in the malicious setting, because achieving
both privacy and correctness in the malicious setting usually needs heavy cryptographic
operations, which is impractical in real-world applications. Malicious privacy is a commonly-
studied security property of many previous works (see Table 1).

1.1 Contributions
Our main contributions are summarized as follows:

• We propose SeaFlame, utilizing two techniques to optimize communication. First,
SeaFlame consumes fewer OTs by switching from Boolean to arithmetic secret sharing
and from Boolean-to-arithmetic share conversion (B2A) to arithmetic-to-arithmetic
share conversion (A2A), which reduces the number of OTs by a factor of input

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 71

bitlength. Both clients and servers benefit from this technique. Then, SeaFlame
adopts a random linear combination to batch the second message during square
correlation verification (see Section 2.5 for details of square correlation and how to
verify it), further reducing server communication overhead.

• We formally prove SeaFlame’s malicious privacy, i.e., privacy when malicious clients
collude with a malicious server.

• We evaluate SeaFlame using a variety of experiments including performance com-
parison with state-of-the-art work, overhead breakdown, and combination with the
training phase of a concrete FL task. The comparative experiments show that
SeaFlame reduces communication by up to 10.5, 6.00, and 8.17 times for a single
client, a single server, and all entities, at the expense of 1.25-1.86 times additional
computation overhead. It is highly efficient in practical FL scenarios.

1.2 Related Work
Here we focus on secure aggregation based on cryptographic tools. Based on the number of
servers participating in aggregation, we can divide these works into two categories: secure
aggregation with a single server and secure aggregation with non-colluding two servers.

1.2.1 Secure aggregation with a single server

Since Google designed a dropout-robust single-server secure aggregation protocol for
FL [BIK+17] using pairwise random masks for privacy and SSS for dropout robustness,
many follow-up works have built on this idea and looked for improvements. Bell et al.
[BBG+20] adopted a k-neighbors communication network to reduce client communication.
However, both of them lack aggregate verification. To make aggregates verifiable, VerifyNet
[XLL+20] combined zero-knowledge proof (ZKP) with a linear homomorphic hash (LHH),
while VeriFL [GLL+21] used Pedersen commitment [Ped91] instead of ZKP to enable
more communication-efficient verification, which is independent of the number of gradients.
Unfortunately, none of these works can be resilient to poisonous gradients. EIFFeL
[CGJvdM22] adopted secret-shared non-interactive proof (SNIP) [CB17] and verifiable
secret sharing (VSS) [Fel87] to allow the server to verify whether the gradients inputted
are well-formed. RoFL [LBV+23] used Bulletproofs [BBB+18] to enforce gradients within
the specified norm bounds. ACORN [BGL+23] claimed that both EIFFeL’s and RoFL’s
methods of input validation blew up communication and achieved communication efficiency
by packing a batch of plaintext into a single ciphertext. Additionally, Flamingo [MWA+23]
first tailored single-server secure aggregation to the multi-iteration setting and removed
the per-iteration setup.

1.2.2 Secure aggregation with non-colluding two servers

Unlike single-server secure aggregation, the approach based on non-colluding two servers
offers three inherent benefits:

• Almost full dropout tolerance for clients (N − 2).

• Almost full corruption tolerance for clients (N − 2).

• Client-to-client independence.

Since sharing the gradients to such two servers is able to keep gradients private, there is
no need for clients to generate pairwise random masks or even communicate with other
clients. Furthermore, without client-to-client communication, each client is independent

72 SeaFlame

of others, such that both dropout tolerance and corruption tolerance are almost full, i.e.,
N − 2, where N is the number of clients.

Besides these inherent benefits, this type of work explores other properties. Prio
[CB17] presented a system to collect aggregate statistics in a privacy-preserving way.
It designed a new cryptographic tool, SNIP, to enforce inputs to be well-formed. Its
efficiency-optimized work, Prio+ [AGJ+22], replaced SNIP with Boolean secret sharing to
ensure inputs within a loose infinite-norm bound for free, but it assumed that all servers
are semi-honest. Although Prio and Prio+ were not specifically designed for FL, their
sum protocol significantly inspired secure aggregation in this context. ELSA [RSWP23]
borrowed the trick of Prio+: Boolean secret sharing supports defense based on infinite
norms without any extra overhead. It also added defense based on 2-norms with the help
of cryptographic correlations. Without heavy public-key operations and ZKPs, ELSA
provided both malicious privacy and input validation in an efficient way, but it also
required considerable communication to handle these cryptographic correlations with high
demand. Additionally, the work [TXW+24] achieved malicious security, while most of the
previous works only achieved malicious privacy. However, it was quite inefficient beacuse
of the heavy cryptographic tools and it didn’t consider input validation. PINE [ROCT24]
achieved optimal communication for 2-norm bounding but needed more operations for
clients to generate ZKPs, and it didn’t provide the infinite norm bounding.

Tab. 1 provides a qualitative comparison of the related works mentioned above.

Table 1: Qualitative comparison of related works. "One-shot clients" means that clients
only send shares of all gradients and cryptographic correlations to the corresponding server
as a single message and will not participate in later phases of the secure aggregation
protocol.

Single-server Non-colluding Two-server
SecAgg
[BIK+17],
[BBG+20]

VerifyNet [XLL+20],
VeriFL [GLL+21]

EIFFeL [CGJvdM22],
RoFL [LBV+23]

ACORN
[BGL+23]

Prio
[CB17]

Prio+
[AGJ+22]

ELSA
[RSWP23]

FlexScaAgg
[TXW+24]

SeaFlame
(Ours)

Malicious privacy
√

×
√ √ √

×
√ √ √

Input validation (Poisoning defense) × ×
√ √ √ √ √

×
√

Almost full dropout tolerance × × × ×
√ √ √ √ √

Almost full corruption tolerance × × × ×
√ √ √ √ √

Client-to-client independence × × × ×
√ √ √ √ √

One-shot clients × × × ×
√ √ √

×
√

Efficient entities
√ √

×
√

×
√ √

×
√

Lightweight communication
√ √

×
√ √ √

× ×
√

2 Preliminaries
This section describes the necessary notations and cryptographic tools in our protocol.

2.1 Notations

We explain the meaning of notations in Tab. 2.

2.2 Arithmetic secret sharing

All arithmetic secret sharing in this paper is additive sharing. SeaFlame primarily utilizes
arithmetic sharing between two servers, so we introduce 2-party arithmetic secret sharing.
In 2-party arithmetic secret sharing, a value x ∈ Zp will be split into two shares x(0), x(1)

such that x(0) + x(1) = x (mod p). Furthermore, Boolean sharing is a special instance of
arithmetic sharing when p = 2.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 73

Table 2: Notations with the corresponding meanings.

Notation Meaning

S0, S1 two non-colluding servers
c the id of clients

l2, l∞ the 2-norm and the infinite norm
N the total number of clients

[N] the set of integers {0, 1, . . . , N − 1}
d the dimension of gradients
λ, κ the computational and statistical security parameters
∧,⊕ the bitwise AND and XOR
‖ concatenation of strings

OTSn,OTRc OT sender and receiver

2.3 Defenses based on vector norms
This paper focuses on the infinite norm (l∞ norm) and 2-norm (l2 norm). The l∞ norm is
defined as the maximum value of all entries of a vector, and the l2 norm is also known as
the Euclidean norm. Given a vector (x1, . . . , xn), its l2 value is

√
x2

1 + · · ·+ x2
n. In this

paper, the defenses against malicious clients providing boosted gradients are based on
these two norms. Moreover, for l∞ defense, we use a loose upper bound, which is larger
than the accurate l∞ value; for l2 defense, we compare the square of l2 value with the
square of l2 bound. Note that we should avoid wrap-arounds when computing l2 value over
cryptographic finite fields. In SeaFlame, if servers find out any gradient vector’s norm is
larger than the specified bound during secure computation, they will discard the gradient
vector.

2.4 Oblivious Transfer (OT)
A "1-out-of-2" OT,

(2
1
)
-OT, means: the sender OTSn holds two messages m0,m1, the

receiver OTSn holds a choice bit j ∈ Z2, and then the sender learns nothing and the
receiver only learns the message mj . Random OT (ROT) is the most general form of OT,
where messages m0,m1 are randomly chosen. Correlated OT (COT) [ALSZ13] means two
messages of the sender are correlated, for example, m,m+ r, where the offset r ∈ {0, 1}λ.
In SeaFlame, we only use "1-out-of-2" OTs. "1-out-of-2" OTs can be used to construct
bit multiplication protocol (Protocol 2 can be an example), which can be further used
to convert shares. Unless specifically stated, the OT in the rest of this paper refers to
"1-out-of-2" COT, and ∆-COT denotes the COT whose offset is ∆.

2.5 Square correlation
Square correlations are helpful randomness resources for computing squares when computing
the value of the l2 norm. A square correlation over Zq is a pair of values formed like
(α, α2), where α←$ Zq. Actually, square correlation is a special kind of Beaver triple and
a better choice to compute squares than Beaver triple [RSWP23]. A Beaver triple over Zq
is a tuple of values formed like (a, b, ab), where a, b←$ Zq. Beaver triples are used to aid
online multiplications in MPC, and square operation is a special kind of multiplication.
For computing squares, using square correlations instead of Beaver triples incurs reduction.
Likewise, SPDZ sacrifice technique [DPSZ12], [KPR18] can also be used to verify square
correlations, the idea of which is sacrificing one square correlation to verify another square
correlation. For example, given two correlations (a, d), (â, d̂) (sacrificing the latter one to
verify the former one), server Sb holds (a(b), d(b)), (â(b), d̂(b)). Servers collectively sample a
random value t ∈ Zq, let e = ta− â, if (a, d), (â, d̂) are two well-formed square correlations,

74 SeaFlame

then
t2d− d̂ = t2a2 − â2 = (ta− â)(ta+ â) = e(e+ 2â) = 2tea− e2.

After opening e, server S0 computes t̂(0) = t2d(0) − d̂(0) − 2tea(0) + e2, and S1 computes
t̂(1) = t2d(1) − d̂(1) − 2tea(1). Therefore, servers can verify the correctness of square
correlations by checking whether t̂(0) + t̂(1) = 0. If it holds, then (a, d), (â, d̂) are two
well-formed square correlations with overwhelming probability.

3 System Model

3.1 Entity Setup
In SeaFlame, we set up two types of entities:

• Clients. There are a total of N clients. Each client may be a company, an
organization, or even a person holding private data in the real world. They help with
the FL task but don’t want to reveal any private information. After local training
based on its own dataset, the client shares the model gradients and cryptographic
correlations to servers, and doesn’t need to participate in subsequent phases until
the next iteration.

• Servers. A server is someone who collects local gradients and integrates them into
the new global model. There are two servers, each of which won’t collude with the
other server. During each iteration, the servers broadcast the current global model
and perform an interactive 2-party secure computation (2PC) protocol to compute
the aggregates after receiving messages from the clients. Based on the aggregates,
servers update the global model.

Each entity in SeaFlame communicates through secure channels. We assume that servers
in SeaFlame never drop out. Our SeaFlame focuses on the secure aggregation phase,
excluding local training and updating global models.

3.2 Threat Model
In SeaFlame, we consider malicious adversaries, assuming two servers never collude with
each other.

• Malicious clients. Since the clients only generate messages at the beginning of
SeaFlame, their malicious behaviors can include sharing boosted gradients and
incorrect cryptographic correlations. We assume that malicious clients will not
provide shrunk gradients because they have little impact on the global model,
particularly when the number of clients participating in aggregation is large and
can’t make the global gradients explode.

• At most one malicious server. The malicious server may deviate arbitrarily
from SeaFlame’s specification to obtain any private information about honest clients.
Note that the correctness of the malicious model is beyond SeaFlame, implying that
SeaFlame can’t prevent the malicious server from manipulating the aggregates.

SeaFlame guarantees privacy against malicious adversaries controlling parts of clients
and one server, which can also be viewed as some malicious clients colluding with a
malicious server. Formal proofs are given in Section 5.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 75

3.3 Design goals
SeaFlame aims to achieve the following design goals:

• Privacy of individual gradients. SeaFlame aims to aggregate individual gradients
from clients, and even a malicious adversary who controls parts of clients and one
server cannot know any information about honest clients’ gradients other than the
aggregates and whether their gradients are within the norm bounds.

• Defenses against boosted gradients. SeaFlame provides two defenses based on
the l2 norm and the l∞ norm, which enable detection of boosted gradients beyond
the norm bounds. Note that these defenses are powerless for shrunk gradients and
"artificial gradients" not generated by local training but within the norm bounds
because of indistinguishability from the benign gradients. Defenses against shrunk
gradients and gradients within the norm bounds are not SeaFlame’s design goals.

• Communication Efficiency. SeaFlame expects to optimize communication over-
head, because the online secure aggregation protocol often poses the communication
bottleneck for the entire FL system. For secure aggregation, computation per-
formance is secondary to communication, because local training also needs heavy
operations, such that the impact of computation overhead of secure aggregation
on the entire FL system is not as significant as the impact of communication over-
head. SeaFlame minimizes communication overhead as much as possible without
introducing unaffordable computation overhead.

4 SeaFlame
In this section, we illuminate the details of how we construct SeaFlame.

4.1 Overview
We use the architecture of state-of-the-art work based on two non-colluding servers as
our foundation. Clients prepare shares of both gradients and cryptographic correlations
(including OTs and square correlations) for two servers, then two servers perform 2PC to
check whether gradients are boosted and finish aggregation. More specifically, SeaFlame
works as follows:

• Client. Each client performs three steps locally: (1) splits gradients into two parts by
arithmetic secret sharing; (2) generates enough OTs; and (3) generates enough square
correlations. The client sends these three types of messages to the corresponding
server in one shot.

• Servers. After receiving messages from clients, servers interact with each other to
perform six steps: (1) verify OTs with additional OTs [KOS15]; (2) verify square
correlations with additional square correlations through SPDZ sacrifice; (3) convert
arithmetic shares over the small field to arithmetic shares over the large field with
the help of OTs; (4) compute the l2 value with the help of square correlations; (5)
securely compare the l2 value to the l2 bound with the help of OTs; and (6) aggregate
arithmetic shares from clients and open the final aggregates.

4.2 Reduce OT Usage
As we know, the essence of the l∞ defense is to enforce each component of input vectors
within a certain range. The typical method is to provide a range proof for each component,
which brings significant expenses because of the hundreds of thousands of components

76 SeaFlame

per vector. Prio+ [AGJ+22] utilizes Boolean shares of inputs to ensure the bitlength of
inputs, which can be viewed as a loose l∞ bound. This method provide a l∞ defense
without extra overhead. To compute aggregates, these Boolean shares should be converted
to arithmetic shares. The well-studied technique of Boolean-to-arithmetic share conversion
needs one bit-to-arithmetic conversion for each bit of Boolean shares. One bit-to-arithmetic
conversion can be performed by consuming one OT, so the required quantity of OTs for
each Boolean-to-arithmetic share conversion is equal to the bitlength of Boolean shares.

We find that the required quantity of OTs greatly affects the efficiency of the clients
and the entire protocol. To reduce the required number of OTs, our main goal is to find
a solution to lifting shares over a small field to ones over a larger field, which consumes
fewer OTs. As we know, Boolean secret sharing views each gradient as a bitstring and
performs bitwise sharing, while arithmetic sharing views each gradient as one element in a
finite field. The intuition is that using arithmetic sharing may benefit from the algebraic
structure or properties of number theory to reduce OT’s bitlength-dependent quantity.
Thus, we choose arithmetic secret sharing rather than Boolean sharing to split gradients
and explain how to convert the shares to ones over a larger field. It is fortunate that this
alternative indeed reduces the usage of OTs. Next, we explain the technical details.

Arithmetic-to-arithmetic share conversion (A2A). Each client splits its input
x ∈ Zp into a pair of shares (x(0), x(1)) such that x(0) +x(1) = x (mod p). Servers can trust
that the client’s input is less than p by the shares. Then each server Sb converts its share
x(b) to y(b) over Z

p̃
, where p̃ > p, such that y(0) + y(1) = x (mod p̃). Unfortunately, such

a conversion is rather expensive. To address this problem, we use quotient transfer (QT)
[KIM+18], inspired by Precio [DWA+21]. Now we describe the details of this technique.

For simplicity, we assume that p, p̃ are two distinct odds. From x(0) +x(1) = x (mod p),
we can know that

x = x(0) + x(1) − α · p, (1)
where α ∈ {0, 1}. Further, when x is an even value, the parity of x(0) + x(1) will be the
same as the parity of α. It implies that α is equal to the XOR value of the least significant
bit (LSB) of x(0) and x(1), i.e.,

α = LSB(x(0))⊕ LSB(x(1))
= LSB(x(0)) + LSB(x(1))− 2 · LSB(x(0)) · LSB(x(1)).

(2)

According to Eq. (1), to get y(0) and y(1), we also need to share α such that α = α(0) +α(1)

(mod p̃). ∀b ∈ {0, 1}, each server Sb can update its share by computing y(b) = x(b)−α(b) ·p
(mod p̃), such that x = y(0) + y(1) (mod p̃).

To get α(0) and α(1), S0 and S1 need to run a bit multiplication protocol to compute
the shares of LSB(x(0)) · LSB(x(1)). Here we use an aligned bit multiplication protocol
[RSWP23], which requires less communication.

To use the technique above, we must ensure that x is an even value. It is naive to
consider 2x. Although 2x is an even value, 2x mod p is uncertain. Thus, we consider two
cases: x < p

2 and x > p
2 .

Case 1: x < p
2 . In this case, 2x < p, so 2x is an even element in Zp. Similar to Eq.

(1), we have
2x = x(0) + x(1) − β1 · p, (3)

where x(0) + x(1) = 2x (mod p) and β1 ∈ {0, 1}. Each server Sb can obtain its share of
2x mod p by computing x(b) = 2x(b) (mod p). Then β1 = LSB(x(0))⊕ LSB(x(1)) so that
we can use the technique above:

y(b) = x(b) − β(b)
1 · p (mod p̃), (4)

such that β1 = β
(0)
1 + β

(1)
1 (mod p̃). Then y(b) = 2−1 · y(b) (mod p̃), since 2 is invertible

over Z∗
p̃
.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 77

Case 2: x > p
2 . In this case, p < 2x < 2p, so 2x− p is an odd element in Zp. Similar

to Eq. (1), we have
2x− p = x(0) + x(1) − β2 · p, (5)

where x(0) + x(1) = 2x (mod p) and β2 ∈ {0, 1}. Each server Sb can obtain its share of
2x mod p by computing x(b) = 2x(b) (mod p).

2x = x(0) + x(1) + (1− β2) · p, (6)

We also have 1 − β2 = LSB(x(0)) ⊕ LSB(x(1)). Let β2 = 1 − β2. Note that β2 ∈ {0, 1},
because β2 ∈ {0, 1}. We also use the technique above:

y(b) = x(b) + β
(b)
2 · p (mod p̃), (7)

such that β2 = β
(0)
2 + β

(1)
2 (mod p̃). Then y(b) = 2−1 · y(b) (mod p̃).

According to Eq. (4) and (7), such a separate discussion above causes a difference in
the protocol process. A naive attempt is to perform equivalent deformation on Eq. (6):

2x = x(0) + x(1) − (β2 − 1) · p. (8)

Unfortunately, β2 − 1 = LSB(x(0)) ⊕ LSB(x(1)) is incorrect, because β2 − 1 ∈ {−1, 0}
instead of {0, 1}.

Due to this negative result, we choose Case 2 to construct our A2A protocol, so the
required input is p

2 < x < p. We assume that malicious clients will not provide input x < p
2 .

In FL, malicious clients prefer to input boosted gradients to manipulate global models
because the global models are derived from the average of aggregates; boosted gradients
may lead to the average’s explosion that results in the global model’s not converging or
low accuracy, and shrunk gradients often have little impact on global models. Moreover,
one of the main goals of our protocol is to filter out boosted gradients, other forms of
malicious gradients are beyond the scope of this work and left for future research.

The detailed description of our optimized A2A protocol is shown in Protocol 1. If we
use B2A like previous work, each server will consume dlog pe OTs per client gradient. Our
optimized A2A consumes only one OT for each gradient; therefore, the number of OTs
consumed has decreased by dlog pe times.

Protocol 1 Optimized A2A Πp,p̃
A2A

Input: Arithmetic shares x(b) ∈ Zp to convert, where b ∈ {0, 1} and x > p
2 . As a

OT sender OTSn, needs additional inputs ∆,W ∈ F2λ . As a OT receiver OTRc, needs
additional inputs T ∈ F2λ . Require that p and p̃ are odd.
Output: y(b) ∈ Z

p̃
for each b ∈ {0, 1}, such that

y(0) + y(1) (mod p̃) = x(0) + x(1) (mod p).

Steps: Between servers (fixing S0 as OTSn).
1: ∀b ∈ {0, 1}, Sb computes x(b) = 2x(b) mod p.
2: S0 sets m(0) ← Πp̃

AliBitMult(LSB(x(0)),∆,W).
3: S1 sets m(1) ← Πp̃

AliBitMult(LSB(x(1)), T).
4: ∀b ∈ {0, 1}, Sb computes z(b) = LSB(x(b))− 2m(b) (mod p̃).
5: ∀b ∈ {0, 1}, Sb computes y(b) = x(b) + z(b)p (mod p̃).
6: ∀b ∈ {0, 1}, Sb computes y(b) = 2−1 · y(b) mod p̃.

78 SeaFlame

Protocol 2 Aligned Bit Multiplication Πp̃
AliBitMult

Input: Bit shares x(b) ∈ Z2 to multiply, where b ∈ {0, 1}. As a OT sender OTSn, needs
additional inputs ∆, w ∈ F2λ . As a OT receiver OTRc, needs additional inputs t ∈ F2λ .
Let H : [N]× F2λ → Z2λ be a hash function in the random oracle model.
Output: y(b) ∈ Z

p̃
for each b ∈ {0, 1}, such that

y(0) + y(1) (mod p̃) = x(0) ∧ x(1).

Steps: Between servers (fixing S0 as OTSn).
1: S0 computes v0 = H(c‖w), v1 = H(c‖w + ∆), where c is a global counter.
2: S0 sets y(0) ← −v0 (mod p̃).
3: S0 sends u = v0 + v1 + x(0) (mod p̃) to S1.
4: S1 computes v = H(c‖t).
5: S1 sets y(1) ← x(1)u+ (−1)x(1)

v (mod p̃).

Protocol 3 Local OT Correlation Generation LocalOT
Input: Choice bits x ∈ Zn2 and an offset ∆ ∈ F2λ .
Output: W and T such that W = T + x ·∆ ∈ Fn2λ .
Steps: Locally at each client.
1: for j ∈ [n] do
2: Sample wj ∈ F2λ .
3: Set tj ← wj + xj ·∆.

end for
4: Set W ← {w0, . . . , wn−1} and T ← {t0, . . . , tn−1}.

4.3 Square Correlation
Square correlation is the optimal resource for helping compute squares during the l2 norm
computation, as opposed to the Beaver triple. Next, we analyze key issues regarding square
correlations. Let all of the square correlations be over Zq.

Choice of q. Note that square correlations are defined over Zq but used to compute
the l2 value over Z

p̃
. For simplicity, we only consider one square correlation here. Given a

well-formed square correlation (a, d), i.e., d ≡ a2 mod q, our goal is to find the relation
between q and p̃, such that d ≡ a2 mod p̃. According to the property of congruences, we
find that p̃ | q can satisfy this requirement.

Square correlation verification. According to the technique of SPDZ sacrifice
[DPSZ12], each square correlation is verified by sacrificing another square correlation. For
each pair of square correlations (a, d), (â, d̂), each server Sb holds (a(b), d(b)), (â(b), d̂(b)).
Servers collectively sample a random value t ∈ Zq and then open e = ta− â, i.e., ∀b ∈ {0, 1},
Sb sends e(b) = ta(b)− â(b) to peer S1−b, which is the first message to be sent during square
correlation verification. Then S0 sends t̂(0) = t2d(0) − d̂(0) − 2tea(0) + e2 to S1, S1 sends
t̂(1) = t2d(1)− d̂(1)− 2tea(1) to S0, so that each server can check the correctness of (a, d) by
checking whether t̂(0) + t̂(1) = 0 (mod q). t̂(b) is the second message to be sent. Therefore,
to verify d square correlations, each server needs to send 2d elements over Zq.

To further reduce server communication, we use the technique of random linear com-
binations to batch the second message during square correlation verification. Instead of
sending t̂(b) for per-correlation verification to peer server, this technique packs all t̂(b)s into
a single element by using randomness. The randomness for a random linear combination
can be generated by a common random tape of two servers (two party multiple coins
flipping protocol). As a result, server-to-server communication during square correlation

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 79

verification is reduced by about two times, from 2d elements to d+ 1 elements, where d
denotes the number of square correlations to be verified.

4.4 Full Protocol
We put the previous parts all together, thus forming the full protocol in Protocol 4. Note
that the expected inputs for SeaFlame are larger than p

2 and less than p. It is not difficult
to encode the gradients generated from local training to this range.

Protocol 4 Secure Aggregation ΠAgg

Input: Input vectors of dimension d and each input is larger than p
2 and less than p. Two

different big primes p, η and a big odd p̃ such that p̃� Np and q = ηp̃. For the l2 defense,
µ is the upper bound to enforce. For the l∞ defense, p is the upper bound to enforce.
We fix the server S0 as the OTSn and S1 as the OTRc. Let n = d + 2 · dlog p̃e. λ is the
computational security parameter.
Output: Aggregate vector over Zd

p̃
.

Input Sharing: Locally at each client.
1: For each client c, let x denote the input of this client and xi is its i-th entry, where
i ∈ [d].

2: Generate shares x(0), x(1) of x over Zdp and send x(b) to Sb.
OT Generation: Locally at each client.

1: Each client c samples ∆ ∈ F2λ and r ∈ Z2·dlog p̃e
2 .

2: Each client c samples x(1) = 2x(1) mod p.
3: Each client c generates OT correlations W , T and W ′, T ′ by calling the LocalOT as

sub-protocol on inputs LSB(x(1)) ∈ Zd2, r and ∆:

(W,T)← LocalOT(LSB(x(1)),∆),
(W ′, T ′)← LocalOT(r,∆).

(9)

4: Each client c sends ∆ and W ← (W ‖W ′) to S0, and r and T ← (T ‖ T ′) to S1.
Square Correlation Generation: Locally at each client.
1: Each client c samples {ai}2di=1 ∈ Z2d

q .
2: Each client c generates arithmetic shares M (0),M (1) of {(ai, di)}2di=1, where di =
a2
i mod q.

3: Each client c sends M (b) to Sb, where b ∈ {0, 1}.
OT Verification: Between servers.
Servers perform the following steps for each client c:
1: Servers S0, S1 collectively sample randomness {χi}ni=1 ∈ Fn2λ .
2: S1 sets r̂ ← (LSB(x(1)) ‖ r) and computes:

r̃ =
n∑
j=1

r̂j · χj and t̃ =
n∑
j=1

Tj · χj , (10)

where rj is the j-th bit of r̂ and Tj ∈ F2λ is the j-th correlation in T . S1 sends r̃, t̃ to
S0.

3: S0 computes:

w̃ =
n∑
j=1

Wj · χj , (11)

where Wj ∈ F2λ is the j-th correlation in W .
4: S0 checks as follows:

80 SeaFlame

5: if t̃ = w̃ + r̃ ·∆ then
6: S0, S1 continue the protocol.
7: else
8: S0 rejects this client.
9: S0, S1 split OTs into two sets (WA, TA), (WB , TB) with d correlations in the first set.
Square Correlation Verification: Between servers.
Servers perform the following steps for each client c:
1: Sb sets M̂ (b) ← {}.
2: for each pair of correlations (a(b), d(b)), (â(b), d̂(b)) ∈M (b) do
3: Collectively sample a random value t ∈ Zq.
4: Servers open e = ta− â.
5: S0 computes t̂(0) = t2d(0) − d̂(0) − 2tea(0) + e2.
6: S1 computes t̂(1) = t2d(1) − d̂(1) − 2tea(1).

end for
7: S0, S1 collectively sample randomness {φi}di=1 ∈ Zdq .
8: Sb computes the random linear combination, t(b), of t̂(b)s by using φis.
9: Servers check whether t(0), t(1) are the shares of zero:
10: if yes then
11: Sb stores {(a(b)

i , d
(b)
i)}di=1 as M̂ (b).

12: else
13: Servers reject this client.

A2A Conversion: Between servers.
Servers perform the following steps for each client c:
1: for i ∈ [d] do
2: S0 sets z(0)

i ← Πp,p̃
A2A(x(0)

i ,∆,WA
i).

3: S1 sets z(1)
i ← Πp,p̃

A2A(x(1)
i , TAi).

end for
l2 Computation: Between servers.
Servers perform the following steps for each client c:
1: Sb sets z̃(b) ← 0 ∈ Z

p̃
.

2: for i ∈ [d] do
3: Servers open e = zi − ai.
4: S0 sets z̃(0) ← z̃(0) + d

(0)
i + 2ez(0)

i − e2 mod p̃.
5: S1 sets z̃(1) ← z̃(1) + d

(1)
i + 2ez(1)

i mod p̃.
end for

l2 Enforcement: Between servers.
Servers perform the following steps for each client c:
1: S0 sets z̃(0) ← z̃(0) − µ2.
2: S0, S1 extract the sign bit of z̃ by securely computing an adder [DSZ15] on inputs
z̃(b). For each AND, S0 calls ΠAND [RSWP23] with additional inputs ∆ and fresh
w,w′ ∈WB , S1 calls ΠAND with additional inputs r and corresponding t, t′ ∈ TB .

3: if the sign bit is zero then
4: Reject this client.
5: else
6: Pass the check.
Aggregation: Between servers.
1: For i ∈ [d], Sb adds z(b)

i of all clients who pass the checks above together into y(b)
i .

2: Servers open y = {yi}di=1.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 81

5 Security Analysis
In this section, we prove SeaFlame’s privacy against the malicious adversary corrupting
parts of clients and one server.

Here we consider that the malicious adversary A controls parts of clients and one server.
First, we give the following definitions and a theorem.

Ideal Functionality F̂ . F̂ works as follows:

• Receives gradients from clients.

• Checks whether both the l∞ and l2 values of each gradient vector are within the
required bound. All of unsatisified submissions are rejected.

• Receives the exclusion list specified by adversary A, which denotes a set of clients,
whose gradients will not be involved in the subsequent computation and the final
aggregate.

• Discards the gradients of clients in the exclusion list and computes the aggregate of
surviving gradients.

• Receives the output message specified by adversary A, and outputs it.

Note that the exclusion list captures the power of A to force some clients to abort, which
implies that a malicious server can falsely report the inputs of some clients as malformed.
Furthermore, ideal functionality F̂ is corruptible, which allows A to specify the final output.
The formal definition of corruptible ideal functionality can be found in [RSWP23].

Notations. We use SH and SM to denote the honest server and the malicious
server, respectively. Similarly, CH and CM represent honest clients and malicious clients,
respectively. Let p0 =

⌈
p
2
⌉
and NH denote the number of honest clients involved in final

aggregation.

Theorem 1. For every PPT malicious adversary A controlling clients and at most one
server, there exists a PPT simulator SIM in the ideal world such that the distributions{

IdealF̂,SIM(aux)({xi}
|C|
i=1 , λ, κ)

}
{xi}|C|

i=1,aux,λ,κ
,

{
RealΠ,A(aux)({xi}|C|i=1 , λ, κ)

}
{xi}|C|

i=1,aux,λ,κ

are computationally indistinguishable in the (FCoinFlip,FRO)-hybrid model, where aux is
an auxiliary input, C is the set of all clients with gradient inputs {xi}|C|i=1, and λ, κ

are computational and statistical security parameters. IdealF̂,SIM(aux)({xi}
|C|
i=1 , λ, κ) and

RealΠ,A(aux)({xi}|C|i=1 , λ, κ) are output pairs of honest parties and the adversary in the ideal
and real world, respectively.

Proof. We start by defining a PPT simulator, which calls adversary A as a subroutine in
a black-box manner.

Simulator SIM. SIM works as follows:

• Input Sharing, OT and Square Correlation Generation Phases:

1. Generates dummy gradient inputs of all honest clients (CH) by setting them
as vectors where all components are p0, and then generates the corresponding
shares of these inputs.

2. Generates OT and square correlation shares according to the protocol specifica-
tion.

82 SeaFlame

3. Sends the corresponding (for SM) shares of inputs, OTs and square correlations
above to A.

4. Receives the shares (for SH) of inputs, OTs and square correlations from A as
messages from malicious clients. If any share of a malicious client is missing,
or if any input share of a malicious client is out of the l∞ bound, ignores the
corresponding client and adds it into the exclusion list L, which captures the
ability of A to cause malicious clients to abort early.

5. If A aborts, outputs whatever A outputs and sends ⊥ to F̂ as the final output.

• OT and Square Correlation Verification Phases:

1. Relays the calls to FCoinFlip from SM and stores the outputs of these calls, i.e.,
common random challenges {χi}ni=1, t and {φi}di=1, which are used to verify
OTs and square correlations. Responds the outputs of FCoinFlip to SM .

2. Detects if A causes SM to send wrong random challenges about honest clients
to SH . If yes, stops simulating any more messages from these clients and adds
these clients into the exclusion list L.

3. Simulates messages acting like SH to SM during verification. Upon detecting
any failure of verification for clients, adds these clients into the exclusion list L
and stops simulating messages from honest clients among them.

4. If A aborts, outputs whatever A outputs and sends ⊥ to F̂ as the final output.

• A2A Conversion, l2 Computation and l2 Enforcement Phases:

1. Follows the protocol specification and simulates messages from SH to SM .
Relays the calls to FRO from SM when it invokes hash function in Πp̃

AliBitMult or
ΠAND, and stores the output of these calls. Responds the outputs of FRO to
SM .

2. Upon detecting any noncompliance of l2, adds the corresponding clients into
the exclusion list L and stops simulating messages from honest clients among
them. This also considers the situations where SM stops sending messages for
processing some clients’ data.

3. If A aborts, outputs whatever A outputs and sends ⊥ to F̂ as the final output.

• Aggregation Phase:

1. Sends zero vectors to F̂ as inputs of clients in CM .
2. Sends the exclusion list L to F̂ .
3. Receives the aggregate of inputs of the surviving honest clients, AH , which are

not in L.
4. Follows the protocol to simulate the share of the aggregate from SH , and adds
AH −NH · p0 (all components of AH subtract NH · p0) to the share to correct
it. Sends the corrected share to SM .

5. Receives the final message from SM and adds it to the corrected share above to
compute the final aggregate A.

6. If A aborts, outputs whatever A outputs and sends ⊥ to F̂ as the final aggregate.
7. Sends A to F̂ .
8. Outputs whatever A outputs.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 83

Next we prove the indistinguishability between the real and ideal worlds by defining a
sequence of hybrids.

Hybrid 0 H0. This is actually the real world.
Hybrid 1 H1. Instead of letting honest clients generate OTs and square correlations,

we have SIM generate the corresponding correlations, which is the only difference from
H0. A’s view is identically distributed to the previous one because both honest clients
and SIM generate correlations uniformly at random.

If SM is S0 (OTSn)
Hybrid 2 H2. In this hybrid, SIM sends random share of vectors (where all components

are p0) to SM as x(0) instead of honest clients randomly sharing their gradient vectors. All
subsequent steps in the protocol execution use shares of such vectors, which will normally
result in an inconsistent output. So SIM inputs zero vectors and L to F̂ to obtain the
sum of honest clients’ gradients, AH , and adds AH − NH · p0 (all components of AH
subtract NH · p0) back into the last message y(1) to obtain the final aggregate A from A.
SIM sends A back to F̂ . This is actually the ideal world. A’s view is computationally
indistinguishable from the previous one. Because messages to SM are masked by random
correlations, and the vectors where all components are p0 always satisfy the norm bound.

If SM is S1 (OTRc)
Hybrid 2 H2. In this hybrid, SIM sends random share of vectors (where all components

are p0) to SM as x(1) instead of honest clients randomly sharing their gradient vectors.
This is actually the ideal world. Similar to the previous case, A’s view is computationally
indistinguishable from H1.

6 Evaluation
We implement SeaFlame in the Rust language. The key libraries and cryptographic settings
are as follows:

• For the end-to-end communication, we use Tokio [tok].

• For the security parameter, we choose 128 as our computational security param-
eter and vary the statistical security parameter according to subsequent specific
experiments.

• For the OT, we use EMP Toolkit [emp].

• For the hash function, we use miTCCR [GKW+20].

• For the pseudorandom generator (PRG), we use hardware-accelerated AES.

• For arithmetic operations, we use Rug [rug], which supports operations for arbitrary-
precision numbers.

• For the training phase of FL, we use tch-rs [tch], which provides Rust bindings for
the C++ API of PyTorch.

First, we focus on secure aggregation and provide a performance comparison of SeaFlame
with the state-of-the-art work, ELSA. Then we split these individual phases of SeaFlame
and ELSA and analyze the impact of different bitlengths of gradients, i.e., input sizes,
on our optimization. Finally, to simulate practical FL scenarios, we combine our secure
aggregation with the FL local training phase.

84 SeaFlame

6.1 Comparison to ELSA
Setup. We use an Alibaba Cloud instance with 512 GB of RAM and the CPU (Intel Xeon
(Ice Lake) Platinum 9369B, 64 vCPUs) to simulate all clients in multi-threaded mode. We
also deploy servers on two Alibaba Cloud instances with 256 GB of RAM and the CPU
(Intel Xeon (Emerald Rapids) Platinum 8575C, 32 vCPUs). The machine settings are
similar to those in ELSA. We deploy our experiments on both LANs and WANs (100 Mbps
and 1 Gbps bandwidth for clients and servers, respectively). Unless otherwise specified, we
fix the bitlength of gradients to 32 and carry out l2 computation and aggregation over 64
bits. Thus, we set the prime p = 232 − 5, and p̃ = p2, and choose the prime η = 231 + 11
to achieve the security level almost equivalent to the statistical security parameter κ = 61.

We start our performance comparison of SeaFlame with ELSA by varying the number
of clients and gradients, which are denoted by N and d, respectively, in the previous text.
We measure the outgoing communication and runtime of each client and server under
groups of parameter settings. Note that we use a weaker machine with 32 GB of RAM and
the CPU (Intel Core i9-12900H, 8 cores) when measuring the runtime of a single client to
simulate a practical scenario, and the other indicators are still measured using the previous
setup. We implement two servers in a balanced manner, i.e., each server serves as the OT
sender for one half of clients and the OT receiver for the other half of clients, respectively.

Tab. 3 reports the detailed results of our comparison. The outgoing communication
of each client in SeaFlame is about 10.5 times less than ELSA, and each server is about
5.97-6.00 times less. Moreover, the total outgoing communication of SeaFlame is about
8.16-8.18 times less than ELSA. With regard to runtime, when without bandwidth limits,
each client in SeaFlame is about 3.68-3.98 times more than ELSA, and each server is about
1.56-2.45 times more. If network latency is not considered, the end-to-end runtime almost
entirely depends on the servers’ runtime. Therefore, the ratio of SeaFlame’s end-to-end
runtime to ELSA is close to the one for each server.

When over WANs setting limited bandwidth, the runtime of each client in ELSA
increases to about 13.1-15.3 times than those without bandwidth limits, and the runtime
of each server in ELSA increases to about 1.21-1.44 times. While the runtime of each
client in SeaFlame increases more slowly and the runtime of each server is almost un-
affected. In general, when bandwidth is limited, the runtime of each client in ELSA is
about 2.36-2.58 times longer than SeaFlame’s, and each server is 1.22-1.87 times shorter.
Therefore, SeaFlame is more friendly to bandwidth-limited devices, especially for clients.
Additionally, missing values of ELSA in Table 3 mean out of memory when running under
the corresponding settings, and SeaFlame’s runnability for large parameters also implies
its efficiency optimization.

Table 3: Performance Comparison of SeaFlame with ELSA. Values denote outgoing
communication (MB) and runtime (s; in parenthesis, the left one over LANs and right one
over WANs with limited bandwidth) of each client and server.

#Cli. #Grad. ELSA SeaFlame

Client Server Client Server

50 100k 52.27 (0.044, 0.616) 801.85 (2.251, 2.958) 4.96 (0.167, 0.242) 134.28 (5.088, 4.995)
50 500k 261.31 (0.207, 3.195) 4009.25 (14.14, 17.16) 24.80 (0.804, 1.356) 671.39 (24.56, 24.22)
50 1M 522.62 (0.417, 6.402) 8018.50 (31.04, 39.79) 49.60 (1.614, 2.683) 1342.78 (48.31, 48.49)

100 100k 52.27 (0.043, 0.617) 1602.94 (4.016, 5.383) 4.96 (0.169, 0.239) 267.80 (9.828, 9.660)
100 500k 261.31 (0.218, 3.198) 8014.68 (24.81, 31.43) 24.80 (0.834, 1.352) 1338.97 (46.70, 46.51)
100 1M 522.62 (0.431, 6.403) 16029.36 (50.12, 72.23) 49.60 (1.631, 2.695) 2677.92 (95.75, 94.23)

500 100k 52.27 (0.047, 0.616) 8011.65 (19.58, 23.77) 4.96 (0.173, 0.242) 1335.94 (45.14, 44.40)
500 500k 261.31 (0.213, 3.203) 40058.16 (118.84, 136.35) 24.80 (0.845, 1.356) 6679.57 (228.19, 228.32)
500 1M - - 49.60 (1.635, 2.699) 13359.10 (463.53, 465.26)

1k 100k 52.27 (0.044, 0.623) 16022.54 (40.62, 47.97) 4.96 (0.170, 0.246) 2671.12 (89.31, 88.21)
1k 500k - - 24.80 (0.842, 1.367) 13355.32 (447.73, 449.91)
1k 1M - - 49.60 (1.667, 2.706) 26710.58 (905.95, 905.67)

Moreover, we consider the special settings of gradient dimension to fit four popular ML

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 85

models: CNN, LeNet-5 [LeC15], ResNet-18 [HZRS16] and LSTM [HS97]. This is quite
similar to RoFL [LBV+23] and ELSA [RSWP23]. We fix the bitlength of gradients and
the number of clients to 32 and 100, respectively. Tab. 4 shows the concrete comparison
of both the total outgoing communication and the end-to-end runtime. SeaFlame achieves
about 8.16-8.17 times communication optimization at the expenses of 2.25-2.86 times more
runtime than ELSA.

Table 4: Comparison of total outgoing communication (GB) and end-to-end runtime (s)
when setting the number of gradients to fit four popular ML models. Besides, we fix the
number of clients to 100.

Model #Gradients ELSA SeaFlame

Comm. Runtime Comm. Runtime

CNN 19k 1.5650 0.9163 0.1919 2.4400
LeNet-5 [LeC15] 62k 5.1058 2.7165 0.6250 7.7817

ResNet-18 [HZRS16] 273k 22.480 14.642 2.7505 32.909
LSTM [HS97] 818k 67.358 47.688 8.2404 112.32

6.2 Comparison to PINE
In this section, we provide a theoretical and practical comparison with PINE [ROCT24],
which is one of the state-of-the-art works. Both PINE and SeaFlame are based on non-
colluding two servers. In PINE, clients share gradients over the aggregation field, providing
zero-knowledge proof within the l2 bound; servers serve as verifiers. In SeaFlame, clients
share gradients over a smaller field, providing cryptographic correlations; servers use
correlations to lift shares from a smaller field to the larger aggregation field and compute
the l2 value. Moreover, SeaFlame also provides l∞ defense by letting clients share gradients
over a smaller field. Different from the l2 defense, the l∞ defense defines a component-wise
upper bound. PINE directly shares gradients over the aggregation field, so it makes no
sense to discuss the l∞ defense over the same field as l2.

For the theoretical analysis of communication, each client in PINE and SeaFlame needs
O(d) communication to share gradients, where d is the dimension of the gradient vector.
For the remaining communication overhead, each client in PINE only needs O(

√
d) to

generate zero-knowledge proof, while SeaFlame’s client needs O(d) to generate OTs and
O(d) to generate square correlations. For each client, servers in PINE only need O(1)
communication to verify the proof, while servers in SeaFlame need O(1) to verify OTs, O(d)
to verify square correlations, O(d) to run the A2A protocol, O(d) to compute the l2 value,
and O(1) to securely compare the l2 value with the bound. Therefore, for each client’s
uploading, the asymptotical communication complexity of both PINE and SeaFlame is
O(d).

For the practical analysis of performance, we compare the concrete instances for 64-bit-
aggregation field and 104-dimensional gradient vectors of PINE (statistical ZK with 2−50

zero-knowledge error and 2−50 soundness error) and SeaFlame (32-bit gradients, setting
statistical security parameter as 61 and computational security parameter as 128). The
detailed values are shown in Tab. 5. Due to PINE’s not providing the specific runtime, we
also evaluate the runtime by the number of additions and multiplications in the same way.
For each client’s uploading, PINE runs 306.7d additions and 92.5d multiplications, while
SeaFlame runs 30d additions and 33d multiplications. In terms of communication, PINE
requires 64d bits for sharing and 22% additional communication for ZK proof, 14.1d bits;
SeaFlame needs 32d bits for sharing, 128d bits for OT generation (128 bits per OT), 192d
bits for square correlation generation (96 bits per square correlation), 96d bits for square
correlation verification (one 96-bit element per square correlation), 64d bits for A2A (one

86 SeaFlame

64-bit element per bit multiplication), and 64d bits for l2 computation (one 64-bit element
per square correlation consumed). In total, compared to PINE, SeaFlame’s communication
overhead increases by about 7.4 times, and the number of additions and multiplications
reduces by about 10.2 and 2.8 times, respectively. SeaFlame improves computational
efficiency by generating cryptographic correlations to aid computation, thereby increasing
communication overhead, while PINE achieves optimized communication by generating
ZK proofs, thereby increasing computational operations.

Table 5: Practical Performance Comparison of SeaFlame with PINE. Values in parenthesis
mean the field sizes of operations. Almost all additions and multiplications in PINE are
over 64-bit fields, as marked one time; while those in SeaFlame are over fields of different
sizes. For simplicity, we roughly estimate the total number by adding them up. Missing
values in the table indicate none or negligible.

PINE SeaFlame

Steps Comm.
(bits)

Runtime Steps Comm.
(bits)

Runtime

#Add #Mult #Add #Mult

Each Client

Sharing 64d d (64-bit) - Sharing 32d d (32-bit) -
OT Gen 128d d (128-bit) d (128-bit)

ZK Gen 14.1d 153.4d 69.6d SqCorr Gen 192d 2d (96-bit) d (96-bit)

Total 78.1d 154.4d 69.6d Total 352d 4d 2d

Two Servers ZK Vrf - 152.3d 22.9d

OT Vrf - 3d (128-bit) 3d (128-bit)
SqCorr Vrf 96d 8d (96-bit) 13d (96-bit)

A2A 64d 8d (64-bit) 10d (64-bit)
L2 Comp 64d 7d (64-bit) 5d (64-bit)

L2 Enf - - -

Total - 152.3d 22.9d Total 224d 26d 31d

Total - 78.1d 306.7d 92.5d - 576d 30d 33d

6.3 Overhead Breakdown
Here we split phases of SeaFlame and ELSA to quantify our optimization of these phases.
Meanwhile, we demonstrate the impact of different gradient bitlengths on our optimization.
We set 8, 16, 32 and 64-bit gradients, and fix the number of clients and gradients to 100
and 10000, respectively. We run this group of experiments on a laptop with 32 GB of
RAM and 8 cores in multi-threaded mode, and average measurements of 100 runs.

8 16 32 64
Input bitlength

104

105

106

107

1.54 MB

2.77 MB

5.23 MB

10.15 MB

0.47 MB 0.48 MB 0.50 MB 0.54 MB

(a) Client communication (byte)
Input Share
SqrCorr Gen
OT Gen

8 16 32 64
Input bitlength

103

104

105

106

107

108

109

40.08 MB
64.89 MB

160.30 MB

534.22 MB

18.15 MB 21.03 MB 26.79 MB
38.31 MB

(b) Server communication (byte)
OT Vrf
Agg
L2 Comp

Bit Comp
SqrCorr Vrf
A2A

Figure 1: The communication breakdown of phases in SeaFlame (right one) and ELSA
(left one) varying with different input bitlength. Values above the bars denote the total
communication. (a) For a single client. (b) For a single server. The communication of l2
enforcement is not shown in the subfigure because it is negligible.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 87

First, we begin with the outgoing communication breakdown of a single client and
server, as depicted in Fig. 1. Recall that our presented techniques are devoted to saving
communication. More specifically, SeaFlame reduces client communication during the OT
generation phase and server communication during both the A2A phase (bit composition
for ELSA) and the square correlation verification phase. The communication of other
phases in SeaFlame is equal to ELSA. So we put the stacked bar of those phases with
equal communication at the bottom, which can be found intuitively from two subfigures.
Overall, the client communication of SeaFlame is 3.28 (5.77, 10.46, 18.80) times less than
ELSA for 8-bit (16-bit, 32-bit, 64-bit) gradients, and the server communication is 2.21
(3.09, 5.98, 13.94) times less for 8-bit (16-bit, 32-bit, 64-bit) gradients. The larger of the
bitlength, the greater of the degree of our communication optimization. This is consistent
with our previous theoretical analysis in Section 4.2 that the reduction of OT usage is the
factor of dlog pe, i.e., the gradient bitlength.

In terms of the computation overhead, we consider the end-to-end runtime instead of
the runtime of a single client and server. We show the runtime breakdown in sequence
of protocol execution in Fig. 2. We view the client runtime as a whole phase, because a
single part of it, like input sharing, OT generation, and square correlation generation, has
too small values, and we simulate all clients almost simultaneously on one machine. The
server preparation phase includes servers receiving messages from clients and extending
values using PRG seeds. We can see that the OT verification in SeaFlame is faster than
ELSA due to the reduction in the number of OTs. More specifically, the runtime of OT
verification in SeaFlame is about 1.19 (2.68, 4.66, 4.89) times faster than ELSA for 8-bit
(16-bit, 32-bit, 64-bit) gradients. We find that other phases of SeaFlame are slower than
ELSA, and we think the main reason is that arithmetic operations are slower than bitwise
operations. The end-to-end runtime of SeaFlame is about 4.2 (3.15, 2.62, 1.65) times
slower than ELSA for 8-bit (16-bit, 32-bit, 64-bit) gradients. With the bitlength increasing,
the proportion of additional computation overhead brought by SeaFlame decreases.

0 500 1000 1500 2000
Runtime (ms)

8

16

32

64

In
pu

t b
itl

en
gt

h

0.3486 s

0.4421 s

0.6692 s

1.1300 s

1.5745 s

1.3943 s

1.7512 s

1.8602 s

Cli Runtime
Ser Prepare
OT Vrf
Bit Comp
SqrCorr Vrf
L2 Comp
Agg
A2A

Figure 2: The runtime breakdown of phases in SeaFlame (upper one) and ELSA (nether
one) varying with different input bitlength. Values on the right of the bars denote the
total end-to-end runtime. The runtimes of phases not shown in the figure are negligible.

6.4 Combination with FL
In this section, we combine our SeaFlame with the training phase of a specific FL image
classification task. We aim to train a CNN model from [TXW+24] based on the MNIST
dataset. This model has two convolution layers with a 5× 5 kernel and two fully connected

88 SeaFlame

layers with 128 and 10 output neurons, respectively. Each convolution layer is followed
by a ReLU activation function and a 2 × 2 max pooling layer in sequence. The first
fully connected layer is followed by a ReLU activation function and a dropout layer with
the probability 0.5. We choose Adam optimization algorithm and FedAvg algorithm
[MMR+17]. In each iteration, each client obtains 80,202 gradients after local training;
all clients and servers execute our SeaFlame once to compute aggregates; and servers
broadcast the averaged aggregates as the fresh global model.

We deploy this group of experiments on a laptop with 32 GB of RAM and 8 cores. We
fix the bitlength of gradients, the number of clients and gradients to 32, 100 and 80202,
respectively. And we assume that each client holds independent-and-identically-distributed
(IID) data. Fig. 3 illustrates the detailed experimental results. The left subfigure shows that
the model accuracy varies with iterations under the settings of different hyperparameters.
Among these eight settings, when the local epoch, the batch size and the learning rate
are 2, 50 and 0.001, the model converges the fastest. Thus, we measure the accumulated
overhead of this setting per 20 iterations, as depicted in the right subfigure. According to
the workflow of the local training phase with SeaFlame, the newly added overhead includes
the clients’ local training time and the servers’ communication overhead of broadcasting
global models. Experiments show the validity and efficiency of SeaFlame when applied to
practical FL tasks.

0 20 40 60 80 100
iteration

0

10

20

30

40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

(a) Model accuracy

E=1, B=50, lr=0.001
E=1, B=50, lr=0.0005
E=2, B=50, lr=0.001
E=2, B=50, lr=0.0005
E=1, B=100, lr=0.001
E=1, B=100, lr=0.0005
E=2, B=100, lr=0.001
E=2, B=100, lr=0.0005

20 40 60 80 100
iteration

101

102

103

tim
e

(s
)

(b) Accumulated overhead
client train time
client total time
server time

client comm
server seaflame comm
server total comm

102

103

104

co
m

m
un

ica
tio

n
(M

B)

Figure 3: (a) IID, N = 100, d = 80202, model accuracy varies with iterations under
settings of different hyperparameters. E, B and lr denote the local epoch, batch size and
learning rate, respectively. (b) IID, N = 100, d = 80202, E = 2, B = 50, lr = 0.001,
accumulated computation and communication overhead per 20 iterations of each client
and server. The bars in blue and red refer to time and communication, respectively,
corresponding with the left and right y-axis.

7 Conclusion and Future Work

SeaFlame uses arithmetic sharing with A2A conversion and random linear combination to
achieve better communication efficiency than the state-of-the-art work. Besides, SeaFlame
only achieves malicious privacy and requires gradients larger than p

2 . For our future
research, we will try to achieve full malicious security, which indicates both privacy and
correctness [Lin17], [TXW+24], in a practical way and remove the constraint of gradients.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 89

References
[AGJ+22] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni

Polychroniadou. Prio+: Privacy preserving aggregate statistics via boolean
shares. In SCN, volume 13409 of Lecture Notes in Computer Science, pages
516–539. Springer, 2022.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computation.
In CCS, pages 535–548. ACM, 2013.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society, 2018.

[BBG+20] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Le-
point, and Mariana Raykova. Secure single-server aggregation with
(poly)logarithmic overhead. In CCS, pages 1253–1269. ACM, 2020.

[BGL+23] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn,
Mariana Raykova, and Cathie Yun. ACORN: input validation for secure
aggregation. In USENIX Security Symposium, pages 4805–4822. USENIX
Association, 2023.

[BIK+17] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn
Seth. Practical secure aggregation for privacy-preserving machine learning.
In CCS, pages 1175–1191. ACM, 2017.

[BMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant gradient descent. In
NIPS, pages 119–129, 2017.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In NSDI, pages 259–282. USENIX
Association, 2017.

[CFLG21] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust:
Byzantine-robust federated learning via trust bootstrapping. In NDSS. The
Internet Society, 2021.

[CGJvdM22] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der
Maaten. Eiffel: Ensuring integrity for federated learning. In CCS, pages
2535–2549. ACM, 2022.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer,
2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A frame-
work for efficient mixed-protocol secure two-party computation. In NDSS.
The Internet Society, 2015.

[DWA+21] F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa
Chase. Precio: Private aggregate measurement via oblivious shuffling. Cryp-
tology ePrint Archive, Paper 2021/1490, 2021.

90 SeaFlame

[emp] Emp toolkit.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In FOCS, pages 427–437. IEEE Computer Society, 1987.

[GKW+20] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. Better
concrete security for half-gates garbling (in the multi-instance setting). In
CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages
793–822. Springer, 2020.

[GLL+21] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and
Thar Baker. Verifl: Communication-efficient and fast verifiable aggregation
for federated learning. IEEE Trans. Inf. Forensics Secur., 16:1736–1751,
2021.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, pages 770–778. IEEE Computer
Society, 2016.

[KIM+18] Ryo Kikuchi, Dai Ikarashi, Takahiro Matsuda, Koki Hamada, and Koji
Chida. Efficient bit-decomposition and modulus-conversion protocols with
an honest majority. In ACISP, volume 10946 of Lecture Notes in Computer
Science, pages 64–82. Springer, 2018.

[KMA+21] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià
Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu,
Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh,
Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu,
Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open
problems in federated learning. Found. Trends Mach. Learn., 14(1-2):1–210,
2021.

[KMY+16] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-
gies for improving communication efficiency. CoRR, abs/1610.05492, 2016.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT
extension with optimal overhead. In CRYPTO (1), volume 9215 of Lecture
Notes in Computer Science, pages 724–741. Springer, 2015.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT (3), volume 10822 of Lecture Notes in
Computer Science, pages 158–189. Springer, 2018.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 91

[LBV+23] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and
Anwar Hithnawi. Rofl: Robustness of secure federated learning. In SP, pages
453–476. IEEE, 2023.

[LeC15] Yann LeCun. LeNet-5, convolutional neural networks, 2015.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. In Tutorials on the Foundations of Cryptography, pages 277–346.
Springer International Publishing, 2017.

[MMM+22] Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Yingjiu Li, and Robert H. Deng.
Shieldfl: Mitigating model poisoning attacks in privacy-preserving federated
learning. IEEE Trans. Inf. Forensics Secur., 17:1639–1654, 2022.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In AISTATS, volume 54, pages 1273–1282. PMLR,
2017.

[MWA+23] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and
Tal Rabin. Flamingo: Multi-round single-server secure aggregation with
applications to private federated learning. In SP, pages 477–496. IEEE, 2023.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In CRYPTO, volume 576 of Lecture Notes in Computer
Science, pages 129–140. Springer, 1991.

[PKH22] Krishna Pillutla, Sham M. Kakade, and Zaïd Harchaoui. Robust aggregation
for federated learning. IEEE Trans. Signal Process., 70:1142–1154, 2022.

[ROCT24] Guy N. Rothblum, Eran Omri, Junye Chen, and Kunal Talwar. PINE:
Efficient verification of a euclidean norm bound of a Secret-Shared vector. In
33rd USENIX Security Symposium (USENIX Security 24), pages 6975–6992.
USENIX Association, 2024.

[RSWP23] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. ELSA:
secure aggregation for federated learning with malicious actors. In SP, pages
1961–1979. IEEE, 2023.

[rug] Rug.

[SHKR22] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage.
Back to the drawing board: A critical evaluation of poisoning attacks on
production federated learning. In SP, pages 1354–1371. IEEE, 2022.

[SKSM19] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMa-
han. Can you really backdoor federated learning? CoRR, abs/1911.07963,
2019.

[SWMS20] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek.
Robust and communication-efficient federated learning from non-i.i.d. data.
IEEE Trans. Neural Networks Learn. Syst., 31(9):3400–3413, 2020.

[TBA+19] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig,
Rui Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated
learning - (extended abstract). Inform. Spektrum, 42(5):356–357, 2019.

[tch] tch-rs.

92 SeaFlame

[tok] Tokio.

[TXW+24] Jinling Tang, Haixia Xu, Mingsheng Wang, Tao Tang, Chunying Peng, and
Huimei Liao. A flexible and scalable malicious secure aggregation protocol
for federated learning. IEEE Trans. Inf. Forensics Secur., 19:4174–4187,
2024.

[XLL+20] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. Verifynet:
Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur.,
15:911–926, 2020.

[YMV+21] Hongxu Yin, Arun Mallya, Arash Vahdat, José M. Álvarez, Jan Kautz,
and Pavlo Molchanov. See through gradients: Image batch recovery via
gradinversion. In CVPR, pages 16337–16346. IEEE, 2021.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In
NeurIPS, pages 14747–14756, 2019.

A Correctness in the Semi-honest Model
We consider that all parties are semi-honest and state the correctness of SeaFlame’s key
components.

Correctness of Πp̃
AliBitMult. (Protocol 2) Recall that S0 and S1 are the OT sender and

the OT receiver respectively, so we just consider the two cases of the input of S1, i.e., x(1).
If x(1) = 0, then

y(0) + y(1) = −H(c‖w) +H(c‖t) (mod p̃)
= −H(c‖w) +H(c‖w + x(1)∆) (mod p̃)
= −H(c‖w) +H(c‖w) (mod p̃)
= 0 = x(0) ∧ x(1).

If x(1) = 1, then

y(0) + y(1) = −v0 + u− v (mod p̃)
= −v0 + v0 + v1 + x(0) − v (mod p̃)
= H(c‖w + ∆) + x(0) −H(c‖t) (mod p̃)
= H(c‖w + ∆) + x(0) −H(c‖w + ∆) (mod p̃)
= x(0) = x(0) ∧ x(1).

Correctness of Πp,p̃
A2A. (Protocol 1) Now we explain the correctness of A2A conversion.

Since all clients are semi-honest, their inputs are larger than p
2 and less than p. For Πp,p̃

A2A,
p
2 < x < p, so p < 2x < 2p and 2x (mod p) = 2x− p is an odd element in Zp. ∀b ∈ {0, 1},
x(b) = 2 · x(b) (mod p), then we have

x(0) + x(1) − αp = 2x− p,

where α ∈ {0, 1}. Since 2x− p is odd, we have

LSB(x(0))⊕ LSB(x(1)) = 1− α.

Jinling Tang, Haixia Xu(�), Huimei Liao and Yinchang Zhou 93

Therefore, the output of Πp,p̃
A2A is

y(b) = 2−1 · y(b) (mod p̃)
= 2−1 · (x(b) + z(b)p) (mod p̃).

Note that

z(0) + z(1) (mod p̃) = LSB(x(0)) + LSB(x(1))− 2 · (m(0) +m(1))
= LSB(x(0)) + LSB(x(1))− 2 · LSB(x(0)) ∧ LSB(x(1))
= LSB(x(0))⊕ LSB(x(1))
= 1− α,

where m(b) is the output of Πp̃
AliBitMult on input LSB(x(b)). Finally, we have

y(0) + y(1) (mod p̃) = 2−1 · (x(0) + x(1) + z(0)p+ z(1)p)
= 2−1 · (x(0) + x(1)) + (z(0) + z(1))p
= 2−1 · [2x+ (α− 1)p+ (1− α)p]
= x = x(0) + x(1) (mod p).

Correctness of l2 Computation. Since all clients are semi-honest, all square corre-
lations will be correct. Given a well-formed square correlation (a, d) with shares (a(b), d(b)),
where b ∈ {0, 1}, the corresponding share of z2 (denoted by z̃(b)) can be computed by:

z̃(b) = d(b) + 2 · e · z(b) − b · e2

= d(b) + 2(z − a)z(b) − b(z − a)2

= d(b) + 2zz(b) − 2az(b) − bz2 + 2abz − ba2,

where e = z − a. Since d ≡ a2 mod q and q = ηp̃, then d ≡ a2 mod p̃ holds. We further
have

z̃(0) + z̃(1) = d+ 2z2 − 2az − z2 + 2az − a2

= z2 (mod p̃).

To sum up, all clients are semi-honest, so all OTs are correct. Then the correctness
of Πp̃

AliBitMult and further Πp,p̃
A2A, i.e., A2A conversion, are guaranteed. The correctness of

aggregation phase is obvious, thus SeaFlame’s correctness is guaranteed.

	Introduction
	Contributions
	Related Work

	Preliminaries
	Notations
	Arithmetic secret sharing
	Defenses based on vector norms
	Oblivious Transfer (OT)
	Square correlation

	System Model
	Entity Setup
	Threat Model
	Design goals

	SeaFlame
	Overview
	Reduce OT Usage
	Square Correlation
	Full Protocol

	Security Analysis
	Evaluation
	Comparison to ELSA
	Comparison to PINE
	Overhead Breakdown
	Combination with FL

	Conclusion and Future Work
	Correctness in the Semi-honest Model

