
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 2, pp. 1–22. DOI:10.46586/tches.v2025.i2.1-22

Improving MPCitH with Preprocessing:
Mask Is All You Need

Guowei Liu1,7, Guoxiao Liu2, Kaijie Jiang3, Qingyuan Yu1,7, Keting
Jia2,5,6(B), Puwen Wei1,7,4 and Meiqin Wang4,1,7(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
{guoweiliu,yuqy}@mail.sdu.edu.cn,pwei@sdu.edu.cn

2 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
lgx22@mails.tsinghua.edu.cn,ktjia@tsinghua.edu.cn

3 Institute for Advanced Study, Tsinghua University, Beijing, China
jkj21@mails.tsinghua.edu.cn

4 Quan Cheng Shandong Laboratory, Jinan, China
mqwang@sdu.edu.cn

5 Zhongguancun Laboratory, Beijing, China
6 BNRist, Tsinghua University, Beijing, China

7 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

Abstract. The MPC-in-the-head with preprocessing (MPCitH-PP) paradigm presents
a novel approach for constructing post-quantum digital signatures like Picnic3. This
paper revisits the MPCitH-PP construction, analyzing both its offline and online
phases and proposing a reformulation of the protocol. By identifying redundant
computations in these phases, we optimize them into a single phase, thereby enhancing
the efficiency of MPCitH-PP. Furthermore, we explore the independence of the mask,
demonstrating that it can be calculated in parallel, which also enables the optimization
of the masked witness calculation.
Our optimized implementation of Picnic3 shows significant improvements. At the L1
security level, the optimal software implementation reduces MPCitH-PP calculation
time to about 30% of the previous implementation. The optimal signature imple-
mentation costs about 78% of the previous implementation time. At the L5 security
level, MPCitH-PP with parallelism optimal is reduced to about 26% of the previous
solution’s time, and the optimal signature implementation runs at about 53% of the
previous solution’s time. For the hardware implementation, our optimizations reduce
the clock cycles of MPCitH-PP from r sequential rounds to a single parallel round,
where r denotes the number of rounds in the LowMC algorithm, with little change in
hardware usage, and perform better in AT product, especially for parallel computing.

Keywords: MPCitH with preprocessing · Post-Quantum Digital Signature · Software
Implementation · Hardware Implementation

1 Introduction
In 2016, NIST launched the post-quantum (PQ) standardization process, attracting
significant interest from researchers. Picnic [ZCD+20] is a third-round alternate candidate
among post-quantum signature submissions. Unlike traditional PQ signatures relying on
mathematical assumptions like lattice-based signatures, multivariate signatures, or isogeny
signatures, Picnic only relies on the security of symmetric primitives, which could provide
more conservative security.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-10-15 Accepted: 2024-12-15 Published: 2025-03-04

https://doi.org/10.46586/tches.v2025.i2.1-22
mailto:guoweiliu@mail.sdu.edu.cn,yuqy@mail.sdu.edu.cn,pwei@sdu.edu.cn
mailto:lgx22@mails.tsinghua.edu.cn, ktjia@tsinghua.edu.cn
mailto:jkj21@mails.tsinghua.edu.cn
mailto:mqwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/


2 Improving MPCitH with Preprocessing: Mask Is All You Need

The core technique used by Picnic is known as Multi-Party Computation in the Head
(MPCitH), which was first proposed by Ishai et al. [IKOS07] for zero-knowledge (ZK)
protocols, and was further improved by [GMO16] to a fast ZK protocol named ZKBoo.

The basic idea of MPCitH is built upon the N -party MPC protocol that can jointly
compute a function fx(w). By revealing all-but-one parties’ transcripts, the prover can
convince the verifier fx(w) = 1 in a zero-knowledge manner. Chase et al. proposed an
improved version of ZKBoo, named ZKB++, and the Picnic signature scheme based on
their paradigm [CDG+17]. Katz et al. [KKW18] showed that a particular communication-
efficient MPC protocol in the preprocessing model is well suited to MPCitH proofs. They
introduced MPCitH with preprocessing (MPCitH-PP) to reduce proof sizes, leading to
more compact signature Picnic2. The main idea of the MPCitH-PP model is to split the
proof protocol into offline phase and online phase, enabling independent computation in the
offline phase. By precomputing correlated randomness in offline phase, the communication
cost in online phase can be reduced drastically. This idea has also been used in traditional
MPC settings, such as [DPSZ12, DZ13], and influenced subsequent works, including
[BN20, dSGMOS19, Beu20], as well as the improved version of Picnic, Picnic3, introduced
at TCHES 2020 [KZ20].

However, Picnic has much higher costs when compared to lattice-based signatures like
Dilithium [LLDL+20] and FALCON [PFH+20]. In contrast to SPHINCS+ [HBD+20],
which relied on standard hash functions, the signing speed of Picnic is much faster, but the
security of Picnic’s underlying encryption scheme, LowMC, has not been as extensively
studied as that of standard symmetric-key primitives. Despite not being chosen as a finalist,
Picnic demonstrates advantages in both software and hardware performance. The MPCitH
technique used in Picnic has inspired recent PQ signature submissions. In NIST’s recent
call for additional digital signature proposals, there are about 9 out of 40 submissions that
are related to MPCitH [BKPV24, ABB+23, ABB+24, BFR23, BBD+24, BCF+23, CCJ23,
BBdSG+23, KHS+23]. In particular, new “in the head” techniques such as VOLEitH
[BBdSG+23] and TCitH [FR] demonstrate enhanced performance over original MPCitH
in computation and communication.

So far, several optimized implementations of MPCitH-PP have been developed. Kales
and Zaverucha optimized the calculation of the linear operations of MPCitH-PP, so that
the linear operations of the original N parties only need to be calculated once [KZ20]. Liu
et al. implemented MPCitH-PP in hardware, so that the LowMC-MPC calculation of N
parties (even 16 parties) can also be arranged on a resource-constrained FPGA [LJWJ24].
Although many digital signatures based on MPCitH-PP have been proposed, there is a
requirement to optimize both the signature footprint and the implementation efficiency for
practical application. The primary focus of this paper is to identify and measure redundant
calculations between MPCitH-PP for digital signatures, and to propose optimizations for
MPCitH-PP.

Contributions. In this paper, we re-describe MPCitH-PP within the KKW protocol with
three phases instead of two phases and identify redundant computations in the last two
phases of MPCitH-PP. We observe that the inclusion of a random mask introduces a
degree of independence between the round functions of the adopted symmetric primitive.
Based on these observations, we propose optimization techniques to improve efficiency and
perform experimental verification as follows:

1. Reformulation of MPCitH-PP Protocol. We highlight the gap between the
MPCitH-PP protocol and MPCitH-PP-based digital signatures. In the MPCitH-PP
protocol, there is no witness required in the offline phase (preprocessing), and the
online phase uses a masked secret for computation. However, in digital signatures,
the random tape sampled during the offline phase of MPCitH-PP is generated by
taking the public key of the digital signature (statement x in MPCitH-PP), the



G. Liu et al. 3

private key (witness w in MPCitH-PP), the message, etc. as input. Therefore, the
offline phase of MPCitH-PP in digital signatures implicitly includes the witness,
making it impossible to calculate the random tape “in advance” for the offline phase.
Therefore, we reorganized the MPCitH-PP protocol into three phases: sample phase,
the aux phase, and the msgs phase. We divided the offline phase into the sample
phase, which includes only the random tape, and the aux phase, while the msgs
phase remains the same as the original online phase.

2. Efficient Mask Calculation Strategy: Mask Is All You Need. Our core idea
is to make full use of the calculation of the masks. In MPCitH-PP, the aux phase
calculates the evaluation of the underlying circuit C, and the msgs phase recalculates
the evaluation of the underlying circuit C. Because the prover has a witness, they
can leverage this and calculate all the intermediate states of the aux phase with the
intermediate states of the normal calculation of the underlying circuit C, thereby
directly obtaining the intermediate states of the msgs phase. This is why we say that
mask is all you need.

3. Optimization of Mask Independence. The mask in the sample phase is directly
sampled from random tapes, so we explored the independence of the mask. For each
mask, there is no need for data dependency like the calculation of the underlying
circuit. The mask can be calculated directly from random tapes, so the calculation
has no dependency and parallel calculation becomes possible. The calculation of
the mask can be directly optimized, but the calculation of the masked witness is
not only related to the mask, so we use the optimization in Section 4 to make the
masked witness independent.

4. Performance Improvements in Software and Hardware Implementations.
We present the techniques implemented in software and hardware, and compare
the results with the protocol before optimization. Our new software-optimized
implementation achieves significant improvements: at the security level L1, it runs in
approximately 74% of the time of the previous solution implemented in [KZ20], and
with parallelism implementation of MPCitH-PP, it costs only about 30% of that time.
For the signature scheme, it costs about 88% of the previous solution’s time, and
with parallelism implementation, it costs about 78%. At the security level L5, the
running time for MPCitH-PP is approximately 62% of that of the previous solution,
and about 26% with parallelism. For the signature scheme, the times are about 73%
and 53% with parallelism, respectively. At the hardware level, our optimizations
reduce the clock cycles from r sequential rounds to a single parallel round, with little
change in hardware usage. We provide an area-time(AT) product, and our hardware
implementation AT performs better, especially for parallel computing.

2 Priliminaries
Notation. Let L denote an NP language. The NP relation is defined as R(x,w) = 1 if
the statement x ∈ L and w is the corresponding witness. Let [x] denote an N -out-of-N
(XOR-based) secret sharing scheme of a bit x, i.e., x = [x]1 ⊕ · · · ⊕ [x]i ⊕ · · · ⊕ [x]N , where
[x]i for 1 ≤ i ≤ N is the secret share. Let [i, j] denote the range from integers i to j.

2.1 MPC-in-the-head with Preprocessing
MPC-in-the-head proposed by Ishai et al. [IKOS07] provides a novel method to construct
zero-knowledge proof (ZKP) for any NP language L. In this paper, we consider the relation
R(x,w) as fx(w) = 1 for a function f . An MPCitH proof system (P,V) is built upon an



4 Improving MPCitH with Preprocessing: Mask Is All You Need

N -party MPC protocol that jointly computes the function f . Here, f takes x and w as
the public and private inputs, respectively, and computes fx(w) = R(x,w).

At a high level, the MPCitH prover P aims to convince the verifier V that they possess
a valid witness w by demonstrating that the MPC protocol has been correctly executed
“in the head” of P using input w.

We now consider an MPC protocol ΠC for the corresponding circuit C defined over
the field F2, where the statement information x (e.g., the plaintext-ciphertext pair) is
hard-coded such that C(·) = fx(·). We assume that the witness can be represented as an
n-dimensional vector and C takes a set of n input wires denoted by IN. Let zα denote the
value of wire α of C(w), then w = (zα)α∈IN ∈ Fn2 be the input of C. To initiate the protocol,
the prover P first additively secret shares each input zα as zα = [zα]1 ⊕ · · · ⊕ [zα]N in F2.
Each share [zα]i is considered as a private input to party Pi. Then, prover P internally runs
ΠC for parties P1, · · · ,PN to obtain the views V1, · · · ,VN , where view Vi consists of Pi’s
private input [zα]i, the random tape of Pi, and all incoming messages observed by Pi during
the execution of ΠC . The proof system now follows the typical “commit-challenge-response”
flow (Σ-protocol [FS86]). Using a secure commitment scheme, P sends Commit(Vi) as
the first message for all i ∈ [1, N ]. Upon receiving distinct challenges i1, · · · , it ∈ [1, N ]
from the verifier V, the prover P responds with the corresponding t views Vi1 , · · · ,Vit

and the commitment opening information. Finally, the verifier V accepts the proof if and
only if the opened views are consistent with each other and they result in an output of 1
from the protocol ΠC . The (honest verifier) zero-knowledge property is guaranteed if the
underlying MPC ΠC achieves t-privacy in the semi-honest model.

MPCitH with preprocessing (MPCitH-PP). Katz et al. [KKW18] improved the MPCitH
paradigm by using the preprocessing mode. Further improvements can be found in subse-
quent works [ZWX+22]. Loosely speaking, Katz et al.’s protocol (KKW) has two phases,
which are the offline phase (preprocessing phase) and the online phase. We denote Πoff

C

and Πon
C as the offline phase protocol and the online phase protocol, respectively. The

offline phase protocol Πoff
C , which is executed independently of the witness, prepares the

randomness for the online phase protocol Πon
C . Considering the application in Picnic3,

the following descriptions of the MPC protocol and KKW protocol are based on boolean
circuits.

Suppose the underlying N -party MPC protocol is ΠC , which is executed by N parties
P1, · · · , PN . The value of each input wire zα of each AND gate will be masked by a random
bit λα, say, ẑα = zα ⊕ λα. Each party Pi holds a share of λα, denoted by [λα]i. We use
the notations clearly, as in [KKW18]. The details are in Figure 1.

KKW Protocol. We briefly recall the basic framework of KKW for one MPC instance,
which is a three-round MPCitH-PP system.

We adopt the complete description of the KKW proof system as proposed in [KKW18],
which utilizes multiple instances in parallel to achieve a negligible soundness error. The
parameter M describes the number of repetitions of MPCitH-PP required to reduce the
soundness error to the desired security level. The parameter τ is the opened execution in
MPCitH with preprocessing, and N is the number of parties.

• Commit. The prover P begins by sampling a random seed for each Pi and executes
protocol Πoff

C to obtain the states of all N parties. Then, using these states and the
masked witness (ẑα)α∈IN as input, P executes protocol Πon

C to obtain all broadcast
messages observed during the online phase. P computes commitments to the states
and broadcast messages. Finally, P sends commitments to the verifier V.

• Challenge. V asks P to disclose either the offline or the online phase. In the case
of the latter, V also randomly selects a party index p?, whose view should remain



G. Liu et al. 5

• Offline phase Πoff
C . In the offline phase, the prover generates the masks for each

party Pi. More precisely, Pi is given the following values.

– [λα]i for each input wire α.
– [λγ ]i for the output wire γ of each AND gate.
– [λα,β ]i for each AND gate with input wires α and β such that λα,β = λα · λβ .

For i = 1, · · · , N − 1, [λα]i, [λγ ]i and [λα,β ]i are generated using a pseudorandom
generator (PRG) with a random seed seedi. Besides, [λα]N , [λγ ]N are generated by
PRG with a random seed seedN . Here [λα]1 ⊕ · · · ⊕ [λα]N = λα,
[λγ ]1 ⊕ · · · ⊕ [λγ ]N = λγ . Notice that [λα,β ]N cannot be generated using seedN due
to λα,β = λα · λβ . Actually, [λα,β ]N := λαλβ ⊕ [λα,β ]1 ⊕ · · · ⊕ [λα,β ]N−1, which plays
the role of “correction bits”. In order to reduce the total proof size, it is possible that
seedi is given to Pi, and seedN and auxN = [λα,β ]N are given to PN .

• Online phase Πon
C . During the online phase, each party Pi evaluates the circuit C

gate-by-gate in topological order. For each gate with input wires α and β and output
wire γ,

– For an XOR gate, Pi can locally compute ẑγ = ẑα ⊕ ẑβ and [λγ ]i = [λα]i ⊕ [λβ ]i,
since Pi already holds ẑα, [λα]i , ẑβ and [λβ ]i.

– For an AND gate, Pi locally computes [s]i = ẑα [λβ ]i ⊕ ẑβ [λα]i ⊕ [λα,β ]i⊕ [λγ ]i,
publicly reconstructs s = [s]1 ⊕ · · · ⊕ [s]N , and computes ẑγ = s⊕ ẑαẑβ which
satisfies ẑγ = zγ ⊕ λγ = zαzβ ⊕ λγ . Note that party Pi holds [λα,β ]i and [λγ ]i in
addition to ẑα, [λα]i , ẑβ and [λβ ]i for each AND gate.

Figure 1: The online and offline phase of KKW protocol in [KKW18].

hidden.

• Response. To disclose the offline phase, P sends all random seeds used during
protocol Πoff

C . To disclose the online phase, P sends the broadcast messages from
party Pp? during protocol Πon

C , as well as all the state information of the remaining
N − 1 parties.

• Verification. To verify the offline phase, V simply uses the random seeds to execute
protocol Πoff

C as P would, resulting in the states of all N parties. Then, V checks
if these states correctly match the commitments of the offline phase. To verify the
online phase, V simulates protocol Πon

C with the broadcast messages from Pp? and
the states of the other N − 1 parties as input, obtaining the broadcast messages
from the other N − 1 parties. Finally, V checks if these broadcast messages correctly
match the commitments of the online phase.

2.2 Seed Generation
Hash functions are employed in Cto generate random values and commitments. In Picnic2,
hash functions are employed to expand a random “seed” into additional random values
using a tree structure, and to create a Merkle Tree of the committed values. Picnic3
uses the extendable-output functions SHAKE of the hash function SHA-3[BDPA11] for all
hashing, with specific parameters detailed in Table 1. For more information on SHAKE,
we refer the reader to [BDPA11].

When signing and verifying of signatures, Picnic3 generates a short random value (128
to 512 bits), called the seed, and expands it into a longer one (about 1KB), both are done
with SHAKE. This choice allows a single function family (SHA-3) for both hashing and



6 Improving MPCitH with Preprocessing: Mask Is All You Need

Table 1: Parameters of KECCAK. Block length denotes the bit number absorbed or
squeezed. Round denotes the number of repeat permutation KECCAK-p.

Scheme Sec. Level Block Length Digest Length Round
SHAKE128 L1 1344 256 24
SHAKE256 L5 1088 512 24

key derivation, as SHAKE with a fixed output length is also a secure hash function. At
security level 1 we use SHAKE128 and security levels 3 and 5 use SHAKE256.

In Picnic3, the list seeds[0,· · · ,T-1][0,· · · , N-1] stores NT random seeds, each of
length ls bits, and the salt value salt is set to a 256-bit random value. It is recommended
that these be derived deterministically, by calling the key derivation function (KDF) with
input

sk||M ||pk||ls.

where ls is encoded as a 16-bit little-endian integer. The number of bytes requested is
(NT )(ls/8) + 32, where NT (ls/8) for seeds, and 32 bytes for salt.

The test vectors associated with this document use this method to simplify testing.
However, the specific method of generating seeds and salt does not affect interoperability,
and implementations may differ (e.g., by choosing the values uniformly at random, using
an alternative derivation method, or including alternative inputs to derivation).

2.3 LowMC

The security of Picnic also relies on a block cipher for one-way computing. The primitives
are instantiated by LowMC [ARS+15] block cipher in Picnic3.

LowMC [ARS+15] is a family of lightweight SPN block ciphers proposed by Albrecht et
al. at EUROCRYPT 2015. It is proposed for MPC- and FHE-friendly, the most important
advantage is its low multiplicative complexity, i.e. small AND gate/depth. This property
makes LowMC well-suited for a range of cryptographic applications, including multi-party
computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs.

The encryption phase of LowMC starts with XORing with a whitening key K0 and then
iterates the round function by r times. The round function of the i-th round, 1 ≤ i ≤ r, is
composed of four steps, as described below:

• SboxLayer: A 3-bit S-box S(a, b, c) = (a ⊕ b · c, a ⊕ b ⊕ a · c, a ⊕ b ⊕ c ⊕ a · b) is
applied to the first 3m bits, while the remaining bits not be modified.

• LinearLayer: A matrix Li ∈ Fn×n2 is randomly generated, the n-bit state is
multiplied with Li.

• ConstantAddition: A randomly generated n-bit constant Ci ∈ Fn2 is XORed to
the n-bit state.

• KeyAddition: The n-bit is updated by XORed with a n-bit round key Ki. Ki is
generated by multiplying the k-bit master key K with a randomly selected full-rank
n× k binary matrix Mi. The whitening key K0 is also calculated by K0 = M0 ·K.

Each round of LowMC can be described as LowMCRound(i) = KeyAddition ◦
ConstantAddition ◦ LinearLayer ◦ SboxLayer(i). The entire encryption phase is
given in Algorithm 1. The parameters instantiated in Picnic3 [Pic20] are (n, k,m, r) ∈
{(129, 129, 43, 4), (192, 192, 64, 4), (255, 255, 85, 4)}.



G. Liu et al. 7

Algorithm 1: LowMC encryption.
Input: plaintext p ∈ Fn2 and master key K ∈ Fk2 .
Output: ciphertext c ∈ Fn2 .

1 state← p+M0 ·K
2 foreach i ∈ [1, r] do
3 state← SboxLayer(state)
4 state← Li · state . LinearLayer
5 state← Ci ⊕ state . ConstantAddition
6 state← state⊕ (Mi ·K) . KeyAddition
7 end
8 c← state

3 Reformulate MPCitH-PP
The MPCitH-PP protocol optimizes the proof size of MPCitH. There is a part of the
calculation in the protocol that does not require a witness, so this part is called the offline
phase. The online phase is the calculation that requires a witness. In MPCitH-PP, the
offline phase is to calculate aux, and the online phase is to calculate the view msgs ([s])
of each participant. It can be observed that the calculation of aux is only related to the
sampled random tape. In Subsection 2.2, we can see that the random tape of Picnic3 is
generated by the public key of the digital signature (statement x in MPCitH-PP), the
private key (witness w in MPCitH-PP), the message, etc. as input. Therefore, the offline
phase of MPCitH-PP in the digital signature actually implicitly includes the witness, so
the random tape cannot be calculated “in advance” for the offline phase. That is, the
offline phase is not “offline”, and both phases of MPCitH-PP are related to the witness,
where the offline phase is implicitly represented by the random tape, while the online phase
is represented by the masked witness ẑα and the random tape. In the previous description
of the protocol [KKW18, KZ20, ZWX+22], the random tape is included as part of the
offline phase, which involves the witness. Despite being labeled as "offline" this process
does not strictly adhere to the traditional offline phase. Consequently, we reformulate
the MPCitH-PP protocol based on the description in [LJWJ24]) to accommodate these
nuances.

In order to adapt to the most famous MPCitH-PP-based protocol Picnic3, the refor-
mulated MPCitH-PP protocol is optimized by [KZ20]. We adapt and modify the general
circuit model presented by [LJWJ24]. To facilitate the explanation of these optimizations,
the underlying circuit is abstracted into a structure where linear layers X, nonlinear layers
A, and XOR state O alternate. Oj denotes the j-th key addition or some other state
addition in the block cipher. Xj denotes the j-th linear layer in the block cipher. In
LowMC, Aj is the AND gate of the j-th S-box layer, Xj is the j-th linear layer, and Oj
is the equivalent representation of the XOR gate of the S-box after passing through the
linear layer XORing with the key, i.e., the linear combination of input of S-box XORing
with the key. For the sake of simplicity, the linear layer and the nonlinear layer in Figure 2
are assumed to consist of multiple XOR and AND gates, respectively, with the linear layer
being invertible.

The reformulation of the MPCitH-PP protocol is divided into three phases: Sample
phase, Aux phase, and Msgs phase in Figure 3, represented by as Πs

C , Πa
C and Πm

C ,
respectively. The Sample phase protocol Πs

C generates a random tape for each party Pi.
The Aux phase protocol Πa

C prepares the error correction value and output mask of each
AND gate used in the Msgs phase protocol Πm

C . The Msgs phase Πm
C is used to generate

the broadcast message for each AND gate. For each gate, denote the input wires as α and
β and the output wire as γ for convenience. The reformulated Sample, Aux, and Msgs



8 Improving MPCitH with Preprocessing: Mask Is All You Need

Ai+1

· · ·

Xi

Ai

Oi

· · ·

Figure 2: The circuit model in [LJWJ24].

phases of MPCitH-PP are shown in Figure 3.

• Sample phase Πs
C . The prover generates masks for all AND gates for all parties.

Each party Pi has the following mask values.

– [λα]i (and [λβ ]i) for the input wire α (and β) of each AND gate.
– [λα,β ]i 6=N for each AND gate with input wires α and β.

• Aux phase Πa
C . The prover computes the error correction value aux for each AND

gate round by round in the right of Figure 4.

– For the linear layer Xj , the prover computes (λj+1
α , λj+1

β ) by the input masks
for Aj+1 of all parts and computes λjγ by the inverse of the linear operation Xj .

– For each AND gate of Aj , the prover computes the error correction value[
λjα,β

]
N

:= λjαλ
j
β ⊕

[
λjα,β

]
1
⊕ · · · ⊕

[
λjα,β

]
N−1
⊕ λjγ as aux for the party PN .

• Msgs phase Πm
C . Each party Pi evaluates the circuit C gate-by-gate in topological

order.

– For each AND gate of Aj , Pi locally computes
[sj ]i = ẑjα

[
λjβ
]
i
⊕ ẑjβ [λα]i⊕

[
λjα,β

]
i
, publicly reconstructs sj = [sj ]1⊕ · · · ⊕ [sj ]N ,

and computes ẑjγ = sj ⊕ ẑjαẑjβ which satisfies ẑjγ = zjγ ⊕ λjγ = zjαz
j
β ⊕ λ

j
γ . Note

that each party Pi holds [λα]i , [λβ ]i and [λα,β ]i for each AND gate.
– For the linear operations Xj and Oj , each Pi can publicly compute linear

operation with the output masked witness ẑjγ of Aj as input to get the masked
witness input values ẑj+1

α and ẑj+1
β .

Figure 3: The reformulated Sample, Aux, and Msgs phase of KKW protocol.

We review the modification of the KKW protocol by [KZ20] to reduce the computational
complexity of linear operations from O(N) to O(1) in both the offline and online phases. Let
λjα and λjβ be the mask for the input wire of j-th non-linear operation (Aj), λjγ be the mask
for the output wire of j-th non-linear operation (Aj), and λjO be the mask for other state
(Oj). In the calculation of aux in the KKW protocol, each party Pi samples the output



G. Liu et al. 9

mask of Aj to obtain the share [λjγ ]i, uses the share to calculate Xj and Oj , and finally
obtains the input masks [λj+1

α ]i, [λj+1
β ]i of Aj+1. In order to calculate aux = [λjα,β ]N =

λjα · λ
j
β ⊕

∑
i6=N [λjα,β ]i, each party broadcasts [λj+1

α ]i, [λj+1
β ]i. Since λj+1

α and λj+1
β are

masks instead of shares, λjγ can be calculated first, and then the linear layer is calculated.
Therefore, the linear layer only needs to be calculated once instead of once for each of
the N parties. However, this optimization cannot be directly applied to the calculation
of msgs, because the calculation for Pi of Aj ’s [sj ]i = ẑjα[λjβ ]i ⊕ ẑjβ [λjα]i ⊕ [λjα,β ]i ⊕ [λjγ ]i
requires the shares [λjα]i, [λjβ ]i, so [KZ20] modifies the sampling position, which is no longer
the output of the AND gate [λγ ]i, but the input of the AND gate [λα]i, [λβ ]i. However, at
this time, λjγ is calculated by λj+1

α , λj+1
β and the λjO (which is computed from the mask of

key M−1
0 (λ1

α, λ
1
β , · · · ) and the input of Lj · L∗(λjα, λ

j
β , · · · ) in LowMC, where L∗ denotes

the linear operation for the Sbox).
Therefore, for Aj , [KZ20] modifies aux = λjα · λ

j
β ⊕

∑
i 6=N [λjα,β ]i ⊕ λjγ , and [sj ]i =

ẑjα[λjβ ]i ⊕ ẑjβ [λjα]i ⊕ [λjα,β ]i. Therefore, as shown in Figure 4, for a block cipher of r rounds,
in MPCitH-PP, the circuit is no longer calculated from A1 to Or, but from Or to A1.

Aj+1

Xj

λjα, λ
j
β

λjγ

Aj

λj+1
α , λj+1

β

Oj

Aj+1

X−1
j

λjα, λ
j
β

λjγ

Aj

λj+1
α , λj+1

β

λjO
OjλjO

Figure 4: The circuit changes for the sampling of random masks (The left shows the Πa
C

circuit of [KKW18] and the right shows the Πa
C circuit of [KZ20]).

4 Mask Is All You Need
In Section 3, the three phases of MPCitH-PP in KKW protocol shown in Figure 3 require
(implicitly) witnesses to calculate, and both Πa

C and Πm
C need to calculate the underlying

circuit C, and the calculation order of the two is different. CA, CX and CO denote the Ai
operation, the Xi operation and Oi operation of a round of the circuit C, respectively. The
computational complexity of Πa

C in an N -party r-round circuit is O(r ·CA+r ·CX +r ·CO),
and the complexity of Πm

C is O(r · N · CA + r · CX + r · CO). Then the complexity of
calculating Πa+m

C is O(r · (N +1) ·CA+2 ·r ·CX +2 ·r ·CO). Πm
C needs to calculate N -party

CA and once CX , CO, because [s]i needs to be calculated separately for each participant
and compute linear operation Xi and Oi to get the masked witness input values ẑj+1

α (



10 Improving MPCitH with Preprocessing: Mask Is All You Need

ẑj+1
β ). while Πa

C only needs to calculate one [λα,β ]N with λγ obtained by the computation
of the inverse of the linear operation Xi and Oi.

According to the above discussion and the reformalized MPCitH-PP protocol given
in Figure 3, the computation of CA for Πa

C and Πm
C is completely different, but the

computation of CX for both is similar because zα = ẑα ⊕ λα. Therefore, the computation
of CX for Πa

C and Πm
C differs only in the witness zα, zβ , zγ .

The prover (signer) of the MPCitH-PP based digital signature has the secret witness
(private key), so for the prover, there is no need to calculate the Aux phase and Msgs phase
separately. As mentioned earlier, the purpose of the prover is to calculate aux and msgs
to ensure that the verifier can verify that it has the secret, so the prover only needs to
calculate msgs when calculating aux. However, in Figure 3, aux is calculated in the aux
phase, so we need to calculate the secret in advance (the prover has the secret witness).
First, run the circuit C and store the input wire zα of all AND gates of the circuit, then
calculate aux, and at the same time calculate the stored state zα and XOR it with the
mask λα to get ẑα, so it can be guaranteed to be used to calculate msgs ([s]). We propose
a new protocol that merges the calculations of the Aux and Msgs phases, eliminating
redundant computations in Figure 5.

• Sample phase Πs
C . The prover generates masks for all AND gates for all parties.

Each party Pi has the following mask values.

– [λα]i (and [λβ ]i) for the input wire α (and β) of each AND gate.
– [λα,β ]i 6=N for each AND gate with input wires α and β.

• Compute phase Πc
C . Prover precomputes the underlying circuit with the witness,

stores the secret input values zα, zβ of all AND gates, and sends them to the
corresponding party Pi. Each party Pi evaluates the circuit C gate-by-gate by the
order in the right of Figure 4.

– For the linear operations Xj and Oj , the prover calculates using the input masks
(λj+1
α , λj+1

β ) for Aj+1 of all parties and determines λjγ by the inverse of the
linear operation Xj .

– For each AND gate of Aj , the prover computes λjα and λjβ , and the error
correction value aux =

[
λjα,β

]
N

:= λjαλ
j
β ⊕

[
λjα,β

]
1
⊕ · · · ⊕

[
λjα,β

]
N−1
⊕ λjγ for

the party PN . Then the prover computes ẑjα = zjα ⊕ λjα and ẑjβ = zjβ ⊕ λ
j
β ,

calculates [sj ]i = ẑjα
[
λjβ
]
i
⊕ ẑjβ

[
λjα
]
i
⊕
[
λjα,β

]
i
and sends [sj ]i to each

participant Pi.

Figure 5: The Sample phase and Compute phase of our MPCitH protocol.

Each party just computes once the circuit C, thus the time required to calculate
the MPC protocol Π has been reduced by half of the original time. The optimization
we give requires secrets, so it can only be used for signing. For verification, it is still
executed according to the original protocol. So we give a new protocol in Figure 6. The
computational complexity of proving in the new protocol is O(r ·(N+1)·CA+r ·CX+r ·CO).
This optimization can only be applied to the prover who has the witness, while the verifier
still needs to calculate Πa

C and Πm
C , which is the same as that in [KZ20]. Hence, the new

protocol in Figure 6 optimizes the Commit computation while preserving the Challenge,
Response and Verification computation. The computation of signature verifying remains
unchanged.
Security analysis. The optimization in Figure 5 precomputes the underlying circuit
with the witness, and caches the secret input values for all AND gates, which is used to



G. Liu et al. 11

update ẑα and ẑβ by XORing the [λα]i and [λβ ]i respectively. The computation of [s]i
only reduces redundant calculations. The precomputing of the underlying circuit does not
result in any changes to the security of the MPCitH protocol (and the signature). For
the same input, the output of the KKW protocol is the same as that of our optimized
computation protocol.

5 Independence of the Mask
The KKW protocol computes the underlying symmetric primitive round-by-round. We
optimize the proof of the KKW protocol by applying the circuit computation in the
MPCitH protocol Figure 5, as shown in Figure 6.

Referring to Figure 5, the underlying MPCitH protocol operates as follows: The prover
precomputes the underlying circuit using the witness, and stores the plain input wire
values zα, zβ of all AND gates in a look-up table T . These values are then used to update
the masked circuit values ẑα, ẑβ for all parties, which is essential for generating the global
message tape.

For the masks used in the MPCitH-PP, we present the following lemma.

Lemma 1. In the circuit computation of the round function of the underlying symmetric
primitive in the MPCitH-PP protocol, the input masks λα and λβ and the output mask λγ
for each AND gate of nonlinear operation A are independent.

For each AND gate in the non-linear operation Aj , the input mask values λjα and λjβ
are derived from the random tapes. The output mask λjγ is computed using the inverse of
Xj , incorporating the fresh random input mask of the layer Aj+1 and the mask λjO, as
shown in Figure 7. Clearly, the mask λjγ is independent of λα and λβ . In order to make
the AND operation hold, an addition correction mask λα,β is introduced to satisfy the
equation λα · λβ = λγ ⊕ λα,β .

Lemma 2. Given all random tapes and precomputed plain input values for all the AND
gates of the underlying symmetric primitive, the circuit computation of the round functions
in the MPCitH-PP protocol can be processed in parallel with only one-round computation
time cost.

Proof. The purpose of the circuit computation Πc
C for each round is to generate the error

correction values aux and the broadcast message [s]i(i = 1, . . . , N) for each AND gate.
With all random tapes and the plain input wire values zα, zβ of all AND gates stored

in a look-up table T , the circuit computation of the round function is as follows.
In the j-th round, where 0 < j ≤ r, all random masks in the Sample phase are

directly sampled from random tapes. For each nonlinear layer Aj , the mask share values
[λjα]i, [λjβ ]i and [λjα,β ]i 6=N from the random tape are used to mask the input of an AND
gate for party Pi, satisfying:[

λjα
]
1 ⊕ · · · ⊕

[
λjα
]
N

= λjα,
[
λjβ

]
1
⊕ · · · ⊕

[
λjβ

]
N

= λjβ . (1)

In the Compute phase, input mask values λjα and λjβ for an AND gate are deduced
from all the corresponding mask shares with Equation 1. The output mask λjγ is computed
by the inverse of Xj with the new random input mask of the layer Aj+1 and the mask
λjO, seen Figure 7. The prover then calculates the correction values aux using all masking
shares as follows:

aux =
[
λjα,β

]
N

= λjα · λ
j
β ⊕

[
λjα,β

]
1
⊕ · · · ⊕

[
λjα,β

]
N−1

⊕ λjγ . (2)



12 Improving MPCitH with Preprocessing: Mask Is All You Need

New protocol
The prover and verifier receive circuit C as a statement, and the prover holds a witness
w = (zα)α∈IN such that C(w) = 1. Values (M,N, τ) are parameters of the protocol. Let H
denote a hash function, which can be modeled as the random oracle.
Commit

1. The prover chooses uniform random values (seed∗1, · · · , seed∗M ), computes the circuit
C, and stores the secret input wires of all AND gates. For each j ∈ [1,M ], the prover:

(a) Use seed∗j to generate seedj,1, · · · , seedj,N . Compute the random tapes by
running the Sample phase of MPC Πs

C . Compute the masked witness ẑj,α,
auxj ∈ {0, 1}|C|, and msgsj by running the Compute phase of MPC Πc

C with
the stored secrets of all AND gates. For i = 1, · · · , N − 1, let statej,i := seedj,i.
Let statej,N := seedj,N‖auxj . Let msgsj,i denote the messages broadcast by
party Pi in this protocol execution, and msgsj := msgsj,1, · · · ,msgsj,N .

(b) Commit to the Compute phase: For i ∈ [1, N ], compute comj,i := H (statej,i).
Compute com-aj := H (comj,1, · · · , comj,N ).

(c) Compute com-mj := H
(
{ẑj,α} ,msgsj,1, · · · ,msgsj,N

)
.

2. Compute ha = H(com-a1, · · · , com-aM ) and hm = H(com-m1, · · · , com-mM ). Send
h∗ = H(ha, hm) to the verifier.

Challenge The verifier sends the challenge: (C,P), where C ⊂ [1,M ] is a set of size τ , and
P is a list

{
p?j
}
j∈C

with p?j ∈ [1, N ].
Response For each j ∈ [1,M ]\C, the prover sends seed∗j , com-mj . Also, for each j ∈ C,
the prover seeds {statej,i}i 6=p?

j
, comj,p?

j
, {ẑj,α}, and msgsj,p?

j
.

Verification The verifier accepts iff all the following checks succeed:
1. Check the Aux phase:
(a) For every j ∈ C and i 6= p?j , the verifier uses statej,i to compute comj,i by running

the Aux phase Πa
C . Then compute com-aj = H (comj,1, · · · , comj,N ) using the

received value comj,p?
j
.

(b) For every j ∈ [1,M ]\C the verifier uses seed∗j to compute com-aj as the prover would.
(c) The verifier computes ha = H(com-a1, · · · , com-aM ).

2. Check the Msgs phase:
(a) For j ∈ C the verifier simulates the Msgs phase Πm

C using {statej,i}i 6=p?
j
, masked

witness {ẑj,α}, where α ∈ IN and msgsj,i to compute {msgsj,i}i6=p?
j
. Then compute

com-mj as if the prover would do.
(b) The verifier computes hm = H(com-m1, · · · , com-mM ) using the received com-mj for

j ∈ [1,M ]\C.

3. The verifier checks that H (ha, hm) ?= h∗.

Figure 6: The new proof system for a boolean circuit C.



G. Liu et al. 13

Aj+1

· · ·

· · ·

X−1
j

λjα, λ
j
β

λjγ

Aj

λj+1
α , λj+1

β

Oj λjO

X−1
j−1

Oj λj−1
O

Output

Input

Figure 7: Serial computation for the general circuit for Πc
C .

Subsequently, the prover updates the mask input wire values ẑjα = zjα⊕λjα and ẑjβ = zjβ⊕λ
j
β

using the precomputed values zjα and zjβ from table T . Finally, the global message tape is
computed:

[sj ]i = ẑjα

[
λjβ

]
i
⊕ ẑjβ

[
λjα
]
i
⊕
[
λjα,β

]
i
, i = 1, . . . , N. (3)

Since random taps and precomputed values in table T suffice to compute aux and [s]i,
all r rounds can be processed in parallel.

Lemma 2 is applicable not only to Picnic3 but to all circuits. The method precomputes
and stores the plain values of the inputs for each round’s AND gates. Then, based on
these values and the corresponding masks from each participant, XOR calculations are
performed to generate the necessary response values in the signature. This approach avoids
the need for each participant to perform a separate symmetric encryption operation to
generate the witness circuit.

We use Πc
C to explain in detail the impact of Lemma 2 on computation. In Figure 7,

recalling the original protocol, the prover’s circuit for a round r is to calculate from
Or to A1. However, according to Lemma 2, we can transform Figure 7 into Figure 8,
and the prover can directly calculate each round in parallel. Lemma 2, shows that for



14 Improving MPCitH with Preprocessing: Mask Is All You Need

X−1
j−1

λj−1
α , λj−1

β

λj−1
γ

Aj−1

λjα, λ
j
β

Oj−1 λj−1
O

· · ·

Input

· · ·Round 1

Output

Round r

Figure 8: Parallel computation for the general circuit for Πc
C .

any j-th round, its computation of Πc
C is only related to the sampling information and

precompuation states values with secret input, so aux and msgs can be directly calculated.
For Figure 5, this optimizes the prover’s Πc

C , and verifier’s Πa
C in Figure 3. However

the verifier’s Πm
C cannot be applied with such optimization both in Figure 3 and Figure 5,

because the verifier cannot get the secret witness. For the software implementation, we
utilized more computational resources to speed up the implementation. This is a trade-off
to get the signature faster.

This optimization reduces the time required for the r-round block cipher from r
sequential rounds to a single parallel round. In hardware implementations, it reduces the
original clock cycles required for MPC calculation by r-fold, achieving this improvement
with minimal or no additional computing resources.

6 Implementation
In this section, we first describe the optimization implementation techniques for Section 4
and Section 5, and present the results of both software and hardware implementations.
The software implementation results are based on the reference version as described in
[KZ20] on the Ubuntu 22.04 system, while the hardware implementation results are based
on the FPGA hardware version as described in [LJWJ24] on Kintex-7. The CPU of the
experimental device is AMD Ryzen 9 5900HS, with 8 cores and 16 threads. It should be
noted that the test methods for the original version of software implementation are from
Picnic3-Software, and the test methods for the original version of hardware implementation
are from Picnic3-Hardware. Our implementation is publicly available in Mask Is All You
Need.

Table 2 shows the time cost of the original Πa+m
C phase and the optimized Πc

C phase of
the software implementation at security levels L1, L3, and L5. Table 3 shows the time cost
of the ΠC phase, other phases in the signing, and the sum time of signing in the original
and optimized software implementations at L1, L3, and L5 security levels. Additionally,
the values represent the average ΠC runtime cost over 100 iterations, with time given
in milliseconds on the reference platform. Table 4 shows the hardware utilization, clock
cycles, critical path and AT product of LowMC-MPC for 16 parties on the Kintex-7 after
the hardware implementation is optimized at security levels L1 and L3.

https://github.com/microsoft/Picnic
https://github.com/GuoxiaoLiu/KKW-FPGA
https://github.com/EddieLiuGW/Mask-Is-All-You-Need
https://github.com/EddieLiuGW/Mask-Is-All-You-Need


G. Liu et al. 15

6.1 Techniques of Optimal Implementation
First, we outline the technique of implementation in Section 4. We merge Πa

C and Πm
C into

a single computation phase, denoted as Πc
C . This integration reduces overall computation

time by eliminating redundancies. Although the cost of Πc
C is higher than that of either

Πa
C or Πm

C alone, it is significantly cheaper than their combined cost. Specifically, both
Πa
C and Πm

C require M computations of the LowMC circuit, resulting in a total of 2M
computations. In contrast, the Πc

C phase requires only M + 1 computations of the LowMC
circuit with the extra computation needed to obtain secret state information for each
round before executing Πc

C .
While Πc

C consolidates the computations of Πa
C and Πm

C and eliminates redundant
calculations, it still performs the essential computations of both phases. Consequently, its
cost is slightly higher than the more expensive phase, but much lower than the total cost
of both phases combined.

Next, we discuss optimal implementation techniques in Section 5. We demonstrate that
the masks in the Πc

C phase are independent and can therefore be computed directly. It is
important to note that during the execution of the Πc

C phase, the mask information of the
witness must first be calculated serially. This involves reading the sampled mask information
and multiplying it by the inverse matrix of M0. The calculated mask information is then
used in all subsequent parallel threads. Consequently, when the number of rounds r is
small, the parallel phase Πc

C does not reduce the time cost to the theoretical 1/r of the
serial implementation for r rounds.

Another factor affecting the software implementation is highlighted in Section 4. Here,
the input mask λα of the Aj layer is obtained by reading the sampled data. This data
can also be used by the calculation of the X−1

j−1 layer and the Oj−1 layer to determine the
output mask of the Aj−1 layer, as illustrated in Figure 7. Consequently, during the serial
execution of the (j − 1)-th and j-th rounds, the information of λjα only needs to be read
once to fulfill the calculation requirements of both the Aj−1 and Aj layers.

However, in the optimization proposed in Section 5, the circuits and information
between each round are independent. This means that the input mask λjα of the Aj layer
cannot be used directly by the circuit of the (j−1) layer. Therefore, the method of reading
the sampled data once is not feasible in this optimization. Figure 8 clearly shows that the
sampled data needs to be read twice in an independent circuit: once for the input mask of
the Aj−1 layer in each round, and once for the input mask of the Aj layer (used for the
output mask of the Aj−1 layer obtained by the calculation of the X−1

j−1 layer and Oj−1
layer).

As a result, compared to the optimization mentioned in Section 4, the parallel opti-
mization proposed in Section 5 inevitably increases redundant data read operations. This
also contributes to the factor that the Πc

C phase, where each circuit is independent, does
not achieve 1/r of the theoretical time reduction, particularly impacting the software
implementation.

In general, assuming we ignore the impact of operations such as reading information
on the overall time cost and only consider the impact of the vector-matrix multiplication
algorithm and the S-box algorithm, we can summarize the time complexity of optimization
Section 4 and optimization proposed in Section 5 as O(r · (N + 1) · CA + r · CX + r · CO)
and O((N + 1) · CA + CX + CO), respectively. It can be seen that when r is sufficiently
large, the time cost of the optimization proposed in Section 5 is 1/r of the time cost of the
optimization proposed in Section 4.

6.2 Results of Software Implementation
We first tested the time cost of the ΠC phase using the Picnic3 parameter set with the
optimization proposed in Section 4, and the results are shown in Table 2. For each security



16 Improving MPCitH with Preprocessing: Mask Is All You Need

Table 2: The time cost of the original and the optimized ΠC phase under different security
levels of the software implementation.

Scheme Implementation Ref. Time(ms)
LowMC-L1-Πa+m

C Original 24.32
LowMC-L1-Πa

C Original 11.01
LowMC-L1-Πm

C Original 13.31
LowMC-L1-Πc

C Section 4 19.55
LowMC-L1-Πc

C Section 5 8.32
LowMC-L3-Πa+m

C Original 56.63
LowMC-L3-Πa

C Original 24.56
LowMC-L3-Πm

C Original 32.07
LowMC-L3-Πc

C Section 4 45.81
LowMC-L3-Πc

C Section 5 18.07
LowMC-L5-Πa+m

C Original 208.84
LowMC-L5-Πa

C Original 102.22
LowMC-L5-Πm

C Original 106.62
LowMC-L5-Πc

C Section 4 136.28
LowMC-L5-Πc

C Section 5 53.41

Table 3: The time cost of the ΠC phase, other phases in the signing, and the sum time
of signing under different security levels of the software implementation.

Scheme Implementation Ref. Part Time(ms)

Picnic3-L1-sign
Πa+m
C 24.32

Original Others 37.36
Sum 61.68

Picnic3-L1-sign
Πc
C 19.55

Section 4 Others 34.94
Sum 54.49

Picnic3-L1-sign
Πc
C 8.32

Section 5 Others 40.20
Sum 48.52

Picnic3-L3-sign
Πa+m
C 56.63

Original Others 82.23
Sum 138.86

Picnic3-L3-sign
Πc
C 45.81

Section 4 Others 74.80
Sum 120.61

Picnic3-L3-sign
Πc
C 18.07

Section 5 Others 86.33
Sum 104.40

Picnic3-L5-sign
Πa+m
C 208.84

Original Others 128.74
Sum 337.58

Picnic3-L5-sign
Πc
C 136.28

Section 4 Others 109.44
Sum 245.72

Picnic3-L5-sign
Πc
C 53.41

Section 5 Others 124.76
Sum 178.17

level, we tested the cost time of the original Πa
C phase, the original Πm

C phase, and the
optimized Πc

C phase in Section 4, where the original version is given by [KZ20]. At the
L1 and L3 security levels, the cost of the Πc

C phase is approximately 74% of the Πa+m
C



G. Liu et al. 17

phase. At the L5 security level, the cost of the Πc
C phase is approximately 62% of the

Πa+m
C phase.
Additionally, we tested the time cost of signing with the optimization proposed in

Section 4 at different security levels compared to the original signing time, with the results
shown in Table 3. At the L1 and L3 security levels, the cost of signing is about 88% of the
original signing. At the L5 security level, the cost of signing is approximately 73% of the
original signing. These results validate our theoretical analysis as mentioned in Section 4.

Next, we tested the time cost of the optimized Πc
C phase and the signing process with

a round number r = 4 at different security levels by using the optimization proposed in
Section 5, as shown in Table 2 and Table 3. Our software implementation uses four threads
here, as the number of LowMC encryption rounds in the algorithm we test is four. From
Table 2, at security levels L1 and L3, the time cost of the optimized Πc

C phase is about 30%
of the original Πa+m

C phase, and at the L5 security level, it is about 26%. At security levels
L1, L3, and L5, the time cost of the parallel optimized Πc

C phase is approximately 40% of
the optimized Πc

C phase in Section 4, which is consistent with our theoretical analysis.
From Table 3, at security levels L1 and L3, the signing time cost (in Section 5) is

optimized to about 78% of the original signing time cost. At the L5 security level, it is
reduced to about 53% of the original signing time cost. The reason for the more significant
improvement at the L5 security level compared to L1 and L3 is that the time cost of the
Πa+m
C phase at the L5 security level constitutes a larger proportion of the overall signing

time cost than other operations. Therefore, the improvement is more pronounced.
It is worth noting that although the time performance has improved, more computing

resources are required to achieve simultaneous computing using four threads across four
CPU cores.

6.3 Results of Hardware Implementation
In [LJWJ24], it takes 3r clock cycles to calculate the block cipher LowMC, where 2r clock
cycles are used to compute Πa

C phase and r clock cycles are used to compute Πm
C phase.

To prevent the critical path from becoming too long, the calculation of Πa
C phase first

requires computing the key scheduling matrix Mi, followed by the inverse of the linear
layer L−1

i . To reduce the clock cycle, the position of the XOR key can be modified so
that the equivalent key is directly XORed after the S-box layer, which requires additional
computing resources for L−1

i ·Mi. The computation of the key scheduling matrix Mi and
the linear layer Li for Πm

C phase can be performed simultaneously, thus requiring only r
clock cycles.

Πa+m
C phase uses only the inverse of the linear layer L−1

i and the key scheduling matrix
Mi. Therefore, Πa+m

C phase seems capable of reducing hardware usage, and reducing the
clock cycle count from r rounds to a single round. However, since the optimization in
Section 4 requires pre-computation of LowMC, the actual reduction in hardware resources
is not realized. This suggests a new approach to reduce hardware usage: if the secret
of the AND gate input wire of the circuit can be generated during key generation and
transmitted to the FPGA, hardware resource usage can be genuinely reduced, albeit at
the cost of increased transmission.

As shown in Table 4, at the L1 security level, the hardware usage of Πc
C phase with

2 clock cycles is 69.3% of that for Πa+m
C phase with 12 clock cycles, and 60.8% of that

for Πa+m
C phase with 8 clock cycles. At the L5 security level, the hardware usage of Πc

C

phase with 2 clock cycles is 68.4% of that for Πa+m
C with 12 clock cycles, and 50.7% of

that for Πa+m
C phase with 8 clock cycles. Therefore, increasing the communication size

of the FPGA is a meaningful way to reduce hardware resource usage. The critical path
of our hardware implementation is better than [LJWJ24]’s implementation, especially for
the parallel version, because the logic control of the parallel version is simpler, so the
critical path is shorter. We provide an area-time (AT) product, and the new hardware



18 Improving MPCitH with Preprocessing: Mask Is All You Need

implementation AT performs better, especially for parallel computing. Note that parallel
computing does not require a lot of hardware resources. This is because for the hardware
implementation of LowMC, each linear matrix is a different matrix of size n× n, so the
resources occupied are large, and the resources added by parallelism are small compared
to the matrix. Understandably, the latency of the new implementation will not increase,
because the calculation was previously done round by round, but now all rounds are
calculated simultaneously, and each round is independent, so no additional critical path is
added.

When it comes to optimization proposed in Section 5, the parallel computing imple-
mented in software requires multiple cores to be realized, but in hardware implementation,
especially in ASIC and FPGA, parallelism is very natural. For Πcom

C , due to a large number
of matrices, parallel computing only adds a few registers compared to serial computing. It
can also be found in Table 4 that the additional resources consumed by parallel computing
are very small, which is equivalent to the original implementation. Parallel optimization
can reduce both hardware usage and computing clock cycles.

The mask independence optimization performs very well for hardware implementation.
In addition to reducing the clock cycle, it also ensures that the hardware implementation
only increases a little. In [LJWJ24], they designed a pipeline for digital signatures based
on MPCitH-PP. The maximum clock cycle of each module of the pipeline limits the
performance of the pipeline. The clock cycle of the pipeline module mainly depends on
the number of rounds of the block cipher and hash function. Since the hardware usage
of LowMC is very large, they can only implement the Picnic3 algorithm with 4 parties.
Using this optimization, more parties can be implemented in the same clock cycle with
increasing few hardware usage. For example, in [LJWJ24], they use 8/12 clock cycles to
complete the calculation of LowMC, and this optimization can complete 4/6 calculations
of 4 parties in 8/12 clock cycles.

Table 4: Hardware utilization and critical path of LowMC-MPC for 16 parties on the
Kintex-7 (modified from [LJWJ24]). To simplify the results, we mainly use LUT as the area
measurement standard, and AT product is calculated by LUT×ClockCycle×CriticalPath.

Scheme Optimization Utilization Clock Critical AT Product
LUTs % LUTs FFs % FFs Cycles Path (#LUTs · ns)1

LowMC-L1-Πa+m
C Original 36264 12.14% 9167 1.53% 12 6.583 ns 2864711

LowMC-L1-Πa+m
C Original 41378 13.86% 9198 1.54% 8 7.032 ns 2327761

LowMC-L1-Πc
C Section 4 25146 8.42% 9038 1.51% 8 5.622 ns 1130967

LowMC-L1-Πc
C Section 5 28100 9.41% 9941 1.66% 2 4.154 ns 233455

LowMC-L5-Πa+m
C Original 128668 43.09% 18149 3.04% 12 7.716 ns 11913627

LowMC-L5-Πa+m
C Original 148211 49.64% 18116 3.03% 8 8.098 ns 9601701

LowMC-L5-Πc
C Section 4 75198 25.18% 18878 3.15% 8 5.932 ns 3568596

LowMC-L5-Πc
C Section 5 84698 28.36% 19638 3.28% 2 4.436 ns 751441

1 #LUT represents the number of LUT.

7 Conclusion
In this paper, we revisited the MPCitH-PP construction within the KKW protocol,
restructuring it into three phases and proposing significant optimizations to enhance
its efficiency. By analyzing both the offline and online phases, we identified redundant
computations and merged them into a single phase, leveraging the independence of random
masks to enable parallel calculations. These optimizations led to a more efficient protocol
for MPCitH-PP, suitable for both software and hardware implementations.

Through experimental verification using Picnic3, we achieved substantial performance
improvements. At the L1 security level, our optimized software implementation reduces
the calculation time of MPCitH-PP to approximately 74% of the previous solution, with



G. Liu et al. 19

further reductions to around 30% when parallelism is employed. The signature scheme
also shows improved efficiency, operating at about 88% of the previous time, and 73% with
parallelism. At the L5 security level, our optimizations reduce MPCitH-PP calculations
to approximately 62% of the previous solution, and 26% with parallelism; the signature
scheme runs at about 78% and 53% with parallelism, respectively. At the hardware level,
our enhancements reduce the required clock cycles from 12 or 8 rounds to just 2 rounds,
with negligible impact on hardware usage.

These results highlight the effectiveness of our proposed optimizations and demonstrate
their potential to make post-quantum digital signature schemes more practical and efficient
for real-world applications. Future work could investigate extending these optimizations
to other “in the head” techniques, such as VOLEitH, to further improve the efficiency of
PQ signatures.

Acknowledgements
The authors sincerely thank the anonymous reviewers of TCHES 2025 for providing
valuable comments to help us improve the overall quality of the paper.

This work is supported by the National Key R&D Program of China (No. 2018YFA0704700),
the National Natural Science Foundation of China (Grant Nos. 62072270, 62032014,
U2336207 and 62302250), Department of Science & Technology of Shandong Province
(No.SYS202201), Quan Cheng Laboratory (Grant Nos. QCLZD202301, QCLZD202306),
the Young Elite Scientists Sponsorship Program by CAST (2023QNRC001), and the
National Key R&D Program of China (No. 2024YFA1013003).

References
[ABB+23] Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez,

Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu,
Matthieu Rivain, and Jean-Pierre Tillich. Mira specifications. hal-04315820f,
2023.

[ABB+24] Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-
Zamarripa, Carlo Sanna, Javier A. Verbel, and Floyd Zweydinger. Mirith:
Efficient post-quantum signatures from minrank in the head. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2024(2):304–328, 2024.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 430–454.
Springer, 2015.

[BBD+24] Slim Bettaieb, Loïc Bidoux, Victor Dyseryn, Andre Esser, Philippe Gaborit,
Mukul Kulkarni, and Marco Palumbi. PERK: compact signature scheme
based on a new variant of the permuted kernel problem. Des. Codes Cryptogr.,
92(8):2131–2157, 2024.

[BBdSG+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifi-
able zero-knowledge and post-quantum signatures from vole-in-the-head. In



20 Improving MPCitH with Preprocessing: Mask Is All You Need

Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part V, volume 14085 of Lecture Notes in Computer Science, pages 581–615.
Springer, 2023.

[BCF+23] Loïc Bidoux, Jesús-Javier Chi-Domínguez, Thibauld Feneuil, Philippe Ga-
borit, Antoine Joux, Matthieu Rivain, and Adrien Vinçotte. RYDE: A
digital signature scheme based on rank-syndrome-decoding problem with
mpcith paradigm. CoRR, abs/2307.08726, 2023.

[BDPA11] Guido Bertoni, Joan Daemen, Michá’el Peeters, and Gilles Van Assche.
Cryptographic sponge functions. Submission to NIST (Round 3), 2011.
https://sponge.noekeon.org/CSF-0.1.pdf.

[Beu20] Ward Beullens. Sigma protocols for mq, PKP and sis, and fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 183–211. Springer, 2020.

[BFR23] Ryad Benadjila, Thibauld Feneuil, and Matthieu Rivain. MQ on my mind:
Post-quantum signatures from the non-structured multivariate quadratic
problem. IACR Cryptol. ePrint Arch., page 1719, 2023.

[BKPV24] Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier A. Verbel.
Biscuit: New mpcith signature scheme from structured multivariate polyno-
mials. In Christina Pöpper and Lejla Batina, editors, Applied Cryptography
and Network Security - 22nd International Conference, ACNS 2024, Abu
Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part I, volume
14583 of Lecture Notes in Computer Science, pages 457–486. Springer, 2024.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments
for arithmetic circuits and their application to lattice-based cryptography.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, Public-Key Cryptography - PKC 2020 - 23rd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Edinburgh,
UK, May 4-7, 2020, Proceedings, Part I, volume 12110 of Lecture Notes in
Computer Science, pages 495–526. Springer, 2020.

[CCJ23] Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures
from regular syndrome decoding in the head. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V, volume
14008 of Lecture Notes in Computer Science, pages 532–563. Springer, 2023.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives.
In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1825–1842. ACM, 2017.

https://sponge.noekeon.org/CSF-0.1.pdf


G. Liu et al. 21

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

[dSGMOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: using AES in picnic signatures. In Kenneth G.
Paterson and Douglas Stebila, editors, Selected Areas in Cryptography - SAC
2019 - 26th International Conference, Waterloo, ON, Canada, August 12-16,
2019, Revised Selected Papers, volume 11959 of Lecture Notes in Computer
Science, pages 669–692. Springer, 2019.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In Amit Sahai, editor, Theory of
Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in
Computer Science, pages 621–641. Springer, 2013.

[FR] Thibauld Feneuil and Matthieu Rivain. Threshold computation in the
head: Improved framework for post-quantum signatures and zero-knowledge
arguments. IACR Cryptol. ePrint Arch., page 1573.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1986.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 1069–1083. USENIX Association, 2016.

[HBD+20] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Ste-
fan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-
Philippe Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+.
Technical report, National Institute of Standards and Technology,
2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from Secure Multiparty Computation. In David S. Johnson and
Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
21–30. ACM, 2007.

[KHS+23] Seongkwang Kim, Jincheol Ha, Mincheol Son, ByeongHak Lee, Dukjae Moon,
Joohee Lee, Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon, and
Jooyoung Lee. AIM: symmetric primitive for shorter signatures with stronger
security. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


22 Improving MPCitH with Preprocessing: Mask Is All You Need

Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 401–415. ACM, 2023.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pages 525–537. ACM, 2018.

[KZ20] Daniel Kales and Greg Zaverucha. Improving the performance of the picnic
signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):154–
188, 2020.

[LJWJ24] Guoxiao Liu, Keting Jia, Puwen Wei, and Lei Ju. High-Performance Hard-
ware Implementation of MPCitH and Picnic3. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2024(2):190–214, 2024.

[LLDL+20] Vadim Lyubashevsky, Eike Kiltz Léo Ducas, Tancrėde Le-
point, Peter Schwabe, Gregor Seiler, Damien Stehlé, and
Shi Bai. CRYSTALS-DILITHIUM. Technical report, Na-
tional Institute of Standards and Technology, 2020. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Techni-
cal report, National Institute of Standards and Technology, 2020.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[Pic20] Picnic Design Team. An implementation of the LowMC block cipher fam-
ily, 2020. https://github.com/microsoft/Picnic/blob/master/spec/
spec-v3.0.pdf.

[ZCD+20] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig,
Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel Kales. Pic-
nic. Technical report, National Institute of Standards and Technology,
2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[ZWX+22] Handong Zhang, Puwen Wei, Haiyang Xue, Yi Deng, Jinsong Li, Wei Wang,
and Guoxiao Liu. Resumable Zero-Knowledge for Circuits from Symmetric
Key Primitives. In Khoa Nguyen, Guomin Yang, Fuchun Guo, and Willy
Susilo, editors, Information Security and Privacy - 27th Australasian Con-
ference, ACISP 2022, Wollongong, NSW, Australia, November 28-30, 2022,
Proceedings, volume 13494 of Lecture Notes in Computer Science, pages
375–398. Springer, 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Introduction
	Priliminaries
	MPC-in-the-head with Preprocessing
	Seed Generation
	LowMC

	Reformulate MPCitH-PP
	Mask Is All You Need
	Independence of the Mask
	Implementation
	Techniques of Optimal Implementation
	Results of Software Implementation
	Results of Hardware Implementation

	Conclusion

