
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 23–68. DOI:10.46586/tches.v2025.i2.23-68

MulLeak: Exploiting Multiply Instruction
Leakage to Attack the Stack-optimized Kyber

Implementation on Cortex-M4
Fan Huang1, Xiaolin Duan1, Chengcong Hu1,

Mengce Zheng3 and Honggang Hu1,2(�)

1 School of Cyber Science and Technology,
University of Science and Technology of China, Hefei, China

{fanh2022,duanxl,hcc2016}@mail.ustc.edu.cn
2 Hefei National Laboratory, Hefei, China hghu2005@ustc.edu.cn
3 Zhejiang Wanli University, Ningbo, China mczheng@zwu.edu.cn

Abstract. CRYSTALS-Kyber, one of the NIST PQC standardization schemes, has
garnered considerable attention from researchers in recent years for its side-channel
security. Various targets have been explored in previous studies; however, research
on extracting secret information from stack-optimized implementations targeting the
Cortex-M4 remains scarce, primarily due to the lack of memory access operations,
which increases the difficulty of attacks.
This paper shifts the focus to the leakage of multiply instructions and present
a novel cycle-level regression-based leakage model for the following attacks. We
target the polynomial multiplications in decryption process of the stack-optimized
implementation targeting the Cortex-M4, and propose two regression-based profiled
attacks leveraging known ciphertext and chosen ciphertext methodologies to recover
the secret coefficients individually. The later one can also be extended to the protected
implementation.
Our practical evaluation, conducted on the stack-optimized Kyber-768 implementation
from the pqm4 repository, demonstrates the effectiveness of the proposed attacks.
Focusing on the leakage from the pair-pointwise multiplication, specifically the macro
doublebasemul_frombytes_asm, we successfully recover all secret coefficients with a
success rate exceeding 95% using a modest number of traces for each attack. This
research underscores the potential vulnerabilities in PQC implementations against
side-channel attacks and contributes to the ongoing discourse on the physical security
of cryptographic algorithms.
Keywords: Post-quantum Cryptography · Kyber · Linear Regression · Profiled
Attack · Cycle-level Power Leakage

1 Introduction
The National Institute of Standards and Technology (NIST) has very recently announced
approval of three Federal Information Processing Standards (FIPS) for Post-Quantum
Cryptography [NIS24b]: FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism
Standard, FIPS 204, Module-Lattice-Based Digital Signature Standard and FIPS 205,
Stateless Hash-Based Digital Signature Standard. Of them, FIPS 203 [NIS24a] is derived
from the CRYSTALS-Kyber [SAB+22] submission which is the sole candidate for the Key
Encapsulation Mechanism (KEM) schemes selected for standardization after the third
round of the Post-Quantum Cryptography (PQC) standardization process. As PQC will be

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.23-68
mailto:fanh2022@mail.ustc.edu.cn,duanxl@mail.ustc.edu.cn,hcc2016@mail.ustc.edu.cn
mailto:hghu2005@ustc.edu.cn
mailto:mczheng@zwu.edu.cn
http://creativecommons.org/licenses/by/4.0/

24 MulLeak

deployed on a wide range of computing platforms, it is extremely important that candidates
are also scrutinized for their resistance against physical cryptanalysis, e.g., Side-Channel
Analysis (SCA).

Since Kocher et al. [KJJ99] proposed the Differential Power Analysis (DPA) attack in
1999 to reveal the secret key of DES through power consumption, SCA has become an
important approach of cryptoanalysis. SCA attacks are the ones that target the weaknesses
in implementations rather than algorithm specifications, by collecting side information
such as power consumption [KJJ99, KJJR11], electromagnetic radiation [AARR03], or
running time [Koc96] that leaks sensitive (intermediate) information during the execution
of the targeted cryptographic operation. One class of side-channel attacks known as
Correlation Power Analysis (CPA) attack was introduced by Brier et al. [BCO04] in
2004. In this case, attackers model the power consumption of the device under test and
measures the correlation of the model with real-world data to test secret value hypotheses.
The power leakage of the device/implementation is often modeled with the Hamming
Weight (HW)/Hamming Distance (HD) of/between the intermediate data. The significance
of side-channel security in PQC schemes, especially for implementations on embedded
devices, cannot be overstated. In the case of Kyber, several SCA or SCA-assisted attacks
have emerged, underscoring its vulnerabilities [QCZ+21, XPR+22, RBRC22, RRD+23,
DNGW23, MKK+23].

The polynomial multiplication is the core operation for practical constructions of
lattice-based cryptography. Number Theoretic Transform (NTT) (including its inverse)
and pointwise multiplication are used to implement the multiplication of polynomials in
Kyber. A technique referred as incomplete NTT is introduced to handle rings of special
structures as well as to improve efficiency in implementations of Kyber. It leads to the
polynomial multiplications of degree one, which we refer to as pair-pointwise multiplication,
following the terminology in [ABB+24]. Our study targets the pair-pointwise multiplication
in the decryption processing of Kyber specifically.

Many research teams utilize the ARM Cortex-M4 device [ARMa] for PQC algorithm
implementations, primarily due to its balanced performance and power efficiency. The
pqm4 repository [KRSS] leverages the Cortex-M4’s features, including its memory and
processing capabilities, to provide a robust platform for PQC algorithms. Within the pqm4
repository, the speed-optimized and stack-optimized implementations are two optimized
Kyber implementations with distinct goals: speed and stack efficiency. They have optimized
operations such as the NTT (including its inverse), pair-pointwise multiplication, and
modular reductions (Montgomery reduction and Barrett reduction) using assembly code.
For instance, both schemes store two polynomial coefficients in a 32-bit word and then
utilize vectorized instructions like uadd16 to execute two half-word additions concurrently.

In the specific function of pair-pointwise multiplication, the two implementations adopt
different strategies, as shown in Figure 16. The speed-optimized implementation employs
a lazy reduction strategy to minimize the number of modular reduction operations, thus
enhancing the speed. This approach provides a store instruction for each result coefficient
that has not yet been reduced by modulo q (cf. line 9, 11 and line 20, 22 in Figure 16a).
On the other hand, the stack-optimized implementation uses a register allocation strategy
that reduces the number of load/store instructions. This allows two result coefficients that
have been reduced by modulo q to be stored in a single 32-bit word, requiring only one
store instruction to save both coefficients into memory (cf. line 15 and 30 in Figure 16b).

1.1 Related Works
Table 1 summarizes the related side-channel attacks against Kyber from the literature.
Primas et al. [PPM17] present a notable study by combining the side-channel leakage
of NTT computation with the belief propagation algorithm to conduct a single-trace
profiled attack. The attack from [PP19] can be seen as a significant improvement over

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 25

Table 1: Related attacks on Kyber polynomial multiplication. LR represents the linear
regression-based leakage model. HW denotes the (noisy) Hamming weight model.

Attacks Class Implementation(s) Model Target Operation

This work Profiled M4 stack (Masked) LR Pair-pointwise
multiplication

[TS24] Non-profiled M4 speed (Masked) HW Pair-pointwise
multiplication

[MWK+24] Non-profiled M4 stack HW Pair-pointwise
multiplication

[ABB+24] Profiled M4 [SAB+] (Masked [HKL+, HKL+22]/Shuffled) HW Pair-pointwise
multiplication

[HSST23] Profiled+BP M4 Simulation (Shuffled) HW NTT

[HHP+21] Profiled+BP M4 Simulation (Masked) HW NTT

[PP19] Profiled+BP M4 [SAB+] (Masked) HW NTT

[PPM17] Profiled+BP R-LWE Encryption [dCRVV15] (Masked [RRd+16]) HW NTT

[PPM17] in terms of practicality. Hamburg et al. [HHP+21] present an attack using a
chosen ciphertext that is decompressed to a vector containing a large amount of zeros.
The attack is likewise assisted by belief propagation for template matching. In response
to the shuffling countermeasures proposed by Ravi et al. [RPBC20], Hermelink et al.
[HSST23] provide analysis of the shuffled NTT and give a Belief Propagation (BP) based
attack. Bock et al. [ABB+24] proposed a template attack that allows attackers to reveal
the secret coefficients in Kyber directly from the pair-pointwise multiplication in the
decapsulation process. Tosun and Savas [TS24] present several non-profiled side-channel
attacks targeting the pair-pointwise multiplication exploiting the zero-valued coefficients
of the known operand, with the application to the ARM Cortex-M4 speed-optimized
implementation of Kyber [impa]. Mujdei et al. [MWK+24] attack the ARM Cortex-M4
stack-optimized implementation of Kyber [impb] and show that the secret coefficients
must be predicted in pairs since the incomplete NTT algorithm is used in the polynomial
multiplication of the targeted implementation.

1.2 Motivation
Previous work has predominantly utilized the HW model to simulate the power leakage of
intermediate or hypothetical values (as shown in Table 1). Moreover, most of these studies
opt for memory operations, assuming they yield greater signal-to-noise ratios (SNR) in
power leakage than register updates or combinational logic. As previously mentioned,
there are two types of Kyber implementations in the pqm4 repository: speed-optimization
and stack-optimization. When attacking these implementations using the HW model with
memory operation configurations, there is a significant gap in attack complexity.

In the speed-optimized implementation, each result coefficient is stored using a individ-
ual store instruction (cf. line 9, 11 or line 20, 22 in Figure 16a). Thus, it allows attackers
to obtain information about individual result coefficients. For example, by employing
a zero-value attack [TS24] or a CPA attack, attackers can recover the coefficients of a
single secret polynomial one by one leading to an attack complexity of O(q(n/2)) or O(qn).
Conversely, the stack-optimized implementation uses only one instruction to store a pair
of result coefficients (cf. line 15 or 30 in Figure 16b). It means that while an adversary
may be able to obtain the Hamming weight information of this 32-bit word, they cannot
discern the Hamming weight of each individual 16-bit coefficient. [MWK+24] presents
a CPA attack that predicts secret coefficients in pairs, bringing the attack complexity
to O(q2(n/2)). Particularly, when targeting a first-order masked implementation, the
attack complexity can be notably high, even reaching up to O(q4(n/2)). Overall, it is
more challenging for adversaries to attack the stack-optimized implementation than the
speed-optimized implementation when targeting the pair-pointwise multiplication.

To overcome the difficulties when targeting the stack-optimized implementation, we
shift our focus to the leakage from arithmetic instructions, particularly those pertaining
to multiplication. The presence of modular reduction operations in the pair-pointwise

26 MulLeak

multiplication brings a series of multiply instructions related to the secret coefficients.
Accurately modeling multiply instructions is one of the core endeavors of this paper.

McCann et al. [MOW17] conduct a modeling study focused on the instructions of
Cortex-M0 and M4, including arithmetic, logical, and memory access instructions. They
cluster similar instructions and terms related to instruction interactions with data states,
transitions, and interactions. Then, they construct a regression-based leakage model. We
expand upon their leakage model by additionally utilizing the power leakage originating
from registers and combinational logic over an entire clock cycle. Then, we construct
a novel cycle-level regression-based leakage model which is designed to characterize the
power leakage during the execute stage of multiply instructions.

Exploiting the leakage from multiply instructions, we are able to predict the secret
coefficients individually. This is another core focus of this paper and the source of the
word "MulLeak" in title ("Multiply"+"Leak"). The approach yields an attack complexity of
O(qn) for recovering a single polynomial in an unprotected implementation. In a first-order
masked implementation, the complexity increases to O(q2n). The regression-based profiled
attacks proposed by Schindler et al. [SLP05] provide an adaptable improvement method
for the purpose to predict the coefficients individually in our work. These attacks can
be seen as a variant of template attacks introduced by Chari et al. [CRR03], where the
deterministic part of the leakage function is represented as a linear combination of basis
functions, in order to reduce the number of profiling traces.

In this work, we target the stack-optimized Kyber implementation running on the
ARM Cortex-M4. Utilizing the proposed cycle-level leakage model, we conduct several
regression-based profiled attacks on the pair-pointwise multiplication during the decryption
process. A known ciphertext attack and a chosen ciphertext attack are proposed to
counteract the unprotected implementation. The chosen ciphertext attack is also applied
to the masked implementation.

1.3 Main Contributions
The main contributions of this paper are as follows:

• We develop a novel cycle-level regression-based leakage model targeting multiply
instructions and provide a systematic method for selecting explanatory variables in
the model.
The model characterizes the power consumption of multiply instructions within a
single clock cycle, offering a detailed view on the power dissipation related to the
execute stage of these instructions. Our research delves into the power characteristics
of the MAC circuit used by the 16×16 multiply instruction on the Cortex-M4 device,
shedding light on the type of multiplier circuit involved. Based on the identified
multiplier type, we simulate the MAC circuit structure within the DSP extension
and emulate intermediate values during computation, enabling more accurate power
consumption predictions.
In addition to the significance hypothesis test, we offer a systematic method for
selecting explanatory variables. This approach is designed to optimize the model while
avoiding meaningless or redundant variables at both the instruction and algorithm
levels.

• We demonstrate the application of regression-based profiled attacks targeting the pair-
pointwise multiplication, specifically the macro doublebasemul_frombytes_asm in
the stack-optimized Kyber implementation. Our approaches allow for the individual
prediction of secret coefficients, which is pivotal for mounting effective side-channel
attacks.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 27

To enhance the efficiency of the attacks, we additionally utilize the Hamming weight
information leaked by the store instruction, where two result coefficients are stored
in a single 32-bit word. The Hamming weight relations, including two equations
between the two coefficients and the word, can be leveraged to filter candidates when
predicting the secret coefficient. Thereby they reduce the complexity and the number
of traces required to successfully mount the attacks.

• We conduct real-world attacks on the stack-optimized Kyber implementation using
the STM32F303 device. Our attacks can successfully recover secret coefficients with
a high success rate using a limited number of traces. Our experiments demonstrate
that only 12 traces are required to achieve a 99.993% success rate when recovering a
pair of secret coefficients in an unprotected implementation.

• We also experimentally demonstrate that our chosen ciphertext attack methodology is
applicable to protected a Kyber implementation with masking. 201 traces are required
to recover the secret coefficient pair with success rate 99.990% when targeting a
first-order masked implementation. Thus, the work extends the scope of our research
to include countermeasures against side-channel attacks.

2 Preliminaries
In this section, we aim to provide a comprehensive background to make our manuscript
accessible to readers unfamiliar with key areas. These include the details of the lattice-
based Kyber algorithm (Section 2.1), the methods underlying regression-based leakage
modeling (Section 2.2.1), and the regression-based profiled attacks (Section 2.2.2). Further,
we delve into the architectural specifics of the ARM Cortex-M4 processor, focusing on the
details of instruction processing (Section 2.3). This analysis is essential for understanding
the side-channel leakages that are the central concern of this study. Lastly, we provide an
overview of the standard experimental configurations typically used in SCA (Section 2.4).

Notations In this manuscript, we employ lowercase letters to denote variables or poly-
nomials, and boldface letters to signify column vectors or matrices. The notation x[b] is
utilized to represent the bth bit of the variable x. Subscripts of the form (t) are used to
index time or instructions, while superscripts such as (p) denote the index of traces for
profiling, and (a) signifies the index of traces for attack. The variables with hat symbols
indicate that they are in the NTT domain, such as f̂ . Throughout this paper, indexing is
initialized at zero.

2.1 Kyber
As mentioned above, Kyber [SAB+22] is a post-quantum KEM scheme whose security relies
on the hardness of the Module Learning with Errors (M-LWE) problem [BGV12, LS15],
with the ring dimension n = 256 and the coefficient modulus q = 3329 over the a polynomial
ring Rq = Zq[X]/(xn + 1). The module dimension k = 2, 3 or 4, and parameters of central
binomial distributions Bη1 ,Bη2 , η1 = 3, 2 or 2, η2 = 2, 2 or 2 corresponds to Kyber-512,
-768 or -1024, respectively. As described in Algorithm 1, the key generation of Kyber uses
the M-LWE equation t̂← Â ◦NTT(s) + NTT(e), where s ∈ Rkq is the secret key, t̂ ∈ Rkq
and Â ∈ Rk×kq forms the public key and e ∈ Rkq is the noise vector. s and e are short
polynomials, whose coefficients are sampled from Bη1 .

The Kyber.CPAPKE.Encryption is shown in Algorithm 2. It generates the ciphertext
c which consists of two compressed parts c1 and c2. Algorithm 3 presents a simplified
version of the decryption progress of Kyber.CPAPKE. The ciphertexts c is decompressed
to two parts, u ∈ Rkq and v ∈ Rq, which can be used to recover the message m. The

28 MulLeak

Algorithm 1: Kyber.CPAPKE.KeyGen (simplified)
Output: Public key: (̂t, ρ), secret key: ŝ

1 Choose uniform seeds ρ, σ
2 Â← SampleU (ρ) ∈ Rk×kq // Generate uniform Â in NTT domain
3 s, e← SampleBη1

(σ) ∈ Rkq // Sample from binomial distribution
4 ŝ := NTT(s), ê := NTT(e) ∈ Rkq // NTT for efficient multiplication
5 t̂ := Â ◦ ŝ + ê ∈ Rkq
6 return ((̂t, ρ), ŝ)

Algorithm 2: Kyber.CPAPKE.Enc (simplified)
Input: Public key: (t̂, ρ), message: m, seed: τ
Output: Ciphertext (c1, c2)

1 Â← SampleU (ρ) ∈ Rk×kq // Regenerate uniform Â in NTT domain
2 r← SampleBη1

(τ) ∈ Rkq // Sample r from Bη1

3 e1 ← SampleBη2
(τ) ∈ Rkq , e2 ← SampleBη2

(τ) ∈ Rq // Sample e1, e2 from Bη2

4 u := NTT−1(ÂT ◦NTT(r)) + e1 ∈ Rkq
5 v := NTT−1(t̂T ◦NTT(r)) + e2 + Decompressq(m, 1) ∈ Rq
6 c1 := Compressq(u, du), c2 := Compressq(v, dv)
7 return (c1, c2)

Algorithm 3: Kyber.CPAPKE.Dec (simplified)
Input: Secret key: ŝ, ciphertext: (c1, c2)
Output: Message m

1 u := Decompressq(c1, du) ∈ Rkq
2 v := Decompressq(c2, dv) ∈ Rq
3 m := Compressq(v −NTT−1(ŝT ◦NTT(u)), 1)
4 return m

function Compressq maps from Zq to {0, 1}d, while another function Decompressq maps
from {0, 1}d to Zq. Both functions are operated on the coefficients of the polynomial(s).
When applying them to polynomials, they are applied coefficient-wise.

Compressq(x, d) = d(2d/q) · xc mod 2d,
Decompressq(x, d) = d(q/2d) · xc,

where x is the element of Zq, d is the compression size.

2.1.1 Incomplete NTT and Pair-pointwise Multiplication

Unlike a full NTT, Kyber skips the last layer. This modification stems from the use of
only n-th primitive roots of unity, where the modulus polynomial Xn + 1 factors into
polynomials of degree 2. Therefore, in NTT domain, multiplication is not purely pointwise,
but multiplications of polynomials of degree one (pair-pointwise). Hence,

ct = (ct0, ct1, ct2, ct3, ..., ct254, ct255),
ĉt = NTT(ct) = (ĉt0 + ĉt1X, ĉt2 + ĉt3X, ..., ĉt254 + ĉt255X),

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 29

with

ĉt2i =
127∑
j=0

ct2jζ
(2i+1)j , ĉt2i+1 =

127∑
j=0

ct2j+1ζ
(2i+1)j ,

where i ranges from 0 to n/2− 1.
Using NTT and its inverse NTT−1 we can compute the product ct · sk of two elements

ct, sk ∈ Rq very efficiently as NTT−1(NTT(ct) ◦NTT(sk)) where NTT(ct) ◦NTT(sk) =
ĉt ◦ ŝk = r̂ denotes the basecase multiplication consisting of the 128 products

r̂2i + r̂2i+1X = (ĉt2i + ĉt2i+1X)(ŝk2i + ŝk2i+1X) mod (X2 − ζ2i+1)

of linear polynomials, as presented in Algorithm 4.
Algorithm 4: Pair-pointwise Multiplication in Kyber.CPAPKE.Dec (simplified)
Input: Secret polynomial ŝk ∈ Rq, ciphertext polynomial ĉt ∈ Rq
Input: Twiddle factors (ζ1, ζ3, · · · , ζn−1)
Output: Result polynomial r̂

1 for i← 0 to n/2− 1 then
2 r̂2i = ĉt2i · ŝk2i + ĉt2i+1 · ŝk2i+1 · ζ2i+1

3 r̂2i+1 = ĉt2i · ŝk2i+1 + ĉt2i+1 · ŝk2i
4 return r̂

2.1.2 Masked implementations

Masking [CJRR99] is a well-established technique used to protect cryptographic algorithms
against SCA attacks such as DPA and CPA. It splits sensitive data into multiple shares,
and then processes these shares through carefully devised functions. Following the masked
computation, the shares are recombined to yield the actual output, thereby preserving the
confidentiality of the cryptographic operation.

Since the polynomial multiplication and addition are linear transformations of secret
coefficients, the masking technique is a natural fit for lattice-based cryptography. Several
studies have been conducted on the masking of lattice-based schemes [RRVV15, RRd+16,
OSPG18, BDK+21]. Furthermore, Bos et al. [BGR+21] and Heinz et al. [HKL+22]
have introduced concrete masking techniques specifically tailored for the Kyber algorithm.
Figure 1 provides a simplified depiction of a first-order masked polynomial multiplication
in Kyber decryption processing. The secret key ŝ is partitioned into two shares, ŝs0 and ŝs1,
such that ŝ = ŝs0 + ŝs1 mod q. Subsequently, pair-pointwise multiplications, polynomial
additions, and NTT−1 are computed on each share individually.

Figure 1: A simplified depiction of a first-order masked Kyber decryption process. Parts
that are unnecessary for our analysis are omitted. The side channel leakage, which
originates from the pair-pointwise multiplications, is highlighted by a red dashed box.

30 MulLeak

2.2 Regression-based leakage Profiling
2.2.1 Regression-based leakage Modeling

McCann et al. [MOW17] opt for a ‘grey box’ approach that does not require detailed
hardware descriptions but assumes access to assembly code to construct models at the
instruction level. They concentrate on predicting variables that can be derived from
assembly sequences (i.e. input data, register locations). Then, they fit models to the
predicted leakage y′ of instructions via ordinary least squares estimation.

y′ = Y ′(o0, o1, õ0, õ1) =
(
OT

0 ,OT
1 ,TT

0 ,TT
1
)
· β + δ. (1)

In this equation, oi represents the ith 32-bit operand of the current instruction, while õi is
the corresponding operand from the previous instruction. Oi = (oi[31], oi[30], · · · , oi[0])T
denotes the vector of bits from the ith operand oi, and Ti = (oi[31]⊕ õi[31], oi[30]⊕ õi[30],
· · · , oi[0]⊕ õi[0])T represents the vector of bit transitions in the ith pipeline register. The
scalar intercept δ and the vector of coefficients β = (β127, β126, · · · , β0)T are the model’s
parameters to be estimated.

To ascertain the most influential variables in the model, McCann et al. employ the
F -test, a statistical method designed to evaluate the significance of groups of variables in
regression-based models. This test is particularly effective in scenarios where the potential
explanatory power of numerous variables needs to be rigorously assessed.

They initially construct a full model A incorporating all potential predictors. Then,
they construct a reduced model B excluding a subset of variables, such that pB < pA. The
formula for the F -test is based on the ratio of the reduction in residual sum of squares
(RSS) between the full and reduced models to the increase in the residual degrees of
freedom, normalized by the residual mean square error of the full model.

The F -test is calculated using the following formula:

F =

(
RSSB−RSSA

pA−pB

)
(

RSSA
n−pA−1

) , (2)

where pA, pB are number of parameters of the two models, respectively, and n is the
total number of observations. In essence, the numerator of the F -test represents the
per-parameter increase in the residual sum of squares due to excluding pA−pB parameters,
while the denominator represents the average residual sum of squares per degree of freedom
in the full model.

To determine the statistical significance, the calculated F -statistic is compared against
a critical value from the F-distribution with (pA − pB , n − pA − 1) degrees of freedom.
If the F -statistic is larger than the critical value at a chosen significance level (such as
5%), the null hypothesis that the reduced model provides an adequately similar fit to the
data as the full model is rejected. This implies that the variables excluded in the reduced
model are collectively significant and should be included in the model for a more accurate
representation.

2.2.2 Regression-based Profiled Attack

Regression-based profiled attacks have been introduced by Schindler et al. [SLP05].
They can be viewed as a variant of Chari et al.’s template attacks [CRR03], where
the deterministic part of the leakage function is expressed as a linear combination of
intermediate value bits, in order to reduce the number of profiling traces. The adversary
measures physical observation y(t) at time t with the intermediate value x =

∑b−1
i=0 x[i] ·2i ∈

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 31

Z2b , where t = 0, 1, 2, ..., nt − 1. The predicted power consumption y′(t)(x) is modeled as
follow:

y′(t) = Y ′(t)(x) = XT · β(t) + δ(t), (3)

where X = (x[b− 1], x[b− 2], · · · , x[0])T . The vector β(t) =
(
βb−1,(t), βb−2,(t), · · · , β0,(t)

)T
are the weights of the models learned by profiling. δ(t) is the scalar intercept to be
estimated.

The profiling step collects a set of np traces Ynp =
(
y(0),y(1), · · · ,y(np−1))T and their

corresponding intermediate values x =
(
x(0), x(1), · · · , x(np−1))T ∈ Znp2b , where y(p) =(

y
(p)
(0) , y

(p)
(1) , · · · , y

(p)
(nt−1)

)T
and x(p) =

∑b−1
i=0 x

(p)[i] ·2i for p = 0, 1, ..., np − 1. Let y(t) =(
y

(0)
(t) , y

(1)
(t) , · · · , y

(np−1)
(t)

)T
be the tth column of Ynp , and Y ′(t)(x) =

(
Y ′(t)(x(0)),Y ′(t)(x(1)),

· · · ,Y ′(t)(x(np−1))
)T

be the predicted power consumption vector at time t. Thus, the
residual terms ε(t) is showed as follows:

ε(t) = y(t) − Y ′(t)(x).

The minimization of ‖ε(t)‖ is an ordinary least squares problem.
Once β(t) and δ(t) are computed for each time t=0, 1, ..., nt− 1, y′=

(
Y ′(0)(x),Y ′(1)(x),

· · · ,Y ′(nt−1)(x)
)T

is used as the mean for a pooled template [CK13, CK18], and the
approximate covariance matrix Σ for all traces can be computed as the empirical covariance
of the residual terms,

Σ = 1
np − 1

(
ε(0), ε(1), · · · , ε(nt−1)

)T · (ε(0), ε(1), · · · , ε(nt−1)
)
.

The intermediate value x is related to the secret key k that can be expressed as
x = G(m, k), where m is the value that attackers can know or choose, G is a function
that acts on m and k. The modeled probability density Pd for a new leakage trace
y∗ =

(
y∗(0), y

∗
(1), · · · , y

∗
(nt−1)

)T
with a known m = m∗ is

Pd(y∗|k,m = m∗) = Pd(y∗|x = G(m, k))

= 1√
(2π)nt |Σ|

exp
(
−1

2 (y∗ − y′)T Σ−1 (y∗ − y′)
)
,

The conditional distribution Pd(k|y∗) can in turn be derived from the probability density
function Pd(y∗|k) using Bayes’ rule,

Pd(k|y∗) = Pd(y∗|k) · Pr(k)∑
k′∈K Pd(y∗|k′) · Pr(k′) ,

where K is the key space, the denominator is the same for each k. Assuming a uniform
prior probability Pr(k) = |K|−1, the likelihood `(k|y∗) [CK13, CK18] can be computed as

`(k|y∗) = C · Pd(k|y∗) = Pd(y∗|k),

where C =
∑

k′∈K
Pd(y∗|k′)·Pr(k′)

Pr(k) is a constant. Finally, the likelihood values are computed
for each candidate k given a trace y∗. The attackers sort them, get ranks of the candidates
and identify the most likely candidate.

32 MulLeak

Instruction
Memory (Pre)Fetch

Branch

Instruction
Decoder

Data
Memory

Forwarding
Network GPRs

LSU

DSP
extension

Multiply and
Divide

ALU

Select

FEtch DEcode EXecute

PC

fetch data

fetch addr

store addr

load addr

store data

load data

(a)
Instructions

FE DE EX
FE DE EX

FE DE EX
FE DE

FE DE EX
FE DE EX

RS
RS

RS
RS

RS

MA
EX
RS

Forwarding Network

Pipeline Stall

(b)

Figure 2: Architecture of the ARM Cortex-M4 microcontroller. (a) The three-stage pipeline
architecture of the ARM Cortex-M4. The dashed lines serve to distinguish between the
distinct stages of the pipeline. Registers positioned along these dashed lines are pipeline
registers, which conventionally have a width of 32 bits. (b) The processing of instructions
within the pipeline. The forwarding path mitigate the occurrence of pipeline stalls due to
RAW conflicts, thereby ensuring that data dependencies are efficiently managed.

When combining the multiple individual leakage traces y(a) from Yna , a = 0, 1, ..., na−1,
the joint likelihood can be expressed as

`(k|Yna) =
na−1∏
a=0

`(k|y(a)).

By applying the logarithm to both sides we have the joint log-likelihood

log `(k|Yna) =
na−1∑
a=0

log `(k|y(a)). (4)

2.3 ARM Cortex-M4
2.3.1 Architecture

The Cortex-M4 is a 32-bit RISC processor from ARM, noted for its use in the NIST PQC
project as a recommended evaluation platform, as shown in Figure 2a. It operates on the
Harvard architecture, utilizing the Armv7E-M instruction set and supporting a 32-bit data
path [ARMa, ARMc]. The Cortex-M4 core consists of the following components :

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 33

General-Purpose Registers (GPRs) The Cortex-M4 features a core register bank
comprising 16 32-bit registers (r0-r15), with the first 13 (r0-r12) serving general-purpose
functions such as holding intermediate variables and results. The remaining three are
reserved for specific functions: the Stack Pointer (SP, r13), Link Register (LR, r14), and
Program Counter (PC, r15).

Functional Units (FUs) The processor includes multiple FUs like the Arithmetic Logic
Unit (ALU) for basic arithmetic and logic operations, and a dedicated Multiply and Divide
unit capable of handling complex arithmetic operations efficiently. The Cortex-M4 core
has a DSP extension [ARMd], enhancing its capabilities with DSP-specific instructions
like saturating, multiply and accumulate, and Single Instruction Multiple Data (SIMD)
operations. These instructions are seamlessly integrated into the existing Instruction Set
Architecture (ISA), utilizing the same 32-bit GPR bank, and execute in a single cycle. A
Load/Store Unit (LSU) manages data movements between the core and memory, using
base addresses and offsets to calculate memory addresses. It loads/stores data from/into
the data memory via the data bus between the processor core and RAM.

Pipeline Architecture The processor adopts a three-stage pipeline design — FEtch,
DEcode, and EXecute. The FE stage retrieves instructions from memory, DE decodes
them and passes operands to the EX stage where the FUs process the operations. Results
are then written back to the GPRs.

Pipeline Registers Between each stage, pipeline registers store operational data to
ensure smooth data flow through the pipeline. Specific registers like M0 (instruction
register between FE and DE) and registers P0 to P3 (operand registers between DE and
EX) facilitate the transfer of data and control signals across stages.

2.3.2 The Journey of Instructions

In this subsection, we demonstrate how instructions are processed in the pipeline as shown
in Figure 2b. Let insti and cyclei denote the ith instruction and the ith clock cycle,
respectively.

Consider the processing flow of an example instruction inst0, as depicted in Figure 2b.
The mul instruction is fetched from the instruction memory during cycle0. The opcode for
mul is then stored in the M0 register at the rising edge of the clock in cycle1, as shown
in Figure 2a. The decoder reads the opcode from M0, generates the necessary control
signals, and retrieves operands from the GPRs. At the rising edge of the clock in cycle2,
these operands are subsequently stored in pipeline registers P0 and P1 which hold the two
32-bit operands of mul. Unlike operations such as division, which may require multiple
cycles, the Cortex-M4’s arithmetic and logic instructions, including mul, typically complete
within a single cycle. Therefore, in cycle2, the Multiply and Divide unit processes the
operands and computes the result. Although the Cortex-M4 architecture does not include
a dedicated Write Back stage, the result of inst0 is effectively written to the destination
register at the rising edge of the clock in cycle3. This action, while not an official stage of
the pipeline, is illustrated using a dotted box in Figure 2b and referred to as the Result
Store (RS) stage. The three-stage pipeline architecture enables the processor to manage 3
instructions concurrently within the duration of a single clock cycle (or 4 instructions if
the RS stage is included). It is essential to consider the impact of surrounding instructions
when modeling a specific instruction.

If the result of the preceding instruction is the operand of the current instruction, a
Read-after-Write (RAW) conflict may occur, leading to an incorrect operand read or a
pipeline stall. inst1 gets operands from GPRs and puts them into pipeline registers in
cycle3, while inst0 stores the result into the GPR, leading to an unprepared operand. In
the ARM Cortex-M4, the forwarding network enables outputs from FUs and memory to

34 MulLeak

bypass storage in GPRs, allowing direct transfer, as shown in Figure 2a. Thus, the incorrect
operand reading and pipeline stalls are mitigated, ensuring that the data dependencies
are efficiently managed. However, pipeline stalls may still occur, for example, as a result
of memory access instructions [ARMb, Chapter 3.3.3]. A concrete example is depicted
in Figure 2b. In cycle5, inst2 ldr.w loads the data from memory1, which serves as the
operand for inst3 smultt. A stall happens when the operand of inst3 should be prepared
already but the data has not yet been loaded. In cycle6, the loaded data is stored into
GPRs and sent to the pipeline register using the forwarding network simultaneously. We
need to be aware of these possible pipeline stalls when locating instructions in the power
trace.

2.4 Experimental Setups

Our experimental setup utilizes the ChipWhisperer CW308 platform, hosting an STM32F303
target with a Cortex-M4 core. The microcontroller is configured to operate at a clock
frequency of 5 MHz 2. Signal acquisition is conducted using a PicoScope 5444B digital
oscilloscope, sampling the signal at 250 MSamples/s with 10-bit resolution, yielding 50
samples per clock. A CW501 differential probe is used in conjunction with a CW502
low-noise amplifier, boosting the signal by 20 dB to ensure high-quality measurements.
The analysis runs on a computer equipped with 8GB RAM and AMD Ryzen 7 4800HS
Processor clocked at 2.90 GHz.

We use the stack-optimized Kyber-768 implementation of pqm4 [impb], with the only
addition being a trigger to simplify the recording of traces. The focus of our experi-
ments is on the function frombytes_mul_asm (more concretely, the macro double-
basemul_frombytes_asm), which is specifically chosen because it handles the polyno-
mial multiplication of the secret and the ciphertext, the critical operations in our analysis.
In terms of power trace compression, unlike McCann et al. [MOW17], who employ the
method of maximum extraction by selecting the point of interest that is the maximum
peak in the clock cycles during which instruction leaks, we adopt the raw integration
approach [MOP07, Chapter 4.5]. This approach calculates the sum of all sampling points
within each cycle. These sums are then used as the compressed power traces. Typically,
this approach tends to be more robust than maximum extraction.

In order to reflect a real-world scenario, we use two physical instances of the ChipWhis-
perer device, separately for profiling and attacking.

3 A Novel Cycle-level Power Leakage Model
In this section, we quantify the single-cycle power consumption of the Cortex M4 core based
on its pipeline architecture and analyze the sources of data-related power leakage. Then
we present a fundamental cycle-level leakage model using linear regression (Section 3.1). In
our attack scenario, we focus on multiply instructions that directly leak secret information,
executed on the MAC circuit within the DSP extension. Therefore, we further analyze the
power consumption characteristics of the MAC circuit by examining the structure of the
multipliers (Section 3.2). Building on this insight, we simulate the structural components
of the multiplier and emulate the intermediate values generated during the multiplication
process (Section 3.3). Finally, we present a comprehensive leakage model and propose a
systematic method for selecting explanatory variables targeting deterministic instruction
sequences (Section 3.4).

1Memory Access is not a dedicated stage in Cortex-M4 pipeline architecture. It is part of the EX stage,
but cost additional clock cycle(s). In cycle5 of Figure 2b, we use MA to present this operation and paint

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 35

InstructionsOpcodes
0xFB24 FA16

0xFB1A FB18

0xFB18 AB0B

0xEACB 4929

FE DE EX
FE DE EX

FE DE EX
FE DE EX

RS
RS

RS
RS

State
Changes

Figure 3: State changes that occur within an instruction sequence. We observe the state
changes that occur within a clock cycle, which are highlighted with a red solid box.

3.1 Cycle-level Power Consumption
The dynamic power dissipation in the ARM Cortex-M4 microcontrollers is predominantly
attributed to instruction execution, memory access, and data processing, and is influ-
enced by factors such as supply voltage, clock frequency, and instruction types. The
microcontroller features a three-stage pipeline architecture, which is designed to balance
efficiency and power consumption. It consists of the FE, DE, and EX stages, along with
an additional RS stage, defined in section 2.3.2, which accounts for power during result
storage.

Assuming no stalls or interrupts, and ignoring branch prediction effects, the power
consumption in a clock cycle is calculated by summing the power changes across the
pipeline stages, inclusive of the power of storing result. The total power Etotal is given by:

Etotal = EFE + EDE + EEX + ERS + Eother,

where EFE, EDE, EEX and ERS represent the power consumption of each stage, respectively.
Eother covers any additional variations due to environmental or supply conditions.

In side-channel analysis, the EX stage is pivotal as it processes confidential data,
where power variations potentially revealing information, so as the RS stage. Cycle-level
power consumption allows to simplify the analysis of operations observed in a determined
sequence. As shown in Figure 3, at the onset of cyclej , register r10 is updated, and insti−1
stores its result. The power consumption at this moment is influenced by the Hamming
distance between the new and previous values in r10. During the same cycle, insti executes
a multiplication, with power consumption varying based on the operands involved. Since
no system interrupts or branching occurs in this sequence, the power consumption for
insti+1 in the DE stage and insti+2 in the FE stage can be assumed constant due to their
predetermined post-compilation.

Given these observations, the total power consumption for cyclej can be simplified to:

Etotal ≈ EEX + ERS + E′other, (5)

where E′other accounts for the relatively constant power consumption of the FE and DE
stages combined with other minor variations.

The EX stage’s power consumption is influenced by operand-related variations, includ-
ing:

Pipeline Register Activities: Power consumption affected by data replacement in
pipeline registers. In this work, the multiply instructions in the target function only use 2
or 3 operands, so we only focus on the first three pipeline registers.

it the same color as EX.
2The maximum sampling frequency of our oscilloscope is only 250 MSamples/s. In order to obtain as

many sampling points as possible within a single clock cycle, we use a lower operating frequency.

36 MulLeak

Results Storage of the Previous Instruction: Power consumption during writing
results back to registers is influenced by bit flips. The target multiply instructions only
produce 32-bit results, indicating that the destination register is one of the GPRs.

Execution of Instructions: Power consumption patterns vary with the type and
operands of instructions, affecting the FUs’ logic. Our work focuses on 16-bit multiply
instructions, executed by the multiplier in the Cortex-M4 DSP extension. Therefore, we
discuss the FU of the Cortex-M4 DSP, specifically, the multiplier in DSP extension.

A foundational cycle-level power leakage model for the EX and the RS stages is
developed, and a linear regression approach is used to quantify power consumption
associated with each instruction. The model is formulated as

y′(t) = Y ′(t)(o0,(t), o1,(t), o2,(t), r(t), õ0,(t), õ1,(t), õ2,(t), r̃(t)) = XT
(t) · β(t) + δ(t), (6)

where the subscript (t) represents the index of the instruction. The vector of weights β(t)
and the scalar intercept δ(t) are the model’s parameters to be estimated. oi is the ith
32-bit operand of the current instruction, õi is the ith 32-bit operand corresponding to the
previous instruction, i = 0, 1 or 2. r(t) denotes the result of the previous instruction, r̃(t)
denotes the value from the earlier instruction in the GPR which is the destination register
of the previous instruction.

XT
(t)=

(
OT

0,(t),OT
1,(t),OT

2,(t),RT
(t),DMT

(t),TOT
0,(t),TOT

2,(t),TOT
2,(t),TRT

(t),TDMT
(t)

)
,

(7)
where Oi = (oi[31], oi[30], · · · , oi[0])T denotes the vector of bits from the ith operand oi,
and Ti = (oi[31]⊕ õi[31], oi[30]⊕ õi[30], · · · , oi[0]⊕ õi[0])T represents the vector of bit
transitions in the ith pipeline register. R(t) =

(
r(t)[31], r(t)[30], · · · , r(t)[0]

)T is the vector
of bits from r(t), TR(t) =

(
r(t)[31]⊕ r̃(t)[31], r(t)[30]⊕ r̃(t)[30], · · · , r(t)[0]⊕ r̃(t)[0]

)T is the
vector of bit transitions in the GPR. DM(t) and TDM(t) represent the state of the
multiplier generated by the tth instruction and the state transition between the previous
instruction and the current instruction, respectively. The specific composition of DM(t)
and TDM(t) is explored in subsequent sections.

3.2 Simple Reverse Engineering of MAC Circuit in DSP Extension
We embark on an empirical study to ascertain the type of MAC circuit implemented within
the DSP extension of the Cortex-M4. This investigation is grounded in the analysis of
cycle-level power consumption patterns, specifically focusing on the distinct roles played by
the multiplicands and multipliers in the multiplication process. The primary objective is
to discern whether the MAC circuit aligns with a (Radix-2) Booth multiplier, a (Radix-4)
Modified Booth multiplier, or a Baugh-Wooley array multiplier architecture.

To discern the type of MAC circuit, it is essential to understand the differences of power
consumption among these three multipliers. In the Booth encoder, either the multiplicand
or multiplier is encoded, leading to a difference in how these inputs contribute to the overall
power consumption of the multiplication operation. The Booth multiplier groups two
adjacent bits of the operand at a time (with each group overlapping by one bit from the
previous), generating n encoded values and n partial products for an n-bit multiplication.
On the other hand, the Modified Booth multiplier encodes three bits at a time, (with
each group still sharing one overlapping bit with the adjacent group), thereby halving the
number of required encoding steps and partial products for an n-bit multiplication. The
Baugh-Wooley array multiplier is characterized by its symmetric handling of multiplicands
and multipliers. Unlike the Booth multipliers, the symmetry leads to a more uniform
contribution of both inputs to the overall power consumption.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 37

To distinguish between the three types of multipliers, we design the following exper-
iments with two input sets: one with non-zero multiplicands and zero multipliers, and
the other with zero multiplicands and non-zero multipliers. The Hamming weight of the
non-zero inputs is 1. Then we collect the power traces from these inputs and analyze the
cycle-level power consumption of the multiply instructions.

1. We distinguish between Booth and Baugh-Wooley multipliers by comparing the power
traces from the input sets. Minimal power differences suggest that the multiplicand
and multiplier have similar effects on power consumption, pointing to a Baugh-
Wooley multiplier. Conversely, significant differences indicate distinct contributions,
identifying the Booth multiplier. As illustrated in Figure 4, the variation in cycle-level
power traces between different multiplicands and multipliers indicates that their roles
in power consumption are not identical, suggesting that the multiplier is unlikely a
Baugh-Wooley array multiplier.

2. We further differentiate between Radix-2 and Radix-4 multipliers by analyzing their
distinct encoding methods. As shown in Figure 4, the first set exhibits higher overall
energy compared to the second, suggesting that the multiplicand is involved in the
encoding process. Notably, negative encoding tends to increase power consumption,
as it results in partial products derived from the 2’s complement of the multiplier
multiple. This 2’s complement is created through bit flipping, which leads to higher
power usage. In a Radix-2 Booth multiplier, each bit of the multiplicand has the
potential to induce negative encoding, whereas in a Radix-4 Booth multiplier, this
effect is restricted to the odd-indexed bits of the multiplicand. The significant
differences observed between odd- and even-indexed bits in the multiplicand, as
depicted in Figure 4a, b, c, suggest that the MAC unit in the DSP extension may be
using a modified Booth encoder [Boo51] for partial product generation.

Figure 17 illustrates the code snippet we meticulously designed. The target multiply
(-accumulate) instruction is surrounded by a series of nop.w instructions to isolate the
power leakage specifically attributable to the target instruction, thereby enabling a more
precise and uncontaminated measurement.

In summary, our experiments suggest that the MAC unit within the DSP extension em-
ploys a modified Booth encoding strategy, as evidenced by the distinct power consumption
patterns corresponding to various bit positions in the multiplicand. This insight sheds light
on the underlying architecture of the MAC unit, supporting our subsequent simulation on
the power consumption of the multiplication.

3.3 Simulation of Intermediate Variables
In the previous subsection, through a process akin to reverse engineering, we establish
the type of multiplier used in the DSP extension as a modified Booth multiplier. Due
to the absence of public documentation on the underlying circuit logic of the Cortex-M4
DSP extension, we adopt an approach that employs a classic design of the modified Booth
multiplier to simulate the intermediate variables generated during the execution of a
single-cycle 16-bit multiplication (and accumulation) in the Cortex-M4. This simulation
aimed to approximate the power consumption of the MAC unit of the DSP extension.

A modified Booth multiplier generally consists of a modified Booth [Boo51] encoder,
partial product generator (PPG), a carry-save adder (CSA), partial product reduction tree
(PPRT), and a carry-propagate adder. The block diagram of the MAC unit is shown in
Figure 5a.

The multiplicand md and multiplier mr serve as the inputs to the multiplication
process. They are represented as sums of their individual bits: md =

∑15
0 md[i] · 2i,

mr =
∑15

0 mr[i] · 2i, where, md[i] and mr[i] denote the ith bit of the multiplicand

38 MulLeak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Multiplicand/log2()

0

1

2

3

4

5

6

7

8

Cy
cle

-le
ve

l P
ow

er
 C

on
su

m
pt

io
n/

V smultt
smultb
smulbt
smulbb

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Multiplicand/log2()

0

1

2

3

4

5

6

7

8 smlatt
smlatb
smlabt
smlabb

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Multiplicand/log2()

0

1

2

3

4

5

6

7

8 smuad
smuadx

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Multiplier/log2()

0

1

2

3

4

5

6

7

8

Cy
cle

-le
ve

l P
ow

er
 C

on
su

m
pt

io
n/

V smultt
smultb
smulbt
smulbb

(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Multiplier/log2()

0

1

2

3

4

5

6

7

8 smlatt
smlatb
smlabt
smlabb

(e)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Multiplier/log2()

0

1

2

3

4

5

6

7

8 smuad
smuadx

(f)

Figure 4: Experiments to discern the type of the MAC circuit in the DSP extension of
the Cortex-M4. (a) and (d) use the signed 16-bit multiply instructions. (b) and (e) use
the signed 16-bit multiply-accumulate instructions. (c) and (f) use the signed dual 16-bit
multiply instructions.

Partial Prodcut Generator (PPG)

Final Carry-Propagate Adder

Partial Product
Reduction Tree

(PPRT)

. . .

multiplicand multiplier

m
od

e
un

si
gn

ed

accumulate number

result

(a)

3:2 3:2 3:2

3:2 3:2

3:2

3:2

3:2

Carray-Propagate Adder

result

acc

(b)

Figure 5: A typical modified Booth multiplier design. (a) MAC Architecture block
diagram. (b) Partial product reduction tree and carry-propagate adder for 16-bit MAC.

and multiplier, respectively. The multiplier bits are encoded using the modified Booth
algorithm. Let mr[−1] be 0, the Booth encoding for each group of bits is calculated as

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 39

Table 2: Width of variables of 16×16 modified Booth multiplier. ppi and hi are reasonably
abbreviated to indicate that all partial products and hot-ones have the same width, where
i = 0, ..., 7.

Variable ppi hi
s0
c0

s1
c1

s2
c2

s3
c3

s4
c4

s5
c5

s6
c6

s7
c7

s8
c8

Width 18 1 20 20 18 24 20 26 22 32 32

Codei = −2×mr[2i+ 1] +mr[2i] +mr[2i− 1], for i = 0, ..., 7. For a 16-bit multiplication,
the PPG creates 8 partial products, denoted as pp0 to pp7. Each partial product is the
corresponding multiplicand multiple Codei ×md, contributing to the cumulative result of
the multiplication. It should be noticed that forming a negative multiple of the multiplicand
can be done by shifting the multiplicand to form the corresponding positive multiple, then
negating by the "take the 1’s complement and add 1" - except that instead of adding 1 at
this phase, it should be postponed to the next phase. We denote these “hot-ones” bits
corresponding to partial products by h0 to h7.

The partial product reduction phase is commonly implemented using a Wallace CSA
tree [Wal64]. The Wallace tree employs 3:2 compressors as fundamental building blocks,
with each compressor taking three input bits and producing two output bits - a sum and a
carry. Figure 5b illustrates the Wallace CSA tree, highlighting a detailed representation
of the output from all 3:2 compressors in their steady state. The sums and carries are
labeled s0 to s8 and c0 to c8, respectively, representing the results of the compression
process at different stages in the tree. The number of the sums and carries directly impact
the efficiency of the multiplication operation. For instance, a higher number of carries
may suggest more complex bit manipulations, potentially leading to increased power
consumption.

The outputs from the last compressors (s8 and c8) are then fed into a conventional
adder to obtain the final result of the multiplication (and accumulation). According to
Figure 5b, we can obtain the widths of all intermediate variables, and we record them in
Table 2. Thus, the variables DM(t) of the model can be instantiated as

DM(t) =
(
ppT0,(t), · · · ,ppT7,(t),hT0,(t), · · · ,hT7,(t), sT0,(t), · · · , sT8,(t), cT0,(t), · · · , cT8,(t)

)T
,

so as the corresponding transition variables TDM(t).

3.4 Leakage Model and Explanatory Variables Selection
In this subsection, we are committed to completing and refining our cycle-level model to
more precisely represent the target instructions shown in Figure 6a, which consist of 10
multiply instructions spanning Lines 4 to 13. This refinement requires careful consideration
of the specific characteristics of these instructions to ensure the model’s accuracy and
relevance.

The smuadx instruction performs two 16×16 multiplications, necessitating the inclusion
of predictor variables for both multipliers. This can be implemented by introducing

• DMb(t) for the multiplier operating on the lower bits of the multiplicand register,

• DMt(t) for the multiplier operating on the upper bits of the multiplicand register,

so as the corresponding transition variables TDMb(t) and TDMt(t). Thus, the complete
cycle-level leakage model is given as follows,

y′(t) = Y ′(t)(o0,(t), o1,(t), o2,(t), r(t), õ0,(t), õ1,(t), õ2,(t), r̃(t)) = XT
(t)β(t) + δ(t), (8)

40 MulLeak

with

X(t) =
(
OT

0,(t),OT
1,(t),OT

2,(t),RT
(t),DMT

(t),TOT
0,(t),TOT

2,(t),TOT
2,(t),TRT

(t),TDMT
(t)

)T
,

DM(t) =
(
DMb(t),DMt(t)

)T
,TDM(t) =

(
TDMb(t),TDMt(t)

)T
,

DMb(t) =
(
ppbT

0,(t), · · · , ppbT
7,(t), hbT

0,(t), · · · , hbT
7,(t), sbT

0,(t), · · · , sbT
8,(t), cbT

0,(t), · · · , cbT
8,(t)
)T

,

DMt(t) =
(
pptT

0,(t), · · · , pptT
7,(t), htT

0,(t), · · · , htT
7,(t), stT

0,(t), · · · , stT
8,(t), ctT

0,(t), · · · , ctT
8,(t)
)T

.

We delineate a systematic process for selecting appropriate predictor variables, integral
for constructing a statistically robust model. The variable selection process, designed
atop the framework used by McCann et al. [MOW17] and leveraging the F -test, involves
analyzing variables converted from single factors as a unit to assess their contribution to
the model variable. The selection process is approached from two levels: instruction-level
and algorithm-level. At the instruction-level, the focus is on the number of operands, while
at the algorithm-level, more emphasis is placed on factors like operand size limitations,
particularly as the model targets specific algorithms for attacks.

• Instruction-Level Selection

1. Unused Operand: The foundational model covers all multiply instructions
in the target function. If a given instruction involves only two operands, O2
should be excluded. It is also important to note that TO2 not only relate to
the current instruction but also to the number of operands in the previous
instruction.

2. Same Value Variables: Frequently in instruction sequences, the result of
the previous instruction serves as an operand for the current instruction. In such
cases, these variables, which remain same across instructions, can be merged or
one can be eliminated.

3. Constant Value Variables: For instructions where the second operand is a
constant, this operand’s contribution to the dependent variable is fixed and can
be merged with the intercept, leading to its exclusion.

• Algorithm-Level Selection

1. Same Value Variables: Algorithms may also generate situations where, for
example, a multiply instruction computes the square of a number, making the
first and second operands identical. In such cases, retaining only one of these
operands for modeling is sufficient.

2. Constant Value Variables: Moreover, if an operand is a constant across
the program, such a variable should also be excluded from the model.

3. Unused Bit Variables: Typically, operands in instructions are 32-bit, but
in some algorithms, the operand range might be limited, e.g., 0-3329, using
only the lower 12 bits while the upper 20 bits remain constant at zero. These
constant high bits should be excluded from the model.

When modeling the various instructions in the algorithm, different explanatory variables
may be excluded. A detailed example is provided in Section 5.2.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 41

4 Proposed Attacks
Kyber employs an incomplete NTT (cf. 2.1) to convert a single 256-degree polynomial
multiplication into 128 first-degree polynomial multiplications, as shown in Algorithm
4. In this section, we focus on a single first-degree polynomial and demonstrate various
attacks targeting the recovery of the secret coefficient pairs.

Firstly, we describe the computation process of the first-degree polynomial in the
target function in detail, which aids in comprehending the attack strategies (Section
4.1). Then, we propose two profiled attacks against unprotected implementations: one
using known ciphertext and the other using chosen ciphertext methods (Section 4.2 and
4.3). Additionally, we present a second-order chosen ciphertext profiled attack against
the first-order masked implementation (Section 4.4). Furthermore, the Hamming weight
leakage from the str instruction can be utilized to assist in filtering candidates, leading us
to propose two candidate filtering conditions (Section 4.5).

1 ldr.w poly2 , [bptr , #4]
2 ldr poly0 , [bptr], #8
3

4 smultt t, poly0 , poly1
5 smulbt t2 , t, qinv // mont
6 smlabb t2 , q, t2 , t // mont
7 smultb t2 , t2 , zeta
8 smlabb t2 , poly0 , poly1 , t2
9 smulbt t, t2 , qinv // mont
10 smlabb t, q, t, t2 // mont
11 smuadx t2 , poly0 , poly1
12 smulbt poly0 , t2 , qinv // mont
13 smlabb poly0 ,q,poly0 ,t2 // mont
14 pkhtb t, poly0 , t, asr #16
15 str t, [rptr], #4

(a)

INSTRUCTIONSKCPA CCPA

leaks

(b)

Figure 6: (a) Targeted Thumb instructions: the initial first-degree polynomial multipli-
cation of the macro doublebasemul_frombytes_asm. (b) Proposed profiled attacks: a
known ciphertext profiled attack is depicted on the left side, and two distinct scenarios of
chosen ciphertext profiled attacks are presented on the right side.

4.1 Macro doublebasemul_frombytes_asm

The pqm4 library [KRSS] provides various implementations of Kyber specifically optimized
for the ARM Cortex-M4, with critical operations optimized using assembly codes. We
focus on the assembly function frombytes_mul_asm in the stack-optimized Kyber imple-
mentation [impb], which is based on the work of [AHKS22]. Specifically, we attack the
macro doublebasemul_frombytes_asm which involves two first-degree polynomial multi-
plications. Figure 6a shows the Thumb instructions for the initial first-degree polynomial
multiplication in the macro doublebasemul_frombytes_asm.

Our targeted macro uses Montgomery reduction, which reduces the multiplication
product (or accumulated sum) by q, resulting in a range of (−q, q). Under the setting
qinv = 3327 = −q−1 mod 216 (instead of q−1 mod 216), the subtraction in Montgomery
reduction is transformed into an addition, thereby reducing the number of instructions.
Notably, qinv and q are stored in a single 32-bit register (r12), with the most significant
16 bits representing qinv.

As shown in Figure 6a, two pairs of ciphertext coefficients are loaded from the memory.
The 32-bit register poly0 stores the public coefficient pair ĉt1||ĉt0, and the register poly2
stores ĉt3||ĉt2 required for the next first-degree polynomial multiplication. Secret coefficient

42 MulLeak

pairs ŝk1||ŝk0 and ŝk3||ŝk2, stored in registers poly1 and poly3, are loaded using the macro
deserialize in the function frombytes_mul_asm. Therefore, line 4 performs ŝk1 · ĉt1 and
the result is reduced by q in line 5 and 6. Then, the reduced result is multiplied by ζ in line
7, added to the product ŝk0 · ĉt0 in line 8, and finally reduced in line 9 and 10 to obtain r̂1.
In line 11, smuadx calculates the sum of products of dual 16-bit signed multiplications in
a single cycle. The sum ĉt1 · ŝk0 + ĉt0 · ŝk1 is reduced via Montgomery reduction to get
the result r̂0. Line 14 packs the two 16-bit results into the form r̂1||r̂0 and stores them in
the 32-bit register t. Finally, the instruction str stores the coefficient pairs r̂1||r̂0 into the
data memory.

4.2 Known Ciphertext Profiled Attack
According to Figure 6b, the first 4 instructions involve the secret coefficient ŝk1, and the
following 6 multiply instructions involve both ŝk1 and ŝk0. First, we recover ŝk1, then use
the recovered ŝk1 to determine ŝk0.

When recovering ŝk1, it is important to note that ĉt1 6= 0. Given the public ct which
is in the normal domain, we need to use the following expression to verify whether ĉt1 is
equal to 0. If ĉt1 = 0, we discard the polynomial.3

ĉt = (ĉt0, ĉt1, ..., ĉt255) = NTT(Decompressq(ct, d)),

where ct = (ct0, ct1, ..., ct255), cti ∈ Zq, i = 0, 1, ..., 255.
We estimate the parameters β(t), δ(t) of models (Equation 8) for multiply instructions in

Figure 6b. As explained in section 4.1, the operands and results of each multiplication (i.e.,
the independent variables in Equation 8) depend solely on ŝk1, ŝk0, ĉt1, ĉt0. In other words,
y′(t) can be fully expressed in terms of ŝk1, ŝk0, ĉt1, ĉt0, thus we rewrite them accordingly.

y′(t) = XT
(t)β(t) + δ(t) = Y ′′(t)(ŝk1, ŝk0, ĉt1, ĉt0) (9)

Then, we get the predictors y′(t) and residual vectors ε(t), where t denotes the index of the
instruction that ranges from 0 to 9.

Given a new leakage trace with ĉt1 = ĉt
∗
1, ĉt0 = ĉt

∗
0, we get the corresponding cycle-

level consumption y∗(0), y
∗
(1), ..., y

∗
(9) of each multiply instruction. Although ŝk0 is part

of the operand in the first multiply instruction smultt, it does not participate in the
multiplication operation, so we set the value of ŝk0 to 0 in the models when recovering
ŝk1. Let

y∗
ŝk1

=
(
y∗(0), · · · , y

∗
(3)

)T
, (10)

y′
ŝk1

=
(
Y ′′(0)(ŝk1, 0, ĉt

∗
1, ĉt

∗
0), · · · ,Y ′′(3)(ŝk1, 0, ĉt

∗
1, ĉt

∗
0)
)T

, (11)

then
Σŝk1

= 1
np − 1 (ε0, ε1, ..., ε3)T · (ε0, ε1, ..., ε3) ,

Pdŝk1
(y∗
ŝk1
|ŝk1) = 1√

(2π)4|Σŝk1
|
exp

(
−1

2(y∗
ŝk1
− y′

ŝk1
)TΣ−1

ŝk1
(y∗
ŝk1
− y′

ŝk1
)
)
,

and the likelihood `(ŝk1|y∗ŝk1
) = Pdŝk1

(y∗
ŝk1
|ŝk1). Ranks of the candidates ŝk1 are obtained

by sort the likelihood values of all candidates.
Given na individual leakage traces Yna , the joint log-likelihood can be calculated using

Equation 4: log `(ŝk1|Yna) =
∑na−1
a=0 `(ŝk1|y(a)

ŝk1
). The candidate with the highest joint

log-likelihood value is most likely the correct secret coefficient ŝk?1.
3For all coefficients in the polynomial, if ĉt2i+1 = 0, i = 0, 1, ..., 127, we discard the generated polynomial.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 43

We next reconstruct ŝk0 with the recovered ŝk∗1 using the last 6 multiply instructions.
The approach is very similar to ŝk1 recovery, i.e.,

y′
ŝk0

=
(
Y ′′(5)(ŝk

∗
1, ŝk0, ĉt

∗
1, ĉt

∗
0), · · · ,Y ′′(9)(ŝk

∗
1, ŝk0, ĉt

∗
1, ĉt

∗
0)
)T

. (12)

The remaining steps are not described in detail. It should be noted that the traces used to
recover ŝk1 and ŝk0 overlap. To put it another way, a trace can be used to restore both
ŝk1 and ŝk0. This applies to all all subsequent attacks.

4.3 Chosen Ciphertext Profiled Attack
By choosing specific ciphertexts, we can predict ŝk1 and ŝk0 individually. Figure 6b
illustrates two cases for ciphertext selection.

• Let ĉt0 = 1 and ĉt1 6= 0, ŝk1 is related to the first 7 instructions, while ŝk0 is related
to the last 2 multiply instructions. In this scenario, the specific model for the smuadx
instruction, which is associated with both ŝk1 and ŝk0, is not used for the attack, as
its entangled leakage could complicate the individual recovery of each coefficient.

• Let ĉt1 = 1 and ĉt0 6= 0, ŝk0 is relevant to the 4th to 6th instructions and ŝk1
is relevant to the last 2 multiply instructions. Compared to case 1, this scenario
provides 4 fewer instructions for the attack, potentially reducing the effectiveness of
the attack. Thus, we opt to abandon this case in favor of the first one.

The Chosen Ciphertext Profiled Attack (CCPA) shares a similar methodology with
the Known Ciphertext Profiled Attack (KCPA) in terms of recovering secret coefficients,
therefore we do not provide an elaborate description here. CCPA requires specific ciphertext
where ĉt0 = 1 and ĉt1 6= 0. Compared to the method presented in [HHP+21], we offer a
straightforward approach to generate polynomials that meet this requirements. Firstly, we
initialize a set C whose elements remain unchanged after consecutive applications of the
Compressq and Decompressq functions:

C = {x|x = Compressq(Decompressq(x, d), d), x ∈ Zq}.

Next, we generate a ciphertext polynomial ct:

ct = (0, ct1, 0, 0, ..., 0, 0),

where ct1 ∈ C. Finally, we apply NTT to the ciphertext polynomial ct to obtain

ĉt = NTT(ct) = (0, ct1, 0, ct1, ..., 0, ct1).

4.4 The Second-order Chosen Ciphertext Profiled Attack
In proposed KCPA, recovering ŝk0 depends on the previously recovered ŝk1. This de-
pendency makes it challenging to be applied to masked implementations. For instance,
in a first-order masked scheme, each secret coefficient is split into two shares, such as
ŝk1 = ŝks0,1 + ŝks1,1 mod q, ŝk0 = ŝks0,0 + ŝks1,0 mod q, where ŝks0,1, ŝks1,1, ŝks0,0
and ŝks1,0 are refreshed for each decryption. In a single-trace key recovery scenario,
reconstructing the secret coefficients from these shares is straightforward. However, in
multiple-trace attacks, recovering ŝk0 or ŝk1 from their respective shares (ŝks1,0 and ŝks0,1
for ŝk0, or ŝks0,1 and ŝks1,1 for ŝk1) is significantly more complex. Furthermore, the
dependency between ŝk0 and ŝk1 indicates that information from all four shares must be
integrated when recovering ŝk0, making the attack even more challenging.

44 MulLeak

Therefore, we opt for CCPA to target the masked implementation, as it is capable
of predicting the two coefficients individually. Taking the recovery of ŝk1 in the first-
order masked implementation as an example, given a target trace y∗ = (y∗s0,y∗s1)T with
the chosen ciphertext, we obtain the cycle-level power consumption for share 0: y∗s0 =(
y∗s0,(0), y

∗
s0,(1), · · · , y

∗
s0,(9)

)T
and share 1: y∗s1 =

(
y∗s1,(0), y

∗
s1,(1), · · · , y

∗
s1,(9)

)T
, respectively.

We calculate the likelihood for each share of ŝk1, `(ŝks0,1|y∗s0) and `(ŝks1,1|y∗s1). Then,
the likelihood of ŝk1 can be computed as follows:

`(ŝk1|y∗) =
∏

ŝks0,1+ŝks1,1 mod q=ŝk1

ŝks0,1,ŝks1,1∈Zq

(`(ŝks0,1|y∗s0) · `(ŝks1,1|y∗s1)), (13)

and the log-likelihood of ŝk1 is

log `(ŝk1|y∗) =
∑

ŝks0,1+ŝks1,1 mod q=ŝk1

ŝks0,1,ŝks1,1∈Zq

(log `(ŝks0,1|y∗s0) + log `(ŝks1,1|y∗s1)). (14)

By accumulating, we obtain the joint log-likelihood log `(ŝk1|Yna) for given na leakage
traces Yna using Equation 4.

The recovery of ŝk0 follows a similar procedure, hence the steps are not reiterated.
This approach allows for the individual estimation of the likelihoods of the shares, which
is essential for the recovery of secret coefficients in a first-order masked implementation.

In a real-world attack, employing Equation 14 for the log-likelihood of ŝk1 presents
challenges due to the accumulation of log-likelihoods across q2 pairs of ŝks0,1 and ŝks1,1.
Only one pair corresponds to the correct secret coefficient shares, while the remaining
q2 − 1 are incorrect, significantly increasing the rank of the correct coefficient complicating
its recovery.

To mitigate this, one strategy is to prune some of the incorrect pairs, thereby increasing
the relative proportion of the correct one. Typically, with a single leakage trace, the
correct share of the secret coefficient ranks relatively high within the candidate set. Thus,
a threshold can be set to eliminate candidates whose ranks exceed this threshold for each
share.

This pruning process involves the following steps:

1. Rank Calculation: Determine the ranks of each candidates ŝks0,1 and ŝks1,1 based
on the computed log-likelihood from a single trace.

2. Threshold Setting: Set a rank threshold thrank, below which candidate pairs are
considered unlikely to be correct.

3. Pruning: Eliminate candidate pairs whose ranks are lower than the set threshold
for both shares ŝks0,1 and ŝks1,1.

By implementing this pruning strategy, the attack can focus on a smaller set of more
probable candidates. This increases the likelihood of successfully recovering the secret
coefficients. This approach narrows down the search space and improve the efficiency of
our attack in practical scenarios.

4.5 Assistance with the Store Instruction
As we described in Section 1, using a single store instruction to save two result coefficients
presents challenges for the attack. However, the Hamming weight of the result coefficient
pair can assist in reducing the number of target traces required. Assuming that r̂∗1 and

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 45

0 20000 40000 60000 80000 100000 120000 140000
Sample

1.0

0.5

0.0

0.5

1.0
Vo

lt/
m

V 0th iteration
16th iteration
32nd iteration
48th iteration

(a)

0 250 500 750 1000 1250 1500 1750 2000
Sample

1.0
0.5
0.0
0.5
1.0
1.5

Vo
lt/

m
V

 ldrh.w
ldrb.w

ldrh.w
ldrb.w

ldrh.w
STALL

ubfx.w
ubfx.w

orr
orr

ubfx.w
ubfx.w

orr
orr

ldr.w
ldr

STALL
smultt

smulbb
smlabb

smultb
smlabb

smulbb
smlabb

smuadx
smulbb

smlabb
pkhtb

str
neg

smultt
smulbb

smlabb
smultb

smlabb
smulbb

smlabb
smuadx

smulbb
smlabb

pkhtb
str

cmp.w
bne.w

ldrh.w zeta
Macro deserialize
Macro doublebasemul_frombytes_asm
cmp.w & bne.w

(b)

Figure 7: (a) The power trace of the function frombytes_mul_asm in the unprotected
stack-optimized Kyber implementation running on the Cortex-M4. (b) The power traces
of a single iteration which contains a target macro doublebasemul_frombytes_asm.

r̂∗0 are the real result coefficients, the Hamming weight of (r̂1||r̂0) can be extracted using
the str instruction via a template attack, as described in [CRR03, RO04]. The template
matching results are demonstrated next section.

We propose two conditions to utilize HW(r̂∗1 ||r̂∗0):

• Cond1 : HW(r̂0),HW(r̂1) ≤ HW(r̂∗1 ||r̂∗0);

• Cond2 : HW(r̂0) + HW(r̂1) = HW(r̂∗1 ||r̂∗0).

When recovering any secret coefficient, the value of either r̂0 or r̂1 can only be hypoth-
esized, thereby limiting the application of Cond2 to the recovery of a single coefficient
within a secret coefficient pair, rather than both at the same time. Cond2 is only applicable
to the recovery of the second coefficient once the first has been successfully retrieved.

These conditions are applied to select candidates that satisfy the specified criteria. By
filtering the candidates based on the Hamming weight conditions, the attacker can more
efficiently identify the correct secret coefficients. This reduces both the complexity and
the number of traces required for a successful attack.

5 Experiments and Results
In this section, we define and declare the notations used throughout this chapter. nc
denotes the number of traces for profiling. np represents the number of trace fragments
for profiling. nhw is the number of HW candidates ordered by ranks. na is the number of
traces required for recovering secret coefficients. thrank is the rank threshold value used in
the second-order attacks, as described in Section 4.4. These notations will be consistently
applied to describe the experimental settings and results presented in this section.

5.1 Preprocessing
Traces Collection The traces used for model construction are collected from the pro-
filing device using random ciphertext and secret polynomials. The number of traces for

46 MulLeak

0

1

2

3

4
So

ST
 (x

10
00

0)
 ldr.w

ldr
STALL

smultt
smulbb

smlabb
smultb

smlabb
smulbb

smlabb
smuadx

smulbb
smlabb

pkhtb
str

SoST_normal

0 500 1000 1500 2000 2500
Sample

0

1

2

3

4

So
ST

 (x
10

00
0)

 ldr.w
ldr

nop.w
nop.w

nop.w
smultt

nop.w
nop.w

nop.w
smulbb

nop.w
nop.w

nop.w
smlabb

nop.w
nop.w

nop.w
smultb

nop.w
nop.w

nop.w
smlabb

nop.w
nop.w

nop.w
smulbb

nop.w
nop.w

nop.w
smlabb

nop.w
nop.w

nop.w
smuadx

nop.w
nop.w

nop.w
smulbb

nop.w
nop.w

nop.w
smlabb

nop.w
nop.w

nop.w
pkhtb

nop.w
nop.w

nop.w
str

Location: smultt Location: smlabb Location: smuadx

SoST_nops

Figure 8: Instruction location via SoST. The upper figure displays the SoST values
(indicated by the blue trace) at each sampling point generated by the normal instruction
sequence shown in Figure 6a. The lower figure presents the SoST values (indicated by the
red trace) resulting from the instruction sequence with inserted nop.w operations. The
alternating gray and white regions represent individual clock cycles.

constructing accurate models is discussed in section 5.2. The traces for recovering secret
coefficients are captured from the target device.

Reference Trace A reference trace, used as a baseline, is needed to align the collected
power traces and ensure that they are properly aligned. Clock signals are instrumental in
understanding the cycle information of instructions; hence, we use a power trace carrying
a clock signal as the reference.

Trace Cutting The Kyber polynomial multiplication function frombytes_mul_asm con-
sists of 64 iterations (128 iterations for the first-order protected Kyber), with each iteration
calling the macro doublebasemul_frombytes_asm to performs two first-degree polynomial
multiplication operations. Therefore, we split the power trace of frombytes_mul_asm into
64 segments (128 segments), as shown in Figure 7a. Figure 7b presents the power trace
of a single iteration, with our targeted macro highlighted in pink. In each macro, the
multiplication instruction parts are marked with red solid boxes. The benefits of trace
cutting are twofold: firstly, by locating the instructions within a single macro, we can
determine the instruction locations for all macros; secondly, when modeling the power
consumption of the instructions, the derived 64 (128) trace segments can be used for
profiling, separately, which significantly reduces the number of traces required for profiling.

Traces Alignment We employ cross-correlation to calculate the offset between two
traces. The Python NumPy package [HMvdW+20] provides a function called correlate,
which is used to compute the cross-correlation of two one-dimensional sequences of length
n. The function outputs correlation values for offsets ranging from −n+1 to n−1. By
identifying the offset corresponding to the maximum correlation value, we can properly
align the trace by shifting it accordingly.

Instructions Location We first locate the load instructions, which exhibit significant
variance at the sampling points compared to arithmetic or logic instructions, making them
easily distinguishable. We set cti = 0 for i ranging from 2 to 255, and randomly generate ct0
and ct1, ensuring that they satisfy ctj = Decompressq(Compressq(ctj , d), d), for j = 0 or 1.
Thus, in the NTT domain, the ciphertext polynomial is ĉt = (ct0, ct1, ct0, ct1, · · · , ct0, ct1).
For example, ct = (16, 1365, 0, 0, · · · , 0, 0), and its corresponding NTT transformation is
ĉt = NTT(ct) = (16, 1365, 16, 1365, · · · , 16, 1365). We categorize the randomly generated
ciphertexts based on HW(ct0||ct1). Since ct0, ct1 ∈ Zq, we obtain 23 groups, with 100

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 47

ciphertext polynomials retained in each group. We input the ciphertext polynomials and a
secret polynomial where all coefficients are set to zero, and then collect the corresponding
power traces.

We calculate the mean mi,(t) and standard deviation σi,(t) at the tth sampling point of
the ith group, and apply the sum-of-squared t-values (SoST) [GLP06] for locating the load
instruction.

SoST(t) =
20∑

i,j=0

 mi,(t) −mj,(t)√
σ2
i,(t)
ni

+
σ2
j,(t)
nj


2

,

where ni = nj = 100 represent the numbers of traces in the ith and jth group, and SoST(t)
represents the SoST value at the tth sampling point.

It is worth noting that load/store instructions perform the memory access operation in
the clock cycle following the EX stage, and the SoST peak is expected to occur during
this clock cycle. As shown by the blue trace in Figure 8, the peak observed in the second
cycle results from the ldr.w instruction which loads ĉt3||ĉt2 (the ciphertext coefficient pair
for the next first-degree polynomial multiplication). Similarly, The peak observed in the
third cycle is due to the ldr instruction which loads ĉt1||ĉt0.

One straightforward approach to locate the multiply instructions is to determine the
instructions corresponding to the clock cycles immediately following ldr based on the
instruction sequence. However, considering the potential pipeline stalls caused by load
instructions, which can delay the execution of subsequent instructions by one clock cycle,
we propose a method for locating instruction with improved accuracy. We modify the
source code by adding dummy operations to the macro doublebasemul_frombytes_asm.
In addition to consecutive load instructions, we insert three nop.w instructions between
each pair of adjacent instructions to introduce precise delays and isolate each instruction.
With the same ciphertext used for locating the load instruction, we collect power traces
and calculate the SoST values. As shown in Figure 8, by analyzing the delays introduced
by the nop.w instructions, we can accurately determine the position of each multiply
instruction in the red trace and deduce their positions in the blue trace which does not
include the dummy operations.

5.2 Models Construction and Evaluation for Multiply Instructions
Models Construction After preprocessing, we obtain trace fragments that include the
first-degree polynomial multiplications. We employ the raw integration method [MOP07,
Chapter 4.5] to compress the traces. We sum the sampling point data for each multiply
instruction over its corresponding cycle to determine the cycle-level power consumption,
denoted as y(t), for t = 0 to 9, as displayed in Figure 9a. Using the inputs from each
single polynomial multiplication, we calculate the explanatory variables of the models for
instructions, as shown in Figure 9b. Utilizing the variable selection method proposed in
section 3.4, we eliminate some unnecessary variables. The set of excluded explanatory
variables may vary across different models. For each multiply instruction within the macro
doublebasemul_frombytes_asm, the variable selection process are detailed in Table 9.
Additionally, we apply the significant F -test for further refinement of the variable selection,
which is discussed in detail in the subsequent paragraph. By solving the least squares
problem, we derive the estimated coefficients β(t), δ(t) and residual terms ε(t) for the
attacks, as shown in Figure 9c.

Models Evaluation We use nc to denote the number of traces for modeling, and np
to represent the number of trace fragments for profiling. Thus, np is equal to 64 · nc and
128 · nc for the unprotected and the first-order masked implementations, respectively. For

48 MulLeak

M4

Triger
Power

Target

Oscilloscope

... ...

Capturing Trace Cycle Traces Cycle-level Power
Consumption

......

Inputs

Outputs

3.207433360
-17.25772841
12.386608550
5.955076620

...

7.261513000
16.43263031
8.759667890

(a)

......

(1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, ...)
(0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, ...)
(1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, ...)
(0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, ...)

...

(1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, ...)
(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, ...)
(0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, ...)

Inputs

......

OutputsVariables for Instructions Variables for Models
...

(b)

Capturing Traces
& Computing

cyclel-level power
consumption

Computing
Explanotary

Variables

... ...

Models Residuals
...

Inputs

secret polynomials

ciphertext polynomials

(c)

Figure 9: Preprocessing. (a) Capturing traces and computing the cycle-level consumption.
(b) Calculating the variables of the models. (c) Generating the models for multiply
instructions.

0.600

0.625

R
2

smultt
0.725

0.750
smulbt

0.840

0.860

R
2

smlabb
0.700

0.725
smultb

0.920
0.925

R
2

smlabb 0.850
0.860

smulbt

0.675
0.700

R
2

smlabb
0.650
0.700

smuadx

2560 6400 12800 32000 49920
np

0.725
0.750R

2

smulbt

2560 6400 12800 32000 49920
np

0.650

0.675
smlabb

Figure 10: The coefficient of determination R2 of each model with increasing trace
fragments for profiling. The initial number of trace fragments should be larger than the
number of explanatory variables.

different values of np, we test the coefficient of determination R2 for each model. Figure
10 illustrates the trend of R2 for the 10 models as np increases. np should exceed the
maximum number of variables in all 10 models, and therefore, we choose np = 2,560 as
the starting point in our tests. Between 2,560 and 32,000, the increase in R2 is relatively
pronounced, whereas from 32,000 to 49,920, there is little to no noticeable growth. Table

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 49

Table 3: The coefficient of determination R2 of each model with different numbers of trace
fragments for profiling.

np

Inst.
smultt smulbt smlabb smultb smlabb

R
2

6,400 0.6129 0.7415 0.8522 0.7216 0.9220
12,800 0.6200 0.7474 0.8564 0.7269 0.9245
32,000 0.6258 0.7516 0.8586 0.7328 0.9257
49,920 0.6270 0.7526 0.8592 0.7338 0.9260

np

Inst.
smulbt smlabb smuadx smulbt smlabb

R
2

6,400 0.8581 0.6947 0.7092 0.7542 0.6726
12,800 0.8624 0.7022 0.7235 0.7635 0.6786
32,000 0.8648 0.7070 0.7309 0.7702 0.6830
49,920 0.8654 0.7086 0.7326 0.7718 0.6847

3 provides the R2 values for the 10 models at four different values of np, with the values
rounded to four decimal places.

To confirm the significance of each explanatory variable in the models, an F -test is
performed on all terms. Table 9 shows the F -statistic values for the terms tested in all
models given np = 49, 920 (780 traces for the unprotected implementation or 390 traces
for the first-order masked implementation). In all cases, variables DM(t) and TDM(t) are
statistically significant at the 5% level, indicating that our simulation of the combinational
logic is effective. Variables that did not reach statistical significance (i.e., tests which fail
to reject at the 5% level) are considered for exclusion from the model to maintain model
statistical robustness.

5.3 Recovering HW(r̂∗1||r̂∗0)

Subsection 4.5 has demonstrated that utilizing the HW information of the str instruction,
HW(r̂∗1 ||r̂∗0), can assist in KCPA or CCPA. However, the accuracy of recovering HW(r̂∗1 ||r̂∗0),
using template matching should be taken into account. This subsection provides a detailed
analysis of the impact of the template matching on filtering secret coefficients.

The store instruction leaks the HW information of (r̂∗1 ||r̂∗0) over two clock cycles. During
the first clock cycle, the EX stage of the str instruction processes the output (r̂∗1 ||r̂∗0)
from the previous instruction, overlapping with the RS stage of the pkhtb instruction.
In the second clock cycle, the str instruction accesses memory. For each HW value, we
collect 2,000 trace fragments to construct the corresponding template4. Furthermore, we
utilize 1,000 additional trace fragments to evaluate the matching probabilities and rank
the candidates accordingly.

The HW candidates obtained through template matching are represented as hw0, hw1,
. . . , hw32, ordered by their ranks. Table 4 shows the cumulative probability of the top nhw
ranks, representing the likelihood that the HW assumes one of these values. The correct
HW value is the top-ranked candidate (rank 0) with an approximate probability of 80%,
and there is a nearly 98% probability that it falls within the top five ranks. Moreover, the
correct HW consistently appears among the top eight ranks.

The recovered HW value is utilized in the two conditions proposed in Subsection 4.5 to
discard incorrect secret coefficients while preserving the correct one. Depending on the
number of ranks employed, Cond1 and Cond2 can be reformulated as follows:

4The trace fragments used to construct the models for multiply instructions can be (partially) reused
when generating the HW templates.

50 MulLeak

Table 4: The probability that the correct HW value falls in the top nhw ranks.
nhw 1 2 3 4 5
Pr 79.5% 86.7% 91.8% 95.4% 97.8%
nhw 6 7 8 9 10
Pr 99.3% 99.9% 100% 100% 100%

• Cond1 : HW(r̂0),HW(r̂1) ≤ max{hw0, ..., hwnhw−1} 5;

• Cond2 : HW(r̂0) + HW(r̂1) ∈ {hw0, . . . , hwnhw−1}.

The probability that Cond2 retains the correct secret coefficient is directly demonstrated
in Table 4. For instance, when only the top-ranked candidate, hw0, is considered, this
probability is approximately 79.5%. As nhw increases from 1 to 8, the probability that
Cond2 retains the correct secret coefficient reaches 100%. However, this comes at the
expense of a diminished ability to filter out incorrect secret coefficient guesses.

Table 4 is not directly applicable to Cond1, as this condition may still hold even when
we obtain a wrong estimation of HW(r̂∗1 ||r̂∗0). For instance, we consider the top-ranked
candidate hw0. Cond1 may remain valid in cases where either hw0 > HW(r̂∗1 ||r̂∗0) or
hw0 < HW(r̂∗1 ||r̂∗0). Understanding the first case is straightforward. HW(r̂0),HW(r̂1) ≤
HW((r̂∗1 ||r̂∗0)) < hw0 holds indicating Cond1 will not filter out the correct secret coef-
ficient. In case of HW(r̂0),HW(r̂1) ≤ hw0 < HW((r̂∗1 ||r̂∗0)), the effectiveness of Cond1
depends on the specific values of HW(r̂0) and HW(r̂1). Since the probability that Cond1
works in case 2 cannot be precisely determined, we only presents the probability of
max{hw0, . . . , hwnhw−1} ≥ HW(r̂∗1 ||r̂∗0) in Table 5. The actual probability should be
higher since we exclude certain scenarios in case 2.

Table 5: The probability that the correct HW value is no larger than the maximum value
of the top nhw candidates.

nhw 1 2 3 4 5
Pr 89.1% 94.2% 96.7% 97.6% 98.7%
nhw 6 7 8 9 10
Pr 99.7% 100% 100% 100% 100%

Since the attacks proposed in this paper are multi-trace rather than single-trace attacks,
there is no strict requirement for every target trace to satisfy Cond1 or Cond2. Therefore,
a tradeoff exists between the probability of retaining the correct secret coefficients and the
ability to eliminate incorrect secret coefficient guesses. The performance of KCPA and
CCPA enhanced with Cond1 and Cond2 is analyzed in detail in the following subsection.

5.4 Attacks and Performance
5.4.1 The First-order Attacks

In the evaluation of the performance of KCPA and CCPA on unprotected implementations,
we assess the number of traces needed to recover a pair of secret coefficients, ensuring a
success rate of at least 99.99% under different values of np.

Table 6 displays the data in a comparative format, with each data point consisting
of two values: the number of traces required to recover ŝk1 on the left and ŝk0 on the
right. Since each trace can be used to recover both ŝk1 and ŝk0, the larger value of the two

5We use max{hw0,...,hwnhw−1} to minimize the probability of incorrectly discarding the correct secret
coefficient.

6This notation is consistently used in the tables throughout the paper.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 51

Table 6: The performance of attacks against the unprotected stack-optimized Kyber im-
plementation. "Cond1" and "Cond2" represent that the attacks use the filtering conditions
which exploit the HW information leaked from the store instruction. The symbol "-"
represent that Cond2 is inapplicable to recover the ŝk1.6Additional 67,000 trace fragments
are used for the template attack targeting the store instruction.

Performance nc np
KCPA CCPA

Original Cond2
(nhw=8) Original Cond1

(nhw=1)
Cond2
(nhw=6)

na for
ŝk1|ŝk0

100 6,400 13|10 −(13)|7 8|34 7|28 −(7)|14
200 12,800 13|10 −(13)|7 8|29 7|25 −(7)|14
500 32,000 12|9 −(12)|6 8|27 7|24 −(7)|13
780 49,920 12|9 −(12)|6 8|26 7|23 −(7)13

0 5 10 15 20
na

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

sk1 (Original)
sk0 (Original)
sk0 (Cond2)

(a)

0 5 10 15 20
na

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

sk1 (Original)
sk1 (Cond1)
sk0 (Original)
sk0 (Cond1)
sk0 (Cond2)

(b)

Figure 11: The success rate of the attacks against the unprotected implementation. (a)
The success rate of KCPA with np = 49, 920. For the Cond2-augmented KCPA, nhw = 8.
(b) The success rate of CCPA with np = 49, 920. For the Cond1-/Cond2-augmented
CCPA, nhw = 1/6.

represents the total number of traces needed to recover the secret coefficient pair. This
value is highlighted in bold in the table.

When examining the table horizontally, we provide results for both KCPA and CCPA
in two scenarios: the original attack with no assistance and the attack combined with
HW(r̂1||r̂0) as auxiliary information. In the original attack scenario, KCPA requires fewer
traces compared to CCPA. For instance, when np = 6, 400, KCPA requires 13 traces, while
CCPA requires 34. This discrepancy arises because, in KCPA, the recovery of ŝk1 utilizes

52 MulLeak

leakage from 4 instructions, whereas in CCPA, the recovery of ŝk0 only utilizes leakage
from 2 instructions, thereby increasing the attack cost.

In the enhanced attack scenario, Cond1 utilizes the Hamming weight of r̂1 or r̂0 to
filter candidates for the secret coefficients. As shown in Figure 6b, the first 7 instructions
are used to generate r̂0. In KCPA, the recovery of ŝk1 only employs the first 4 instructions,
making Cond1 inapplicable to KCPA. Cond2 is exclusively applied to the recovery of ŝk0.
7 The numerical values within parentheses come from the original or the Cond1-augmented
attack of the same row to represent a complete attack. In other words, the original attack
or attack enhanced with Cond1 is utilized to recover ŝk1, and the Cond2-augmented attack
is utilized to recover ŝk0.

As discussed in the previous subsection, the choice of nhw affects both the efficacy of
Cond1 and Cond2 in eliminating incorrect secret coefficient guesses and the probability of
retaining the correct candidates. Thus, we investigate the effects of varying nhw (ranging
from 1 to 8) and np (from 6400 to 49,920) on the performance of the Cond1-augmented
and the Cond2-augmented attacks, as summarized in Table 10. The results indicate that
for Cond1, CCPA achieves its highest effectiveness with nhw=1, requiring the fewest traces.
In contrast, for Cond2, increasing nhw leads to improved performance due to stricter
conditions for retaining correct secret coefficients compared to Cond1. Specifically, when
nhw=8, KCPA enhanced with Cond2 achieves the best performance with the minimum
number of traces. Similarly, when nhw=6, the Cond2-augmented CCPA achieves its
optimal performance. The corresponding results are also presented in Table 6.

When examining Table 6 vertically, it is observable that as np increases, the number
of traces required for the attack decreases gradually. The number of required traces sees
only a small drop when the attack only needs few traces. For example, when np = 6, 400,
the original KCPA requires 13 traces to recover a pair of secret coefficients, and when
np = 49, 920, the required traces only decreases by only one. However, when the attack
requires more traces, to a certain extent, a larger np lead to fewer traces required. This
trend is evident when no conditions are applied for optimization or when only Cond1 is
used in the CCPA attack.

Figure 11 illustrates the relationship between the success rate of two profiled attacks
and the number of traces for attack, for recovering a pair of secret coefficients. For clarity,
only the success rate curves for np = 49, 920 are shown. In Figure 11a, the success rate of
recovering ŝk0 using the original KCPA is higher than that of recovering ŝk1 given a same
na. We can also observe that the application of Cond2 significantly enhances the success
rate of recovering ŝk0. When na = 7, all three curves exceed a success rate of 99%. As
shown in Figure 11b, the success rate of recovering ŝk1 using CCPA is significantly higher
than that of recovering ŝk0 for the same na. When na = 15, the success rate for all curves
exceeds 99%. Overall, the findings in Figure 11 are consistent with the results presented
in Table 6.

In summary, according to the data in the table, the best performance against un-
protected implementations is achieved when np = 49, 920. Under this condition, KCPA
and CCPA require 12 and 26 traces, respectively, for the original attacks, and 12 and 13
traces, respectively, for the Cond2-augmented attacks. Considering these measurements
for attacks, recovering all secret coefficient Kyber-768, we have the success rates 97.15%
and 96.50% for original KCPA and CCPA, 97.15% and 97.16% for Cond2-augmented
attacks.

7In KCPA, ŝk0 recovery relies on ŝk1, so Cond2 targets ŝk0. In CCPA, ŝk0 requires more traces than
ŝk1, thus we use Cond2 for ŝk0 after recovering ŝk1 with the original or Cond1-augmented attack.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 53

0 666 1332 1998 2664 3330
thrank

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio

sks0, 1 (Original)
sks1, 1 (Original)
sks0, 0 (Original)
sks1, 0 (Original)512 768 1024

0.0
0.2
0.4
0.6
0.8
1.0
1.2 sks0, 1 sks1, 1 sks0, 0 sks1, 0

Figure 12: The value of rank ratio with the increasing rank threshold. The subplot
presents the rank ratio values at three designated threshold levels, 512, 768, and 1,024.

0 25 50 75 100 125 150 175 200
na

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

sk1 (Original) thrank = 512
sk1 (Cond1) thrank = 512
sk1 (Original) thrank = 768
sk1 (Cond1) thrank = 768
sk1 (Original) thrank = 1024
sk1 (Cond1) thrank = 1024
sk0 (Original) thrank = 512
sk0 (Cond1) thrank = 512
sk0 (Original) thrank = 768
sk0 (Cond1) thrank = 768
sk0 (Original) thrank = 1024
sk0 (Cond1) thrank = 102455 60 65 70 75

0.75

0.80

0.85

0.90

0.95

Figure 13: The success rate of a second-order attack at the designated threshold value
with np = 49, 920. For the Cond1-augmented CCPA, nhw = 1.

Table 7: The performance of attacks against the first-order masked stack-optimized
Kyber implementation. "Cond1" and "Cond2" represent that the attacks use the filtering
conditions which exploit the HW information leaked from the store instruction. Additional
67,000 trace fragments are used for the template attack targeting the store instruction.
Perfor-
mance nc np

Rank<512 Rank<768 Rank<1,024

Original Cond1
(nhw=1) Original Cond1

(nhw=1) Original Cond1
(nhw=1)

na for
ŝk1|ŝk0

50 6,400 69|325 73|245 86|309 103|242 108|341 131|264
100 12,800 67|264 71|214 86|271 99|207 106|299 128|230
250 32,000 66|264 70|214 85|270 97|208 104|296 126|227
390 49,920 67|259 70|201 86|272 97|202 106|296 126|222

5.4.2 The Second-order Attack

Before evaluating the performance of CCPA against a first-order masked implementation,
we demonstrate how rank threshold values are selected. Given 1000 traces, the rank of
the correct candidate value is computed for each trace. The proportion of traces where
this rank is higher than a given rank threshold is referred to as the rank ratio. Figure 12
illustrates the changes in rank ratio for various secret coefficient shares as the threshold
increases. It can be observed that the rank ratios of ŝks0,1 and ŝks1,1 reach 1.0 more
quickly than those of ŝks0,0 and ŝks1,0. This is because the recovery of ŝks0,1 and ŝks1,1

54 MulLeak

utilizes leakages from 7 instructions, which is 5 more than the number of instructions used
for ŝks0,0 and ŝks1,0.

As mentioned in the previous section, a smaller threshold is advantageous for attacks.
However, the value of the rank ratio is also crucial; if the rank ratio is too low, the attack
will be more complicated. In practice, three threshold values are considered: 512, 768, and
1,024. As illustrated in the subplot of Figure 12, under the three thresholds, the rank ratios
of the correct candidates for ŝks0,1 and ŝks1,1 consistently remain above 98%. In contrast,
the ratios for ŝks0,0 and ŝks1,0 are comparatively lower and increase as the threshold value
increases. This trend aligns with the growth patterns observed in the curves of Figure 12.

In the second-order attack, we also examine the effects of nhw values (ranging from 1
to 8), np values (from 6400 to 49,920), and thrank values (ranging from 512 to 1024) on
Cond1’s performance. The experimental results in Table 11 indicate that when nhw=1,
the recovery of key coefficient pairs requires the fewest traces. The corresponding data
from this column are also provided in Table 7.

Table 7 presents the evaluation of CCPA against the first-order masked implementation.
As shown in Table 7, the number of traces required for the attack decreases as np increases,
which is consistent with the effect demonstrated in the first-order attack. The value of the
rank threshold does not have a direct positive or negative correlation with the number of
traces required. When np = 6, 400, both the original attack and the Cond1-augmented
attack require the fewest traces at a threshold of 768, requiring 309 and 242 traces,
respectively. When np is 12,800 or 32,000, the original attack requires the fewest number
of traces at a threshold of 512, with 264 traces, while the Cond1-augmented attack obtains
the minimum number of traces at a threshold of 768, with 207 or 208 traces.

Figure 13 illustrates the recovery success rates of ŝk1 and ŝk0 as na increases under
different threshold values. Overall, fewer traces are needed to recover ŝk1 compared to
ŝk0. Additionally, applying Cond1 significantly improves the success rates. The impact of
threshold selection on the success rate is consistent with the results shown in Table 7.

In this paper, the best performance against the first-order masked implementation is
achieved when np = 49, 920 and the rank threshold is set to 512. Under these conditions, 259
traces are required for the original attack and 201 traces for the Cond1-augmented attack.
Considering these measurements for attacks, recovering all secret coefficient in Kyber-768,
we have the success rates 96.31% for original attack, 96.31% for the Cond1-augmented
attack.

5.5 Comparison
Recently, [MWK+24] and [ABB+24] target the same or similar implementation as our
work. Table 8 compares our work with them on the number of traces required for profiling
and attack, along with the attack success rates, in unprotected or masked implementations.
We show the number of traces for profiling, the required traces for attack and successful
rate when recovering all secret coefficient of Kyber-768.

Mujdei et al. [MWK+24] utilize a CPA attack to predict two secret coefficients
simultaneously, targeting the pair-pointwise multiplications in the unprotected stack-
optimized implementation [impb]. The authors accurately recover all secret coefficients
using 200 power traces. In their work, guessing one pair of coefficients takes roughly 5
minutes on average. Our work recovers all secret coefficients of a polynomial with a success
rate exceeding 99% using as few as 12 traces for the original KCPA and 13 traces for the
CCPA enhanced with Cond2. The recovery time per coefficient pair is approximately 5
minutes for KCPA and 4.4 minutes for the enhanced CCPA.

Bock et al. [ABB+24] also target the unprotected implementation [SAB+], and give a
single trace attack with 65% success rate to recover secret coefficients of three polynomials
in Kyber-768. They match a secret pair once time and require 44.5 million templates that
each template is exactly one trace. In contrast, we need more traces for attacks, but we only

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 55

use 780 traces for profiling (and additional 67,000 trace fragments for template attacks).
For the first-order masked implementation, they utilize a template attack to recover
individual shares of the secret coefficients using a single trace, thereby reconstructing the
real secret coefficients. With a template database of 78 million templates, the success rate
of their single-trace attack is 43%. When the template size is increased to 105 million,
the success rate reaches 90%. Although our attack requires more traces, with at least 201
traces needed for the CCPA with Cond1, our profiling phase requires only 390 traces (and
additional 67,000 trace fragments for template attacks), and our success rates are close to
100%. The time cost of [ABB+24] heavenly depends on the traces collection. They capture
1500 traces per minute, while we just need several minute for all traces acquirement. While
Bock et al. [ABB+24] do not report the recovery time, our attacks take approximately 4
hours and 3 hours, respectively.

Moreover, it should be noted that the experimental setup of [ABB+24] uses the same
device for both profiling and attack, which is the most favorable environment for an
attacker. In contrast, we use separate devices for profiling and attack, which more closely
resembles real-world scenarios.

Table 8: Comparison with the related works targeting the same or similar implementations.
The successful rates of our attacks are presented for recovering all secret coefficient in
Kyber-768. Additional 67,000 trace fragments are used for the template attack targeting
the store instruction.

Works Implementation # traces for
profiling

traces for
attack SR Across

devices
Our work
(KCPA) Unprotected 780 12 (Original)

12 (Cond2)
97.15%
97.15% Yes

Our work
(CCPA) Unprotected 780 26 (Original)

13 (Cond2)
96.50%
97.16% Yes

Our work
(CCPA) Masked 390 259 (Original)

201 (Cond1)
96.31%
96.31% Yes

[MWK+24] Unprotected - 200 - -

[ABB+24] Unprotected
[SAB+] 43M 1 ≈ 100% No

[ABB+24] Masked [HKL+] 78M
105M

1
1

43%
90% No

6 Discussion
Linear Regression-based Leakage Model The foundation of our leakage model’s
applicability to attacks rests on the premise that the inputs and outputs of the targeted
instructions correlate exclusively with a single cryptographic secret coefficient. For instance,
in a first-order CCPA aimed at recovering ŝk1, the first seven multiply instructions are
solely associated with ŝk1 and are independent of ŝk0.

The model (Equation 3) presented in Section 2.2.2 characterizes the power consumption
associated with an intermediate value at various time instances, differing from our proposed
model. Our model aligns more closely with the one (Equation 1) described in Section 2.2.1.
It focuses on power consumption related to each individual cycle, contingent upon inputs,
outputs, and the computational processes of both preceding and current instructions. The
model (Equation 1) simplify the outputs of the preceding instruction, designating them
as an operand for the current instruction. In contrast, our model construction does not
presuppose such simplifications; instead, it refines explanatory variables to better reflect
the complex interdependencies inherent in instruction execution.

56 MulLeak

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0
0

50

100

150

200

250

Nu
m

be
r o

f t
ra

ce
s 4.645KCPA sk1

605 37.8 12.3 6.05 3.58 2.36 1.68 1.25 0.97 0.77 0.63 0.52 0.44 0.38
SNR

(a)

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0
0

50

100

150

200

250

Nu
m

be
r o

f t
ra

ce
s 4.650KCPA sk0

903 56.4 18.4 9.03 5.34 3.53 2.5 1.87 1.44 1.15 0.94 0.78 0.66 0.56
SNR

(b)

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0
0

200

400

600

800

1000

Nu
m

be
r o

f t
ra

ce
s

5.992
CCPA sk1

2nd-order CCPA sk1
(thrank = 1024)

931 58.2 19.0 9.31 5.51 3.64 2.58 1.92 1.49 1.19 0.97 0.81 0.68 0.58
SNR

(c)

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0
0

200

400

600

800

1000

Nu
m

be
r o

f t
ra

ce
s

2.569
CCPA sk0

2nd-order CCPA sk0
(thrank = 1024)

443 27.7 9.03 4.43 2.62 1.73 1.23 0.91 0.71 0.56 0.46 0.38 0.32 0.28
SNR

(d)

Figure 14: : Required number of traces under varying noise levels (σ) for KCPA and
CCPA attacks. The rank threshold thrank for the second-order attack is set to 1024. Red
vertical dashed lines indicate the SNR values corresponding to real-world attacks. (a)
KCPA for ŝk1. (b) KCPA for ŝk0. (c) The first-order and second-order CCPAs for ŝk1.
(d) The first-order and second-order CCPAs for ŝk0.

0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

ra
nk

 o
f t

he
 c

or
re

ct
 c

oe
ffi

cie
nt

KCPA sk1

KCPA sk0

CCPA sk1

CCPA sk0

2nd-order CCPA sk1 (thrank = 1024)
2nd-order CCPA sk0 (thrank = 1024)

Figure 15: Average rank of the correct secret coefficients under varying noise levels (σ).
The rank threshold thrank for the second-order attack is set to 1024.

Noise The STM32 platform exhibits relatively low noise levels, contributing to the high
success rate of our attacks. To evaluate the generalizability of our method in higher-noise
settings, we conduct simulations to explore the attacks’ performance under increasing
noise. Specifically, we introduce additional Gaussian noise with a standard deviation σ,
ranging from 0.1 to 4.0 in increments of 0.1.

We employ LR models with np = 49, 920 for the simulations. For each σ, we collect
target traces to achieve a 99.99% success rate in recovering secret coefficients. In the
second-order CCPA, the rank threshold thrank is set to 1024.

Figure 14 presents the number of traces required to recover ŝk1 and ŝk0 under varying
noise levels. Due to variations in the modeling quality (R2), the Signal-to-Noise Rate
(SNR) for each instruction differs across attacks. Thus, Figure 14 is divided into four

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 57

subplots to show the average SNR for each attack. In first-order attacks, the number of
required traces remains below 100 when σ < 2.0, demonstrating the robustness of these
attacks. KCPA remains effective up to σ = 3.2. In contrast, the second-order CCPA
requires approximately 150 traces even at low noise levels (σ = 0.1, 0.2) due to the masking
countermeasures and stricter rank thresholds. Notably, for σ > 3.1, the second-order
CCPA can recover ŝk1 but fails to recover ŝk0, primarily because of the limited number of
instructions available for ŝk0.

Figure 15 shows the average rank of the correct secret coefficients with 1,000 target
traces under varying noise levels. As noise increases, the average rank rises significantly
across all attack methods, with the rate of increase depending on the number of instructions
used. For first-order attacks, leveraging more instructions exhibit slower rank growth, with
CCPA for ŝk1 (utilizing 7 instructions) achieving better performance than CCPA for ŝk0
(utilizing only 2 instructions). In second-order attacks, the high threshold (thrank = 1024)
leads to higher average ranks, even at a low noise level (σ = 0.1), with average ranks of
868 for ŝk1 and 919 for ŝk0. When the average rank approaches q/2, recovering secret
coefficients becomes significantly more challenging, which explains the failure to recover
ŝk0 for σ > 3.1.

Type of the MAC Circuit During model construction, we conduct a simple reverse
engineering experiment to identify the MAC circuit type used in 16×16 multiply instructions,
simulating the intermediate values generated during multiplication. The F -statistics for
the explanatory variables related to the MAC circuit, shown in Table 3, validate the
efficacy of our simulation.

We reverse-engineer the 16×16 multiplier to identify the MAC circuit type and simulate
the values it computes. The F -statistics in Table 3 confirm our simulation’s accuracy for
MAC-related variables.

This work is performed on the STM32F303 device, manufactured by STMicroelectronics,
confirming that this particular device utilizes a Modified Booth multiplier within its DSP
extension. It is reasonable to assume that other Cortex-M4(F) devices from the same
manufacturer are similarly configured. However, whether other vendors adopt comparable
microarchitectural structures remains an open inquiry, warranting further exploration in
our future works. 8

Application to NTT−1 In addition to pair-pointwise multiplication, the NTT−1 oper-
ation during the Kyber decryption has drawn significant attention as a target for SCA
attacks [PPM17, HHP+21, HSST23]. Both the speed-optimized and stack-optimized Kyber
implementations use the same assembly code for NTT−1.

The strategies for implementing the NTT−1 present challenges to the attacks. First,
two NTT−1 coefficients are stored within a single 32-bit word, utilizing vectorized instruc-
tions such as sadd16 and ssub16 to perform two half-word additions and subtractions
simultaneously. Furthermore, the register allocation strategy that minimizes load/store
instructions to only occur every third NTT−1 layer, while a lazy reduction strategy ensures
that modular reduction operations are not performed at each NTT−1 layer.

While addition and subtraction operations are performed on coefficient pairs which are
stored in 32-bit words, a significant number of Montgomery reduction and Barrett reduction
operations are applied to individual coefficients. These reductions utilize 16×16 or 32×16
multiply instructions. By leveraging our proposed model to characterize these multiply
instructions, it may be possible to recover some individual NTT−1 coefficients. Integrating
this approach with the BP algorithm could facilitate the recovery of all coefficients, which
we plan to explore in the future work.

8Given that the DSP extension is an integral component of the Cortex-M4 core [ARMd], rather than
a peripheral one, it is highly probable that a consistent microarchitectural structure is employed across
devices.

58 MulLeak

Application to Plantard Implementation Huang et al. [HZZ+22] employ Plantard
reduction as an alternative to Montgomery reduction to enhance algorithm efficiency,
providing implementations for both speed-optimization and stack-optimization in the
pqm4 repository. By precomputing ζ ′ = ζq−1mod± 232 and qa = q · 23, the Plantard
multiplication reduces the usage of one multiply instruction.

The assembly macro doublebasemul_frombytes_asm of the stack-optimized im-
plementation with Plantard multiplication and reduction is illustrated in Figure 18. Within
this macro, the number of multiply instructions used for the first-degree polynomial multi-
plication is nine, one less than the number targeted in this paper. This discrepancy does
not impede the proposed profiled attacks. However, it may result in a slight decrease in
the attack performance.

The Plantard multiplication employs a 32×16-bit signed multiply instruction smulwt,
which is not included in our analysis. However, this instruction is decomposed into two
16×16-bit signed multiplications, fitting within our model. For a 32-bit a and a 16-bit b, the
multiplication can be expressed as: a×b = ((aH << 16)+aL)×b = (aH×b) << 16+(aL×b),
where aH , aL are the top half and bottom half of a, respectively. Similarly, the Plantard
reduction utilizes a 32×32-bit signed multiply instruction mul which is decomposed into
two 16×32-bit signed multiplications. In our model, extending the multiplier width from
16-bit to 32-bit is straightforward, as the multiplier is not used to generate Booth codes.
This modification only requires increasing the width of the partial product ppi from 18
to 34 bits, along with adjusting the corresponding widths of si and ci. Therefore, our
leakage model remains applicable to stack-optimized Kyber implementation using Plantard
reduction.

Masking Masking is a widely used countermeasure against side-channel power analysis
and inherently affects the performance of profiled attacks. Our second-order attack
successfully demonstrates the independent recovery of each secret coefficient from a first-
order masked stack-optimized Kyber implementation, as shown in Section 5.4.2. While it
is feasible to extend our attack to higher orders, this requires a greater number of traces
and increased processing time.

It is important to note that our attack on Kyber is applicable only to schemes that
mask the secret key but not the ciphertext, which is the common case [RRd+16, OSPG18,
HKL+22]. If the ciphertext is masked during the Kyber decryption process, the proposed
attacks would no longer be able to independently predict a single secret coefficient. Instead,
it would be required to simultaneously predict a combination of coefficients, specifically two
ciphertext coefficients and one secret coefficient. This significantly increases the difficulty
and complexity of the attack, as the number of possible combinations grows exponentially
with each additional coefficient that must be predicted.

Shuffling Within cryptographic algorithms, there are many small operations that, while
functionally identical, process different data. The fundamental concept of shuffling is to
randomize the order of operations in a way that is unpredictable to an attacker, thereby
preventing the correlation between the physical observations and the secret data being
processed.

For Kyber pair-pointwise multiplication, shuffling technique randomizes the execution
order of 128 first-degree polynomial multiplications. This approach effectively nullifies
the direct threat posed by our attacks. Although the order of operations is changed, the
ciphertext coefficient pair and the corresponding secret coefficient pair are bound together
in each first-degree polynomial multiplication. In other words, ĉt2i and ĉt2i+1 are always
multiplied with ŝk2i and ŝk2i+1, rather than any other pair of secret coefficients.

If it becomes feasible to identify the positions of the ciphertext coefficient pairs across
multiple measurements, our attacks can recover the corresponding secret coefficient pairs.
As demonstrated in [ABB+24, Section 3.2], selecting a specific ciphertext polynomial with

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 59

distinct coefficient pairs for template generation allows for determining the positions of the
ciphertext coefficient pairs during template matching, thereby pinpointing the associated
secret coefficient pairs. Alternatively, leveraging Deep Learning-based analysis as proposed
in [LZH+22] could facilitate the identification of ciphertext coefficient pairs, providing an
additional avenue for locating the corresponding secret coefficient pairs.

7 Conclusion
In this paper, we target the pair-pointwise multiplication during the decryption process
in the stack-optimized Kyber implementation which is running on the ARM Cortex-M4.
We model the power consumption during the EX stage of the multiply instruction using
linear regression and provide a systematic approach for selecting explanatory variables. We
evaluate the coefficient of determination (R2) of the models under different trace fragments
(np). By combining models from multiple instructions, we perform profiled attacks to
predict each secret coefficient individually.

We propose two types of profiled attacks: one based on known ciphertext and the other
on chosen ciphertext. Both attacks can predict secret coefficients individually; however,
KCPA requires that the recovery of even-indexed coefficients depends on the previously
recovered odd-indexed coefficients, whereas CCPA imposes no such limitation. Although
the single store operation in polynomial multiplication presents a challenge to previous
attacks, the Hamming weight information leaked by this instruction can enhance the
proposed attacks.

Using KCPA, we recover a pair of secret coefficients from an unprotected implementation
with a success rate of 99.99%, using only 12 target traces. Using CCPA, we recover a
secret coefficient pair with only 13 traces. The proposed CCPA can also be applied to a
protected implementation. In a practical second-order attack, by setting an appropriate
rank threshold, 201 traces are required to recover a secret coefficient pair from a first-order
masked implementation.

Acknowledgements
The authors would like to thank the anonymous reviewers and the shepherd for their
insightful suggestions and comments which improved this work. This work was supported
by National Natural Science Foundation of China (Grant No. 62472397), Innovation
Program for Quantum Science and Technology (Grant No. 2021ZD0302902), and Ningbo
Young Science and Technology Talent Cultivation Program (Grant No. 2023QL007).

References
[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.

The EM side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar, editors, CHES 2002, volume 2523 of LNCS, pages 29–45.
Springer, Berlin, Heidelberg, August 2003.

[ABB+24] Estuardo Alpirez Bock, Gustavo Banegas, Chris Brzuska, Lukasz
Chmielewski, Kirthivaasan Puniamurthy, and Milan Sorf. Breaking DPA-
protected kyber via the pair-pointwise multiplication. In Christina Pöpper
and Lejla Batina, editors, ACNS 24International Conference on Applied
Cryptography and Network Security, Part II, volume 14584 of LNCS, pages
101–130. Springer, Cham, March 2024.

60 MulLeak

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe
Ateniese and Daniele Venturi, editors, ACNS 22International Conference
on Applied Cryptography and Network Security, volume 13269 of LNCS,
pages 853–871. Springer, Cham, June 2022.

[ARMa] ARM. Arm cortex-M4 Processor Datasheet. https://developer.arm.
com/documentation/102832/0100.

[ARMb] ARM. Arm cortex-M4 Processor Technical Reference Manual. https:
//developer.arm.com/documentation/100166/0001.

[ARMc] ARM. Armv7-M Architecture Reference Manual. https://developer.
arm.com/documentation/ddi0403.

[ARMd] ARM. The DSP capabilities of Arm cortex-M4 and cortex-
M7 Processors. https://community.arm.com/cfs-file/__key/
communityserver-blogs-components-weblogfiles/00-00-00-21-42/
7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_
M4-and-Cortex_2D00_M7.pdf.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater,
editors, CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Berlin,
Heidelberg, August 2004.

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel-resistant implemen-
tation of SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1–10:26,
2021.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Shafi Goldwasser,
editor, ITCS 2012, pages 309–325. ACM, January 2012.

[Boo51] Andrew Donald Booth. A signed binary multiplication technique. The
Quarterly Journal of Mechanics and Applied Mathematics, 4:236–240, 1951.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
398–412. Springer, Berlin, Heidelberg, August 1999.

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In
Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research
and Advanced Applications - 12th International Conference, CARDIS 2013,
Berlin, Germany, November 27-29, 2013. Revised Selected Papers, volume
8419 of Lecture Notes in Computer Science, pages 253–270. Springer, 2013.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, portable template at-
tacks. IEEE Transactions on Information Forensics and Security, 13(2):490–
501, 2018.

https://developer.arm.com/documentation/102832/0100
https://developer.arm.com/documentation/102832/0100
https://developer.arm.com/documentation/100166/0001
https://developer.arm.com/documentation/100166/0001
https://developer.arm.com/documentation/ddi0403
https://developer.arm.com/documentation/ddi0403
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 61

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
CHES 2002, volume 2523 of LNCS, pages 13–28. Springer, Berlin, Heidelberg,
August 2003.

[dCRVV15] Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Efficient software implementation of ring-lwe encryption. In
Wolfgang Nebel and David Atienza, editors, Proceedings of the 2015 De-
sign, Automation & Test in Europe Conference & Exhibition, DATE 2015,
Grenoble, France, March 9-13, 2015, pages 339–344. ACM, 2015.

[DNGW23] Elena Dubrova, Kalle Ngo, Joel Gärtner, and Ruize Wang. Breaking a
fifth-order masked implementation of crystals-kyber by copy-paste. In
Masayuki Fukumitsu and Shingo Hasegawa, editors, Proceedings of the 10th
ACM Asia Public-Key Cryptography Workshop, APKC 2023, Melbourne,
VIC, Australia, July 10-14, 2023, pages 10–20. ACM, 2023.

[GLP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates
vs. stochastic methods. In Louis Goubin and Mitsuru Matsui, editors,
CHES 2006, volume 4249 of LNCS, pages 15–29. Springer, Berlin, Heidelberg,
October 2006.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure
Kyber. IACR TCHES, 2021(4):88–113, 2021.

[HKL+] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppel-
mann, Peter Schwabe, and Amber Sprenkels. mkm4: A First-order
Masked Kyber Implementation on ARM Cortex-M4. https://github.
com/masked-kyber-m4/mkm4.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked Kyber on ARM
Cortex-M4. Cryptology ePrint Archive, Report 2022/058, 2022.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[HSST23] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
Adapting belief propagation to counter shuffling of NTTs. IACR TCHES,
2023(1):60–88, 2023.

[HZZ+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung,
Çetin Kaya Koç, and Donglong Chen. Improved plantard arithmetic for
lattice-based cryptography. IACR TCHES, 2022(4):614–636, 2022.

[impa] m4fspeed: The speed version implementation of Kyber-768
on ARM Cortex-m4. https://github.com/mupq/pqm4/tree/
3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/
m4fspeed.

https://github.com/masked-kyber-m4/mkm4
https://github.com/masked-kyber-m4/mkm4
https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fspeed
https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fspeed
https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fspeed

62 MulLeak

[impb] m4fstack: The stack version implementation of Kyber-768
on ARM Cortex-m4. https://github.com/mupq/pqm4/tree/
3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/
m4fstack.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Berlin, Heidelberg, August 1999.

[KJJR11] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduc-
tion to differential power analysis. Journal of Cryptographic Engineering,
1(1):5–27, April 2011.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Berlin, Heidelberg, August 1996.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.hscsec.cn/mupq/pqm4.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[LZH+22] Yanbin Li, Jiajie Zhu, Yuxin Huang, Zhe Liu, and Ming Tang. Single-trace
side-channel attacks on the toom-cook: The case study of Saber. IACR
TCHES, 2022(4):285–310, 2022.

[MKK+23] Soundes Marzougui, Ievgen Kabin, Juliane Krämer, Thomas Aulbach, and
Jean-Pierre Seifert. On the feasibility of single-trace attacks on the gaussian
sampler using a CDT. In Elif Bilge Kavun and Michael Pehl, editors,
COSADE 2023, volume 13979 of LNCS, pages 149–169. Springer, Cham,
April 2023.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for
instruction leakages. In Engin Kirda and Thomas Ristenpart, editors,
USENIX Security 2017, pages 199–216. USENIX Association, August 2017.

[MWK+24] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers,
Jose Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel anal-
ysis of lattice-based post-quantum cryptography: Exploiting polynomial
multiplication. ACM Trans. Embed. Comput. Syst., 23(2):27:1–27:23, 2024.

[NIS24a] NIST. FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism
Standard, 2024. https://csrc.nist.gov/pubs/fips/203/final.

[NIS24b] NIST. Three Federal Information Processing Standards (FIPS) for
Post-Quantum Cryptography, 2024. https://csrc.nist.gov/News/2024/
postquantum-cryptography-fips-approved.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR TCHES,
2018(1):142–174, 2018.

https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fstack
https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fstack
https://github.com/mupq/pqm4/tree/3bfbbfd30401bd1dce3c497feb2a152713f2e735/crypto_kem/kyber768/m4fstack
https://github.hscsec.cn/mupq/pqm4
https://github.hscsec.cn/mupq/pqm4
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved
https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 63

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Peter Schwabe and Nicolas Thériault, editors,
LATINCRYPT 2019, volume 11774 of LNCS, pages 130–149. Springer,
Cham, October 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513–533.
Springer, Cham, September 2017.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai
Ding. A systematic approach and analysis of key mismatch attacks on
lattice-based NIST candidate KEMs. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
92–121. Springer, Cham, December 2021.

[RBRC22] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopad-
hyay. On exploiting message leakage in (few) nist pqc candidates for
practical message recovery attacks. IEEE Transactions on Information
Forensics and Security, 17:684–699, 2022.

[RO04] Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, WISA 04, volume 3325 of LNCS,
pages 440–456. Springer, Berlin, Heidelberg, August 2004.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable SCA countermeasures against single trace attacks
for the NTT - A performance evaluation study over kyber and dilithium on
the ARM cortex-m4. In Lejla Batina, Stjepan Picek, and Mainack Mondal,
editors, Security, Privacy, and Applied Cryptography Engineering - 10th
International Conference, SPACE 2020, Kolkata, India, December 17-21,
2020, Proceedings, volume 12586 of Lecture Notes in Computer Science,
pages 123–146. Springer, 2020.

[RRd+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
and Ingrid Verbauwhede. Masking ring-LWE. Journal of Cryptographic
Engineering, 6(2):139–153, June 2016.

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel
attacks on LWE-based KEMs - parallel PC oracle attacks on Kyber KEM
and beyond. IACR TCHES, 2023(2):418–446, 2023.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In Tim Güneysu and
Helena Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages
683–702. Springer, Berlin, Heidelberg, September 2015.

[SAB+] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, Damien Stehle, and Jintai Ding. Algorithm Information of
CRYSTALS-Kyber. https://csrc.nist.gov/CSRC/media/Projects/
post-quantum-cryptography/documents/round-3/submissions/
Kyber-Round3.zip.

https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Kyber-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Kyber-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Kyber-Round3.zip

64 MulLeak

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In Josyula R. Rao and Berk
Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 30–46. Springer,
Berlin, Heidelberg, August / September 2005.

[TS24] Tolun Tosun and Erkay Savas. Zero-value filtering for accelerating non-
profiled side-channel attack on incomplete ntt-based implementations of
lattice-based cryptography. IEEE Trans. Inf. Forensics Secur., 19:3353–
3365, 2024.

[Wal64] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13(1):14–17, 1964.

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of Kyber. IEEE
Transactions on Computers, 71(9):2163–2176, 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 65

A Montgomery Reduction
The coefficients of the product polynomial need to be modulo q. Kyber represents elements
in Montgomery representation in order to avoid expensive division by q in the computation
mod q. It replaces the modulo q operation with the division by 216 (taking the top half of
a register) and the computation mod± 216 (taking the bottom half of a register), as shown
in Algorithm 5.
Algorithm 5: Signed Montgomery reduction in Kyber (simplified)
Input: Product a ∈ Z, modulus q = 3329, R = 216 > q, q−1 mod R
Output: t ≡ aR−1 mod q, |t| ≤ q

1 t := a(−q−1) mod± R // Taking the bottom half of the product
2 t := (a+ tq)/R // taking the top half of the sum
3 return t

B Supplementary Figures and Tables

1 ldr poly0 , [bptr], #4
2 ldr poly2 , [bptr], #4
3

4 smultt t, poly0 , poly1
5 smulbt t2 , t, qinv // mont
6 smlabb t2 , q, t2 , t // mont
7 smultb t2 , t2 , zeta
8 smlabb t2 , poly0 , poly1 , t2
9 str t2 , [rptr_tmp], #4
10 smuadx t, poly0 , poly1
11 str t, [rptr_tmp], #4

12 neg zeta , zeta
13

14

15 smultt t, poly2 , poly3
16 smulbt t2 , t, qinv // mont
17 smlabb t2 , q, t2 , t // mont
18 smultb t2 , t2 , zeta
19 smlabb t2 , poly2 , poly3 , t2
20 str t2 , [rptr_tmp], #4
21 smuadx t2 , poly2 , poly3
22 str t2 , [rptr_tmp], #4

(a)

1 ldr.w poly2 , [bptr , #4]
2 ldr poly0 , [bptr], #8
3

4 smultt t, poly0 , poly1
5 smulbt t2 , t, qinv // mont
6 smlabb t2 , q, t2 , t // mont
7 smultb t2 , t2 , zeta
8 smlabb t2 , poly0 , poly1 , t2
9 smulbt t, t2 , qinv // mont
10 smlabb t, q, t, t2 // mont
11 smuadx t2 , poly0 , poly1
12 smulbt poly0 , t2 , qinv // mont
13 smlabb poly0 ,q,poly0 ,t2 // mont
14 pkhtb t, poly0 , t, asr #16
15 str t, [rptr], #4

16 neg zeta , zeta
17

18

19 smultt t, poly2 , poly3
20 smulbt t2 , t, qinv // mont
21 smlabb t2 , q, t2 , t // mont
22 smultb t2 , t2 , zeta
23 smlabb t2 , poly2 , poly3 , t2
24 smulbt t, t2 , qinv // mont
25 smlabb t, q, t, t2 // mont
26 smuadx t2 , poly2 , poly3
27 smulbt poly0 , t2 , qinv // mont
28 smlabb poly0 ,q,poly0 ,t2 // mont
29 pkhtb t, poly0 , t, asr #16
30 str t, [rptr], #4

(b)

Figure 16: Two types of implementations for the pair-pointwise multiplication
in pqm4 repository. (a) The speed-optimized implementation of the macro
doublebasemul_frombytes_asm_16_32. The lazy reduction strategy is applied to mini-
mize the number of reductions, with each first-degree polynomial multiplication reducing
two modular reductions that act on the result coefficients. Consequently, each result
coefficient is individually stored into the memory. (b) The stack-optimized implementation
of the macro doublebasemul_frombytes_asm. In a single first-degree polynomial multi-
plication, two result coefficients are packed into a 32-bit register using a pkhtb instruction
and then stored into the memory using only one str instruction.

66 MulLeak

1 ldrd r4 , r5 , [r0], #8 // Multilicand and multiplier
2 NOP6 // Macro that generate 6 nop.w instructions to flush the pipeline
3 bl <trigger_high >
4 NOP6
5 smul <x><y> r3 , r4 , r5 // Target instruction
6 NOP6
7 bl <trigger_low >

(a)

1 ldrd r4 , r5 , [r0], #8 // Multilicand and multiplier
2 ldr r6 , [r0], #4 // Accumulate number
3 NOP6 // Macro that generate 6 nop.w instructions to flush the pipeline
4 bl <trigger_high >
5 NOP6
6 smla <x><y> r3 , r4 , r5 , r6 // Target instruction
7 NOP6
8 bl <trigger_low >

(b)

1 ldrd r4 , r5 , [r0], #8 // Multilicand and multiplier
2 NOP6 // Macro that generate 6 nop.w instructions to flush the pipeline
3 bl <trigger_high >
4 NOP6
5 smuad {x} r3 , r4 , r5 // Target instruction
6 NOP6
7 bl <trigger_low >

(c)

Figure 17: Target ARM assembly code. The 32-bit registers r4, r5, and r6 are designated
for storing the multiplicand, multiplier, and the accumulate number, respectively. (a)
Signed 16-bit multiply instructions. If <x> is b, the bottom half (bits [15:0]) of r4 is used
as the multiplicand; otherwise, if <x> is t, the top half (bits [31:16]) of r4 is used. If
<y> is b, the bottom half of r5 is used as the multiplier; otherwise, the top half of r5 is
used. (b) Signed 16-bit multiply-accumulate instructions. The usage of parameters <x>
and <y> is consistent with that in (a). (c) Signed dual 16-bit multiply instructions. If x is
present, the multiplications are bottom × top and top × bottom. If the x is omitted, the
multiplications are bottom × bottom and top × top.

1 ldr.w poly0 , [bptr], #4
2

3 smulwt t, zeta , poly1
4 smlabt t, t, q, qa
5 smultt t, poly0 , t
6 smlabb t, poly0 , poly1 , t
7 mul t, t, qinv // plantard
8 smlatt t, t, q, qa // plantard
9 smuadx t2 , poly0 , poly1
10 mul t2 , t2 , qinv // plantard
11 smlatt t2 , t2 , q, qa // plantard
12 pkhtb t, t2 , t, asr #16
13 str t, [rptr], #4

14 neg zeta , zeta
15 ldr.w poly0 , [bptr], #4
16

17 smulwt t, zeta , poly3
18 smlabt t, t, q, qa
19 smultt t, poly0 , t
20 smlabb t, poly0 , poly3 , t
21 mul t, t, qinv // plantard
22 smlatt t, t, q, qa // plantard
23 smuadx t2 , poly0 , poly3
24 mul t2 , t2 , qinv // plantard
25 smlatt t2 , t2 , q, qa // plantard
26 pkhtb t, t2 , t, asr #16
27 str t, [rptr], #4

Figure 18: The macro doublebasemul_frombytes_asm of the stack-optimized imple-
mentation with Plantard reduction in pqm4 repository. In comparison with the stack-
optimized implementation utilizing Montgomery reduction, this implementation employs
one fewer modular reduction operation in a single first-degree polynomial multiplication.

Fan Huang, Xiaolin Duan, Chengcong Hu, Mengce Zheng and Honggang Hu(�) 67

Table 9: F-test of explanatory variables for each multiply instruction with 49,920 trace
fragments for profiling (nc = 780 for the unprotected implementation, nc = 390 for the
first-order masked implementation). The numbers in brackets of the first column indicate
the width of the variable. The numbers in brackets of data columns indicate the width
of the variable after selection. Tests which fail to reject at the 5% level are shaded grey.
df1’s are shown in brackets of data columns.

Instructions smultt smulbt smlabb smultb smlabb
Serial # (t) 0 1 2 3 4

R2 0.6270 0.7526 0.8592 0.7338 0.9260
Adjusted R2 0.6234 0.7484 0.8570 0.7300 0.9247

df2 49438 49090 49156 49212 49065

F
-s
ta
ti
st
ic
s

O0,(t) (32) 1165.94 (24) 213.1 (24) (0) 65.09 (12) 50.71 (24)
O1,(t) (32) 44.31 (24) (0) 22.55 (27) 12.94 (12) 14.57 (24)
O2,(t) (32) (0) (0) 15.03 (23) (0) 9.33 (24)
R(t) (32) 32.14 (24) (0) (0) (0) (0)
DMb(t) (580) (0) 6.66 (365) 23.94 (253) (0) 10.93 (396)
DMt(t) (580) 30.23 (405) (0) (0) 9.73 (332) (0)
TO0,(t) (32) (0) 53.47 (24) 2.97 (11) 12.44 (10) 61.02 (12)
TO1,(t) (32) (0) 124.51 (24) 0.51 (10) 47.54 (27) 96.64 (12)
TO2,(t) (32) (0) (0) (0) 32.57 (24) (0)
TR(t) (32) 154.30 (4) 3.15 (12) 16.15 (16) 129.79 (23) 31.53 (11)
TDMb(t) (580) (0) (0) 79.92 (423) 8.95 (267) (0)
TDMt(t) (580) (0) 8.90 (380) (0) (0) 4.59 (351)

Instructions smulbt smlabb smuadx smulbt smlabb
Serial # (t) 5 6 7 8 9

R2 0.8654 0.7086 0.7326 0.7718 0.6847
Adjusted R2 0.8629 0.7041 0.7256 0.7658 0.6798

df2 48995 49145 48635 48640 49147

F
-s
ta
ti
st
ic
s

O0,(t) (32) 161.29 (25) (0) 31.55 (24) 116.53 (25) (0)
O1,(t) (32) (0) 5.74 (28) 3.64 (24) (0) 7.02 (28)
O2,(t) (32) (0) -0.0 (23) (0) (0) 0.54 (23)
R(t) (32) (0) (0) 35.59 (12) (0) (0)
DMb(t) (580) 6.29 (365) 21.51 (254) 3.20 (381) 1.93 (365) 23.08 (252)
DMt(t) (580) (0) (0) 12.85 (376) (0) (0)
TO0,(t) (32) 44.19 (24) 54.24 (12) 21.42 (14) 60.53 (24) -0.0 (12)
TO1,(t) (32) 50.61 (24) 1.95 (10) 306.60 (29) 122.05 (24) 0.26 (10)
TO2,(t) (32) 15.29 (20) (0) 164.04 (24) (0) (0)
TR(t) (32) 7.82 (25) 3.70 (24) 181.00 (23) 123.91 (26) 7.14 (24)
TDMb(t) (580) 13.80 (441) 66.09 (423) 5.69 (377) 1.72 (424) 77.01 (423)
TDMt(t) (580) (0) (0) (0) 40.92 (391) (0)

68 MulLeak

Table 10: The performance of the first-order attacks enhanced with Cond1/Cond2 across
different nhw values. The best results for a specific nhw of each attack are shaded grey.

Cond2-augmented KCPA
Perfor-
mance nc np

nhw
1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

100 6,400 −|14 −|14 −|12 −|11 −|10 −|8 −|8 −|7
200 12,800 −|14 −|14 −|12 −|11 −|10 −|8 −|8 −|7
500 32,000 −|14 −|13 −|12 −|11 −|9 −|8 −|8 −|6
780 49,920 −|14 −|13 −|12 −|11 −|9 −|8 −|8 −|6

Cond1-augmented CCPA
Perfor-
mance nc np

nhw
1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

100 6,400 7|28 7|29 7|29 7|30 7|31 7|31 7|31 7|32
200 12,800 7|25 7|26 7|26 7|26 7|27 7|27 8|27 8|28
500 32,000 7|24 7|24 7|24 7|25 7|25 7|26 7|26 7|26
780 49,920 7|23 7|23 7|24 7|24 7|24 7|25 7|25 7|25

Cond2-augmented CCPA
Perfor-
mance nc np

nhw
1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

100 6,400 −|17 −|18 −|16 −|16 −|15 −|14 −|15 −|16
200 12,800 −|17 −|17 −|16 −|15 −|14 −|14 −|14 −|15
500 32,000 −|17 −|17 −|16 −|14 −|14 −|13 −|13 −|14
780 49,920 −|17 −|17 −|16 −|14 −|14 −|13 −|13 −|14

Table 11: The performance of the second-order CCPA attacks enhanced with Cond1
across different nhw values. The best results for a specific nhw of each attack are shaded
grey.

thrank = 512
Perfor-
mance nc np

nhw

1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

50 6,400 73|245 72|252 71|260 71|292 70|281 70|302 70|306 70|311
100 12,800 71|214 70|214 70|219 70|225 69|230 68|244 69|249 67|255
250 32,000 70|214 69|214 68|219 68|222 67|230 67|242 67|248 67|253
390 49,920 70|201 68|203 68|212 68|217 67|223 67|238 67|244 67|247

thrank = 768
Perfor-
mance nc np

nhw

1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

50 6,400 103|242 97|249 94|250 93|256 92|263 88|282 88|287 88|292
100 12,800 99|207 94|213 93|217 92|223 88|230 87|244 87|249 86|254
250 32,000 97|208 93|214 92|214 92|221 88|228 86|242 86|251 84|257
390 49,920 97|202 93|210 89|214 91|221 86|223 86|240 86|248 86|253

thrank = 1024
Perfor-
mance nc np

nhw

1 2 3 4 5 6 7 8

na for
ŝk1|ŝk0

50 6,400 131|264 126|282 123|282 121|292 116|304 112|319 108|326 108|324
100 12,800 128|264 125|241 121|242 119|249 114|261 111|274 108|284 107|284
250 32,000 126|227 122|238 118|242 115|249 112|259 108|272 107|280 106|284
390 49,920 126|222 123|235 118|242 115|249 112|253 108|269 107|272 106|278

	Introduction
	Related Works
	Motivation
	Main Contributions

	Preliminaries
	Kyber
	Regression-based leakage Profiling
	ARM Cortex-M4
	Experimental Setups

	A Novel Cycle-level Power Leakage Model
	Cycle-level Power Consumption
	Simple Reverse Engineering of MAC Circuit in DSP Extension
	Simulation of Intermediate Variables
	Leakage Model and Explanatory Variables Selection

	Proposed Attacks
	Macro doublebasemul_frombytes_asm
	Known Ciphertext Profiled Attack
	Chosen Ciphertext Profiled Attack
	The Second-order Chosen Ciphertext Profiled Attack
	Assistance with the Store Instruction

	Experiments and Results
	Preprocessing
	Models Construction and Evaluation for Multiply Instructions
	Recovering .
	Attacks and Performance
	Comparison

	Discussion
	Conclusion
	Montgomery Reduction
	Supplementary Figures and Tables

